
Compilation for Delay Impact Minimization in VLIW Embedded Systems

José L. Ayala†, David Atienza‡, Praveen Raghavan∗, Marisa López-Vallejo†, Francky Catthoor∗
†Dpto. de Ingenierı́a Electrónica/Universidad Politécnica de Madrid (Spain)

‡Dpto. de Arquitectura de Computadores y Automática/Universidad Complutense de Madrid (Spain)
∗IMEC, Leuven (Belgium)

Email: {jayala,marisa}@die.upm.es datienza@dacya.ucm.es {ragha,catthoor}@imec.be

Abstract

Tomorrow’s embedded devices need to run high-
resolution multimedia as well as need to support multi-
standard wireless systems which require an enormous com-
putational complexity with a very low energy consumption
and very high performance constraints. In this context, the
register file is one of the key sources of power consumption
and performance bottleneck, and its inappropriate design
and management can severely affect the performance of the
system. In this paper, we present a new compilation ap-
proach to mitigate the performance implications of technol-
ogy variation in the shared register file in upcoming embed-
ded VLIW architectures with several processing units. The
compilation approach is based on a redefined register as-
signment policy and a set of architectural modifications to
this device. Experimental results show up to a 67% perfor-
mance improvement with our technique.

1 Introduction

Recently, with the emerging market of new mobile wire-
less terminals that integrate multiple services such as mul-
timedia and wireless network communications, the perfor-
mance requirements can only be met using VLIW-like pro-
cessors. Those forthcoming terminals will also include sev-
eral heterogeneous processors as one of the most effective
ways to tackle at the same time all the different multime-
dia services present in such systems. Some of these initial
platforms start to be available today (e.g. ST Nomadik [22],
Philips Nexperia [18], TI OMAP [25]). Unfortunately, the
semiconductor industry is still facing several technological
challenges to build these systems, specially due to their re-
quired low-power characteristics and the impact of process
variations [8]. Moreover, very recently it has been found
that, in new proposed embedded platforms with several pro-
cessing elements, the shared register file plays a very im-
portant role as part of the memory subsystem because it can

heavily affect the cycle time and consumes a very signifi-
cant portion of the total energy consumed by the memory
hierarchy [25]). From the delay/performance point of view,
the size achieved in the implementation of this device, as
well as the technology variations introduced in deep sub-
micron processes, cause different delays when accessing ev-
ery register. Hence, it is crucial to reduce the energy spent
on the register file as well as to reduce the performance im-
plications of the existing delays.

With continued technology scaling, process variations
have become a major factor that affects circuit performance
and may lead to excessive yield loss. Variations come from
various sources. Geometric process variations are most sig-
nificant [7]. Effective channel length Leff can vary more
than 50% below 130nm technology node. The parameter
variations of interconnects also increase beyond 25%. Sup-
ply voltage and temperature variations are also becoming
more prominent in nanometer design [8]. These variations
can lead to 30% or more die-to-die performance differences.

In this paper we introduce a new compilation approach
to reduce the delay impact of technology variations in the
shared register file of upcoming embedded architectures
with several VLIW processors. In this work, we have used
the compilation and simulation capabilities provided by the
CRISP framework [13] to emulate a complex VLIW-based
system with strong delay impact. The idea is to provide a
mechanism to minimize the effect of technology variations
in the delay of accessing different registers by the modifica-
tion of the register assigment task.

Thus, our approach can either be used to increase the
yield output of manufactured chips that do not fully reach
the timing in the whole register file or can improve per-
formance in general, since processors do not need to be
bounded to a worst case, but on a case-per-case basis.

The structure of this paper is as follows: Section 2
presents the fundamentals and goals of our work, while the
proposed approach is described in Section 3. The experi-
mental work and results are covered in Section 4 and, fi-
nally, some conclusions are drawn.

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Fundamentals and Goal

CMOS scaling trends are leading to a greater number of
smaller and faster transistors in a single chip, but a relative
increase in wire delay. Wire delays in memory structures
are quite appreciable due to its size, and prevent them from
being pipelined in a scaled manner [12]. The register file
implemented in MPSoCs suffers this effect because of its
large size and multi-ported architecture. Many times, the
implemented register file in MPSoC systems is oversized in
order to assure that the multi-threading code does not run
out of registers.

As memory begins to dominate chip area in high perfor-
mance applications, SRAM has become the focus of tech-
nology scaling [14]. Traditionally, SRAM cell size has
scaled in accordance with technology ground rules; how-
ever, with the growing importance of variability, it is feared
that this may no longer be possible. Because minimum size
(gate length and width) devices are used to minimize cell
area, SRAM is most susceptible to both process-induced
variations in device geometry as well as threshold voltage
variability due to dopant fluctuations [16]. In addition, the
impact of variability is most pronounced in SRAM because
cell operation, which depends upon well-matched FETs,
must be satisfactory for each individual cell (no averaging
across multiple stages as in logic). The fundamental con-
cern of cell stability [20], which determines minimum array
operating voltage and yield, has thus become increasingly
difficult to address [10]. Moreover, the appreciable effect is
the different delays to access every register in the register
file. This effect is even worse when the delay introduced by
the long wires is taken into account.

The analysis of the impact that intra-die stochastic vari-
ability has on the performance of CMOS processor blocks,
such as ALUs, is very recent [11, 27]. For on-chip mem-
ories, the focus has been in functional yield and reliability
issues, where it has been studied the use of SRAM cell sta-
bility (e.g. signal to noise margin) and design rules to com-
pensate for performance issues [5, 15]. However, HW/SW
methods to address variability problems in register files at
compiler level as we propose here have not been considered
yet.

Regarding reliability in future technologies, Single-
Error-Correcting Multiple-Error-Detecting (SEC-MED)
codes are already integrated in on-chip memories and
some processor components [2, 6]. Also, Bowen et al.
[9] showed that program behavior patterns can be used to
generate custom-error correction mechanisms for memory
portions. Nevertheless, these techniques are not suitable for
register files since they impose significant area and energy
consumption overheads.

In addition, system-level fault tolerant management
mechanisms have been proposed for soft errors [2]. Shiv-

akumar2003 et al. [21] used redundant components and
self-checking for embedded systems to increase resistance
against hard errors and extend processor lifetime in case of
process variation. Su et al. [24] presented self-repairing
mechanisms via pre-existing processors. These works are
complementary to our approach since they deal with func-
tional variation in on-chip memories and processors, while
we consider parametric variation in the register file.

Apart from anything else, the energy/delay cloud of the
memory for read operation is shown in Figure 1 [28]. This
figure shows how the delay tends to become bigger. This
increase in delay mostly comes from longer decoder delay
but, also from the cell array. This is the case for small size
SRAMs, since the decoder contribution in the overall delay
is significant [3]. As Figure 1 shows this is significantly
affected by variability.

Taking these ideas into account, this paper presents a
mechanism to minimize the effect of technology variations
in the delay of accessing different registers. Again, this goal
is accomplished with a hardware modification of the regis-
ter file and the support of a power-aware compiler designed
for this modified architecture. The information of technol-
ogy variations is provided by the manufacturer and direct
experimental characterization of the device.

3 Variability-Aware HW/SW Compilation
Scheme

In this work, we have used the compilation and simula-
tion capabilities provided by the CRISP framework [13]. It
is a re-targetable compiler and simulator framework based
on Trimaran [26], which is cycle accurate. The baseline ar-
chitecture described by CRISP consists of a selectable num-
ber of processing elements as in VLIW processors, with a
coarse-grained reconfigurable logic that can be adapted to

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

Processor core

Slice 1

Slice 2

Slice 3

Inst.
L1

cache

RFU

Data

L1

cache

sh
ar

ed
 r

eg
is

te
r

fi
le

Unified L2 cache

external memory

each desired DSP instruction set to be simulated. Further-
more, this framework also enables data and instruction clus-
tering. The overall architecture of the type of VLIW proces-
sor that we use in this paper is shown in Figure 2.

As Figure 2 depicts, it includes a main processor core
and coarse-grained reconfigurable logic, which is divided
into slices. The main processor core can be any type of
processor and it is included in the CRISP template archi-
tecture to be able to schedule instructions that in real-life
VLIW systems cannot be executed efficiently (e.g. control
and non-parallel operations). In our simulated architecture
the main processor core is a simple RISC (Reduced Instruc-
tion Set Computer) core, but it is not relevant in our simu-
lations since our case studies only include a very insignifi-
cant proportion of operations compared to DSP-like or loop
operations, as we indicate in our experimental results (Sec-
tion 4). Then, the slices for the configurable VLIW process-
ing part are mapped onto the CRISP’s Reconfigurable Func-
tional Unit (RFU) part [13]. The RFU allows extensive cus-
tomization of the VLIW processing units for the desired in-
struction set to be used in the simulated architecture within
CRISP. In the RFU an operation can be issued every clock
cycle. Regarding interconnections, the RFU reads/writes
data from/to the main shared register file. Then, the addi-
tional RISC processor core and the RFU read their instruc-
tions from the level 1 instruction cache and move the data
from the level 1 data cache to the shared register file. Fi-
nally, both types of caches are connected to a unified level
2 cache, which is in turn connected to an external memory.

As we have previously mentioned, the RFU part of the
emulated architecture is divided into reconfigurable slices
(e.g. in Figure 2 three slices are depicted). Figure 3 details
the internal structure of each slice. This figure shows that
each slice contains several coarse-grained Functional Units

(FUs), which can be an ALU, shifter, multiplier or memory
unit. As a matter of fact, such complex processing elements
are better suited than the traditional logic blocks based on
Look Up Tables (LUTs) for the execution of the operations
typically found in multimedia applications, which are word-
oriented and not bit-oriented. These complex FUs allow the
reconfigurable logic to operate at higher frequencies with
lower power consumption when compared to other pos-
sible embedded multi-processor architectures using tradi-
tional FPGAs [4].

In addition, each slice typically includes two instructions
and data clusters. A data cluster includes a distributed regis-
ter file, which can be used across multiple slots of functional
units. Next, an instruction cluster is formed by using a dis-
tributed instruction buffer (or also called loop buffer [13])
across multiple issue slots of the VLIW processor. In fact,
all the units of one data cluster can access the data register
file in that cluster. However, accessing data from another
data cluster (i.e. another local register file) is relatively ex-
pensive since it requires an explicit inter-cluster copy op-
eration to transfer the data from the source data cluster to
the destination data cluster. In contrast, all the functional
units of a cluster can access any data present in that register
file. Therefore, in order to provide enough bandwidth for
all these potential concurrent accesses, our baseline archi-
tecture includes two read and one write port of the register
file, which are allocated to each slice of the VLIW proces-
sor. All functional units in one slice are connected to these
three ports via a full crossbar.

3.1 Architectural Modifications

In a typical configuration, the register file is an array of N
words by M bits. Any of the N words can be simultaneously

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

F
U

F
U

F
U

F
U

F
U

F
U

LC Loop Buffer Loop Buffer

Register File Register File

L
0

In
st

ru
ct

io
n

C
lu

st
er

D
at

a
C

lu
st

er

Instruction Memory HierarchyPC

Data Memory Hierarchy

Shared register file

WB
WBb

WW
WWb

Read word
decoder

Read word
decoder

Memory cell array

data in

write address

write enable
data
out

data
out

read

read
addr B

RAW

RBW

RAB RBB

addr A

Comparator

Comparator

Bit line
drivers

Write word
decoder

Sense
amplifier

Sense
amplifier

Output
latches

Output
latches

accessed by two read ports and a write port. Figure 4 shows
that the register file contains seven distinct types of func-
tional blocks [23], namely, the memory cell array, the read
word decoders, the write word decoder, the bit line drivers,
the sense amplifiers, the output latches, and the compara-
tors. In this design, the memory cell array stores the data
bits, and is arranged in a grid of N rows by M columns of
memory cells. When any of the ports accesses the array, the
read/write operation is performed simultaneously on every
memory cell in the selected row.

Technology variations during the device manufacturing
can create delays in any component shown in Figure 4. We
characterize the delay incurred by every register in the regis-
ter file as those meeting the timing requirement of the whole
pipeline (the register can be accessed in one clock cycle),
and those that require more than one clock cycle to be ac-
cessed.

In our approach, the overall write/read delay of each reg-

ister in the register file with respect to the original specifi-
cation is coded into the HW architecture using some extra
bits per register (in our notation, label bits). In case 1-bit
label is used, a ‘0’ would indicate the register satisfies the
timing requirement and ‘1’ would assume that it does not
(therefore we would have to assume a worst case of 4 cy-
cles delay). In case a 2-bit label is used, then a finer grain
labelling can be done. A ‘00’ would assume that the reg-
ister satisfies 1 cycle delay, ‘01’ would mean that the read
would take 2-cycle latency and so on. This classification
is done in an initial characterization phase after production
and requires the area overhead of extra timing circuitry and
storage of the label bits. It can be assumed that the overhead
due to the timing circuitry would not be large and can be
neglected. Furthermore, this circuitry is activated only once
after fabrication time; thus, both its dynamic and leakage
power overhead can be neglected because it can be com-
pletely gated from the power source (Vdd) during the nor-
mal processor execution. Then, the storage overhead for the
label bits has been calculated using a UMC 90nm technol-
ogy [1] and our results indicate that it is very limited with
respect to the total area of the baseline register file (see Sec-
tion 4). It is assumed that there is no process variation that
happens on these extra bits. This is because of two assump-
tions: the extra bits required are small, hence probability of
any variation on this structure is low; the small register file
can be overdesigned so that it is more tolerant to process
variation without much overhead.

Finally, note that the granularity used to classify the reg-
isters (i.e. number of sets) enables a trade-off between the
accuracy desired in the classification and the number of ex-
tra label bits needed. This trade-off is illustrated in Section
4 with several real-life multimedia benchmarks.

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

3.2 Compiler Modifications

To make profit of the HW architecture including label
bits, we have modified the Trimaran compiler of the CRISP
framework. Our new compiler includes a different reg-
ister assignment algorithm for the underlying VLIW pro-
cessor. The register assignment phase of compilers deter-
mines which register/s will be used for each program value
selected during the register allocation phase, which is the
phase that determines which values are placed in registers.
In fact, our new compiler is aimed at in-order processors,
since out-of-order execution could destroy this first assign-
ment by using HW mechanisms to avoid hazards (e.g. reg-
ister renaming [26]).

Traditionally, register assignment algorithms choose reg-
isters from the whole set of free registers without any con-
straint. In the case of Trimaran, as many other compilers,
it retrieves the first register from a First In First Out (FIFO)
list of free registers. In fact, the order of registers inside the
list is not representative and only depends on the underly-
ing HW architecture. Hence, since no restriction on select-
ing the registers exists, the assigned registers in the original
register assignment can easily belong to different delay sets.

Our register assignment policy modifies this original reg-
ister assignment by first selecting the registers labelled as
faster registers. The new compiler initializes internally
FIFO lists for each delay set in the register file by a first
reading phase of the stored label bits, and performs a
variability-aware assignment giving preference to registers
of the fast sets to be used for the loops of multimedia appli-
cations. These applications are usually loop-dominated [17]
and the execution of loops seriously affect the overall pro-
cessor performance.

The compiler-based technique we have presented does
not have a negative impact in the area, performance or
power consumption of in-order processors and manages ef-
fectively the speed variation found in the register file of
these architectures (see section 4). However, as every static
approach, it requires the modification of the sources for ev-
ery target processor since the profile of access delays varies
between each instance of the final target architecture. This
limitation makes difficult its extended use. Therefore, we
have also designed two additional run-time HW techniques
to solve these limitations at the potential cost of reducing
system performance [19] (depending on the performance
gains achieved by the effective register renaming). These
run-time techniques, when compared with the compilation
approach presented here, do not reach so optimal results.

4 Case Studies and Experimental Results

We have applied the proposed approach to several
applications of the MediaBench suite [17]. They are the

following:

- adpcm decode: audio decoder that uses adaptive
differential pulse code demodulation, suited for embedded
systems.

- g721 decode: an implementation of the G.721 voice
decompression standard.

- mesa texgen: an implementation of the Mesa 3D
library (OpenGL clone) that generates a texture-mapped
Utah teapot.

- aes: an implementation of the Advanced Encryption
Standard (AES), a worldwide encryption standard since
2001.

- blowfishencode: an implementation of the popular
64-bit blocks de/encryption algorithm.

- epic: an image compression utility that uses a dyadic
wavelet decomposition and a run-length/Huffman entropy
coder.

- sha: implementation of the Secure Hash Algorithm
(SHA-1 Hash) used in wireless embedded terminals.

- mpeg2decode: implements the decoder of the MPEG2
standard for digital video transmission.

The CRISP framework was used to simulate a 32-bit,
4-issue VLIW processor, including 12 ports (8 read and 4
write) 128 entries deep register file. The area of the original
register file was 3.04×105µm2 using the TSMC 90nm stan-
dard cell synthesis process. We assumed that process vari-
ations of access time delays in the whole pole of registers
follows a homogeneous distribution, as suggested by [28].

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

The register file was annotated to inject such a distribu-
tion. Therefore, when the benchmark compilation process
has finished in CRISP, the percentage of utilization of the
register file can be obtained. Then, after the execution of
the benchmarks, CRISP provides us the number of registers
that meet the performance constraints and overall perfor-
mance results with the injected timing variations (based on
the register allocation).

4.1 Experiment 1

In a first set of simulations we have studied the normal-
ized execution time when 75% of the registers do not meet
the timing constraint of 1 cycle of operation, namely in this
case running at 300 MHz, they do not respond in less than
3ns. The execution time has been normalized to this best

case, where all registers can react in one cycle. We have
assumed that 32 out of 128 registers meet the performance
constraints, namely, they can be read/written in one cycle,
while 32 registers require 2 cycles, 32 require 3 cycles, and
the last 32 require 4 cycles. No further process variation is
considered. Any register that requires more than 4 cycles
can be marked un-usable.

Figure 5 shows the normalized performance results in
terms of average number of clock cycles to access the reg-
ister file using one bit or two bits for the label bits. Also,
this figure shows the results for the worst case simulation
(i.e. all registers belong to the slowest set with 4 cycles
of latency) and the best case simulation. These results in-
dicate that our compiler based approach achieves the opti-
mal point of the best case without variability in four of the
benchmarks. Furthermore, the results are 57% better than
the worst case for the other benchmarks on average with the
1-bit labelling and 67% better in case of the 2-bit labelling.
Thus, our approach can either be used to increase the yield
output of manufactured chips that do not fully reach the tim-
ing in the whole register file or can improve performance in
general since processors do not need to be bounded to a
worst case, but on a case-per-case basis.

In addition, the results shown in Figure 5 for large bench-
marks with strong register pressure, like aes and blowfishen-
code, show that they always need to use registers that do
not meet the timing constraints. Therefore, the solutions
using two bits for the label bits (i.e. classifying the registers
into four delay sets) achieve much better results than us-
ing only one label bit classification (more than twice worse
than the best case). This occurs because in the case of 1-
bit classification, the worst case delay has to be used for
all the registers that do not meet the original time require-
ments as only two sets exist for the types of registers, while
with two bits the registers are graded with a finer granularity
and hence less performance penalties are applied. The only
benchmark that does not benefit to the same extent with any
of these configurations of label bits is mpeg2dec, since it
demands a large amount of registers during the whole ex-
ecution. Therefore, for this benchmark in particular we
have performed additional experiments to study the poten-
tial benefits of increasing the number of bits of the label bits.
Our experiments indicated that it was necessary to use 5 or
more bits to obtain results significantly better than the case
of 2 bits. Due to the dramatic area overhead incurred by the
use of 5 or more label bits, these results outline the exis-
tence of trade-offs between area and system performance in
case of very tight system requirements.

4.2 Experiment 2

In a second set of experiments we have evaluated possi-
ble trade-offs between the area overhead of label bits and

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

Technique Area Power Avg. Performance Compile Time
(in µm2) (in µW) (w.r.t Worst Case)

Compiler-based (2-bit) 1.16×103 0 67% Compile needed for every chip

achievable performance if the number of registers that fail
the timing constraints varies (Figure 6 and Figure 7). Our
results indicate that the optimality in the number of label
bits (1-bit or 2 bits) is enormously determined by the vari-
ability in the register file and the desired performance. Also,
another important trend that can be observed is the much
steeper degradation of the execution time in the case of 1-
bit label registers comparing to the two-bit solution. This
effect occurs due to the more fine-grained exploitation of
the register delay with 2 bits, similarly as the performance
effect explained before for the largest multimedia bench-
marks. Moreover, these results indicate that using 2-bit for
the label bits already achieves the best case performance
bound in almost all tested embedded multimedia applica-
tions, assuming a variability of up to 39% (i.e. 50 registers
responding in 1 cycle). It was seen that when more than
50% of the registers satisfy the register timing requirement,
most benchmarks provide the required performance. But
for benchmarks with high register pressure, the best perfor-
mance can only be reached with all the registers satisfying
the timing requirement.

The area overhead, power overhead and performance
gains of the proposed technique are summarized in Table
4.1. It can be seen how the approach does not present any
power overhead, while the area of the extra logic is very
reduced. The approach requires the compilation for every
target chip, but the savings obtained exceed expectations.

5 Conclusions

New consumer applications have recently increased in
complexity and demand a very high-level of performance in
the next generation of low-power embedded devices. There-
fore, new techniques and mechanisms that can provide solu-
tions for an efficient mapping of these complex applications
in such platforms are in great need. One of the most impor-
tant factors of power consumption and performance penalty
is the shared register file between all processing units. In
this paper we have presented and shown with realistic exam-
ples the applicability of a new hardware/software approach
that combines a set of architectural extensions to achieve
important reductions in the energy of the shared register file
in upcoming embedded architectures with several VLIW
processors. Also, the delays included by technology vari-

ations are characterized and their effects are minimized by
the accurate management performed by the compiler. Our
results indicate that this new integral approach enables a
reduction of the energy consumed in the register file, as
well as an optimization of its size and performance, of such
forthcoming embedded architectures without a great impact
in area or logic complexity.

Acknowledgements

This work is partially supported by the Spanish Gov-
ernment Research Grants TIC2003-07036 and TIN2005-
05619.

References

[1] UMC. http://www.umc.com.
[2] V. Agarwal, S. Keckler, and D. Burger. The effect of tech-

nology scaling on microarchitectural structures. Technical
report, Technical Report TR2000-02, University of Texas at
Austin, USA, 2002.

[3] B. S. Amrutur and M. A. Horowitz. Speed and power scal-
ing of SRAM’s. IEEE Trans. Solid-State Circuits, 35(2),
February 2000.

[4] D. Atienza, P. G. D. Valle, G. Paci, F. Poletti, L. Benini,
G. D. Micheli, and J. M. Mendias. A Fast HW/SW FPGA-
Based Thermal Emulation Framework for MultiProcessor
System-on-Chip. In Design Automation Conference, 2006.

[5] A. J. Bhavnagarwala, X. Tang, and J. D. Meindl. The im-
pact of intrinsic device fluctuations on CMOS SRAM cell
stability. IEEE J. Solid-State Circuits, 36(2):18–31, 2001.

[6] M. Blaum, R. Goodman, and R. McEliece. The reliability
of single-error protected computer memories. IEEE Trans.
Comput., 37(1):114–119, 1988.

[7] D. Boning and S. Nassif. Design of High-Performance Mi-
croprocessor Circuits, chapter Models of Process Variations
in Device and Interconnect. Wiley-IEEE Press, 2000.

[8] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Ke-
shavarzi, and V. De. Parameter variations and impact on
circuits and microarchitecture. In Design Automation Con-
ference, 2003.

[9] N. S. Bowen and D. K. Pradhan. The effect of program
behavior on fault observability. IEEE Trans. Comput.,
45(8):868–880, 1996.

[10] L. Chang et al. Stable SRAM cell design for the 32 nm node
and beyond. In Symposium on VLSI Technology, 2005.

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

[11] T. W. Chen and J. Gregg. A Low Cost Individual-Well Adap-
tive Body Bias (IWABB) Scheme for Leakage Power Re-
duction and Performance Enhancement in the Presence of
Intra-Die Variations. In Proceedings of DATE, pages 240–
245, 2004.

[12] Z. Chishti and T. N. Vijaykumar. Wire delay is not a problem
for SMT (in the near future). In International Symposium on
Computer Architecture, 2004.

[13] P. O. de Beeck, F. Barat, M. Jayapala, and R. Lauwereins.
CRISP: A Template for Reconfigurable Instruction Set Pro-
cessors. In FPL, pages 296–305, 2001.

[14] D. M. Fried et al. Agressively scaled (0.14µm2) 6T-SRAM
Cell for the 32 nm node and beyond. In International Elec-
tron Devices Meeting, 2004.

[15] R. Heald. Managing variability in SRAM designs. In In
Proceedings International Solid-State Circuits Conference
(ISSCC) uP Forum, February 2004.

[16] R. W. Keyes. Effect of randomness in the distribution of
impurity ions on FET thresholds in integrated electronics.
IEEE Journal of Solid-State Circuits, 10(4):245–247, Au-
gust 1975.

[17] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diabench: A tool for evaluating and synthesizing multime-
dia and communicatons systems. In Proceedings of Inter-
national Symposium on Microarchitecture (MICRO), pages
330–335, 1997.

[18] Philips Nexperia - Highly integrated programmable
system-on-chip (MPSoC), 2004. http://www.
semiconductors.philips.com/products/
nexperia/.

[19] P. Raghavan, J. L. Ayala, D. Atienza, F. Catthoor, M. López-
Vallejo, and G. D. Micheli. Reduction of Register File Delay
Due to Process Variability in VLIW Embedded Processors.
Technical report, IMEC, 2006.

[20] E. Seevinck, F. J. List, and J. Lohstroh. Static-noise margin
analysis of MOS SRAM cells. IEEE Journal of Solid-State
Circuits, 22(5):748–754, October 1987.

[21] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger.
Exploiting microarchitectural redundancy for defect toler-
ance. In ICCD ’03: Proceedings of the 21st International
Conference on Computer Design, page 481, Washington,
DC, USA, 2003. IEEE Computer Society.

[22] ST Nomadik Multimedia Processor, 2004.
http://www.st.com/stonline/prodpres/
dedicate/proc/proc.htm.

[23] S. A. Steidl. A 32-Word by 32-Bit Three-Port Bipolar Regis-
ter File Implemented Using a SiGe HBT BiCMOS Technol-
ogy. PhD thesis, Rensselaer Polytechnic Institute, 2001.

[24] C.-L. Su, R.-F. Huang, and C.-W. Wu. A processor-based
built-in self-repair design for embedded memories. In Pro-
ceedings of the 12th Asian Test Symposium (ATS), 2003.

[25] OMAP Platform, 2004. http://focus.ti.com/
omap/docs/.

[26] Trimedia Technologies Inc. Trimaran: An infrastruc-
ture for research in instruction-level parallelism, 1999.
http://www.trimaran.org.

[27] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
and S. Narayan. First-order incremental block-based statisti-
cal timing analysis. In Proceedings of DAC, pages 331–336,
2004.

[28] H. Wang, M. Miranda, W. Dehaene, F. Catthoor, and
K. Maex. Systematic analysis of energy and delay impact of
very deep submicron process variability effects in embedded
SRAM modules. In Design Automation and Test in Europe,
2005.

Proceedings of the International Workshop on Innovative Architecture
for Future Generation High Performance Processors and Systems (IWIA'06)
0-7695-2689-6/06 $20.00 © 2006

