
2004 IEEE International Conference on Multimedia and Expo (ICME)

Fast Prototyping and Refinement of Complex
Dynamic Data Types in Multimedia Applications

for Consumer Embedded Devices
David Atienza'f, Marc Leemant , E Catthood, G. Deconinckt, J. M. Mendias*, V. De Floriot, R. Lauwereinst

* DACYA/UCM, Avda. Complutense dn, 28040 Madrid, Spain.
t ESAT/KULEWEN, Kasteelpark Arenberg 10, B3001 Leuven, Belgium. * IMEC vzw, Kapeldreef 71, 3001 Heverlee, Belgium.

Abstract-Portable consumer devices are increasing more and
more their capabilities and can now implement new multimedia
algorithms that were resewed only for powerful workstations
few years ago. Unfortunately, the original design characteristics
of such algorithms do not often allow to port them directly to
current embedded devices. These algorithms share complex and
intensive dynamic memory use and actual embedded systems
cannot provide efficient general-purpose memory management
as it is needed. As a result, dynamic memory optimizations are
a requirement when porting these applications. Within these
optimizations, the refinement of the dynamically (de)allocated
abstract data type implementations in the complex multimedia
applications involved is one of the most important and difficult
parts for an efficient mapping of the algorithms on low-power
and high-speed embedded consumer devices. In this paper, we
describe a high-level approach for modeling and refining complex
data types wing abstract derived classes in C++. This approach
enables the multimedia developer to compose, evaluate and
refine complex data types in a conceptually straightforward way,
without a time-consuming programming effort.

I. INTRODUCTION
Multimedia applications have experienced recently a very

fast growth in their variety, complexity and functionality. This
implies a high demand of memory and performance, which
results in high cost and power consumption systems. These
new algorithms (e.g. MPEG4) depend, with few exceptions, on
Dynamic Memory (DM from now on) for their operations due
to the inherent unpredictability of the input data, which heavily
influences global performance and memory usage of these
systems. In addition, energy has become a real issue in overall
system design (both embedded and general-purpose) due to
circuit reliability and packaging costs [12] . Thus, optimiza-
tions include three goals that cannot he seen independently:
memory usage, power consumptions and performance.

Since the DM subsystem heavily influences performance
and is a very important source of power consumption and
memory usage, system-level exploration mechanisms must he
available at an early stage of the design flow for embedded sys-
tems. Unfortunately, general approaches do not exist presently
at this level for the dynamic implementations of the Abstract
Data Types (ADTs) involved, which are sets of data values
and associated operations that are specified independently
of any particular implementation [4]. This definition stresses
more on the effects of operations than the language-specific
implementation of the ADTs (or data type implementation).

In the following, we will focus on the implementation of
these dynamically (de)allocated abstract data types (or DDTs
for short from now on). When DDTs are used in programs,
they can be implemented by the developer in the most
naive form (because the developer is more focussed on the
algorithm itself) or in a manually optimized implementation
where the number of implementation alternatives is defined
by the experience and inspiration of the developer. Adding
new implementations of (complex) DDTs often proves to he
programming intensive. Even when standardized languages (if
used at all) offer considerable support, the developer still has
to define the access pattern on a case per case basis.

In this paper we propose a programming methodology based
on template and abstract derived classes or mixins 1101 that can
be used to build and refine complex layered DDTs from basic
ones in a modular way. This allows to cover a huge pan of the
DDT search space with a minimal code base, which allows to
obtain early design-Row estimates on implementation trade-
offs to refine the system design.

11. RELATED WORK
Regarding DDTs refinement work, general-purpose libraries

are available (e.g. in C++) to help designers to develop new
algorithms [3] without being worried about complex DDT im-
plementation issues. These libraries usually provide interfaces
to simple DDT implementations and the construction of com-
plex ones is responsibility of the developer. Furthermore, these
libraries focus exclusively on performance and while they can
he considered as acceptable general-purpose solutions, they
are not suitable for new generation embedded devices, where
performance, power consumption and memory footprint must
he optimized. Presently, suitable access methods and power-
aware DDT transformations have started to he proposed for
multimedia systems [5] .

Also, according to the characteristics of certain parts of mul-
timedia applications, several transformations for DDTs [131
and design methodologies [9] have been proposed for static
data profiling and optimization considering static memory
access patterns to physical memories.

New methods for a modular construction of high-level
components in DDT refinement can he envisaged with abstract
derived classes or mixins [IO]. This programming technique
has been inherited by functional programming languages (e.g.

0-7803-8603-5/04/$20.00 02004 IEEE 803

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lisp) and has already been uscd for quite some time in large
reusable modules of object-oriented design.

Finally, compiler techniques for code compaction and
minimization of energy and power consumption in high-
performance systcms are also available [6], [I].

111. DYNAMIC DATA TYPE CHARACTERIZATION AND
EXPLORATION

When analyzing DDTs, we divide them into two basic
types: arrays and graphs. An array contains values (i.e. scalar,
complex or even abstract ones when storing pointers to other
data). The most important property of an array is that the
entire structure is allocated on one shoot, but the memory
can he allocated at compile time (static memory) or at run
time (dynamic memory). On the other hand, graphs consist of
multiple nodes that can store a scalar or complex value each.
Furthermore, it contains at least one pointer to another similar
memory location (that can be NULL). The combination of all
connected nodes forms the complete graph. Contrary to arrays,
nodes in a graph are allocated and Freed incrementally: when
more data needs to be stored, additional nodes are allocated.
In most cases, two special cases of graphs are used: trees and
lists. In a tree, each node has one parent node and at least one
child node. Exceptions are’the mot node that has no parent
and the leaf nodes that have no children.

Complex layered data types are combinations of the two
aforementioned basic types. In a typical example, the overhead
memory in linked lists (i.e. the pointers to the next and pre-
vious nodes) are amortized by allocating memory for several
elements at once. In this case, the first layer is a linked list
and the second one is an array. As a result of the possible
combinations of basic types in complex layered structures, the
search space of these complex data types grows exponentially
and a systematic exploration and construction method becomes
a must.
A. Modular Dynamic Data Types

We have developed a flexible and extendible way to explore
the search space of complex DDT implementations using a
C++ modeling approach based on template C++ classes [l l]
and mixins [IO]. This approach allows easy and flexible
modeling and refinement of layered DDTs. In the remainder
of the text, we use the definition of mixins as used in [IO]:
a method of specifying extensions of a class without defining
up-front which class exactly it extends. In C++, a subclass
is specified and the parameterized parent class is determined
during the instantiation of the code later on.

template <class Supclass> class Mixin:

template <class Supclass> class Templateclass(
public Supclass(/ / mixin definitions) ;

Supclass’ data;
/ / template class definitions) ;

Fig. 1. Panmemized Inheritance used with mixins in C++

Figure 1 declares a subclass of Supclass with
Supclass itself being a template argument. Since we are
using the inclusion method [I I], also the subclass is defined.

The Mixin is written for one or more types that are not
yet specified. A small variant can he seen in the second
class dcfinition (i.e. Templateclass), where the template
argument is not used as a parent class, hut instead as internal
private data members. We use the second approach of template
classes to model the memory behavior of DDT implementa-
tions, while the mixin approach is used to add, modify and
refine functionality of complcx DDTs.

As our first approach, we have implemented the typical
primitive data structures used in multimedia applications (81,
[131 using our mixins-based layered fashion. An example of
these simple DDTs are shown in the middle part of Figure 2.
Two different sorts of simple lists are implemented, single
linked (i.e. SLList) where each node is pointing to the next
one only and doubly linked (i.e. DLList) where every node
points to the next and previous node. Also, a binary tree (i.e.
BTTree or BTT) and array (Array) are implemented. All
of them include default interface methods like GetElement,
AddElement, DelElement, etc. These simple DDTs are
the only DDTs that need to he specified/written to compose
more complex ones in most dynamic multimedia applications.
Then, to use the template code the developer just needs to
specialize them. For example, Figure 2 defines a number of
base classes: an array of 256 float elements, a doubly
linked list of ints and a binary tree of doubles. In these
cases, the last parameter is a combination of two mixins
(first line in Figure 2): First, mheap is a thin wrapper for
the memory operations malloc () and free () . Second,
Typeclass is used as intermediate layer to retrieve profiling
information of the DDTs as we show later in Subsection 111-B
(also define the basic data types of the layers, e.g. float, int).

template<type T> class Mem:public TypeClasscT,mheap>();
templatecint Size,type T.class Supclass, class Array(..};
templatectype T,class SupClasss class SLList (
template<type T,class SupClassz class DLList (
templatectype T,class Supclass, class BTTree{ . . .) ;
class Fprray: public Ar~aycZ56,float,Memcfl~~t> >() ;
class I-DLList: public DLListsint, Memcint, > () ;
class D-BTTree: public BTTree<double, Memcdouble, > () ;

Fig. 2. Basic Abstract Data Types definitions und instantiations

Next, these basic DDT layers can he combined in complex
multi-layered DDTs as shown in Figure 3. In the first case
of Figure 3, a doubly linked list of arrays of 128 integers is
declared (i.e. DLLAR). Also, a binary tree of a single linked
list is defined (i.e. BTSLL), followed by a multi-layered array
structure (i.e. ARAFCG) with an array of 2, pointing to an array
of 4, pointing to arrays of 2 Point3D elements. These can
he typical custom DDTs of a real multimedia application [SI.

class DLLAR: public \

class BTSLL: public \

class RRARAR: public \

DLListcint,ArrayClass<lZtl,int,Mem<int> > > () ;

BTTreecdouble.SLList<double,Mem<doublez > > {) ;

ArrayClasscz,Point3D,ArrayClassc4, Point3D,\
ArrayClaascz.Point3D.MemcPoint3Dz > z > (I ;

Fig. 3. Examples of multi-layered DDTs

804

B. Additional Extensions to Distinguish Access Mrthods and
Obtain Accurate Profiling

Then, using our mixins-based DDTs construction approach,
the previous modular DDTs (Subsection 111-A) can be split in
two parts: the memory part ofa DDT is put in a template class,
while the access part is placed in an abstract derived class.
Thus, to define a DDT, the user can specify the memory and
access component. This splitting allows to separate the access
method (e.g. using keys, sequential access) to a DDT from
its internal complex data structure, allowing different access
patterns to similar DDTs with minimal changes in the code.

template<typename Tz class DLList: public \

templatectypename T, typename Key> \
DLLiStDefACCeSScT,DLListMemcMem<T> ? > (} ;

class DLListKey: public \
DLLiStKlAccesS<Key,T,DLListMemcMemcTz > > I } ;

Double Linked Lists with different access methads Fig. 4.

Figure 4 illustrates the aforementioned process. In the first
line, the developer specifies that he wants to use doubly linked
lists. Furthermore, the DDT will be accessed using a default
policy. In the second example, again a DLList is used as
storage primitive, but this time the data will be identified
using a Key. The specific access method is defined in the K1
policy (the DLListKlAccess mixin). In these examples,
the access roles extend the memory component of the DDT.
It is important to remark how the definitions in Figure 4 are
the only code the developer has to specify to form a complex
DDT. As such, it provides additional abstraction compared
to current well-known extendible libraries. For example, an
additional layer of abstraction is added with respect to the
Standard Template Lihrruy (STL) [3], where most of the
STL containers (similar to DDTs) include a standard access
method and adding a custom one is extremely difficult (or
even impossible if the code needs to be changed extensively).

Finally, we can use the same layered mixin-based technique
to build DDTs with memory profiling support. This is done
by inserting an additional layer between the complex DDT
definition and the paramemzed class that handles allocations
and frees. In this case, the parametrized class Mem, serves
as a simple allocator class (Figure 5). The basic form is
composed of two simple layers: mallocheap is a simple
wrapper around the mal loc 0 function while Typeclass
provides some basic functionality to tell derived classes if
they are operating on memory or on other DDTs (i.e. multi-
layered DDTs). The LogLayer provides functionality for the
standard function calls of C for memory (de)allocation and
for storing and remeving data (e.g. free () , malloc () ,
get 0, add 0). It catches the requests made by lower
objects in the hierarchy and prints them together with a times-
tamp to stdout. Thus, the profiling of memory requests is
obtained by inserting the LogLayer around the Typeclass
(see definition in the lower part of Figure 5 and also Figure 6).

Figure 6 shows the previously explained process in a
graphical way. The malloc0, free0, GetElemO and
AddElemO methods are inherited by the derived classes

template <class Supclass, class LogLayer: public supclass(
inline void* malloc(size-t s z) (

struct timeval thetime; struct timezone tz;
gettimeofdayl&thetime,&tz);
EPRINT("%lu alloc. %d bytes\n",

return supe~Cla~~::malloclszl; } ;

templatedypename Tz class Mem : public \

thetime.tv-sec*lOOOOOO+ thetime.tu-usec, s z) ;

1;
LogLayer<n/peClasscT,LogLayercmallocheaps z > (} ;

Fig. 5. Extract of a Simplc Memory Usage Profiling Layer

Layered Dynamic Data Type - Sub System

Fig. 6. Graphical representation of the logging process of memory accesses
and allocations with ow mixins-based layers

or explicitly called. A derived class can explicitly call the
methods of the superclass it has overloaded by explicitly
specifying the scope (e.g. in the method GetElemO of
LogLayer, it calls Superclass : : GetElem ()).

These up-going requests are shown with the arrows. As
such, the LogLayers catch the requests and reissue them.
For the original layers nothing has changed, the addition of
an additional layer is transparent to the existing ones. It is
exactly this behavior which makes abstract derived classes so
interesting and flexible.

Iv. METHOD APPLICATION AND RESULTS
We have applied our profiling and refinement mixin-based

approach to the DDTs of a recent and complex 3D multimedia

! i - 1mamMnbk.l I

* I d

Fig. 7.
left axis. except CandidateMatches and CMCopyStatic (right axis)

Memory footprint over time of the DDTsAII plots mapped on the

805

TABLE I
ORIGINAL DDTs I N THE 3D IMAGE RECONSTRUCTION SYSTEM

I Variable I memory memoly energy .1:$fim 1

IMatches
matches

I tech.(pl) J I accesses footprint (B)
I IMatches I I.?OxlO" S.IJxl0' o.18xio.j 1

4.02X105 h.84x102 2.91 X l O '

3.89~10' 1.27XlO5 7 . 0 2 ~ 1 0 '

application, i.e. a matching algorithm that forms the corner
stone of a 3D image reconstruction algorithm (see [XI for ref-
erences to the full code of the algorithm with 1.75 million lines
of high level C++). It creates the mathematical abstraction
from the related frames that is used in the global algorithm by
matching comers detected in 2 subsequent frames [8]. In our
experiments we have matched a sequence of 101 images (i.e.
100 matchings between 2 images each). The operations done
on the images are particularly memory intensive, e.g. each
image with a resolution of 640 x 480 uses over IMb, and the
accesses of the algorithm to the images are randomized. Thus,
classic image access optimizations as row-dominated accesses
versus column-wise accesses are not relevant.

In the matching algorithm we have replaced the initial
DDTs (see Table I) with our mixin-based code. These DDTs
were originally implemented using variations of double linked
lists and exhibit an unpredictable memory behaviour, typical
in many state-of-the-art 3D vision systems [XI since they
use some sort of dynamic candidare selection followed by a
crirerion evaluation. After using our mixin-based DDTs, the
initial implementation of the main DDTs of this application
can be easily profiled and a memory use graph is generated
(Figure 7). Then, memory accesses, memory footprint and
energy dissipation figures are calculated (see Table 0. For the
energy estimations, we have used a complete energyldelaylarea
model for embedded SRAMs [2] that can scale to different
technology nodes (we use the .13 p node for the results).

The analysis of the profiling information (Table I and
Figure 7) shows how the DDTs affect the system. First,
CMatches is the largest DDT. Secondly, IMatches has fre-
quent accesses. Finally, CMCStatic (an "optimized dynamic
array" that reduces the accesses to CMatches) consumes
an important part of the energy used by the system. Then,
using our mixin-based approach we can refine these DDTs
observing that part of the elements of the DDTs are accessed
almost at the same time and thus an intermediate dynamic-
static solution where part of the elements are allocated at
one shoot would be better. Thus, the final optimized DDT
implementations consist of 2-layered dynamic array structures
(pointer-arrays to arrays). First, an external dynamic array of
10 positions; then, each position is another array of 756, 1024
or 16384 Bytes (B) depending on which DDT. With these
optimized DDTs, CMatches is now fast enough to interact
directly with BMatches and Mmatches, thus CMCStatic
is removed. The results obtained are depicted in Table Il,
which show an improvement of 66.84% in memory footprint,
97.93% in power consumption and eventually up to 95.08% in
performance compared to the original version. This proves that

TABLE II
F I N A L DDTS A m : K O U R MIXIN-UASEO REFINEMENT

r Variahle I memom memnm rnerev . I : h m I

1 matches 1 7 . 6 8 ~ 1 0 ~ 3 . 8 1 ~ 1 0 ~ 0.03x10' I
BMatcheS I 7 . 1 6 ~ 1 0 ~ 3.78X103 O.0?X1O1
Total I 8 . 0 6 ~ 1 0 ~ 1.2nxio* 9.98x lo2

the proposed mixin-based method can help designers to effi-
ciently improve their original implementations. Furthermore,
to evaluate the design effort with our approach, remark that the
optimization of the application took us two weeks. Though no
space is available to show them in detail, similar results have
been achieved in a 3D game engine (i.e. 65% of improvement
in power consumption and 80% in execution time).

V. CONCLUS[ONS
Presently, embedded devices have increased their capabil-

ities and now complex applications (e.g. multimedia) can
be ported to them. Such applications include intensive DM
requirements that must be heavily optimized (i.e. memory
footprint, power and memory use) for an efficient mapping on
current consumer embedded devices. System-level refinement
methods are proposed to consistently perform that refinement.
Within them, the manual exploration and optimization of the
DDT implementations involved are the most time-consuming
and programming intensive parts. In this paper we have
presented a high-level programming method based on template
classes and abstract derived classes (or mixins) that can be
used to model complex DDTs from basic ones in a modular
way. This method largely simplifies the memory structuring
aspect of multi-layered DDTs for the developers and allows
them to refine the DDT implementations of their multimedia
applications with a minimal effort, thus helping them in the
error-prone task of manual characterization of complex DDTs
and leading them to important savings in memory footprint,
power consumption and performance.

REFERENCES
[I] N. Bellas et al. Architecmd and compiler tech. for energy reduc. in

high-perf microproc. IEEE Tmns. on V U 1 Sy.rrems june 2000.
[2] B. S . Amrutur et al. Speed and Power Scaling of SRAM's. IEEE Tmrunr.

on Solid-Stare Ci~cuirs. 2000.
[3] C++ Standardisation Cominee Programming languages - C++ -

ISOIIEC 14882. Tech. repan, USA, 1998.
141 T. H. Cormen et al. Introduction 10 Almri thm. McGraw-Hill. 1994. . , . ~~~ ~

[51 E. G. Daylight et al. Analyzing energy friendly states of dyn. apps. in

[hl S . Debray et al. Compiler techniques for code compaction. ACM Trum.
terms of sparse DTs. In Pmc. rfilSLPED, USA. ZOO?.

on Pmg. Lung. md Systems, March 2000.
[71 National Institute of Standards and Technology. 2003 http://www.

nist.gov/dads/HTML/abstractDatan/pe.html.
[a] M. Pollefeys et al. Metric 3D surface reconsmction from uncalibnted

image seq. In LNCS, 1506 139 - 153. 1998.
[9l A. Smailagic et al. Benchmarking an interdiscip. concunent design

method. for electronidmech. systs. In Pmc. of DAC, USA 1995.
[lo] Y. S m g d a k i s et al. Mixin-based pro-. C++. INCS. 2001.
[Ill D. Vandevoorde and N. M. Josuttis. C++ Templdtes, The Complerc

Guide. Addison Wesley, Landon. UK, 2003.
[I?] N. Vijaykrishnan et al. Evaluating integrated HW-SW optim. using a

unit energy estim. fmnework. IEEE Trans. on Cotnprrlers, 2003.
1131 S . Wuytack et al. Global communication and mem. optim. uunsfom-

tions for low power systems. In WLPD, USA. 1994.

806

http://www

