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Abstract

Network applications are becoming increasingly popu-
lar in the embedded systems domain requiring high per-
formance, which leads to high energy consumption. In net-
works is observed that due to their inherent dynamic na-
ture the dynamic memory subsystem is a main contributor
to the overall energy consumption and performance. This
paper presents a new systematic methodology, generating
performance-energy trade-offs by implementing Dynamic
Data Types (DDTs), targeting network applications. The
proposed methodology consists of: (i) the application-level
DDT exploration, (ii) the network-level DDT exploration
and (iii) the Pareto-level DDT exploration. The methodol-
ogy, supported by an automated tool, offers the designer a
set of optimal dynamic data type design solutions. The ef-
fectiveness of the proposed methodology is tested on four
representative real-life case studies. By applying the second
step, it is proved that energy savings up to 80% and perfor-
mance improvement up to 22% (compared to the original
implementations of the benchmarks) can be achieved. Addi-
tional energy and performance gains can be achieved and a
wide range of possible trade-offs among our Pareto-optimal
design choices are obtained, by applying the third step. We
achieved up to 93% reduction in energy consumption and
up to 48% increase in performance.

1.. Introduction
In the last years, there is a trend toward networks and

network applications implemented with the use of embed-
ded consumer devices. The complexity of modern wired
and wireless networks combined with the increased inter-
action with the environment (e.g. in wireless networks) has
increased the dynamism of the data access pattern.

The dynamism of network applications depends on var-
ious factors. One of them is the network traffic. Depend-
ing on that, the behavior of functions, as well as the num-
ber of times they are executed, differ. The amount of stored
data, needed for these functions, varies as well. Thus, dy-
namically adjustable storage size is a necessity, allowing for
freeing of memory when it is no longer needed. Moreover,
a static memory allocation at compile time is not an option
in the case of most modern network applications, because
they do not have a static data access behavior, but rather
a dynamic one. This fact means that a static memory al-
location at compile time is not efficient at all, because the
worst case situation has to be assumed in the beginning and
implemented for the whole execution time. Therefore, dy-
namic memory allocation and management is required (es-
pecially in embedded systems). This leads to an increased
reliance on Dynamic Data Types (DDTs from now on), the
structures, which allow data to be dynamically allocated and
deallocated at run-time and provide an easy way for the de-
signer to connect, access and process data [17]. DDTs (with
the most common examples being the single and doubly
linked lists) can efficiently cope with the variations of run-
time needs (e.g. network traffic, user interaction) and the
massive amounts of transferred and stored data.

Inefficient use of DDTs, results in performance losses
by adding computational overhead for the internal DDT us-
age mechanisms. Energy consumption is the limiting factor
in the amount of functionality that can be placed in embed-
ded systems. DDTs consume energy by accessing data in
the memories, where they are stored. These two factors can-
not be optimized with the same DDT implementation (i.e. a
fast DDT is not always the most energy efficient) and the de-
signer must be able to choose a balanced DDT implemen-
tation, achieving in every case the required performance,
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while minimizing energy consumption. Nevertheless, great
memory footprint size gains in comparison to a statically al-
located compile-time memory solution, can be achieved.

The final decision, about the optimal combination of the
different DDTs implemented in the network application, is
influenced by the complex dynamic behavior. Therefore, no
general, domain-specific optimal solution exists but only
custom, application-specific ones. On top of that, the differ-
ent configurations available to networking applications add
one more layer of complexity and demand further DDTs
customization to achieve optimal results. Thus, the decision
should be in accordance to both the application’s dynamic
behavior [3] and the network configuration. A systematic,
step-by-step methodology is needed to help the designer to
make the right trade-off choice for each DDT in the net-
working application.

In this paper, we present a systematic methodology, sup-
ported by atool, to perform DDT refinement of any given
network application, with any network configuration, using
Pareto-optimal execution time-energy consumption trade-
offs. The methodology offers a plethora of optimal solutions
based on Pareto curves, representing an optimal implemen-
tation only if no other implementation has better results in
all metrics explored (a point is said to be Pareto-optimal, if it
is not longer possible to improve upon one cost factor with-
out worsening any other [4]). Additionally, it offers signif-
icant gains in total simulation time by reducing the explo-
ration design space. We offer to the designer a way to im-
prove performance and energy consumption on a high ab-
straction design level without considering any changes in
the hardware and the functionality of the application.

The remainder of the paper is organized as follows. In
Section 2, we provide an overview of the related work. In
Section 3, we present our proposed dynamic data type re-
finement methodology. In Section 4, the case studies are in-
troduced and the obtained simulation results are analyzed.
Finally, in Section 5 we draw our conclusions.

2.. Related Work
In general-purpose software and algorithms design [17],

primitive data structures are commonly implemented as
mapping tables. They are employed to accomplish software
implementations with high performance or with low mem-
ory footprint. Additionally, the Standard Template C++ Li-
brary [13] provides many basic algorithms and data struc-
tures needed for implementing dynamic data structures in a
general context. Data management and data optimizations
for traditional (non-dynamic) embedded applications have
been extensively studied in the related literature [1, 2, 15].
Also, from the methodology viewpoint, several approaches
have been proposed to tackle this issue at the different lev-
els of abstraction [2, 6, 16]. However, in modern dynamic
applications the behavior of many algorithms is heavily de-

termined by the input data. This means that multiple and
completely different execution paths can be followed, lead-
ing to complex, dynamic data usage according to the behav-
ior of the users. Therefore, our approach focuses on opti-
mizing the DDTs for modern network application with run-
time memory allocation needs, contrary to static compile-
time data allocation optimizations.

In [3], various data structures and corresponding trans-
formations are explored, applied in sequence to obtain low
cost but extremely complex data structures and correspond-
ing access operations. Additionally, more attention is paid
to energy consumption and other embedded systems crite-
ria in [5]. A fast, stepwise, cost-driven, and automated ex-
ploration and refinement were proposed in [8, 14] for mul-
timedia applications at system level, which operate on large
and irregular data structures that typically exist in this appli-
cation domain. Contrary to our work, this exploration was
tuned for multimedia applications. Multimedia applications
have very different dynamic data access patterns (e.g. ex-
tensive data re-use) compared to networking applications.
Therefore, more network-sensitive criteria have to be ex-
plored in order to arrive to optimal dynamic data types.

The work presented here is related to [18]. However,
there are major differences with the work presented there.
We focus on the data-structure optimizations in the context
of network applications, extending the range of applications
and without being limited to a specific heavy data-oriented
network router. Secondly, we analyze the software imple-
mentation of energy efficient data structures as opposed to
explicitly designing and using specifically configured phys-
ical memories. In our context, we assume that the embed-
ded platform is already designed and that our dynamic data
types, which are tuned to the network application, are incor-
porated in the middleware on top of the given platform hard-
ware. Thirdly, we extend considerably the exploration of the
dynamic data type design space. This extension is done by
adding the factor of network-configuration to explore more
consistently the search space. Our approach studies the op-
timizations and possible trade-offs related to additional de-
sign metrics that are key factors in embedded systems, such
as low energy consumption and memory accesses, on top
of the usual ones, namely performance and memory foot-
print. Finally, we support the whole methodology flow for
the first time with fully automated tools.

3.. DDT Refinement Methodology
The methodology enables the systematic refinement of

dynamic data types for new network applications, imple-
mented in embedded systems and consists of three distinct
steps applied to each network application (Figure 1). More
specifically the first step is the exploration of the DDTs at
application level, where DDTs are refined according to the
dynamic data access behavior of the network application
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under study. The second one is the exploration of the DDTs
at network configuration level, where DDTs are refined ac-
cording to the configurations that the network application
is going to use. Finally, the third step is the exploration of
the DDTs at Pareto space level, where DDTs are refined ac-
cording to the design constraints of the embedded system
that they will be implemented on.

Figure 1. 3-step DDT Refinement methodol-
ogy flow

The objectives of this exploration framework are:

• The refinement of the DDTs at three distinct steps.
Each step adds one more refinement level achieving
better experimental results each time we refine further.

• The automation of the whole exploration process, be-
cause it requires 100s or even 1000s of simulations.

• The use of a stepwise procedure propagating restric-
tions from one step to the next, in order to decrease the
number of total simulations needed, thus reducing the
total design time cost.

3.1.. Application-level DDT Exploration
In the first step of the proposed methodology, we explore

the DDTs at the application-level, in order to find the opti-
mal DDT combinations for the dynamic data access behav-
ior of the application under study. To achieve that we have
to perform two substeps. First, we attach to each candidate
DDT of the network application a profile object and run the
application for some typical input traces. The profiling re-
veals the dominant data structures of the application (i.e. the
ones that are accessed the most), which are going to be ex-
plored. Then, we insert, just once, inside the source code the

instrumentation linking each dominant data structure of the
network application with our C++ DDT library. The C++
DDT library is comprised of 10 different DDTs and devel-
oped in [9].

The instrumentation consists of typical functions operat-
ing on DDTs (e.g. add a record, access a record or remove
a record). This procedure does not alter the actual function-
ality of the application. Then, the exploration is performed
in an automatic way by keeping the same instrumentation
and changing the DDT implementation for each dominant
data structure. All DDTs in the C++ library (and combina-
tions of them) are used in the exploration, simulated and
profiled at run-time. The whole procedure takes from 0.8
up to 64 seconds per simulation for a single DDT combina-
tion according to the application. By using the term simu-
lation we mean an execution of an application under study
using as input a network trace.

We simulate all the combinations of DDTs for the cho-
sen network application. For example, if there is one domi-
nant data structure, then we have to simulate 10 times, one
time for each different DDT. If there are two dominant data
structures, then we have to simulate 100 times (i.e. 10 dif-
ferent DDTs for the first dominant data structure combined
with 10 different DDTs for the second dominant data struc-
ture and so on). Then, we automatically keep the combina-
tions, which have the lowest energy consumption, shortest
execution time, lowest memory footprint and lower mem-
ory accesses. The energy estimations are calculated using
an updated version of the CACTI model [12]. According
to our experimental results (Section 4) approximately 80%
of the DDT combinations produce not optimal results for
all the aforementioned metrics. Thus, this procedure will
discard approximately 80% of the available DDT combina-
tions (Table 1).

3.2.. Network-level DDT exploration
To automate this exploration step we have developed an

extension to our DDT exploration framework. The first part
of the tool (written in Perl) can recognize automatically the
differences between the various network configuration im-
plementations. This is done by parsing the available net-
work traces and extracting the network parameters from the
raw data in the traces. Then, the second part of the tool
(written in C++) can automatically do the DDT implemen-
tation for all the different network configurations in the net-
work application.

This is a critical step of the methodology, because our
experimental results show that for different network con-
figurations, the optimal DDTs vary greatly for certain met-
rics (Section 4). The network parameters, which are impor-
tant for the DDT exploration, are: the number of nodes in
the network, the throughput of the network and the typ-
ical packet sizes used (e.g. Maximum Transmission Unit
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Figure 2. Tool support of the 3-step DDT Re-
finement methodology flow

packet size). Finally, other network parameters used for the
DDT exploration are application specific. For example, the
Radix tree size is an important parameter for the IPv4 rout-
ing application [10], affecting greatly the DDT exploration.
Other examples are the Level of Fairness used in the Deficit
Round Robin [10] scheduling application and the number
of rules activated in a firewall application.

This exploration step requires input traces, which are
typical of the network configuration. With the help of our
tool we parse these input traces and we extract from them
automatically the parameters of the network. In order to test
the validity of our results we have used a total of 10 traces
from 8 different networks. The first three networks come
from the NLANR [11] and originate from the total campus
and satellite buildings activity. The rest come from Dart-
mouth University’s collection of wireless network traces [7]
on the corresponding campus buildings.

More specifically, we take the remaining 20% DDT com-
binations of the previous step and simulate each one of them
for all different network configurations. For example, this
means that we will perform approximately 80 simulations,
if we explore for four different network configurations in
an application with two dominant data structures (i.e. 20%
of 100 DDT combinations equals 20 DDT combinations.
20 DDT combinations × 4 different network configurations
equals 80 simulations). If we had not reduced the explo-
ration space at the previous step, then we would had to per-
form 400 simulations. Then, we automatically keep track of
the combinations, which have the lowest energy consump-
tion, shortest execution time, lowest memory footprint and
lower memory accesses (Table 1).

3.3.. Pareto-level DDT exploration
In the third step, we explore the DDTs at the Pareto point

level. Hence, instead of giving the designer as solution a sin-
gle DDT combination, we provide a Pareto-optimal set rep-
resented by a Pareto curve. Every point in the set is better
than any other solution in at least one metric. Thus, design
constraints can be implemented directly in the exploration
approach and get the best tradeoffs from the final DDT im-
plementation. In order to provide to the designer the Pareto
curve, we have developed another tool (written in Perl),
which processes the Gigabytes of the log files produced by
previous steps, and represents graphically all the DDT ex-
ploration solutions (Figure 3). Then, the Pareto space of all
the solutions is pruned and the tool produces graphically
the Pareto curves for the memory accesses, execution time,
energy consumption and memory footprint tradeoffs (e.g.
three of them can be seen in Figure 4). The rest of the DDT
combinations are discarded. Then, the designer can choose
very easily between a set of application-tuned Pareto op-
timal DDT implementations, which are within the design
constraints (see Table 1).

Figure 3. (a) Performance vs. Energy Pareto
Space of URL (b) Pareto Optimal Points
Graph

4.. Experimental Results
We apply the proposed methodology to four realistic

case studies representing different modern network appli-
cations selected from a broad variety: the first one is a rout-
ing application (Route), the second one is a context switch-
ing algorithm (URL), the third one is a firewall applica-
tion (IPchains) and the fourth one is a Deficit Round Robin
scheduling application (DRR). All applications are taken
from the NetBench Benchmarking suite [10]. The results
were obtained with gcc-3.3.3 on a Pentium4 1.6 GHz with
512 MB RAM running Linux kernel 2.6.4. All the results
presented here are average values after a set of 10 simula-
tions for each application, where all the final values were
very similar (variations of less than 2%).

By using the proposed methodology the designer can
achieve significant gains in the number of simulation com-
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pared to an exhaustive exploration. The reduction achieved,
in the aforementioned case studies is depicted in Table 1,
with an average reduction of 80%.

Network Exhaustive Reduced Pareto

applications simulations simulations optimal

1. Route 1400 271 7

2. URL 500 110 4

3. IPchains 2100 546 6

4. DRR 500 60 3

Table 1. Reduction of total simulations
needed to explore the design space

The first case study is the Route application [10]. The
routing table uses a radix tree structure, which is the data
structure to hold both host addresses and network addresses.
In the first step, we determine the dominant DDTs of the ap-
plication. Two dominant DDTs are present in the Route ap-
plication, radix node structure forms the nodes of the
tree and the rtentry structure holding the route entries
and contain other useful pointers. This means that we are
going to simulate automatically a maximum of 100 combi-
nations of DDTs to do exploration at application level.

In the second step, exploration is done at network con-
figuration level. Seven network configurations were
used, utilizing 7 different networks. Additionally, explo-
ration was performed for 2 different values of network
parameter Radix Tree (for 128 and 256 entries). The cre-
ated log files contain detailed information concerning
the DDTs’ behavior: number of memory accesses, mem-
ory footprint, dissipated energy and execution time.

In the third step, the postprocessing tool parses the
log files and produce the Pareto-optimal points for mem-
ory accesses–memory footprint and execution time–energy.
Each network configuration is represented by a curve and
each point the combination of DDTs along with the cor-
responding values concerning memory accesses, memory
footprint, dissipated energy and execution time. Then, the
Pareto curves are drawn (Figure 4), giving the designer a vi-
sual aspect of the available solutions. For example, in Fig-
ure 4a Pareto-optimal curve are depicted, considering a
routing table size of 128 elements and for seven differ-
ent networks. Assuming Radix Tree size 256 and Berry
trace [7], Figure 4b shows the Pareto-optimal point, within
the solid circle, is the combination of array and dou-
ble linked list DDTs, with energy dissipation 6.4 mJ, exe-
cution time 0.17 sec., memory footprint 477, 329 Bytes and
4, 578, 103 accesses.

For comparison reasons, if double linked lists were used,
the application would demand 68.8% more memory foot-
print, 12% more energy and 12.5% gains in execution time
from the best Pareto-optimal point of each corresponding

metric (shadow area of Figure 4b and Figure 4c). Trade-
offs can be achieved up to 90% for the dissipated energy,
20% for the execution time, 88% for the memory accesses
and 30% for the memory footprint. Comparing these solu-
tions with the remaining Pareto points, which do not belong
to the Pareto-optimal curve, the gains become bigger. Par-
ticularly, we experience a reduction in memory accesses up
to a factor of 8, for memory footprint up to a factor of 12,
for dissipated energy up to a factor of 11 and for execution
time up to a factor of 2.

Figure 4. Pareto Charts for Route Application
Execution Time vs. Energy (a) table size 128,
(b) table size 256 (c) Accesses vs. Memory
Footrpint (BWY I).

The second case study is URL-based switching [10]. We
simulated the application a maximum of 500 times (100
different DDT combinations ×5 different networks) to ex-
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plore the DDTs at network configuration level. The sim-
ulation results were filtered to get Pareto-optimal points.
In URL the best combination of DDTs in terms of energy
gives a 52% reduction in comparison to the most energy-
consuming Pareto-optimal point. This percentage is the av-
erage of the five traces. The corresponding reduction per-
centage of time is 13%, of memory footprint 70% and of
memory accesses 82%. Other combinations can take up to
double execution time to run, consume up to 30 times more
energy, have up to 4 times more memory accesses and allo-
cate up to 5 times more memory footprint comparing to the
average of the Pareto-optimal. A comparison with the ini-
tial NetBench DDT implementations is worthwhile (both
DDTs were implemented as single linked lists). The execu-
tion time is reduced by 20% and energy by 80%.

By applying the methodology to the other two applica-
tion we achieved similar results. Due to lack of space the
trade-offs among the Pareto-optimal points achieved, are
presented in Table 2 for the four case studies.

Application Energy Exec. Time Mem. Accesses Mem. Footprint

1. Route 90% 20% 88% 30%

2. URL 52% 13% 70% 82%

3. IPchains 38% 3% 87% 63%

4. DRR 93% 48% 53% 80%

Table 2. Trade-offs achieved among Pareto-
optimal points

5.. Conclusions
We have presented a systematic approach to explore all

possible implementations and combinations of DDTs, us-
ing a novel methodology and supporting automation frame-
work, which has led to significant improvements in terms
of energy consumption, execution time and memory foot-
print in combination with a reduce design time cost. This
methodology shows that, the choice of an optimal imple-
mentation of a dynamic data type can be flexibly tuned to
the specific needs of each application, each network con-
figuration and each embedded system constraint. The de-
sign flow methodology was verified by exhaustive simu-
lation under various conditions, traces and DDTs imple-
mentations. Furthermore, it was shown that we can reach,
with the use of our methodology, energy savings 80% and
increase in performance 22% (in average) of the origi-
nal benchmarks implementation without any increase in
memory footprint and memory accesses. Finally, trade-offs
among the Pareto-optimal choices provide alternative solu-
tions to the designer.
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