
1

Power-Aware Tuning of Dynamic Memory
Management for Embedded Real-Time Multimedia

Applications

Abstract— In the near future, portable embedded de-
vices must run multimedia applications with enormous
computational requirements at low energy consumption.
These applications demand extensive memory footprint
and must rely on dynamic memory due to the unpre-
dictability of input data (e.g. 3D streams features) and
system behaviour (e.g. variable number of applications
running concurrently). Within this context, the dynamic
memory subsystem is one of the main sources of power
consumption and embedded systems have very limited bat-
teries to provide efficient general-purpose dynamic mem-
ory management. As a result, consistent design method-
ologies that can tackle efficiently the complex dynamic
memory behaviour of these new applications for low power
embedded systems are in great need. In this paper we
propose a step-wise system-level approach that allows the
design of platform-specific dynamic memory management
mechanisms with low power consumption for such kind
of dynamic applications. The experimental results in real-
life case studies show that our approach improves power
consumption up to 89% over current state-of-the-art
dynamic memory managers for complex applications.

Index Terms— real-time systems and embedded systems,
dynamic storage management, multimedia applications

I. I NTRODUCTION

Nowadays, complex applications (e.g. MPEG21) im-
plemented before in devices designed exclusively for
performance can be ported on embedded devices where
the power consumption is a crucial design priority, both
at the hardware and software design side. Traditionally,
embedded processing was limited to relatively simple
algorithms executed on static data blocks. It actively
avoided algorithms that employ Dynamic Memory (DM
from now on). Recently, with the emerging market of
new portable devices that integrate multiple multime-
dia services (e.g. 3D games or 3D graphical process-
ing [14]), the need to efficiently use DM in embedded
low-power systems has arisen.

New multimedia applications (e.g. MPEG4) demand
a variable amount of memory footprint at run-time due
to their unpredictable input data (e.g. 3D streams fea-
tures). Thus, in these applications the classical processor-
memory bottleneck becomes much more important in

terms of power consumption and memory bandwidth (re-
sulting usually in a reduced overall system performance).
Designing these new embedded multimedia systems in
pure classical hardware systems imply the use of worst-
case static allocation of all dynamically (de)allocated
data while their associated application exists in the
system, because a flexible remapping is not possible after
the design time phase. Consequently, since this dynamic
data has a limited lifetime and a variable behaviour while
the application is running, this would lead to a very
high overhead both in power consumption and memory
footprint for embedded systems. Even if average values
of these worst-case solutions are used, DM solutions
will require less memory footprint (i.e. 22% less) than
static solutions [1]. Moreover, these intermediate static
solutions will not work in extreme cases of input data,
whereas DM solutions will continue to work in almost
any case, because they only allocate memory for the cur-
rent present data chunks. Thus, DM management should
be used in cost- and failure-sensitive realisations of such
embedded applications, which is currently included in
the software part of these embedded systems, i.e. within
the real-time operating system.

However, in full SW systems (with a general-purpose
orientation) too much overhead is present (e.g. power
consumption) in DM management related issues to be
used directly by current embedded operating systems
(e.g. RTEMS [12]). For example, sophisticated DM man-
agers, e.g. Lea Allocator or Kingsley, possess complex
structures that are suitable for performance [18], but
not for low power. In fact, heavily customized and
simplified versions of such DM managers in specific-
purpose embedded systems can be very close to their
initial implementation in performance, but with large
savings in power consumption (more than 30%, see Sec-
tion V for more examples). Hence, specifically designed
(or custom) DM managers must be used in embedded
systems according to the underlying memory hierarchy
and the kind of applications that will run on them.
Unfortunately, nowadays when custom DM managers are
used, their designs have to be manually optimized by the
developer, considering only a limited amount of design

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

and implementation alternatives, since no methodologies
exist to explore the DM management design space.

Taking all the previous issues into account, in this
paper we present a new step-wise system-level approach
to suitably handle the DM behaviour of new embedded
multimedia applications (e.g. [14]) and to design custom
DM management mechanisms with the required low
power consumption requirements of embedded systems.
The rest of the paper is organized in the following
way. In Section II, we summarize some related work.
In Section III, we intuitively explain the limitations of
current DM management for low power systems. Next, in
Section IV we briefly explain the internal steps that con-
form our approach to design custom DM management
of new dynamic embedded multimedia applications. In
Section V, we shortly introduce our case studies and
show the experimental results obtained with our ap-
proach. Finally, in Section VI, we draw our conclusions.

II. RELATED WORK

In the embedded system engineering community, low
power is a main objective in the dynamic power manage-
ment domain (see [3] for a good tutorial overview) and
in the dynamic voltage scheduling domain [8]. However,
the DM subsystem related issues are hardly covered.

The foundations of an efficient DM subsystem in
a general-context are already well established, and
techniques for building-application specific custom DM
managers that try to improve performance (but not
power consumption) have received extensive attention
lately [18]. Also, new methods have been proposed to
refine the DM subsystem by evaluating it empirically
with customizable DM managers. In [6], a DM manager
that allows to define multiple memory regions with
different disciplines is presented. However, this approach
cannot be extended with new functionality and is limited
to a small set of user-defined functions for memory
de/allocation. Also, in [4], the abstraction level of cus-
tomizable DM managers has been extended to C++. It
proposes a framework that provides support for garbage
collection and partially different (de)allocation features
(e.g. block sizes) for memory regions. Nevertheless,
power consumption issues or a structured exploration of
the DM design space for low power embedded systems
have not received special attention.

Recent real-time OSs for embedded systems (e.g. [12])
support dynamic allocation via platform-specific (cus-
tom) DM managers based on simple region allocators [7]
with a reasonable performance. Finally, in new em-
bedded systems where the range of applications to be
executed is very wide (e.g. new consumer devices), vari-
ations of state-of-the-art general-purpose DM managers

are frequently used. For instance, Linux-based systems
use as their basis the Lea Allocator [18], a best-fit
approximation DM manager. Windows-based systems
include in their foundations the Kingsley manager [18],
which is a power-of-two segregated fits DM manager.

Regarding profiling and simulation of the memory
subsystem, work can be found aiming at estimating
power consumption of software using assembly code and
a higher abstraction level [16]. Also, for System-On-Chip
design, new techniques that evaluate power consumption
using concurrent power estimators for each of their parts
(e.g. buses, processing units) have been proposed [10]. In
addition, a large amount of research has been performed
at system-level based on execution traces [15]. However,
none of these techniques focus on power consumption of
DM managers at system-level and the influence of the
memory hierarchy in their design.

III. D YNAMIC MEMORY MANAGEMENT FOR

CURRENT DYNAMIC EMBEDDED SYSTEMS

System DM management basically consists of two
separate tasks, i.e. allocation and deallocation. Allocation
is the mechanism that searches for a block big enough to
satisfy the request of a given application and deallocation
is the mechanism that returns this block to the available
memory of the system in order to be reused later. In
real dynamic multimedia applications, the blocks are
requested and returned in any order, thus creating ”holes”
among used blocks. These holes are known as memory
fragmentation [18]. Therefore, apart from handling the
memory de/allocation requests, the DM manager must
deal with fragmentation issues at the same time. This is
done by splitting and merging free blocks to limit actual
memory fragmentation in the memory subsystem.

In many current embedded operating systems, initially
state-of-the-art general-purpose DM managers (e.g. re-
gion managers [18]) are usually considered as starting
point for further refinement [12] due to time-to-market
(and design complexity) constraints. Then, manually
defined simplifications of these complex managers are
applied to create very specialized DM managers. For
example, DM managers (i.e. Partition manager [12])
where only one fixed size is allowed in the whole
DM space for performance purposes. In addition, when
the range of applications that can use the system is
much broader, more complex DM managers need to
be created. In this case, DM managers usually include
similar features to a general-purpose DM manager (e.g.
immediate splitting and coalescing mechanisms to limit
fragmentation [12]), which have to be manually added
if the applications that will run on the final embedded
system seem to benefit from it. For example, if a variable



3

number of allocation sizes can be requested within one
application, these additional mechanisms (e.g. splitting
or coalescing) could be useful to limit the amount of
memory fragmentation in the system. However, this
complex engineering process of partially customizing
DM managers for the specific platform features (and
the range of dynamic applications that will run on it)
can usually take several months [12] because everything
is based on manual profiling and testing according to
the programming style and inspiration of each developer
to apply convenient transformation in his own code.
Moreover, if the purpose of the customized DM manager
(e.g. maximizing performance) is slightly changed (e.g.
power reduction is also added as system constraint in
the new design), the new custom DM manager needs
to be redesigned from the beginning to respect the new
requirements. In our approach, the DM manager is built
in a systematic way instead of mainly relying on the
experience and knowledge of the designer.

IV. A PPROACHDESCRIPTION

The proposed approach is characterized by optimiza-
tions only at the level of O.S. DM managers, i.e. once
the dynamically allocated data of the applications and the
features of the platform have already been defined and
cannot be changed. Techniques and optimizations that
can be applied to optimize the dynamically allocated
data structures implementations according to specific
embedded system constraints are explained in [5] and
yield out of the scope of this paper. In this section,
we explain the stages needed in our approach to create
custom DM management mechanisms in a structured
way for new dynamic embedded applications (e.g. 3D
rendering) considering their necessary low power con-
sumption requirements. They are outlined in Figure 1.

As Figure 1 shows, to construct a suitable custom
DM management scheme for a certain application, in
a first stage (first rounded-edged shape in Figure 1)
detailed information is obtained for the application under
study to characterize its real run-time DM behaviour.
This information is obtained via simulation using our
own C++ profiling library [2] that replaces the usual
calls of the system allocator (e.g.malloc() , free() ,
etc.) and needs to be integrated in the application under
study. For real-life applications (see Section V for more
details), this integration process takes no longer than one
week. The acquired profiling provides us information
about the most important characteristics for each specific
multimedia application:
• Ranges of different (de)allocation block sizes.
• Main (de)allocation phases (that usually correspond

to each logical phase from the algorithmic point of

Fig. 1. Flow of the proposed system DM management refinement
approach for new embedded real-time multimedia applications

view) existing in each multimedia application.
• The particular (de)allocation pattern (and timing

behaviour) of each allocation data structure (e.g.
short bursts, allocation ramps, etc. [18]).

Then, taking the acquired profiling information into
account, we perform a static analysis (marked in Fig-
ure 1 as the first rectangle) of each (de)allocation phase
of the application under study using our own design
space of possible decisions for DM management in
embedded systems [1]. We have classified all the im-
portant design choices to compose DM managers in
different decision categories [1]. First,Creating block
structuresto handle the way block data structures are
created and used to satisfy memory requests. Second,
De/Allocating blocksto deal with the actions required
in DM management to satisfy memory requests and to
free the used blocks. Finally,Coalescing/Splitting blocks
to determine the strategies to ensure a low percentage
of memory fragmentation [18]. These are orthogonal
categories, which means that any taken decision in any
category can be combined with any decision in another.
Then, the result should be a potentially valid combination
or DM manager (which does not necessarily mean that
it already meets all timing and cost constraints). An
example of how a typical state-of-the-art DM manager
(i.e. Kingsley) can be represented within our design
space is shown in Figure 2. The DM manager is divided
in its basic layers and thus in some of these categories
two levels exist. For example, its basic block structure in
Figure 2 is composed by a first layer (1st) with a pointer
array that includes the header of each pool of blocks (e.g.
information about sizes allowed in the memory pool,
space available). This pointer array has the number of



4

Fig. 2. Example of Kingsley represented within our design space

elements (e.g. memory pools) needed to cover the range
of allocations sizes allowed in Kingsley. Then, inside
each pool a second layer (2nd) is present, where the used
dynamic data type is a doubly linked list [18]. Similarly,
the different characteristics of these two layers for all
the other parts regarding DM management are defined
within our categories (e.g. information of block tags, fit
algorithm to choose a block, etc. [18]).

As a result of this previous static analysis of DM man-
agers implementations, refinements can be performed
systematically considering the different alternatives for
each of their basic components [1]. For example, using
the original Kingsley structure in an application with a
very small range of possible allocation sizes will produce
a significant waste of memory within the DM pools, thus
we would have to change the fieldNumber of min/max
block sizesof Figure 2 to fit the specific sizes of the
application under study. Furthermore, if the application
uses a very specific access pattern to its DM blocks,
then we need to modify the way the blocks are stored in
each pool to avoid unnecessary accesses in the second
layer, i.e. 2nd layer of fieldOrdering blocks within pools
and adjust it to the application (e.g. usingLIFO instead
of Unorderedas in usual Kingsley). Finally, note that
in the Coalescing/Splitting blocks category, Kingsley
does not use any of these mechanisms (i.e. option
Never by default). Its original design is optimized
for performance, thus all the necessary accesses for
coalescing and splitting to reduce memory fragmentation
are removed hoping to improve performance. But this
choice can result in severe power consumption penalties
and memory fragmentation wastage for certain DM
(de)allocation patterns (e.g. sizes not multiples of powers
of two as the sizes of the pools are) [2], [18]. Then, if the
studied dynamic multimedia application falls inside these
unsuitable patterns for Kingsley, using our static analysis
it would be possible to modify its behaviour in this aspect
to achieve the pursued low power requirements.

After this static analysis and exploration phase fol-
lowing the suitable order we propose for low power
exploration [2], promising custom DM managers can-

didates (second rounded-edged shape in Figure 1) can
be defined. Then, the actual run-time behaviour of these
potential candidates is evaluated via simulation (second
rectangle in Figure 1) with aC++ library that we have
developed to implement the decisions in our DM design
space [2]. This library is based on a combination of
C++ templates and inheritance to allow fast changes in
the implementation of DM managers, e.g., replacement
policies or size of the pools [18]. Moreover, they include
profiling C++ objects to store the information about the
memory taken from the system and the memory accesses
performed by DM managers. In the same way as for
the first profiling phase, our library of DM managers
includes a whole set of common ANSI-C standard
functions for (de)allocation operations (e.g.malloc() ,
free() ), which allow to integrate it in any real-
life embedded multimedia application without a time
consuming effort (up to 2 weeks in our case studies).
As a result, this complex infrastructure of layers and
objects provide the necessary run-time profiling of the
ideal values in many characteristics of the final custom
DM manager candidates (third rounded-edged shape in
Figure 1). This final profiling allows us to determine
in a post-execution refinement phase (third rectangle
in Figure 1) the ideal implementation for our custom
DM manager (e.g. number of memory pools) for the
multimedia application under study (forth rounded-edged
shape in Figure 1). This final post-execution refinement
phase is not performed at run-time to preserve the actual
run-time behaviour of the system when the profiling is
acquired.

Finally, after the custom DM manager is integrated
in the code of the application under study, low power
memory optimizations for concurrency management in
embedded systems could be used [17] (lower part of Fig-
ure 1). They will also map the DM pools together with
other statically allocated arrays or scalars to the phys-
ical memory organisation, including SDRAMs, shared
scratchpads (if not specially dedicated scratchpads are
used for DM) and caches.

V. CASE STUDIES AND RESULTS

Our approach is illustrated using two real applications
from different modern multimedia application domains:
the first case study is a 3D rendering system where the
objects are represented as scalable meshes, the second
one is part of a new 3D image reconstruction system.
For the power consumption estimations, an updated
version of the memory model described in [9] is used.
It is a complete energy/delay/area model for embedded
SRAMs that is able to scale to different technology nodes
(we use the.13 µ technology node for the results).



5

Fig. 3. Comparison results between different DM managers in the
3D rendering system for a 3D image of 6713 vertices and 13406
faces. Values normalized to our custom DM manager

This model depends on the technology node, memory
footprint factors (e.g. super-logarithmic on the size or
leakage) and especially on memory accesses (linearly).

Our first case study is a new 3D video rendering
application based on scalable meshes [11] that adapt the
quality of each object displayed on the screen according
to the position of the user. The objects are internally
represented by vertices and faces (or triangles). They
need to be dynamically managed in the meshing algo-
rithm and corresponding complex data structure due to
the uncertainty at compile time of the features of the
objects to render. This complex dynamic data structure
consists of a dynamically created tree where vertices and
faces are stored separately. This data structure needs to
be traversed according to different access patterns (i.e.
the different rendering phases [11]) to render them onto
the screen. First, the vertices are traversed during the first
three phases of the whole visualization process. Then,
the faces are processed in the final three phases [11]
of the rendering process to show the objects with the
appropriate resolution on the screen.

After applying our approach to obtain profiling infor-
mation of the de/allocation access pattern of the vertices
and faces in the application, a custom DM manager
trying to minimize power consumption is designed (i.e.
CUSDMM RENDER in Table I). In this case, we have
compared our custom DM manager with Lea, Kingsley
and, due to its stack-like allocation behaviour in the
phases with vertices, we have also tested the application
with Obstacks [18], a well-known custom DM manager
optimized for such behaviour. The results obtained are
depicted in Table I and Figure 3. They show that Kings-
ley accomplishes better results in power consumption
(29.3% less) than Lea because it does not perform
any maintenance operation (i.e. splitting or coalescing
blocks) to limit the fragmentation of the system. How-
ever, the power results of Kingsley are not as good
as expected because its used technique (i.e. avoiding

TABLE I

RESULTS IN THE3D RENDERING SYSTEM

Dyn. Mem. memory memory power (µW)
managers accesses footprint (B) .13µm tech.

Lea-Linux 7.60×106 1.86×106 5.05×104

Kingsley-Win 3.80×106 3.96×106 3.89×104

Obstacks 4.45×106 1.55×106 2.95×104

cusDMMrender 3.13×106 1.89×106 2.07×104

completely coalescing and splitting by using 30 pools
of separated allocation sizes) produces an enormous
overhead in memory footprint (see Table I). Thus, bigger
memories are needed in the system (and then more power
is consumed in each memory access) to allow the system
to work correctly. In contrast, after the detailed study of
the application with the proposed approach, our custom
DM manager only contains two separated memory pools,
for the three allocation block-sizes used in this specific
application, i.e. 40, 44 (share the same pool) and 84
Bytes. Then, we can also observe that Obstacks improves
the results of Kingsley for power consumption (27.8%)
thanks to its optimizations for the stack-like behaviour
of the first three phases of the rendering process, which
reduces its number of DM accesses (e.g. deallocating
at one shot a number of consecutive memory blocks).
Finally, our custom manager improves further the values
for power consumption of Obstacks (by 29.8%), be-
cause the latter cannot exploit its stack-like optimizations
in the three final phases of the rendering process. In
these phases, the faces are used all independently in
a disordered pattern and they are required to be freed
separately. Thus, Obstacks suffers from a high penalty
in memory accesses and energy dissipation per frame in
these last three phases of the algorithm due to its internal
block structure organization (optimized for deallocating
in one shot several blocks, but not each block separately).
On the contrary, our custom DM manager with a more
elaborated internal maintenance structure for both types
of deallocation behaviour does not suffer from it. As
a result, after applying our approach to the 3D Ren-
dering system, significant gains in power consumption
are achieved (see Table I and Figure 3), and the new
optimized system can also perfectly fulfil the real-time
requirements needed by this application.

Our second case study is a 3D image reconstruction
application [14] that matches corners from two sub-
sequent frames in a frame stream to reconstruct 3D
objects. The operations done on the images are memory
intensive, e.g. each comparison process uses over 1.5Mb,
and the accesses in it are randomized. Thus, typical
image access optimizations (as row-dominated accesses
versus column-wise accesses) cannot be used.

We have optimized this application with our system-



6

atic approach to demonstrate the applicability of our
approach to design a DM manager that suitably employs
the memory hierarchy (e.g. main memory, scratchpad
memories). First, an optimized DM manager is designed
using our approach trying to minimize power consump-
tion, i.e.cusDMMrec1 in Table II. It is compared in
Table II with two typical DM managers for this kind of
embedded systems, i.e. Kingsley [18] and an optimized
version of the new region-semantic managers [18] (Re-
gAlloc in Table II). We can observe thatcusDMMrec1
improves the power consumption results of these DM
managers by adjusting its memory pools structure to the
limited range of allocation sizes used in the optimized
dynamic data types of the application (i.e. 2, 4.2, 7.56,
10, 16, 119 and 124 KB). Then, the number of memory
accesses due to memory fragmentation is minimized
by splitting and coalescing block mechanisms [18] in
those pools that include more than one block-size (i.e.
119 and 124 KB). Furthermore,cusDMMrec1 makes
use of the memory hierarchy we suppose available for
the DM managers in the final embedded system to test
our approach with a multi-level memory subsystem,
i.e. on-chip SW-controlled scratchpad of 64 KB and
main off-chip memory. The accesses to each level of
the memory hierarchy are distinguished in Table II as
on-chip andoff-chip values respectively. Thus,
in cusDMMrec1 the memory pool that produces most
of the accesses (those for allocation sizes of 16 bytes
with the maintenance information of the DM manager
and the dynamic data types of blocks of 16 KB) are
separated from the global heap used in the manager.
They are now handled in a different and small one
(57 KB) that is placed permanently in the scratchpad.
Therefore, Table II shows thatcusDMMrec1 reduces
the power consumption needed compared to Kingsley
(89.04%) and new region managers (81.32%). This kind
of suitable use of the memory hierarchy is not envisaged
in Kingsley or new region managers. As a consequence,
their designs include memory pools of much bigger size
(e.g. 256 KB) than the 64 KB of the scratchpad which
cannot be placed there. Furthermore, a redefinition of
their internal pool structure to make use of this small
scratchpad memory is a very time-consuming (and error-
prone) task since the whole implementation structures of
these DM managers depend on these big sizes of their
pools. Thus, we can conclude that the use of a multi-level
memory subsystem for the DM managers of embedded
systems allows to achieve even better results using our
approach because we can make profit of it in the whole
design and implementation process of the DM managers.

In summary, after applying our approach, the total
power consumption of the 3D reconstruction applica-

TABLE II

RESULTS IN THE3D IMAGE RECONSTRUCTIONSYSTEM

Dyn. Mem. memory memory power (µW)
managers accesses footprint (B) .13µm tech.

Kingsley 4.25×106 2.26×106 4.30×104

RegionDM 4.68×106 2.08×106 3.11×104

cusDMMrec1 total: 4.64×106 1.56×106 3.94×103

(off-chip values) 2.57×105 1.52×106 1.71×103

(on-chip values) 4.39×106 6.55×104 2.23×103

tion is reduced significantly, i.e. almost one order of
magnitude (see Table II), compared to current manual
optimization solutions and respects the real-time require-
ments of this application.

VI. CONCLUSIONS
Currently, DM management tuning is one of the cru-

cial and most difficult parts to optimize current embed-
ded multimedia applications due to the unpredictability
of their input data and events (e.g. images and user
movements). In this paper, we have presented a new
system-level design approach that is able to obtain a de-
tailed view of the dynamic behaviour, i.e. (de)allocation
pattern, of new multimedia application and optimize it
using a step-wise refinement flow. The results achieved in
real applications show significant power consumption re-
ductions over current implementations of these systems,
which allow porting them to actual embedded systems.

REFERENCES
[1] Removed for blind review purposes.
[2] Removed for blind review purposes.
[3] L. Benini and G. De Micheli. Dynamic power management

design techniques and CAD Tools. Kluwer Publishers, 1998.
[4] G. Attardi, et al. A customizable memory management frame-

work for c++. Software Practice and Experience, 1998.
[5] Removed for blind review purposes.
[6] K.-P. Vo. Vmalloc: A general and efficient mem. allocator.Sw.

Practice and Experience, 1996.
[7] D. Gay and A. Aiken. Memory management for with explicit

regions. InProc. of PLDI ’01, 2001.
[8] N. K. Jha. Low power system scheduling and synthesis. In

Proc. of IEEE Int. Conf. on Computer-Aided Design, 2001.
[9] N. Jouppi. CACTI, 2002. http://research.compaq.

com/wrl/people/jouppi/CACTI.html .
[10] M. Lajolo, et al. Cosimulation-based power estimation for

system-on-chip design.IEEE Trans. VLSI Systems, 2002.
[11] D. Luebke, M. Reddy, et al.Level of Detail for 3D Graphics.

Morgan-Kaufmann Publishers, 2002.
[12] Rtems, Open-Source RTOS.http://www.rtems.org .
[13] P. R. Panda, et al. Data and memory optimizations for embedded

systems.ACM TODAES, April 2001.
[14] M. Pollefeys, et al. Metric 3D surface reconstruction from

uncalibrated image sequences. InLNCS, Springer-Verlag, 1998.
[15] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation:

a survey.ACM Comput. Surv., 1997.
[16] N. Vijaykrishnan, et al. Evaluating hw-sw optim. using a unified

energy estimation framework.IEEE Trans. on Computers, 2003.
[17] Removed for blind review purposes.
[18] P. R. Wilson, et al. Dynamic storage allocation, a survey and

critical review. In Int. Workshop on Mem. Management, 1995.


