
CUSTOM DESIGN OF MULTI-LEVEL DYNAMIC MEMORY MANAGEMENT SUBSYSTEM
FOR EMBEDDED SYSTEMS

S. Mamagkakis†, D. Atienza�, C. Poucet‡, F. Catthoor‡, D. Soudris†, J. M. Mendias�∗

� DACYA/UCM Avda. Complutense s/n, 28040, Madrid, Spain
† VLSI Center-Demokritus Univ., Thrace, 67100 Xanthi, Greece

‡ IMEC, Kapeldreef 75, 3001 Heverlee, Belgium

ABSTRACT
Modern embedded systems have to run new dynamic wire-
less network and multimedia applications. As a result, these
systems must provide run-time memory management sup-
port to allow real-time memory de/allocation, retrieving and
processing of data while very limited power supply is avail-
able. Thus, its implementation must be designed to com-
bine high speed access, low power and large data storage
capacity. This is only possible by an efficient use of the
memory hierarchy available in the embedded systems. In
this paper, we propose a new approach to design convenient
dynamic memory management subsystems making profit of
the multiple memory levels. It analyzes the logical phases
involved in modern dynamic applications to effectively dis-
tribute the dynamically allocated data among the multi-level
memory hierarchies present in embedded devices. We as-
sess the effectiveness of the proposed approach for three
representative real-life case studies of the new dynamic ap-
plication domains (i.e., network and 3D rendering appli-
cations) ported to embedded systems. The results accom-
plished with our approach show a very significant reduc-
tion in energy consumption (up to 40%) over state-of-the-
art solutions for dynamic memory management on embed-
ded systems with typical cache-main memory architectures
while respecting the real-time requirements of these appli-
cations.

1. INTRODUCTION

Over the last few years, the main focus of the design of
embedded systems has been to provide good performance
and at the same time achieve low power consumption. To
achieve optimal results, a good coordination between hard-
ware and software is required. Therefore, memory-intensive
applications running on embedded platforms (e.g., multi-
media) must be closely linked to the underlying OS and
hardware. Furthermore, new embedded applications heav-
ily rely on dynamically allocated data due to their variable

∗Work partially supported by the Spanish Government Research Grant
TIC2002/0750, the European founded program AMDREL IST-2001-
34379 and E.C. Marie Curie Fellowship contract HPMT-CT-2000-00031.

input (e.g., stream of arriving packets). This constitutes
one of the most difficult design challenges when mapping
them on low-power and high-speed embedded processors
that are often not equipped with extensive hardware and
OS support for Dynamic Memory (DM from now on) man-
agement. However, this DM management subsystem must
provide efficient memory de/allocation and retrieving of the
dynamically allocated data in embedded systems by com-
bining speed, low power and large data storage. Therefore,
the design and implementation of the DM management sub-
system in wireless network and multimedia applications is a
major design bottleneck, which requires highly customised
solutions at the OS level handling the DM subsystem (i.e.,
DM managers) to achieve the required memory footprint,
low power consumption and real-time requirements [1] .

Additionally, it is common practice to develop embed-
ded platforms with extensive use of on-chip memory sub-
systems (i.e., caches and scratchpads) to improve the per-
formance of new demanding applications. However, the
existing solutions for the implementation of the DM man-
agement mechanisms [2] only consider the main memory
organization for reducing memory-accesses. They do not
consider their effect on the underlying on-chip memory sub-
system and thus do not profit from it. As a result, most
optimization work for embedded systems is focused on the
effect of static data allocation (decided at compile-time [3,
4]), completely ignoring the dynamic nature of the latest
embedded applications, which include extensive run-time
changes (e.g., internet traffic, user behavior).

In this paper, we propose a new approach to suitably de-
sign and make use of the available on-chip memory subsys-
tem for DM management mechanisms in modern dynamic
applications (e.g., networking and multimedia) considering
two representative memory architectures for current embed-
ded systems (i.e., cache+main memory and scratchpad+main
memory+DMA). Our method takes into account the typical
dynamic behavior of new dynamic embedded applications
to efficiently use these memory architectures for DM man-
agement and achieve significant gains in energy consump-
tion while respecting the required level of performance.

1700-7803-8504-7/04/$20.00 ©2004 IEEE SIPS 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The remainder of this paper is organized as follows. In
Section 2, we give an overview of related work. In Sec-
tion 3, we present the memory architectures that are avail-
able for the DM subsystem and compared in our experi-
ments. In Section 4, we present the proposed approach to
analyze the dynamic behavior of new embedded applica-
tions and how DM management can efficiently use the on-
chip memory subsystem. In Section 5, we describe how the
energy consumption of the memory subsystem is modelled
in our approach. In Section 6, our real-life case studies and
the experimental results using our proposed approach are
presented. Finally, in Section 7, we draw our conclusions.

2. RELATED WORK

In the embedded systems domain, DM management tech-
niques [2] have not received much attention, and mainly
methods for optimizing static allocation of data among dif-
ferent cache memories and non-cached scratchpad memo-
ries have been proposed [3, 4]. In [5], an algorithm based on
profiling information is presented to find which segments of
the linked executable should be mapped in the scratchpad.
[6] describes how to partition large data structures. The tiles
of the original data structures can then be mapped onto the
scratchpad memory, but require data transfers between the
scratchpad and the main memory.

The main limitation of the above design-time techniques
is that they cannot cope with dynamic applications where it
is only known at run-time which data needs to be assigned.
[7] decides at design-time which global and stack variables
could be assigned to scratchpad memories and inserts the
necessary code in the application to explicitly transfer them
from main memory to the scratchpad at run-time. However,
this work explicitly mentions that heap data is not consid-
ered since its lifetime is unpredictable at compile-time.

As opposed to the previous compiler-based techniques
we are not aware of any related work that evaluates and
makes use of the detailed run-time information available
in DM managers to avoid adding additional code and to
efficiently make use of the entire memory hierarchy (e.g.,
caches, scratchpad) to allocate heap data (i.e., dynamically
allocated data in the heap) at run-time. Our own previous
work that comes closest to the current is [8], but scratch-
pads were only considered for handling the same global
pools that were defined in the main memory. In this pa-
per we extend our previous work by analyzing the main dy-
namic phases of each Dynamic Data Types (or DDTs from
now on) and by redefining the initial main memory pools in
smaller pools that can be mapped onto the on-chip memory
hierarchy of the system.

3. MEMORY ARCHITECTURES

In this section, we describe the two memory architectures
we consider for the DM management of embedded systems.

Fig. 1. Studied memory architectures for the DM subsys-
tem of embedded systems. (a) Typical cache-main memory
architecture and (b) scratchpad-main memory architecture

3.1. Typical Processor-Cache Memory Architecture

In modern embedded systems, due to their energy-efficient
nature, the most typical memory architecture available con-
sists of several memory levels (i.e., on-chip and off-chip
memories) to try to make use of the locality of memory
accesses in real-life applications. As a result, hardware-
controlled caches try to map all of the most frequently ac-
cessed locations of main memories in smaller on-chip mem-
ories very close to the processor. The energy cost in access-
ing and communicating with these cache memories is much
smaller than that required for fetching/storing information
from/into large background memories. In the first mem-
ory architecture (marked as option a in Figure 1), we con-
sider one level of on-chip hardware-controlled cache (i.e.,
L1) and the main memory for our DM management sub-
system. With this architecture, all the accesses to the data
pass through the cache. Hence, when the microprocessor re-
quests the access to certain dynamic data (both the dynamic
data generated in the application and the maintenance dy-
namic data structures of the DM managers), the hardware
takes care of transparently moving the data from the main
memory to the cache. After this, the processor accesses
the data from the cache memory and any later access to the
same data is fetched from the hardware-controlled cache.

3.2. Processor-Scratchpad Memory Architecture

In the second type of architecture (labeled as b in Figure 1),
we have software controlled on-chip SRAM memories (i.e.,
scratchpad memories) for the DM management subsystem
instead of on-chip hardware controlled caches. To efficiently
transfer data between main memory and the scratchpad, which
is rather costly in just a line-based copy scheme, we con-
sider extra available hardware, i.e., a Direct Memory Access
controller (DMA) [8] (see Figure 1), to be able to transfer
also bursts of data (i.e., several lines in the same copy pro-
cess). If the DMA is not programmed for a certain trans-
fer of data, then the microprocessor directly fetches the dy-
namic data from the main memory using the global bus of
the system (i.e., bypassing the scratchpad).

171

3.3. Possible Trade-Offs Between Both Architectures

Initially, we will consider only data that is read multiple
times. The replacement of hardware-controlled caches by
scratchpad memories into the memory hierarchy comes from
the observation that caches do not represent the most energy-
efficient hardware choice for a ”local” memory. Hardware-
controlled caches heavily simplify the exploitation of the
locality of memory accesses present in actual programs by
automatically controlling the complex process of moving
data between main memories and cache memories. How-
ever, this automatic handling of access locality exploitation
has a major energy cost compared to scratchpad memories.
When accessing a cache line, we need to access and com-
pare its tag to the incoming address. These common opera-
tions consume non-negligible energy in standard hardware-
controlled cache architecture.

On the other hand, even if the scratchpad memories in-
clude the extra hardware (i.e., DMA) to allow to transfer
their stored data in bursts as we propose in the second mem-
ory architecture, the cache+main memory architecture could
still consume less energy than the scratchpad+main mem-
ory architecture. In the case that very complex and variable
sizes of data need to be transferred at run-time, scratchpads
will transfer a larger amount of data compared to hardware-
controlled caches. This is due to the fact that the analysis
to decide how much data to fetch in each DMA transfer for
modern embedded applications is not perfectly predictable
at compile-time and then the precise amount of dynamic
data cannot be always transferred. Therefore, two measures
must be taken to overcome this lack of precision in the trans-
ferred data. The first measure states that a larger amount
of data must be transferred by the DMA compared to the
cache and thus more energy is consumed in the scratchpad.
In the second measure, a lower bound of amount of the real
needed data must be fetched. In this case, the additionally
required dynamic data needs to be fetched from the main
memory using the global bus (see Figure 1, part b) instead
of using the scratchpad and the local bus, which is much
more expensive than fetching the data from the cache. As a
consequence, the total consumed energy can be higher than
using the cache+main memory architecture.

As a result, trade-offs concerning the overall energy con-
sumption of the system can be envisaged between the two
types of memory architectures available for the DM man-
agement subsystem due to the initially unpredictable dy-
namic behaviour of new embedded applications (e.g., wire-
less protocols and 3D image processing).

4. EFFICIENT USE OF THE MEMORY
HIERARCHY FOR DM MANAGEMENT

On the one hand, static embedded applications usually have
a good spatial and temporal locality, which can be exploited
by processor-cache based systems [9]. This is because the

Fig. 2. Overview of the three main phases of our approach.

static data is usually allocated within a certain scope (spa-
tial locality) at the beginning of the application. It is later
consumed at run-time (temporal locality).

On the other hand, as we show in our experimental re-
sults (Section 6), dynamic embedded applications allocate
their data in irregular time intervals and with more com-
plex patterns. This partially destroys the available locality
and thus reduces efficient exploitation of the cache mem-
ory hierarchy. In modern dynamic embedded applications,
different DDTs are allocated at run-time. Then, before the
embedded processor needs to access the data stored in the
cache memory for a second time, a good chance exists that
the data needs to be replaced by other dynamic data, thereby
constituting a cache miss. Hence, the main memory has
to be accessed again and the data re-fetched to the cache
memory. The abundance of cache misses in new dynamic
applications causes the advantages of cache memories for
the dynamic data to be lost.

To overcome the negative effect of the dynamic nature
of the applications in traditional memory hierarchies (i.e.,
caches+main memories) we propose a new approach that
looks beyond the superficial randomness of the total amount
of allocated data and accesses to the DDTs. It consists of
three main phases as depicted in Figure 2. The first phase
of our approach (number 1 in Figure 2) is an analysis of the
run-time de/allocation and access behavior (i.e., reads and
writes) of each DDT in the application under study. This
is possible thanks to the use of our previous work, namely
profiling tools for DDTs [10] and the exploration of custom
DM managers [1]. The analysis of the first phase of our
approach reveals the spatial (also temporal) locality of the
DDTs in the dynamic application, which are mainly linked
to the logical phases of the algorithms involved in the appli-
cation (see Section 6 for real examples). It also allows us
to discern how the de/allocation operations of the DM man-
agers are interlaced with the usual access to DDTs and how
the operations of DM managers can affect the locality of the
accesses to the DDTs.

The previous analysis enables our approach to define

172

smaller memory pools for specific DDTs according to their
degree of activity at each instant of the execution (number
2 in Figure 2). In our approach the level of activity in each
pool is measured by dividing the amount of accesses yield-
ing in the pool by the size of this pool.

Finally in the third phase of our approach, we select
the most promising candidates of the previous exploration
for memory mapping of DDTs onto on-chip memory pools
(number 3 in Figure 2). The main parameter to consider
within this memory mapping of smaller pools is the set of
sizes (e.g., 4KB, 8KB) available of the on-chip memories
of the embedded platforms. In our approach, as we show in
Section 6, to be able to perform that on-chip mapping we
need to use the scratchpad+main memory architecture pre-
sented in Section 3. The multi-level custom DM manager
then controls the transfers of the selected smaller pools of
DDTs between the scratchpad and the main memory (see
Figure 2). In this way, the DDTs of the other memory pools
not copied using the DMA to the scratchpad (by the DM
manager), bypass the scratchpad and are fetched from main
memory, so that they do not spoil the locality present in the
dynamic data of on-chip memories.

5. ENERGY CONSUMPTION MODELING IN
MEMORY ARCHITECTURES

To estimate the energy consumed by the dynamic data man-
agement system in the two different platforms, we combine
a number of profiling tools and simulators in the global sim-
ulation environment for our approach. First, we compute the
read and write accesses to the cache, scratchpad and main
memory with the profiling data of: (i) the DDTs and (ii)
the dynamic memory management mechanism as we ex-
plained in our previous work, i.e., [10] and [1] respectively.
Next, to evaluate the cache hits and misses we use the very
well known Dinero IV cache simulator [11]. After this, we
estimate the energy per read and write access for the dif-
ferent required cache, scratchpad and main memory sizes
of each case study using an updated version of the Cacti
model [12]. This is a complete energy/delay/area model for
embedded SRAMs that depends on memory footprint fac-
tors (e.g., size, internal structure or leaks) and factors origi-
nated by memory accesses (e.g., number of accesses or tech-
nology node used). For our calculations we use the .13µm
technology node. Finally, we estimate the total energy con-
sumed in the memory system for each execution and type of
memory hierarchy based on the write and read accesses ob-
tained in the previous simulation phases for each of the parts
of the memory subsystem (e.g., main memory, scratchpad,
caches). This model takes into account the switching, but
not the static leakage of the memories involved.

Note that in our final results (see Figure 5) we present
two different sets of energy figures. First, using Cacti we
consider that scratchpad, cache and main memories are on-
chip memories of different sizes using SRAMs memories.

Second, because these on-chip memories are far too big
(i.e., more than 1MB) we also provide the data when the
main memory is off-chip. Since energy has become an issue
due to the circuit reliability and packaging even in devices
that are not dependent on batteries [13], we then also show
the remaining on-chip energy without the main-memory (see
Section 5).

6. CASE STUDIES AND EXPERIMENTAL
RESULTS

We have evaluated the proposed approach in three real-life
case studies that represent typical domains of modern mul-
timedia and network application domains: a scalable 3D
rendering system, a scheduling algorithm from the network
domain and a new 3D image reconstruction application. All
the results shown are average values after a set of 10 simula-
tions for each application and memory hierarchy where all
these results were very similar, with variations of less than
3%. Although, we could not evaluate the latency of each
DM manager, our approach of creating custom DM man-
agers does not affect the execution time of the application
itself.

Our first case study is a new 3D video rendering appli-
cation based on scalable meshes [14] that adapts the quality
of each object displayed on the screen according to the po-
sition of the user. The objects are internally represented by
vertices and faces (or triangles). They need to be dynam-
ically managed in the meshing algorithm and correspond-
ing complex data structure due to the uncertainty at compile
time of the features of the objects to render. This complex
dynamic data structure consists of a dynamically created
tree where vertices and faces are stored separately. This data
structure needs to be traversed according to different access
patterns (i.e., the different rendering phases [14]) to render
them onto the screen. First, the vertices are traversed dur-
ing the first three phases of the whole visualization process.
Then, the faces are processed in the final three phases [14]
of the rendering process to show the objects with the appro-
priate resolution on the screen.

First we apply our approach to obtain a detailed analy-
sis of the logical phases inside the application, the accesses
(i.e., reads and writes) in each of them to the DDTs (i.e., ver-
tices and faces) and their de/allocation access pattern. As a
result of our analysis, we observe that in each phase of the
rendering process the vertices and phases are accessed in
small groups (never more than 15 points) and the accesses
to these vertices are interlaced with the allocation requests
to the DM manager. Therefore, although we define a cus-
tom DM manager that divides the heap in smaller subpools
perfectly adjusted for each of the main allocated sizes (i.e.,
6 sizes) to minimize the traversal inside the heap [1] and
the memory fragmentation, the results obtained for energy
consumption with the more traditional cache+main mem-
ory are not as good as expected (see Figure 3 and Figure 5).

173

Fig. 3. Energy comparisons in the 3D rendering application
for different on-chip memory sizes between the cache-based
architecture and our scratchpad+main memory approach

The main reason for this is the interlaced accesses to the
data, which are present if the cache is shared between the
internal maintenance structures of the DM manager, and the
real dynamic data generated in the application. The main-
tenance structures (up to 16KB in the worst case) include
tables of pointers in memory to each of the subpools, the
headers of the allocated/free memory blocks, etc. The ap-
plication dynamic data include new vertices and results of
the rendering process. Thus, not enough data access reuse
is present due to the interlaced accesses (i.e., DM manager
and access to DDTs) to successfully exploit the cache+main
memory architecture.

Next, we evaluate the scratchpad+DMA+main memory
combination. In this case, we permanently map the inter-
nal maintenance structures of our custom DM manager in
the on-chip scratchpad memory available in the system. In
addition, we use the knowledge of the DM manager about
the position of the dynamic data in the pools to program the
DMA and move the necessary set of vertices that are go-
ing to be process next (i.e., always less than 8 KB) to the
available space in the scratchpad memory.

As a result, with this custom multi-layered DM manager
(correctly supported by the use of a scratchpad+DMA+main
memory architecture), the final energy consumed in the sys-
tem improves by up to 40% (see Figure 3 and Figure 5)
compared to the best results obtained with a custom DM
manager and a more traditional memory architecture (i.e.,
cache+main memory).

The second case study presented is the Deficit Round
Robin (DRR) application taken from the NetBench bench-
marking suite [15]. It is a buffering and scheduling algo-
rithm implemented in many wireless network routers today.
Using the DRR algorithm the router tries to accomplish a
fair scheduling by allowing the same amount of data to be
passed and sent from each internal queue. It requires the
use of DM because the input can vary enormously depend-

Fig. 4. Energy comparisons in the DRR applications for dif-
ferent on-chip memory sizes of the cache-based architecture
and our scratchpad+main memory approach

ing on the network traffic. The DRR application was pro-
filed in our results for an input trace of 10,000 packets. A
buffering-scheduling algorithm was chosen as a case study
because these algorithms have the biggest demands in terms
of power consumption in the networking domain [16].

The DRR algorithm has 3 types of dynamic data: the
internet packets, the packet headers and the list that accom-
modates the internal queues. It works in 3 phases when it
is receiving packets. First, it checks the packet header; sec-
ondly it traverses the list of internal queues and, finally, it
traverses the correct internal queue and stores the internet
packet in a FIFO order. Then, it forwards the packets in
3 additional phases. First, it traverses the list of internal
queues, secondly, it picks up the first internet packet and,
finally, checks the packet header to forward it.

We have run the algorithm in both types of memory hi-
erarchies (see Figure 4). Our results show that the cache-
based memory architecture does not achieve good results
for energy due to the lack of locality in accesses to the
DDTs and the de/allocation requests to the DM manager.
Therefore, after analyzing the sub-phases of DDTs and DM
manager with our approach, in the scratchpad+DMA-based
memory architecture we decide to map the list of internal
queues on the scratchpad and bypass it when accessing the
other 2 DDTs from the main memory. This choice was
based on the dynamic sub phases found with our approach
in the algorithm, which indicate that the list of internal queues
has 85% of the total accesses on average and that this list is
small enough to fit inside a small-sized scratchpad (i.e., 4
KB or 8 KB). Then, after comparing the energy consump-
tion for different sizes of caches and scratchpads (see Fig-
ure 4), we have come to the conclusion that a 17% lower
energy consumption can be achieved with our scratchpad-
based platform and a custom multi-level DM manager. This
reduction in energy consumption can be obtained with the

174

Fig. 5. Energy results in our real-life case studies. Values
normalized to the cache+main memory figures

use of the 4 KB-sized-scratchpad (or 8 KB in the extreme
cases of input streams of packets), which is exactly the size
needed to accommodate the whole list of internal queues.

A third case study was used to extend our method to the
new domain of 3D image reconstruction applications [17]
for modern embedded systems, and similar results were ob-
tained. This metric 3D-reconstruction from video [17] al-
lows the reconstruction of 3D scenes from images and is
characterized by intensive internal DM use. After applying
our approach as in the other case studies, a similar energy-
reduction-rate (34%) was achieved (See Figure 5).

In summary, as Figure 5 indicates, our approach (multi-
level DM manager with scratchpad-based memory archi-
tecture) can achieve significant total energy consumption
reductions (gains up to 40%) compared to the more usual
cache+main memory architecture for state-of-the-art DM
management in embedded systems. Furthermore, the used
Cacti model overestimates the contribution of large memo-
ries [18], so in reality our total gains are even larger, namely
closer to the on-chip gains. These on-chip gains for each
case study, shown in Figure 5, are the results of comparing
the bars related to only on-chip cache and only scratchpad
memory values. They show that with our approach using
scratchpad memories we achieve on-chip energy reductions
of a factor up to 3 compared to the energy consumed in the
cache. In this paper, we did not consider the energy con-
sumption of the data bus and the CPU. We also did not ex-
plore architectures with multiple caches or multiple scratch-
pads, which can exist in single or multiple processor embed-
ded systems. In the future we plan to extend our approach to
address these issues and improve the total amount of energy
consumed by modern applications.

7. CONCLUSIONS

Embedded devices have improved their capabilities in the
last years making it feasible to map dynamic applications
(e.g., multimedia) in portable devices. In this paper, we have
shown that cache-based approaches are not well-suited to
the inherent dynamic nature of these applications. We have
presented a new approach that analyzes the initially disor-
dered dynamic behavior of these applications and designs

a suitable multi-level custom DM manager that can achieve
significant energy savings using a scratchpad+DMA-based
memory architecture. Our experimental results in real life
case studies show a reduction of up to 40% in overall en-
ergy consumption of the dynamic memory subsystem when
all memories in the system are on-chip, and up to 3 times
in the on-chip memory subsystem when only caches and
scratchpads are on-chip and the main memory is off-chip.

8. REFERENCES

[1] D. Atienza, et al., “DM management design methodology for re-
duced mem. footprint in multimedia and wireless network apps,” in
Proc. of DATE ’04, 2004.

[2] Paul R. Wilson, et al. “Dynamic storage allocation, a survey and
critical review,” in Springer Verlang LNCS, 1995.

[3] O. Avissar, et al., “Heterogeneous mem. management for embedded
systems,” in Proc. of CASES, 2001.

[4] L. Benini, et al., “Increasing energy efficiency of emb. systems by
app.-specific mem. hierarchy generation,” D&T Computers, 2000.

[5] F. Angiolini, et al., “Polynomial-time algorithm for on-chip scratch-
pad mem. partitioning,” in Proc. of CASES, 2003.

[6] M. Kandemir, et al., “Dynamic manag. of scratch-pad memory
space,” in Proc. of DAC, 2001.

[7] S. Udayakumaran et al., “Compiler-decided DM allocation for
scratch-pad based embedded systems,” in Proc. of CASES, 2003.

[8] F. Poletti, et al., “An integrated HW/SW approach for run-time
scratch-management,” in Accepted for Proc. of DAC, June 2004.

[9] F. Catthoor, et al., Custom Mem. Management Methodology – Ex-
ploration of Memory Organisation for Embedded Multimedia Sys-
tem Design, Kluwer Academic Publishers, USA, 1998.

[10] M. Leeman, et al., “Power estimation approach of dynamic data
storage on a HW-SW boundary level,” in Proc. of PATMOS, 2003.

[11] J. Edler et al., DineroIV trace-driven cache simulator, http://
www.cs.wisc.edu/˜markhill/DineroIV/.

[12] N. Jouppi, Western Res. Lab., Cacti, 2002, http://research.
compaq.com/wrl/people/jouppi/CACTI.html.

[13] N. Vijaykrishnan, et al., “Evaluating integrated HW-SW optimiza-
tions using a unified energy estimation framework,” IEEE Trans.
Computers, 2003.

[14] D. Luebke, et al., Level of Detail for 3D Graphics, Morgan-
Kaufmann Publishers, 2002.

[15] G. Memik, et al., “Netbench: A benchmarking suite for network
processors,” CARES Tech Report 2001-2-01, 2001.

[16] S. Mamagkakis et al., “D9: Data-types, control and data flow
structures of telecom network applications,” http://easy.
intranet.gr/Public_deliverables.htm.

[17] M. Pollefeys, et al., “Metric 3D surface reconstruction from uncali-
brated image sequences,” in Springer-Verlag LNCS, 1998.

[18] B. S. Amrutur et al., “Speed and Power Scaling of SRAM’s,” IEEE
Trans. on Solid-State Circuits, February 2000.

175

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

