
An Integrated Hardware/Software Approach For Run-Time
Scratchpad Management ∗

Poletti Francesco†, Paul Marchal‡, David Atienza#,
Luca Benini†, Francky Catthoor‡, Jose M. Mendias#

† University of Bologna, DEIS, Viale Risorgimento 2, 40134 Bologna, Italy.
‡ IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium.

DACYA/UCM, Avda. Complutense s/n, 28040 Madrid, Spain.
{ fpoletti@deis.unibo.it, marchal@imec.be, datienza@dacya.ucm.es
lbenini@deis.unibo.it, catthoor@imec.be, mendias@dacya.ucm.es }

ABSTRACT
An ever increasing number of dynamic interactive applications are
implemented on portable consumer electronics. Designers depend
largely on operating systems to map these applications on the ar-
chitecture. However, today’s embedded operating systems abstract
away the precise architectural details of the platform. As a con-
sequence, they cannot exploit the energy efficiency of scratch-
pad memories. We present in this paper a novel integrated hard-
ware/software solution to support scratchpad memories at a high
abstraction level. We exploit hardware support to alleviate the
transfer cost from/to the scratchpad memory and at the same time
provide a high-level programming interface for run-time scratchpad
management. We demonstrate the effectiveness of our approach
with a case-study.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interfaces; C.3 [Special-
purpose and Application-based Systems]: Real-time and embed-
ded systems; C.4 [Performance of Systems]: Design studies

General Terms:Measurement Performance Verification.

Keywords: Scratchpad, DMA, Dynamic Allocation, AMBA AHB.

1. INTRODUCTION
Memories determine to a large extent the energy cost and perfor-

mance in today’s embedded systems. As a result, several architec-
tural extensions and dedicated compilation techniques have been
developed to optimally use the memory hierarchy (see [4], [9] and
[5] for good overviews).

An important architectural innovation involves adding scratch-
pad memories next to hardware-controlled caches. Scratchpads

∗This work is partially supported by the Spanish Government Re-
search Grant TIC2002/0750 and by a grant from STMicroelet-
tronics. Francky Catthoor is also professor at ESAT/K.U.Leuven-
Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

are more energy-efficient than caches since they do not need com-
plex tag-decoding logic. They can also reduce the number of con-
flict misses in the cache ([8]). To exploit the potential benefits of
scratchpad memories, the designers should first carefully decide
which data to assign to the scratchpad and secondly, they need to
efficiently implement the assignment decisions.

In the simplest cases, the programmer determines at design-time
which data to store in the scratchpad. At run-time no other data
can be moved into the scratchpad. For dynamic applications (such
as MPEG21, MPEG4) where tasks are either created at run-time
or require a varying amount of data, this limitation prevents the ef-
fective usage of scratchpad memories. Run-time scratchpad man-
agement techniques are thus needed. Recently, researchers have
proposed run-time scratchpad management techniques for pointer-
based applications (see e.g.[12]). When an object is created in the
scratchpad, the processor explicitly transfers data between the tem-
plate of the object in the main memory and the instantiation in the
scratchpad.

The copy cost can be reduced when dedicated data transfer hard-
ware is used, such as a Direct Memory Access controller (DMA).
Once the copy cost is reduced, more and better objects can be found
to take advantage of the scratchpad. As an example, in DSP appli-
cations designers often tile large arrays to create locality. The task
then accesses tiles of the original array. Copies of the accessed
tiles can be assigned to the scratchpad, but need to be regularly
updated with data from the original array ([14]). Existing DMAs
and scratchpad memories are often programmed at the assembly
level in a rather ad-hoc fashion. Without higher-level programming
support, they are difficult to use in dynamic applications.

The contribution of this paper is to build an integrated hard-
ware/software solution for managing scratchpad memories at run-
time. Our hardware consists of scratchpad memories coupled to
DMA engines to reduce the copy cost between scratchpad and main
memory. More importantly, we provide a high-level programming
interface which makes very easy to manage the scratchpads at run-
time. We have integrated our solution in a cycle-accurate platform
simulator (including the OS). Hence, we can present precise mea-
surements of the scratchpad memory overhead.

This paper is organized as follows. First, we survey related work
(Sect. 2). Then, we discuss the platform extensions necessary to
manage the scratchpad at run-time (Sect. 3). Subsequently, we
show, through a detailed case study and several additional exper-
iments, how this environment is used to manage scratchpads for
dynamic multi-threaded applications (see Sect. 4-Sect. 6).

15.1

238

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. RELATED WORK
Scratchpad management techniques have been widely re-

searched in the past (see [9] and [5] for an overview). We discern
design-time and run-time techniques.

A large body of research exists in how to decide which data to
assign, at design time, to the scratchpad memory. [8] discusses the
combined effect of a scratchpad and a cache memory, and presents
an algorithm to optimally generate a custom cache/scratchpad ar-
chitecture. [3] explains how the scratchpad can be managed with-
out the help of the linker. A special decoder is presented that de-
tects for each access whether the corresponding data is in the main
memory or in the on-chip scratchpad memory. In [1], an algorithm
based on profiling information is presented to find which segments
of the linked executable should be mapped in the scratchpad. [2]
extends scratchpad management techniques to the context of het-
erogeneously sized memories. Finally, [14], [6] and [11] describe
how to partition large data structures. The tiles of the original data
structures can then be mapped onto the scratchpad memory, but re-
quire data transfers between the scratchpad and the main memory.
Previous work fails to measure the overhead of these transfers on a
real architecture with an DMA.

The main limitation of above design-time techniques is that they
cannot cope with dynamic applications where only at run-time it
is known which data needs to be assigned. Dynamic applications
however are slowly becoming desirable in the context of embed-
ded systems. Several authors have therefore started to research
run-time scratchpad management techniques. For instance, [12]
and [2] decide at design-time for each call-site to malloc/new to
which memory the data should be assigned. They base their deci-
sion on simple criteria: object co-location to avoid conflict misses,
object size and energy-efficiency. Upon object-creation the proces-
sor needs to explicitly transfer data between the main memory and
scratchpad, which is rather costly. We provide therefore extra hard-
ware (an DMA) to reduce the copy overhead. As a consequence,
we can initiate more transfers between scratchpad and main mem-
ory, thereby enabling the assignment of different data objects (such
as array tiles) to the scratchpad. Also, instead of relying on the
existing memory managers that come with the OS, we provide a
configurable memory manager, which can be customized to further
reduce the cost. Finally, in contrast to prior work, we quantify the
real scratchpad overhead on a cycle-accurate processor platform.

Compared to existing platforms available in industry (see e.g. ST
LX or TI C6x), we provide a higher-level and more integrated envi-
ronment to exploit the scratchpad. The details of our environment
are outlined in the next section.

3. PLATFORM EXTENSIONS
In this section, we describe the hardware extensions and soft-

ware support that we have integrated on our platform to alleviate
the designer from the cumbersome details of exploiting a complex
memory hierarchy.

3.1 Hardware Extension
On existing memory architectures (see Fig. 1 left) both the cache

and scratchpad memory are connected to a local memory bus.
Whenever new data needs to be moved in/from the cache, the pro-
cessor enters a special state. Its Memory Management Unit (MMU)
fills then the cache-lines by transferring small bursts over the bus-
master port. To move data into(/out) of the scratchpad, the data
is always first fetched in the cache and only then copied into the
scratchpad (or main memory).

Compared to scratchpads used in earlier academic work, we
place an DMA engine next to each processor. The DMA enables

A
M
B
A

b
u
s

ARM

Scratch
Memory

Cache

Job-
table

Transfer
engine

DMA

Processor tile

A
M
B
A

b
u
s

ARM

Scratch
Memory

Cache

Processor tile master

local bus

MMU MMU

Figure 1: Hardware extensions for scratch-management:
(left) original-(right) extended

memory transfers between the scratchpad and the main memory
without any processor involvement (if possible). It consists of two
parts: a controller and a transfer engine. The controller is the main
interface between the processor and the DMA. The processor pro-
grams DMA jobs and enquiries on the status of DMA jobs by writ-
ing/reading into/from the controller’s address space. An DMA job
contains information on the source addresses and stride and the tar-
get addresses and stride. Every time the transfer engine is free,
and the job queue is not empty, the DMA controller starts a new
transaction on the transfer engine. In order to transfer a block of
data, the transfer engine generates the necessary burst accesses to
the bus and accesses to the scratchpad memory. The bursts to the
bus can be of different size. The transfer engine contains a 64B
queue to store incoming/outgoing data waiting to be forwarded to
the scratchpad or to the main memory. Finally, it is connected to
the memories outside of the processing tile through a master port
1 . Inside the processing tile a dedicated connection exists to the
scratchpad.

A cycle-accurate model of both the DMA and scratchpad mem-
ory have been integrated in the MPARM simulator environment
([7]). MPARM is a full-system SystemC-based simulator which
can track, in a cycle-accurate fashion, performance and power con-
sumption of a multi-processor systems-on-chip. A complete op-
erating system is integrated in the environment, thereby enabling
research on the delicate interplay between software and hardware.

3.2 Configurable Dynamic Memory Manager
The memory space available at run-time to our applications (i.e.,

the heap). It is managed with the help of a Dynamic Memory Man-
ager (DMM). The DMM keeps track of the unused memory blocks
and has internal routines to find the best fitting free block for an al-
location request. To keep fragmentation of the memory space and
the allocation overhead bounded, we have integrated a configurable
DMM in our environment.

In order to customize the DMM, we divide the available mem-
ory space in segments and select an appropriate memory manager
for each segment. Currently, we have integrated two memory man-
agers, which we both borrowed from RTEMS[10]. The first one is a
simple partition manager with low assignment overhead, the other
one is a more complex region manager which uses more effectively
the available memory space (see [13]).

The partition manager partitions the available memory in equal-
sized chunks. It uses a single table to keep track of the free/used
chunks, which limits the allocation overhead. The region manager
uses a doubly linked list to keep track of the free-blocks. When
a tasks requests memory space, a first fit mechanism is used and
then memory splitting and coalescing techniques are used to return

1For a shared bus, like AMBA AHB, we could also reuse the mas-
ter port of the MMU, saving energy area and obaining the same
performance. With a complex connection it’s something that can
be interesting to explore.

239

function arguments description

SMcreateManager startaddress initializes a memory
managed size manager for a part of the SM
type type is either a partition
id or a region manager
chunk-size (opt)

SMmalloc size like a normal malloc
id id specifies the segment

in which to allocate
SMfree pointer like a normal free

id

DMAjob width create a
length job in the
M1 address DMA-Q
M1 matrix width
M2 address
M2 matrix width
direction
waitfor (wait or go)

DMAwait object wait until the job
of object is ready

DMAnewstate object reinitialize
direction
waitfor

DMAM1(2)add object change M1 start-address
address

DMAfree object remove the object
from the DMA-Q

Table 1: Scratchpad and DMA API

a tightly-fitting memory chunk and to reduce fragmentation. As
a result of the maintenance structures for the multiple allocation
sizes allowed, the allocation overhead is slightly higher in the latter
manager.

3.3 Application Programmers Interface
Since we want to relieve the designer as much as possible of the

cumbersome details of programming the DMA and the scratchpad,
we provide several high-level functions. The main ones are shown
in Tab. 1.

The scratchpad memory (SM) functions are used to assign data
in the scratchpad at run-time. Before the scratchpad can be used at
run-time, the custom run-time manager first needs to be initialized.
For this purpose, SMCreateManager starts a memory manager in
a segment of the scratchpad, specified by its start address and size.
Depending on the type, either a region or a partition manager is
created. In case a partition manager is used, the designer should
also set the size of each partition. To call the memory manager in a
specific segment, the designer should call SMmalloc/free together
with the id of the manager.

The DMA routines are used to specify memory transfers be-
tween the scratch and the main memory. An DMA job is initialized
using DMAjob. Its first two arguments (width and length) spec-
ify the shape of the block transfer. The following four arguments
contain information on the start-address and size of the data struc-
tures between which data is exchanged. This information is needed
by the transfer engine to generate the addresses for the burst/copy
operations. The direction argument indicates which block is the
source/destination of the transfer. When the last argument is set to
one, the processor is stalled until the DMA transfer is done. Oth-
erwise the processor continues its execution in parallel with the
DMA. At all times, the processor can wait for an DMA transfer to
finish by calling the DMAwait function. After the transfer is done,
the same DMA object can be reinitialized to implement a differ-
ent transfer. We provide DMAnewstate and DMAM2add for this
purpose.

Our approach thus consists of special-purpose hardware to effi-
ciently transfer data to/from the scratchpad and a high-level API
which makes it possible to explore several scratchpad management
solutions.

4. RUN-TIME SCRATCHPAD MANAGE-
MENT FOR DYNAMIC MULTI-TASKED
APPLICATIONS

The goal of this case-study is to demonstrate our integrated ap-
proach on a small example and compare it with existing techniques.

TASK A

while(input){
key[i] = malloc(4*32);
...

}

TASK B

int X[N*N], Y[N*N], Z[N*N];
int i,j,k;

for (int i=0; i<N; i++) {
for (int j=0; j<N; j++) {

Z[i*N+j] = 0;
for (int k=0; k<N; k++)

Z[i*N+j] +=
X[i*N+k] * Y[j+k*N];

}}

OS-boot

SMcreateManager(scratch,2kB,
region,Manager1)

TASK A

while(input){
key[i] = SMmalloc(4*32, Manager1);
...

}

TASK B

int X[N*N], Y[N*N], Z[N*N];
int i,j,k;

/* local memory */
int *X_lr = SMmalloc(N*4,Manager1);
object[0]= DMAJob(N,1,N,N,(uint)X_lr,(uint)X,2,true);

for (int j=0; j<N; j++) {
for (int i=0; i<N; i++) {

DMAM2add((uint)((int*)X+i*N),object[0]);
DMAnewstate(‘to’,object[0],true);
Z[i*N+j] = 0;
for (int k=0; k<N; k++)

Z[i*N+j]+= X_lr[k] * Y[j+k*N];
}}

Figure 2: Motivational example: original code (left), integrated
approach (right)

Fig. 2 left presents the original code of two independent tasks. In
the context of this example, we assume that both tasks are executed
on a single processor using a round-robin scheduler. In general,
the tasks can be instantiated several times due to user-events. The
energy and performance of the task-set running on a 4kB cache
memory is shown in point 1 of Fig. 3.

Both the performance and the energy can be easily improved
with a scratchpad memory of 2kB2 (see e.g. points 2 and 4 which
both exploit a scratchpad). Because applications are becoming dy-
namic, the scratchpad needs to be managed at run-time. As an
example of dynamic behavior, remark in the original code of Fig. 2
left, that task A uses malloc(4*32) to reserve more memory space
depending on input. Due to this dynamic behavior, it is hard to pre-
dict at design-time how much and when data should be assigned
to the scratchpad. Hence, existing design-time techniques are sub-
optimal.

With our integrated approach, the limitations of the design-time
approaches can be overcome. In Fig. 2 right, we show the code
changes which are needed to manage the scratchpad at run-time.
At boot-time of the OS, we instantiate a memory manager in the
scratchpad. We call for this purpose SMCreateManager and ini-
tialize a region-manager in a 2kB segment of the scratchpad. Note
that by replacing the third argument of SMCreateManager with
partition, we could replace the region-manager with a partition-
manager. To allocate data at run-time, the designer calls SMmalloc
(see e.g. task A). This function has the same API as an ordinary
malloc except that the dedicated manager is passed as a second ar-
gument (Manager1). Using above code changes, the designer can
implement existing run-time scratchpad management techniques.
As an example, we reuse the technique presented in [12] and mal-
loc the dynamic data of Task A in the scratchpad. The energy and
performance of this solution are shown in point 2.

In our approach, we introduce an DMA to reduce the overhead
of data transfers between the memories. More transfers can then

2In this case we use a 2kB cache.

240

2.5 3 3.5 4 4.5 5

x 10
7

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
x 10

6

Execution time in cycles

E
ne

rg
y

in
 n

J

2. Task A dynamic
 Task B cache

1. Task A cache
 Task B cache

3. Task A dynamic
 Task B dynamic
 +explicit copies

4. Task A dynamic
 Task B dynamic + DMA

Figure 3: Case-study: even for dynamic applications a scratch-
pad with DMA outperforms a cache only solution

be executed for the same cost, thereby making possible to store
data that needs to be frequently updated on the scratchpad. A well
known example of such data in signal processing applications are
array-tiles. After an application has been tiled, the tiles themselves
are small enough to fit in the scratchpad, but need to be frequently
updated with new information from the original array. We show in
Fig. 2 again the code change to assign the tile to the scratchpad and
update it with the DMA. We assign the tile (X lr) to the scratchpad
with SMmalloc. Then, we create an DMA transfer with DMAJob.
The arguments to this function indicate the source (X) and target
data structure (X lr) and the shape of the block transfer. In this
case, we move a rectangular tile of N by 1 elements. At the start
of every i-iteration, the start address of the source tile is written in
the DMA controller with DMAM2add and the transfer is initiated
with DMAnewstate. The DMA transfer is then automatically exe-
cuted by the transfer engine. Because the DMA transfers data more
cost-efficiently, more and better data structures can be assigned to
the scratchpad. Point 4 in Fig. 3 represents the performance and
energy consumption of the solution with array-tiling and DMA. In
contrast, when the tiles are assigned to the scratchpad but no DMA
is used, the performance becomes worse, because of the extra pro-
cessor overhead (point 3). Also note that in spite of the reduced
number of cache misses, the energy consumption is in this case
higher as a result of the intermediate read/write operations in the
cache required to move the data to the scratchpad. With the help
of our high-level API, the programming complexity to assign the
tiles to the scratchpad and initiate the DMA transfers is reduced to
a minimum.

From this example and the results of Sect. 6, we can conclude
that our integrated management approach improves on existing so-
lutions. However, even more space for improvement exists, as out-
lined in the next section.

5. DESIGN-SPACE EXPLORATION
In this section we explain several parameters which can be tuned

to further optimize run-time scratchpad management. The most
important ones are shown in Fig. 4 and will be discussed in the
following sections.

5.1 Scratchpad candidates selection
A first important step is to decide which data structures are good

candidates to map in the scratchpad. Typically, frequently accessed
data structures are interesting candidates. Obviously, some fre-
quently accessed data structures are too big to fit in the scratch-

dynamic tasks

 Scratchpad candidates
selection

Allocation
strategy

Selection of
 memory manager

all-at-once

one-after-
the-other

region combined

Performance
Energy Eval.

...

static dynamic

...

Figure 4: Design-space exploration for dynamic scratchpad
management

pad. To increase freedom for run-time scratchpad management, we
then try to build partial copies of these data structures that fit in the
scratchpad. We reuse for this purpose techniques such as [14]. We
also introduce the code to update the tiles whenever they will be
assigned to the scratchpad.

The candidate data structures are either statically declared inside
the task code or generated with a dynamic memory management
routine (such as malloc). Two differences exist between them: (1)
the static ones are assigned at the start-up phase of the task whereas
the dynamic ones are assigned during the execution of the task; (2)
for the static ones a fixed size needs to be assigned whereas for the
dynamic ones the size may vary.

After the scratchpad candidate selection, we end up with a set
of statically declared data structures a set of call-sites (new/malloc)
which could benefit from the scratchpad.

5.2 Allocation order
Since all statically declared data is known at the start of a new

task, we can apply different allocation strategies to reduce the as-
signment overhead. Particularly, we can vary the order in which
space for the different static data is requested from the memory
manager. In a first approach, we request space for all the static data
with one assignment (all-at-once policy). The main idea is that
when free space is available in the scratchpad, we only need a sin-
gle call to the memory manager. If the assignment fails, we assign
the least important object to the main memory. In our second ap-
proach (one-after-the-other), we try to successively assign the data
in order of decreasing benefit (number of accesses divided by size).
Like greedy knapsack heuristics, we thus assign the data which has
the largest energy/size advantage first. In both the two case we con-
tinue until all the data is assigned to a memory (the main memory
or the scratchpad).

5.3 Run-time manager selection
Customizing the memory management routine for the scratch-

pad can significantly improve the allocation speed and reduce the
fragmentation. We configure our memory manager by splitting the
scratchpad memory space in segments. Each segment is managed
with a different run-time policy. In the context of the case-study,
we have explored the following two combinations: (1) we manage
the entire scratchpad with a single region manager, which behaves
like an ordinary malloc found in a C-library; (2) we use a combined
region and partition manager. Half of the scratchpad is managed by
the region manager, the other half by a partition manager.

241

0.6 0.8 1 1.2 1.4 1.6

0.5

0.7

0.9

1.1

relative execution time compared to cache only

re
la

tiv
e

en
er

gy
 c

on
su

m
pt

io
n

 c
om

pa
re

d
to

 c
ac

he
 o

nl
y

3.cache

1. tiled dma

2. tiled
explicit copies

2. tiled explicit copies

1. tiled dma

Filter
matrix multiply

Figure 5: Explicit copying compared to DMA

The partition manager takes care of all calls to malloc/new inside
the original code. The region manager assigns the statically de-
clared data structures of the tasks. In the next section we compare
the different management policies.

6. EXPERIMENTAL RESULTS
We present three different experiments. First, we quantify how

much an DMA improves existing run-time scratchpad management
techniques which use explicit copying. Secondly, we explore how
much the allocation order and selection of the run-time manager
influence the performance and energy cost. Finally, we provide an
example of our approach in a multi-processor context. The energy
parameters used during the MPARM simulations are presented in
Tab.2. The ARM core runs at a frequency of 200 Mhz and the
switching time of the Round Robin scheduler is 1ms.

Size Energy
Cache Direct Mapped 8KB energy 0.23nJ/access

Direct Mapped 4kB energy 0.21nJ/access
Scratchpad SRAM 4kB energy 0.142nJ/access
L2 SRAM memory 256kB energy 0.99nJ/access

Table 2: Platform parameters

An important advantage of our solution is that we use a DMA to
avoid explicit memory copy operations to fill the scratchpad. We
quantify this improvement on two applications which we have tiled
(filter and matrix multiply). The copies of the tiles are assigned to
the scratchpad memory. We measure the performance and energy
consumption using on the one hand explicit copies and on the other
hand the DMA to update the tiles (see Fig. 5). Explicit copying
generates processing overhead and also extra accesses in the cache,
which are needed to transfer the data to the scratchpad. As a conse-
quence, the points without DMA (points 2) have a worse execution
time and energy consumption compared to the points with DMA
transfers (points 1). Remarkably, in case of matrix multiply, ex-
plicit copying causes so much overhead that its performance and
energy cost are worse than the cache-only solution (point 3). Stor-
ing data tiles on the scratchpad can thus become inefficient when
no DMA is present on the platform. Vice versa, an DMA creates
more opportunities to exploit the scratchpad.

Our integrated scratchpad-manager is further validated with the
help of a realistic execution trace. It models a sequence of 26

data-independent tasks which are started by some random events
(representing a “typical” user). The tasks are executed on a sin-
gle processor running a round-robin scheduling policy. They are
either instances of static applications such as image filter, matrix
multiply or edge compression derived from Mediabench, or they
are instances of, a malloc-intensive network application borrowed
from the NetBench benchmark suite, i.e. Deficit Round Robin (or
DRR from now on).

The characteristics of the tasks are shown in Tab. 3. The sec-
ond column indicates the number of data structures which can be
assigned to the scratchpad memory; the third column indicates the
sum of the sizes of these data structures.

name nr. mallocs max. allocated size
image filter 3 960B
image filter light 3 480
matrix multiply 3 224B
matrix multiply light 3 112B
edge 3 256B
edge light 3 128B

deficit round robin dynamic dynamic

Table 3: Task characteristics
In Fig. 6 we compare the performance and energy consumption

for the workload described above under six scratchpad manage-
ment policies. As a reference, we run the workload on a cache-
based architecture. This results in the slowest and most energy-
inefficient solution (point 1). We also try to reuse existing design-
time approaches. For this purpose we predict which tasks are most
common at run-time and reserve space in the scratchpad for their
statically declared data. As a consequence, we reduce the access
cost (point 2) compared to cache-only. However, the more difficult
it becomes to predict which data structures are active, the harder it
becomes to apply this technique.

The points (3,4,5,6) of Fig. 6 show the results of our run-time
approach, where both dynamic and static data are assigned to the
scratchpad. In points 3 and 4, we use a single region-manager to
manage the scratchpad. We respectively try to assign the statically
declared data all-at-once (point 3) or assign the data in order of
decreasing benefit one-after-the-other (point 4). Although, in prin-
ciple, assigning the data all-at-once reduces the number of malloc-
calls, it consumes more energy and executes slower. This is mainly
due to a mismatch in the requested size of DRR and the other static
applications. As a consequence, the scratchpad memory becomes
fragmented and 60% of the allocation requests need to be directed
to the main memory. Obviously, since the processor has to access
these data through the cache, the energy consumption increases.
By assigning the data one-after-the-other, a better match exists be-
tween the static tasks and DRR. Almost all data (99% of the re-
quests) can be assigned to the scratchpad and less cache-misses
occur. One-after-the-other (point 4) is therefore faster and more
energy-efficient than all-at-once (point 3).

Another way is to reduce fragmentation is to logically split the
scratchpad memory in two segments (points 5-6). Each segment
is managed by an appropriate memory manager for the specific
type of requests. We use a cheap partition manager for the equal-
sized requests of the DRR applications and a region-manager for
the variable size static data requests. No fragmentation occurs and
the same data as in point 4 can be assigned to the scratchpad. This
explains why points 4 and 5-6 have a similar energy consumption.
The customized manager (points 5 and 6) executes slightly faster
than point 4, because it uses a faster partition manager to assign the
data of the DRR tasks. Almost no difference exists between assign-

242

0.7 0.8 0.9 1 1.1
4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

7

1

3. Run−time
Region
All−at−once

2. Design−time

4. Run−time Region
One−after−the−other

relative performance compared to cache only

en
er

gy
 c

on
su

m
pt

io
n

(n
J)

1. Cache

5. Run−time
Region/Partition
One−after−the−other

6. Run−time
Region/Partition
All−at−once

Figure 6: Energy/Performance for the multi-threaded execu-
tion workload under different scratch management policies

1 4 8 12 16 20
4

5

6

7

8

9

10

11

12

13
x 10

7

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

Number of processors

Cache
Scratchpad with explicit copies
Scratchpad with DMA

Figure 7: Execution time depends on bus congestion

ing the data all-at-once (point 5) or one-after-the-other (point 6) in
case of a customized manager.

Finally, we quantify the benefits of our approach for multi-
processors. Our multi-processor architecture consists of several
ARM processors connected to a shared L2 memory with an AMBA
bus. The L2 memory has an access latency of three cycles. Each
processor runs an independent application, thus no problem of co-
herency between shared memory is present. In Fig. 7, we compare
three architectures: one only with caches, another one with scratch-
pads and finally one with scratchpads and DMA. The architecture
with DMA outperforms both the cache and scratchpad alone. It also
scales better with an increasing number of processors. Also notice
that the execution time of the scratchpad one is first worse (one pro-
cessor) than cache-only, but becomes better when the number of
processors is increased (more than eight). When only one proces-
sor is used, the access latency to the L2 memory is relatively small.
Therefore, the reduction in cache misses due to the scratchpad is
outweighed by the extra processing overhead to fill the scratchpad.
However, when the number of processors increases, traffic on the
bus becomes congested. Consequently, the access latency increases
and any reduction in the number of cache misses results then in a
measurable performance improvement.

7. CONCLUSION
In this paper, we have presented an integrated software/hardware

approach to take advantage of energy-efficient scratchpad memo-
ries for dynamic applications. Our experimental results show that
even in dynamic applications scratchpads are energy-efficient and
improve performance. The DMA next to the scratchpad enables
the use of the scratchpad for more data structures. An important
decision for scratchpad management is the selection of run-time
memory manager. Designers can trade/off fragmentation and as-
signment overhead by customizing the memory manager. A good
way is to cluster allocations requests of equal size and map them
onto independently managed segments. Finally, changes in the ap-
plication code for run-time scratchpad management can be limited
with the help a high-level API to the DMA and scratchpad. In fu-
ture work, we will like build a methodology to automate the selec-
tion of the scratchpad candidates and the selection of an appropriate
memory manager.

8. REFERENCES
[1] F. Angiolini, L. Benini, and A. Caprara. Polynomial-Time

Algorithm for On-Chip Scratchpad Memory Partitioning. In
Proc. CASES, 2003.

[2] O. Avissar, R. Barua, and D. Stewart. Heterogeneous
Memory Management for Embedded Systems. In Proc.
CASES, 2001.

[3] L. Benini, A. Macii, and E. Macii. Increasing Energy
Efficiency of Embedded Systems by Application Specific
Memory Hierarchy Generation. IEEE Design and Test,
17(2):74–85, 2000.

[4] L. Benini and G. De Micheli. System-level power
optimization: techniques and tools. ACM TODAES,
5(2):115–192, 2000.

[5] Catthoor et al. Custom Memory Management Methodology -
Exploration of Memory Organisation for Embedded
Multimedia System Design. Kluwer Academic Publishers,
Boston MA, 1998.

[6] M. Kandemir, J. Ramanujam, et al. Dynamic Management of
Scratch-pad Memory Space. In Proc. DAC, 2001.

[7] Loghi M., Angiolini F., Bertozzi D., Benini L., and Zafalon
R. Analyzing Chip Communication in a MPSoC
Environment. In Proc DATE , 2004.

[8] P. Panda, N. Dutt, and A. Nicolau. Efficient Utilization of
Scratch-Pad Memory in Embedded Processor Applications.
In Proc. DATE, 1997.

[9] P.Panda, F.Catthoor, et al. Data and Memory Optimizations
for Embedded Systems. ACM TODAES), 6(2):142–206, Apr.
2001.

[10] RTEMS. www.rtems.com.
[11] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar,

M. Balakrishnan, and P. Marwedel. Reducing Energy
Consumption by Dynamic Copying of Instructions onto
Onchip Memory. In Proc. ISSS, 2002.

[12] S. Tomar, S. Kim, N. Vijaykrishnan, M. Kandemir, and
M. Irwin. Use of Local Memory for Efficient Java Execution.
In Proc. ICCD, 2001.

[13] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic
Storage Allocation: A Survey and Critical Review. In Proc.
Int. Workshop. Memory Management, 1995.

[14] S. Wuytack, J. Diguet, F. Catthoor, and H. De Man.
Formalized methodology for data reuse exploration for
low-power hierarchical memory mappings. IEEE Trans.
VLSI Systems, 6(4):529–537, Dec. 1998.

243

