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Abstract-Portable consumer devices are increasing more and 
more their capabilities and can now implement new multimedia 
algorithms that were resewed only for powerful workstations 
few years ago. Unfortunately, the original design characteristics 
of such algorithms do not often allow to port them directly to 
current embedded devices. These algorithms share complex and 
intensive dynamic memory use and actual embedded systems 
cannot provide efficient general-purpose memory management 
as it is needed. As a result, dynamic memory optimizations are 
a requirement when porting these applications. Within these 
optimizations, the refinement of the dynamically (de)allocated 
abstract data type implementations in the complex multimedia 
applications involved is one of the most important and difficult 
parts for an efficient mapping of the algorithms on low-power 
and high-speed embedded consumer devices. In this paper, we 
describe a high-level approach for modeling and refining complex 
data types wing abstract derived classes in C++. This approach 
enables the multimedia developer to compose, evaluate and 
refine complex data types in a conceptually straightforward way, 
without a time-consuming programming effort. 

I. INTRODUCTION 
Multimedia applications have experienced recently a very 

fast growth in their variety, complexity and functionality. This 
implies a high demand of memory and performance, which 
results in high cost and power consumption systems. These 
new algorithms (e.g. MPEG4) depend, with few exceptions, on 
Dynamic Memory (DM from now on) for their operations due 
to the inherent unpredictability of the input data, which heavily 
influences global performance and memory usage of these 
systems. In addition, energy has become a real issue in overall 
system design (both embedded and general-purpose) due to 
circuit reliability and packaging costs [12] .  Thus, optimiza- 
tions include three goals that cannot he seen independently: 
memory usage, power consumptions and performance. 

Since the DM subsystem heavily influences performance 
and is a very important source of power consumption and 
memory usage, system-level exploration mechanisms must he 
available at an early stage of the design flow for embedded sys- 
tems. Unfortunately, general approaches do not exist presently 
at this level for the dynamic implementations of the Abstract 
Data Types (ADTs) involved, which are sets of data values 
and associated operations that are specified independently 
of any particular implementation [4]. This definition stresses 
more on the effects of operations than the language-specific 
implementation of the ADTs (or data type implementation). 

In the following, we will focus on the implementation of 
these dynamically (de)allocated abstract data types (or DDTs 
for short from now on). When DDTs are used in programs, 
they can be implemented by the developer in the most 
naive form (because the developer is more focussed on the 
algorithm itself) or in a manually optimized implementation 
where the number of implementation alternatives is defined 
by the experience and inspiration of the developer. Adding 
new implementations of (complex) DDTs often proves to he 
programming intensive. Even when standardized languages (if 
used at all) offer considerable support, the developer still has 
to define the access pattern on a case per case basis. 

In this paper we propose a programming methodology based 
on template and abstract derived classes or mixins 1101 that can 
be used to build and refine complex layered DDTs from basic 
ones in a modular way. This allows to cover a huge pan of the 
DDT search space with a minimal code base, which allows to 
obtain early design-Row estimates on implementation trade- 
offs to refine the system design. 

11. RELATED WORK 
Regarding DDTs refinement work, general-purpose libraries 

are available (e.g. in C++) to help designers to develop new 
algorithms [3] without being worried about complex DDT im- 
plementation issues. These libraries usually provide interfaces 
to simple DDT implementations and the construction of com- 
plex ones is responsibility of the developer. Furthermore, these 
libraries focus exclusively on performance and while they can 
he considered as acceptable general-purpose solutions, they 
are not suitable for new generation embedded devices, where 
performance, power consumption and memory footprint must 
he optimized. Presently, suitable access methods and power- 
aware DDT transformations have started to he proposed for 
multimedia systems [5 ] .  

Also, according to the characteristics of certain parts of mul- 
timedia applications, several transformations for DDTs [ 131 
and design methodologies [9] have been proposed for static 
data profiling and optimization considering static memory 
access patterns to physical memories. 

New methods for a modular construction of high-level 
components in DDT refinement can he envisaged with abstract 
derived classes or mixins [IO]. This programming technique 
has been inherited by functional programming languages (e.g. 
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Lisp) and has already been uscd for quite some time in large 
reusable modules of object-oriented design. 

Finally, compiler techniques for code compaction and 
minimization of energy and power consumption in high- 
performance systcms are also available [6], [I]. 

111. DYNAMIC DATA TYPE CHARACTERIZATION AND 
EXPLORATION 

When analyzing DDTs, we divide them into two basic 
types: arrays and graphs. An array contains values (i.e. scalar, 
complex or even abstract ones when storing pointers to other 
data). The most important property of an array is that the 
entire structure is allocated on one shoot, but the memory 
can he allocated at compile time (static memory) or at run 
time (dynamic memory). On the other hand, graphs consist of 
multiple nodes that can store a scalar or complex value each. 
Furthermore, it contains at least one pointer to another similar 
memory location (that can be NULL). The combination of all 
connected nodes forms the complete graph. Contrary to arrays, 
nodes in a graph are allocated and Freed incrementally: when 
more data needs to be stored, additional nodes are allocated. 
In most cases, two special cases of graphs are used: trees and 
lists. In a tree, each node has one parent node and at least one 
child node. Exceptions are’the mot node that has no parent 
and the leaf nodes that have no children. 

Complex layered data types are combinations of the two 
aforementioned basic types. In a typical example, the overhead 
memory in linked lists (i.e. the pointers to the next and pre- 
vious nodes) are amortized by allocating memory for several 
elements at once. In this case, the first layer is a linked list 
and the second one is an array. As a result of the possible 
combinations of basic types in complex layered structures, the 
search space of these complex data types grows exponentially 
and a systematic exploration and construction method becomes 
a must. 
A. Modular Dynamic Data Types 

We have developed a flexible and extendible way to explore 
the search space of complex DDT implementations using a 
C++ modeling approach based on template C++ classes [ l l ]  
and mixins [IO]. This approach allows easy and flexible 
modeling and refinement of layered DDTs. In the remainder 
of the text, we use the definition of mixins as used in [IO]: 
a method of specifying extensions of a class without defining 
up-front which class exactly it extends. In C++, a subclass 
is specified and the parameterized parent class is determined 
during the instantiation of the code later on. 

template <class Supclass> class Mixin: 

template <class Supclass> class Templateclass( 
public Supclass( / /  mixin definitions ) ;  

Supclass’ data; 
/ /  template class definitions ) ;  

Fig. 1. Panmemized Inheritance used with mixins in C++ 

Figure 1 declares a subclass of Supclass with 
Supclass itself being a template argument. Since we are 
using the inclusion method [I I], also the subclass is defined. 

The Mixin is written for one or more types that are not 
yet specified. A small variant can he seen in the second 
class dcfinition (i.e. Templateclass), where the template 
argument is not used as a parent class, hut instead as internal 
private data members. We use the second approach of template 
classes to model the memory behavior of DDT implementa- 
tions, while the mixin approach is used to add, modify and 
refine functionality of complcx DDTs. 

As our first approach, we have implemented the typical 
primitive data structures used in multimedia applications (81, 
[ 131 using our mixins-based layered fashion. An example of 
these simple DDTs are shown in the middle part of Figure 2. 
Two different sorts of simple lists are implemented, single 
linked (i.e. SLList) where each node is pointing to the next 
one only and doubly linked (i.e. DLList) where every node 
points to the next and previous node. Also, a binary tree (i.e. 
BTTree or BTT) and array (Array) are implemented. All 
of them include default interface methods like GetElement, 
AddElement, DelElement, etc. These simple DDTs are 
the only DDTs that need to he specified/written to compose 
more complex ones in most dynamic multimedia applications. 
Then, to use the template code the developer just needs to 
specialize them. For example, Figure 2 defines a number of 
base classes: an array of 256 float elements, a doubly 
linked list of ints and a binary tree of doubles. In these 
cases, the last parameter is a combination of two mixins 
(first line in Figure 2): First, mheap is a thin wrapper for 
the memory operations malloc ( )  and free ( )  . Second, 
Typeclass is used as intermediate layer to retrieve profiling 
information of the DDTs as we show later in Subsection 111-B 
(also define the basic data types of the layers, e.g. float, int). 

template<type T> class Mem:public TypeClasscT,mheap>(); 
templatecint Size,type T.class Supclass, class Array(..}; 
templatectype T,class SupClasss class SLList ( 
template<type T,class SupClassz class DLList ( 
templatectype T,class Supclass, class BTTree{ . . . )  ; 
class Fprray: public Ar~aycZ56,float,Memcfl~~t> >() ;  
class I-DLList: public DLListsint, Memcint, > ( ) ;  
class D-BTTree: public BTTree<double, Memcdouble, > ( ) ;  

Fig. 2. Basic Abstract Data Types definitions und instantiations 

Next, these basic DDT layers can he combined in complex 
multi-layered DDTs as shown in Figure 3. In the first case 
of Figure 3, a doubly linked list of arrays of 128 integers is 
declared (i.e. DLLAR). Also, a binary tree of a single linked 
list is defined (i.e. BTSLL), followed by a multi-layered array 
structure (i.e. ARAFCG) with an array of 2, pointing to an array 
of 4, pointing to arrays of 2 Point3D elements. These can 
he typical custom DDTs of a real multimedia application [SI. 

class DLLAR: public \ 

class BTSLL: public \ 

class RRARAR: public \ 

DLListcint,ArrayClass<lZtl,int,Mem<int> > > ( ) ;  

BTTreecdouble.SLList<double,Mem<doublez > > { ) ;  

ArrayClasscz,Point3D,ArrayClassc4, Point3D,\ 
ArrayClaascz.Point3D.MemcPoint3Dz > z > ( I ;  

Fig. 3. Examples of multi-layered DDTs 
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B. Additional Extensions to Distinguish Access Mrthods and 
Obtain Accurate Profiling 

Then, using our mixins-based DDTs construction approach, 
the previous modular DDTs (Subsection 111-A) can be split in 
two parts: the memory part ofa DDT is put in a template class, 
while the access part is placed in an abstract derived class. 
Thus, to define a DDT, the user can specify the memory and 
access component. This splitting allows to separate the access 
method (e.g. using keys, sequential access) to a DDT from 
its internal complex data structure, allowing different access 
patterns to similar DDTs with minimal changes in the code. 

template<typename Tz class DLList: public \ 

templatectypename T, typename Key> \ 
DLLiStDefACCeSScT,DLListMemcMem<T> ? > ( } ;  

class DLListKey: public \ 
DLLiStKlAccesS<Key,T,DLListMemcMemcTz > > I } ;  

Double Linked Lists with different access methads Fig. 4. 

Figure 4 illustrates the aforementioned process. In the first 
line, the developer specifies that he wants to use doubly linked 
lists. Furthermore, the DDT will be accessed using a default 
policy. In the second example, again a DLList is used as 
storage primitive, but this time the data will be identified 
using a Key. The specific access method is defined in the K1 
policy (the DLListKlAccess mixin). In these examples, 
the access roles extend the memory component of the DDT. 
It is important to remark how the definitions in Figure 4 are 
the only code the developer has to specify to form a complex 
DDT. As such, it provides additional abstraction compared 
to current well-known extendible libraries. For example, an 
additional layer of abstraction is added with respect to the 
Standard Template Lihrruy (STL) [3], where most of the 
STL containers (similar to DDTs) include a standard access 
method and adding a custom one is extremely difficult (or 
even impossible if the code needs to be changed extensively). 

Finally, we can use the same layered mixin-based technique 
to build DDTs with memory profiling support. This is done 
by inserting an additional layer between the complex DDT 
definition and the paramemzed class that handles allocations 
and frees. In this case, the parametrized class Mem, serves 
as a simple allocator class (Figure 5). The basic form is 
composed of two simple layers: mallocheap is a simple 
wrapper around the mal loc 0 function while Typeclass 
provides some basic functionality to tell derived classes if 
they are operating on memory or on other DDTs (i.e. multi- 
layered DDTs). The LogLayer provides functionality for the 
standard function calls of C for memory (de)allocation and 
for storing and remeving data (e.g. free ( ) ,  malloc ( )  , 
get 0, add 0). It catches the requests made by lower 
objects in the hierarchy and prints them together with a times- 
tamp to stdout. Thus, the profiling of memory requests is 
obtained by inserting the LogLayer around the Typeclass 
(see definition in the lower part of Figure 5 and also Figure 6). 

Figure 6 shows the previously explained process in a 
graphical way. The malloc0, free0, GetElemO and 
AddElemO methods are inherited by the derived classes 

template <class Supclass, class LogLayer: public supclass( 
inline void* malloc(size-t s z )  ( 

struct timeval thetime; struct timezone tz; 
gettimeofdayl&thetime,&tz); 
EPRINT("%lu alloc. %d bytes\n", 

return supe~Cla~~::malloclszl; } ;  

templatedypename Tz class Mem : public \ 

thetime.tv-sec*lOOOOOO+ thetime.tu-usec, s z )  ; 

1; 
LogLayer<n/peClasscT,LogLayercmallocheaps z > ( } ;  

Fig. 5. Extract of a Simplc Memory Usage Profiling Layer 

Layered Dynamic Data Type - Sub System 

Fig. 6. Graphical representation of the logging process of memory accesses 
and allocations with ow mixins-based layers 

or explicitly called. A derived class can explicitly call the 
methods of the superclass it has overloaded by explicitly 
specifying the scope (e.g. in the method GetElemO of 
LogLayer, it calls Superclass : : GetElem ( )  ). 

These up-going requests are shown with the arrows. As 
such, the LogLayers catch the requests and reissue them. 
For the original layers nothing has changed, the addition of 
an additional layer is transparent to the existing ones. It is 
exactly this behavior which makes abstract derived classes so 
interesting and flexible. 

Iv. METHOD APPLICATION AND RESULTS 
We have applied our profiling and refinement mixin-based 

approach to the DDTs of a recent and complex 3D multimedia 

! i -  1mamMnbk.l I 

* I d  

Fig. 7. 
left axis. except CandidateMatches and CMCopyStatic (right axis) 

Memory footprint over time of the DDTsAII plots mapped on the 
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TABLE I 
ORIGINAL DDTs I N  THE 3D IMAGE RECONSTRUCTION SYSTEM 

I Variable I memory memoly energy .1:$fim 1 

IMatches 
matches 

I tech.(pl) J I accesses footprint (B) 
I IMatches I I.?OxlO" S.IJxl0'  o.18xio.j 1 

4.02X105 h.84x102 2.91 X l O '  

3.89~10' 1.27XlO5 7 . 0 2 ~ 1 0 '  

application, i.e. a matching algorithm that forms the corner 
stone of a 3D image reconstruction algorithm (see [XI for ref- 
erences to the full code of the algorithm with 1.75 million lines 
of high level C++). It creates the mathematical abstraction 
from the related frames that is used in the global algorithm by 
matching comers detected in 2 subsequent frames [8]. In our 
experiments we have matched a sequence of 101 images (i.e. 
100 matchings between 2 images each). The operations done 
on the images are particularly memory intensive, e.g. each 
image with a resolution of 640 x 480 uses over IMb, and the 
accesses of the algorithm to the images are randomized. Thus, 
classic image access optimizations as row-dominated accesses 
versus column-wise accesses are not relevant. 

In the matching algorithm we have replaced the initial 
DDTs (see Table I) with our mixin-based code. These DDTs 
were originally implemented using variations of double linked 
lists and exhibit an unpredictable memory behaviour, typical 
in many state-of-the-art 3D vision systems [XI since they 
use some sort of dynamic candidare selection followed by a 
crirerion evaluation. After using our mixin-based DDTs, the 
initial implementation of the main DDTs of this application 
can be easily profiled and a memory use graph is generated 
(Figure 7). Then, memory accesses, memory footprint and 
energy dissipation figures are calculated (see Table 0. For the 
energy estimations, we have used a complete energyldelaylarea 
model for embedded SRAMs [2] that can scale to different 
technology nodes (we use the .13 p node for the results). 

The analysis of the profiling information (Table I and 
Figure 7) shows how the DDTs affect the system. First, 
CMatches is the largest DDT. Secondly, IMatches has fre- 
quent accesses. Finally, CMCStatic (an "optimized dynamic 
array" that reduces the accesses to CMatches) consumes 
an important part of the energy used by the system. Then, 
using our mixin-based approach we can refine these DDTs 
observing that part of the elements of the DDTs are accessed 
almost at the same time and thus an intermediate dynamic- 
static solution where part of the elements are allocated at 
one shoot would be better. Thus, the final optimized DDT 
implementations consist of 2-layered dynamic array structures 
(pointer-arrays to arrays). First, an external dynamic array of 
10 positions; then, each position is another array of 756, 1024 
or 16384 Bytes (B) depending on which DDT. With these 
optimized DDTs, CMatches is now fast enough to interact 
directly with BMatches and Mmatches, thus CMCStatic 
is removed. The results obtained are depicted in Table Il, 
which show an improvement of 66.84% in memory footprint, 
97.93% in power consumption and eventually up to 95.08% in 
performance compared to the original version. This proves that 

TABLE II 
F I N A L  DDTS A m : K  O U R  MIXIN-UASEO REFINEMENT 

r Variahle I memom memnm rnerev . I : h m  I 

1 matches 1 7 . 6 8 ~ 1 0 ~  3 . 8 1 ~ 1 0 ~  0.03x10' I 
BMatcheS I 7 . 1 6 ~ 1 0 ~  3.78X103 O.0?X1O1 
Total I 8 . 0 6 ~ 1 0 ~  1.2nxio* 9.98x lo2 

the proposed mixin-based method can help designers to effi- 
ciently improve their original implementations. Furthermore, 
to evaluate the design effort with our approach, remark that the 
optimization of the application took us two weeks. Though no 
space is available to show them in detail, similar results have 
been achieved in a 3D game engine (i.e. 65% of improvement 
in power consumption and 80% in execution time). 

V. CONCLUS[ONS 
Presently, embedded devices have increased their capabil- 

ities and now complex applications (e.g. multimedia) can 
be ported to them. Such applications include intensive DM 
requirements that must be heavily optimized (i.e. memory 
footprint, power and memory use) for an efficient mapping on 
current consumer embedded devices. System-level refinement 
methods are proposed to consistently perform that refinement. 
Within them, the manual exploration and optimization of the 
DDT implementations involved are the most time-consuming 
and programming intensive parts. In this paper we have 
presented a high-level programming method based on template 
classes and abstract derived classes (or mixins) that can be 
used to model complex DDTs from basic ones in a modular 
way. This method largely simplifies the memory structuring 
aspect of multi-layered DDTs for the developers and allows 
them to refine the DDT implementations of their multimedia 
applications with a minimal effort, thus helping them in the 
error-prone task of manual characterization of complex DDTs 
and leading them to important savings in memory footprint, 
power consumption and performance. 
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