
10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

Systematic Intermediate Sequence Removal for Reduced Memory Accesses

Christophe Poucet1, Stylianos Mamagkakis1, David Atienza2, Francky Catthoor1
1DDT/IMEC, Leuven, Belgium. {poucetc, mamagka, catthoor}@imec.be ∗

2DACYA/UCM, Madrid, Spain. datienza@dacya.ucm.es †

Abstract

Modern software applications are growing in complexity
and demand very intensive use of data. Therefore, a wide
variety of data structures are utilized to facilitate the stor-
age and access to these vast amounts of computed informa-
tion. Additionally, the need for reliable software design and
the development of large applications following the object-
oriented paradigm increase the amount of dynamic buffers
and redundant accesses to the data stored in these buffers.
In this paper, we propose a systematic, design optimization
methodology to remove these intermediate dynamic buffers,
thereby reducing the memory accesses of the targeted appli-
cations without altering the input-output behaviour of the
algorithms. The reduction is focused on sequences and is
especially relevant for embedded systems, which have lim-
ited on-chip communication bandwidth and the energy con-
sumption of the memory subsystem is high, due to the energy
consumption associated with each memory access. The ef-
fectiveness of the proposed methodology is assessed in a 3D
reconstruction multimedia application and shows a signifi-
cant reduction in memory accesses. In addition, the general
trends for memory improvement and the scalability of our
approach are supported as well by a parameterized bench-
mark set.

1 Introduction

Modern software applications for embedded systems
have massive data storage and transfer needs. This is partic-
ularly true for applications that need to deliver a rich mul-
timedia experience to its final user. This situation creates a
bottleneck for the memory subsystem in an embedded sys-
tem, which has severe memory footprint limitations due to
size factors and cost factors. Also, the bandwidth of the
interconnect is limited and it can become overloaded by
the memory accesses. Most importantly, the accesses to
the memory affect the battery life of the device through the

∗Francky Catthoor is also Professor at ESAT/K.U.Leuven
†This work is partially supported by the Spanish Government Research

Grant TIN 2005-5619.

energy consumption of the physical memory (i.e. physi-
cal memories consume a certain amount of energy per ac-
cess). Therefore, the memory accesses used by the data of
the software application needs to be minimized to meet the
specification constraints of designers of embedded systems.

The aforementioned trend is contradicting with the trend
for increased reliable design of software applications. De-
signers devote significant effort to introduce buffers in the
source code and encapsulate data in order to make sure that
the software is written in a consistent and error-free way.
While this approach is valid and recommended for writ-
ing the source code of the applications in a reusable way,
it introduces unnecessary intermediate variables and mem-
ory access redundancy (i.e., writes to and reads from the
buffer), which has to be removed after the source code for
the whole application has been developed and tested.

Additionally, more buffers are unnecessarily introduced
among modules, when code development is split among
many designers (for big development projects) and each de-
signer is focusing on a single module. This situation be-
comes even worse in modern design environments, where
tight time-to-market deadlines are the norm in industry.
Therefore, software applications typically process data in
different stages to allow for the aforementioned modular de-
sign. This situation results in the use of temporary dynamic
buffers in between as well as within the internal functions
of a complete software module.

As a result, in order to design optimized system imple-
mentations for consumer embedded devices, solving these
intermediate variable and memory access problems intro-
duced by dynamic buffers becomes a major problem be-
cause efficient software development starts dominating the
overall design and system integration effort. In fact, this
is especially true for dynamic buffers used in the object-
oriented design paradigm [2] for modular source code de-
velopment. In pure functional languages like Haskell, these
problems are solved by means of deforestation [27, 9].
Thus, software designers are not bothered with the imple-
mentation of the buffer removal optimizations. However,
the situation is different in imperative programming lan-
guages, where the designer faces the problem of manually

1

51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

removing the intermediate buffers mainly relying on his
programming experience. Therefore, a similar automatic
removal approach to functional languages needs to be de-
veloped for object-oriented languages like C++, since they
are being gradually introduced and massively used in em-
bedded software design.

In this paper, we propose to remove all these interme-
diate buffers in a systematic, consistent and stepwise way
in order to reduce the memory accesses of the data storage,
without altering its algorithmic I/O functionality of the C++
embedded software. The biggest challenge, which this pa-
per addresses for the first time, is the systematic removal of
data dependent, non-manifest, sequences of data elements
and as a result the read/write memory accesses to them
(e.g. single linked lists or vectors of the Standard Template
Library - STL[23]). Such sequences are characterized by
access-methods to get an iterator pointing at the elements,
as well as to discern the value of this iterator, move this iter-
ator or add values at the location pointed to by the iterator.
A typical example, in pseudocode, can be seen in Code 1.

for (...)
if (condition(data))
container.append(data);

for (iterator in container)
consume(*iterator);

Code 1: Pseudocode demonstrating typical STL operations

These sequences are taking a bigger part of the mem-
ory footprint of recent dynamic applications, for example,
60% of the memory footprint utilized and 13% of the overall
memory accesses in a 3D reconstruction application [24]).
Although our proposed methodology is currently focused
at these instantiations of sequences, it is fundamentally not
constrained on its scope and can also be used for other im-
plementations or other types of access patterns. We also
introduce a number of tools that help the embedded system
designer in the most time consuming tasks, namely, they
help to identify these intermediate variables and to calcu-
late the possible trade-offs originated from their removal.

The remainder of this paper is structured in the following
way. In Section 2 we present the related work. Then, in
Section 3 we illustrate with a motivational example the sort
of transformations we are targeting. The methodology is
then further exposed in Section 4 and the use of our tools
is described in this section as well. Then, our systematic
approach is applied to a real multimedia application and to
a number of additional set of representative code samples of
embedded benchmarks, and the results achieved are shown
in Section 5. Finally, in Section 6 we draw our conclusions.

2 Related Work

The current state of the art indicates that a large body
of research to find solutions for scalar intermediate vari-
able removal exists [15]. Additionally, De Greef [7] looks
at ways to reduce indexed arrays accessed within manifest
loop nests to their minimum necessary size. In [20] a simi-
lar model, known as the Polyhedral model, is used. Both ap-
proaches depend on compile-time analysable for-loops with
(piece-wise) linear dependencies on the for-loop iterators
in the addressing of arrays. More recently, work has been
performed on inter-array analysis [26], which focuses on
copy-propagation and employs the Polyhedral model. This
framework employs sets of equations with linear affine in-
dices and then utilizes matrix manipulations to enable trans-
formations. All the numbers used in the expressions must
be fully-manifest, and the methodology can not cope with
extended data dependent behaviour. In addition, this work
does not look at removing copies that are not pure copies of
larger arrays. Finally, work was performed on stream like
applications [1], however this work also requires that the
number of elements being produced in each phase is lin-
early related to the number of elements consumed. There-
fore, although the work also streams data consumption and
production, it can only perform this optimization for linear
state space systems, and not for non-manifest runtime de-
pendent data consumption and production.

Within the literature of functional programming lan-
guages have been studied under the term deforestation[27,
9]. This approach is specific to pure functional program-
ming languages such as Haskell[17]. Their compiler tries
to remove intermediate data that is produced between two
different functions to lower the data access overhead be-
tween functions that are chained together. An advanced
form of deforestation is known as fusion[25], which targets
also higher-order functions. Both deforestation as well as
fusion are specifically targeted towards pure functional lan-
guages where the basic data-type is the list and side-effects
are not present. However, this can not be directly reused
within the context of object-oriented software applications
due to the fact that the way data types are accessed there
is much more complex than the way lists are accessible in
functional languages and because equational reasoning [22]
is not possible for object-oriented languages.

Data management and data optimizations at design time
for embedded applications have been extensively studied in
the related literature [11]. [18, 3] are good overviews about
the vast range of proposed techniques to improve mem-
ory footprint and decrease energy consumption in statically
allocated data. Finally, from the methodology viewpoint,
several approaches have been proposed to tackle this issue
at the different levels of abstraction (e.g., memory hierar-
chies), such as the Data Transfer and Storage Exploration

2

52



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

(DTSE) methodology [6]. However, all these approaches
focus only at optimizations of global and stack data, which
is allocated at compile-time. In this paper, we propose opti-
mizations of dynamic, heap data, which is allocated at run-
time. Obviously, the aforementioned approaches are 100%
compatible with our approach and can complement ours in
order to optimize data of embedded applications, which is
allocated both at compile-time and at run-time.

In summary, so far no research focuses on develop-
ing a systematic approach to remove dynamic data types
from software applications with non-manifest and data-
dependent behaviour. Moreover, research has to be done on
systematically eliminating variables that are not pure copies
of global or larger dynamic variables, but also injective
control-flow or processing relationships. Related, manual
experiments were performed on such applications [13] fo-
cusing on reducing memory footprints, but no attempt was
made yet to formalize the process in a systematic method-
ology, which also targets memory accesses. The main lim-
itation in the previous methodologies with respect to dy-
namic data-types is that the link between array-position and
iterator is no longer manifest nor piece-wise affine. Even
though the actual iterator used is linearly related to the for-
loop instance in which it executes, due to the semantics of
sequences, the link between this iterator and the actual stor-
age inside the sequence is non-manifest and in most cases
data-dependent. This is due to the fact that any time an el-
ement is added or removed to a sequence (two operations
that an array does not support) the index-to-value mapping
of all the other subsequent elements are changed.

3 A Motivational Example

To get a better understanding, we present a motiva-
tional example demonstrating a common use of STL in C++
source code. This section first demonstrates a typical use of
an intermediate sequence to highlight where the memory
accesses are being consumed as well as some features of
the problem that our methodology tries to tackle. Then, the
proposed solution is demonstrated, and it is shown how the
memory access overhead is removed.

3.1 Problem snapshot

If we take the source code in Figure 1, we can see the
different features of code that usually makes intermediate
sequence removal difficult. The first thing to note about
the example is that the intermediate sequence inter is not
a pure copy of the input. Additionally, the data contained
within it is data dependent, as the condition test depends
on data already within the container as well as data to be
inserted. Therefore, the mapping of positions of the data el-
ements in inter to their originals in input is not known

as the addition happens in a data-dependent way. Notice
that this example is a simple example to demonstrate the
problem, and due to its simplicity the mapping of the po-
sition of elements in inter to the elements that generated
them in input is still piecewise linear incremental, which
need not be true in the general case. Due to the fact that
the mapping from input element position to output element
position is not affine, previously mentioned techniques can
not be employed. As such, only a runtime technique that
takes into account the data-dependent control-flow can be
used to remove the intermediate sequence.

vector<int> produce(vector<int>& input) {
  vector<int> inter;
  for (vector<int>::iterator i = input.begin();
       i != input.end(); ++i) {
    if (test(*i)) {
      inter.push_back(f(*i));
    }
  }
  return inter;
}
int main () {
  vector<int> inter = produce(input);
  consume(inter); // Pseudocode
}

Figure 1: Motivational example showing the dynamic cre-
ation of an intermediate variable

Depending on how often the condition test is true, the
sequence inter may be as large as input. Assuming
that the intermediate buffer is then only used once, which is
true for multimedia applications working in phases (as ob-
served in [12]), all the writes to inter as well as the sub-
sequent reads from inter will be completely removed. In
this simple motivational example, removing inter should
therefore lead to a reduction in memory accesses of up to
66%. Instead of the writes to inter followed by the reads
inter, reads to input will happen in the original appli-
cation nonetheless to build the inter sequence. Addition-
ally, in more complex examples of real software applica-
tions, when data sets are being filtered or processed, they
are typically copied from one sequence into the next thereby
creating these sorts of consumptions. This means that data
will be processed in different stages leading to further (pos-
sibly transformed) copies of the primary copies as the data
is transformed. This eventually leads to a large memory
access overhead that our systematic methodology aims to
remove. Manually for real applications, it would indeed be
a large effort to rewrite all the source code and debug it.

3.2 Proposed optimized solution

We propose to completely remove the production logic
inside produce as well as the sequence inter and in-
stead replace it by a custom implementation of a vector that

3

53



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

contains the logic to ensure that the correct elements are re-
turned. Doing this will completely reclaim the storage that
is currently used by the intermediate vector inter and re-
move the accesses to this vector.

In Figure 2 our final, optimized implementation is
shown. As can be seen in the code, the logic that dictates
how an iterator should arrive at a new element is delayed to
the time when that element is actually needed. The special
logic generated by append sequence then computes at
runtime where the next element should come from. Be-
cause multimedia applications process their data in phases,
we can introduce this new data-type which does not need to
be modified further.

This transformation changes the code in such a way that
data is only lazily evaluated when it is actually being de-
manded, or read. It is a non-trivial transformation and
depends on how the sequence was originally constructed.
Thus, we create an on-demand sequence (which is similar
to the concept of lazy streams[8]) that produces data on de-
mand and this data matches the data that would originally
have taken place in memory, thereby consuming only the
memory accesses to first produce and then consume.

This example illustrates the optimization of only one
loop. The delayed vector takes as one parameter the
underlying sequence, which in this case is empty. In the
same way that the production loop for the intermediate se-
quence was empty. In general, however, it is possible to
stack these different transformations on top of each other,
thereby completely removing the storage of a sequence. By
removing the storage of this sequence, which due to their
typical size happens to expensive off-chip memory[14], one
write to and one read from off-chip memory is avoided for
each element in the sequence.

In Figure 3 the gains are demonstrated. In the first exam-
ple, before the optimizations, for each element in the input,
there was one read and then one possible write to the inter-
mediate sequence inter. When the data is then consumed
from inter, then another read is performed for each ele-
ment. In the transformed code, on the other hand, we create
an object that saves the state of the loop where we are at.
As such, every time we read from the delayed sequence, we
will only cause one read from the original input.

4 Methodology

In this section we explain our methodology to derive the
aforementioned transformations. Additionally, the imple-
mentation characteristics of the methodology using opera-
tors similar to STL are explained in more detail. It consists
of four distinctive steps. They are detailed below along with
the terminology used in the remainder of this section. The
methodology has actually been implemented for STL se-
quences. However, our methodology is generally applicable

APPEND_THUNK(merged, int)
  append_thunk_merged(const vector<int> & input)
   : input_(input) { initialize(); }
  const vector<int> & input_;
  vector<int>::const_iterator i;
  APPEND_BODY(
    for (i = input_.begin(); 
         i != input_.end(); ++i){
      if (test(*i)) {
        cr_return(1, f(*i));
    }})};

typedef append_sequence<
  empty_sequence<int>,
  append_thunk_merged
> delayed_vector;

delayed_vector produce(vector<int>& input) {
  delayed_vector inter(
      empty_sequence<int>, 
      append_thunk_merged(input));
  return inter;
}

int main () {
  delayed_vector inter = produce(input);
  consume(inter); // Pseudocode
}

Figure 2: Motivational example after intermediate variable
removal

original program

for (i in input)
  inter <- produce(*i)

for (j in inter)
  consume(*j)

transformed program

delayed sequence

for (i in input)
  return produce(*i)

for (j in inter   )
  consume(*j)

Read

Read

Write

Read

inputinput

inter i

Figure 3: Memory accesses before and after our transfor-
mation

to any implementation of sequences (for instance [10]) that
works on the basis of iterators.

Identify Intermediate Variables

Identify Production Code

Determine trade-off

Perform optimization

Profiling Tool Based

Profiling Tool Based

Library Based

Figure 4: Overview of the methodology for Intermediate
Sequence Removal

An overview of the methodology can be seen in Fig-
ure 4. In a first step, the intermediate sequences are iden-
tified through the use of our profiling tool which is tuned
towards sequences. The sequences should be identified as
first being created and then being read. This step is further

4

54



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

explained in Section 4.1. In a second step, the production
sites of the sequences are identified. Here it is important
to determine how the sequences are being created, and if
this creation is intermingled with any other code that causes
observable output behaviour (see Section 4.2). In a third
step, the tradeoff between removing a sequence and not re-
moving it is evaluated, as explained in Section 4.3. The
easiest way to determine whether an optimization is fruitful
is through profiling the application prior and after the trans-
formation with our profiling tool. Finally, the optimization
is performed through a transformation of the source code,
as detailed in Section 4.4.

4.1 Intermediate Sequence Identification

In the first step of our methodology, it is important to ac-
tually identify which sequences are intermediate sequences.
Because we rely on the existence of STL-like containers, we
have duplicated this interface in our existing profiling tool
to obtain profiling not at the memory access level but at the
semantic operation level (append, remove, ...). The profil-
ing sequence mirrors a vector implementation of STL.

One key characteristic of intermediate sequences is that
they are typically first produced and then consumed. As
such, first there will be a set of operations that mutate the
sequence and at some point after the completion of these
operations there will be a set of operations that access the
sequence through iterators. It is important that these two
phases are distinct and do not overlap, otherwise the trans-
formation might not work. Currently, this transformation
step of the methodology supports only sequences that are
used through incremental consumption of data. Typically,
this will be most if not all the intermediate sequences due to
standard practices regarding STL usage[16].

A specific pattern that was observed in the application
used in Section 5 was that some intermediate sequences are
defined at a top scope and then created and consumed in
each loop-iteration, before being cleared at the end of the
loop instance. This pattern can easily be rewritten to a form
that can be transformed by moving the definition of the in-
termediate sequence to the inside of the loop and removing
the clear call. This could even be automated by perform-
ing a lifetime analysis and then through pattern matching
and rewrite rules. The reason this is not done a priori is
that, from the point of view of STL, creating and destroying
a sequence is not as efficient as the allocated space can be
reused for the next loop-iteration, and as such this pattern
can be expected in source codes that need to generate and
then consume intermediate data of the same type several
times in a loop. Other transformations that reduce the life-
time of intermediate sequences to their absolute minimum
are beneficial and complementary to this methodology.

4.2 Production Code Analysis

In the second step of the analysis, we use the previ-
ously obtained profiling information to perform analysis
and pruning of the code. Specifically, the production sites
of the intermediate sequences need to be identified and then
pruned. In this step of our methodology it is important to
discern what other variables the intermediate sequences de-
pend on. An overview of this part of the methodology is
given in Algorithm 1. The details of the individual steps are
further explained in the following paragraphs.

Algorithm 1 Production Code Analysis
1: Profile the identified sequences Ssequences

2: for all identified sequences seqn ∈ Ssequences do
3: Identify production sites Psiten for sequence seqn

4: for all code blocks ci
n ∈ Psiten do

5: if code block ci
n has side-effects then

6: Try to disentangle side-effect code
7: Otherwise, continue with next identified se-

quence seqn+1

8: end if
9: Discern dependency variables V arn

i used in ci
n

10: for all dependency variables var ∈ V arn
i do

11: if dependency variable var is non-scalar then
12: Ensure lifetime of var is extended to con-

sumption site of seqn

13: end if
14: end for
15: Introduce sub-sequence subi

n for seqn built from
code block ci

n and the previous sub-sequence
subi−1

n or the empty sub-sequence.
16: end for
17: end for

Once the intermediate sequences have been identified,
the profiling information concerning their production will
indicate where they are produced. Here it is important to
determine whether the code of data production has any ob-
servable side-effects besides the creation of the intermedi-
ate variables. If this is so, then either this code will have
to be disentangled from the production logic, or it will not
be possible to apply the transformation of this specific vari-
able. This is due to the fact that the optimization transfor-
mation reorganizes the global ordering of loops. In multi-
media applications side-effects do not tend to occur in the
code that is responsible for the computation and as such this
tends to not be a limitation. In the case that non-scalar vari-
ables are used for the production of the intermediate vari-
able, and these variables no longer exist at the consumption
site of the intermediate variable, then either their lifetime
will have to be extended to that point or they will have to be
copied. If their lifetime already extends until the consump-

5

55



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

tion site of the intermediate sequence, then either a pointer
or reference to those variables can be stored in the delayed
sequence construct, unless it is a scalar, at which point a
simple copy can be made. It is assumed that the input data
that is used to generate the intermediate sequence does not
change between the production and consumption site of the
intermediate sequence. Through the analysis of the code
producing the data, and by looking at the profiling infor-
mation, this can be validated. The profiling information is
only used to drive the analysis of where the code should
be transformed not how, thereby maintaining correctness of
the transformation.

It is important to identify the different loops that create
the intermediate sequences and to prune the code to cre-
ate intermediate sub-sequences. For each region of code
that modifies the sequence, a new sub-sequence copy is cre-
ated. This is done by creating a new sub-sequence that is
a copy of the previous sub-sequence and then modify it
with the new loop. These copies will not lead to an over-
head in memory accesses as they will all be removed in the
optimization step of the methodology. Through this trans-
formation, this comes close to the static-single-assignment
form [5] of the source code but at the sub-sequence-level.
Abstractly we can say that each intermediate copy is then
formed by the fusion of two streams, the data originally in
the sequence and the data being added by the code-structure
surrounding the modification statement. Although the eas-
iest approach is to have one sub-sequence per loop, if two
adjacent loops both use the append operation (push back in
STL) then they can be treated as one block, thereby reduc-
ing the number of lazy combinators that need to be used.

The specific operations that can appear in one code
block generating one sub-sequence from the previous sub-
sequence are listed below. Initially, the presented method
does not support mixing different operations (for instance
both insertion and appending) within one loop. Although
this may seem like a strong limitation, in typical applica-
tions these operations are not usually intermingled at such
a fine level of granularity. It is, however, possible, to have
one loop with one type of operations following a loop with
another type of operations, which is the idea behind the dif-
ferent sub-sequences.

• either any number of push back (append) operation
as demonstrated in Code 2,

• or any number of insert operations using one spe-
cific iterator, with any number of ++ operations on
that iterator and starting exactly at where the iterator
is set to the beginning of the previous sub-sequence as
demonstrated in Code 3,

• or any number of remove operations using one spe-
cific iterator, with any number of ++ operations on

that iterator and starting exactly at where the iterator
is set to the beginning of the previous sub-sequence as
demonstrated in Code 4

for (...)
// Any set of nested loops...
if (...)
// ... or conditions
// Any number of appends
inter.push_back(...);

// No other operations accessing inter

Code 2: Code block for appends

// Start of insert block introducing
// a new sub-sequence
iterator o = inter.begin();
for (...)
// Any set of nested loops...
if (...)
// ... or conditions
// Any number of insertions as long as
// they are based on the same iterator o
o = inter.insert(o, ...);
// Any number of increments of the same iterator
o++;

// No other operations besides insert
// based on the iterator o accessing inter

Code 3: Code block for insertions

// Start of remove block introducing
// a new sub-sequence
iterator o = inter.begin();
for (...)
// Any set of nested loops...
if (...)
// ... or conditions
// Any number of removals as long as
// they are based on the same iterator o
inter.remove(o);
// Any number of increments of the same iterator
o++;

// No other operations besides remove
// based on the iterator o accessing inter

Code 4: Code block for removals

For insert operations, the return value of the operation
needs to be stored back into the iterator being used to insert
values into the sub-sequence. This is a requirement by STL
as otherwise the iterator could possibly become invalid if
the insertion causes a reallocation. Note that it is not neces-
sary to literally introduce the sub-sequence copies, merely
to annotate where their production begin and ends and on
which prior sub-sequence they depend.

6

56



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

4.3 Cost Tradeoff

To be able to determine whether the removal of an in-
termediate sequence will positively influence the memory
accesses, an analysis of the cost tradeoff needs to be per-
formed. This tradeoff is non-trivial as the removal of an
intermediate sequence does not just lower the memory ac-
cesses. As noted in the previous section, it is possible that
certain other variables need to be extended in lifetime to en-
able the removal of one intermediate variable. Additionally,
if the intermediate sequence is consumed more than once,
then the gain in memory accesses is also less clear.

In general, however, a few heuristics can help to deter-
mine whether a variable should be removed or not. If an in-
termediate sequence of N elements is consumed only once,
which tends to be the case for phased multimedia kernels,
then there will be a gain in memory accesses of N reads
and N writes. Nonetheless, that specific variable was re-
moved as well as it depended on an intermediate sequence
which depended on other variables that lived longer than
that specific variable. Although the delayed computation
introduces a few scalar variables to enable the pausing of
the production control-flow, these are negligible as they can
be placed into registers which have a much lower memory
access cost than off-chip SDRAM where the intermediate
sequences and input data reside. In the case that each ele-
ment in the intermediate is dependent on only one element
in the input data, then the sequence can be consumed multi-
ple times and the transformation will still result in a reduc-
tion in memory accessed.

Although execution time is not studied in this paper, the
overhead of pausing the computation is negligible as mod-
ern day VLIWs can execute simple conditional code with-
out big penalties [21]. Therefore, in the most typical case
when the intermediate sequence is only consumed once,
there will be no loss in performance and a gain in perfor-
mance is even envisioned as the data no longer needs to be
stored and retrieved. The reason there is no loss in per-
formance is that the computation of the sequence is simply
being delayed until when the consumption of this sequence
requires it; consuming it once therefore does not lead to re-
computation.

4.4 Code Transformation and Optimization

The final step is to optimize the source code by trans-
forming it and removing the code of the production of the
intermediate sub-sequences as well as the intermediate sub-
sequences themselves that were selected in Section 4.3.

After the tradeoff has been performed, the next step is
to apply source-code transformation to remove the code
producing the different sub-sequences and move this to a

delayed sequence. Beginning with the first sub-sequence
of the first sequence in the data-dependency list, the code
of the data production is hoisted out of its context and
placed into a thunk as demonstrated in Figure 2. The
APPEND THUNK macro expands to a partial class defini-
tion that can then be extended. For each local variable or
parameter that is used in the production loop, an appropriate
constructor parameter and instance variable is made, using
references or pointers for those variables that are not scalar.

When the code is hoisted out, instead a specific sequence
type should be created that constructs on top of the previous
sub-sequence. The specific transformation is dependent on
what type code-block is being hoisted out. In the case of an
append-block, such as in Code 2, all the push back op-
erations should be replaced by the macro call cr return
operation with two parameters, first a unique number and
secondly the value that was going to be stored in the se-
quence. This call will save the current location in the pro-
duction loop and return the value whenever the thunk is
called. Through the use of a typedef, the delayed sub se-
quence type is defined, with as parameter the type of the
previous sub sequence of the intermediate sequence as well
as the thunk that has the delayed code producing the data.
Finally, through a proper constructor call, such a delayed
sub sequence can easily be constructed. Then, a delayed
sub-sequence is built as shown in Code 5.

APPEND_THUNK(FOO, type_of_element)
append_thunk_FOO(parameters) {...}
local variables...;
APPEND_BODY(
// code producing the data with
// ’append’ replaced by
cr_return(UNIQUE NUMBER, value);

)
};
typedef append_sequence<
previous_delayed_sub_sequence_type,
append_thunk_FOO

> delayed_sub_sequence_type;
...
// Where the code producing the data was:
delayed_sequence_type current_sub_sequence(
previous_sub_sequence,
append_thunk_FOO(parameters));

Code 5: Code transformation for append blocks

On the other hand, if the code producing the data is an
insert-block, such as in Code 3, then all the insert calls are
replaced by a call to push with the value that would have
been inserted. On the other hand, in every location where
the insertion iterator was being incremented, a call needs
to be made to cr void with a unique number as param-
eter. The prior will save the value in a local stack to be
returned as soon as the original ++ operator is encountered.
The latter will then return a value, such that the latest in-

7

57



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

serted value is available to be used. Similarly as with the
append delayed sub-sequence, a typedef is used to actually
define the sub-sequence in terms of the previous one and the
delayed code block, and a simple constructor call with the
parameters that were used in the code producing the data
creates such a sub-sequence. One extra detail is that the
original call get the beginning iterator for insertion is no
longer kept, it is simply used to identify where the begin of
the insert-block should be to make this transformation cor-
rect. The code for a delayed insert sub-sequence is shown
in Code 6.

INSERT_THUNK(FOO, type_of_element)
insert_thunk_FOO(parameters) {...}
local variables...;
INSERT_BODY(
// code producing the data with
// ’insert’ replaced by
push(value);
// and the ++ calls replaced by
cr_void(UNIQUE NUMBER)

)
};
typedef insert_sequence<

previous_delayed_sub_sequence_type,
insert_thunk_FOO

> delayed_sub_sequence_type;
...
// Where the code producing the data was:
delayed_sequence_type current_sub_sequence(
previous_sub_sequence,
append_thunk_FOO(parameters));

Code 6: Code transformation for insert blocks

Finally, if the code producing the data was actually a
remove-block, such as in Code 4, the transformation is
nearly identical to that of an insert-block. However, in
this case, instead of calling push with the value to be in-
serted, each time a remove statement is found, a the func-
tion drop should be called. The code for a delayed remove
sub-sequence is shown in Code 7.

As noted, each sub sequence is built on top of
a previous sub sequence, therefore it is important to
have an original sub sequence which represents an
empty sequence. For this, the special template class
empty sequence<type of element> is used which
always returns an iterator that is equal to its end iterator.
A standard empty vector of the STL library would also
suffice, except that this would create a larger overhead in
both memory accesses as well as memory footprint, the
empty sequence specifically designed to be a read-only
empty sequence.

It is important to ensure that all code blocks producing
the data that relate to an original intermediate sequence can
be removed, meaning all the sub-sequence copies that were
introduced to remove any modification statements. This is
necessary as otherwise removing only some of the copies

REMOVE_THUNK(FOO, type_of_element)
remove_thunk_FOO(parameters) {...}
local variables...;
REMOVE_BODY(
// code producing the data with
// ’remove’ replaced by
drop();
// and the ++ calls replaced by
cr_void(UNIQUE NUMBER)

)
};
typedef remove_sequence<
previous_delayed_sub_sequence_type,
remove_thunk_FOO

> delayed_sub_sequence_type;
...
// Where the code producing the data was:
delayed_sequence_type current_sub_sequence(
previous_sub_sequence,
append_thunk_FOO(parameters));

Code 7: Code transformation for remove blocks

will lead to code where only some parts of the intermediate
sequence are not stored, and as such the gains in the mem-
ory accesses would be less.

5 Assessment of the proposed approach

In this section we demonstrate the gains of the previously
exposed methodology when applied to a real 3D reconstruc-
tion application [19] and a number of different, smaller STL
benchmarks, derived from real multimedia applications.

The first case study is a 3D reconstruction algorithm that
resembles 3D perception of humans, where the relative dis-
placement between two 2D projections (i.e., one for each
eye) is used to reconstruct the 3rd dimension. The exper-
imental results are taken from the source code that is one
of the basic building blocks in many current 3D vision al-
gorithms. More specifically, the source code under study
has been extracted from the original code of the 3D im-
age reconstruction system (see [24] for the full code of the
global 3D algorithm, which contains 1.75 million lines of
high level C++) and creates the mathematical abstraction
from the images or related frames that is used in subse-
quent phases of the global algorithm. This implementation
matches corners [19] detected in 2 subsequent frames and
was chosen due to its memory usage intensive nature.

In the core of the application, point-matches are se-
lected by comparing neighbourhoods of the two frames.
These points are put into a local sequence named
ImageCandidates. For each feature point of the first
image, this process is repeated and the points are selected
from this sequence to be put into a more global sequence
CandidateMatches. Once all the candidate matches
have been found, a second phase of the application tries to
find the best candidates. It utilizes the fact that the points

8

58



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

in CandidateMatches are sorted by the point in the
first image. The best candidates are filtered out and stored
into another sequence BestMatches. After the algorithm
finishes, the best matches are copied into the final output
sequence named NewMatches. Finally, the matches in
NewMatches is copied into the structure OldMatches.

The results can be seen in Table 1. The accesses to
the input variables are not counted, because the accesses
to this variables do not increase after the different trans-
formations in this specific algorithm. It should be noted
that these are not the real memory accesses, but only the
sequence accesses (the accesses to the sequence interface,
where adding an element is counted as a write and getting
an element from an iterator is considered a read). If real ac-
cesses were measured, then the removed overhead of each
sequence would be even bigger as the internal management
of the vectors would introduce a lot of spurious accesses
that are not present after our transformation. We have de-
cided not to count them in our metric, although this presup-
poses an optimized data type definition, something which is
nontrivial. Therefore, in general, our transformation should
yield even higher gains in memory accesses.

We have explored the removal of each of the sequences
that exist in the application, to see what the effect is of
removing just a subset of the sequences. Through this
exploration we were able to validate that the number of
memory accesses to the input in this application did not
change due to our transformation. The results can be seen
in Table 1. To keep the data presentable, the different se-
quences have been given mnemonics defined here: A for
ImageCandidates; B for CandidateMatches; C for
BestMatches; and D for NewMatches.

To study the effect of how this methodology will scale,
we have introduced several different benchmarks that illus-
trate a behaviour similar to that found in real-life applica-
tions. They are derived from the 3D reconstruction appli-
cation as well as from the STL benchmarks found in [4].
In these benchmarks, we have started from code samples
found in previous sources and extended them along two dif-
ferent axes to test scalability. In theses test benches we
have also explored the global effect when the number of ac-
cesses to the input change due to the optimization. As such,
the accesses to the input are also counted. Specifically, we
were interested in seeing the effect of dynamism as well as
the effect of re-consuming an intermediate sequence type.
Specifically we model a set of consecutive loops where data
is read from an input, conditionally placed into the first in-
termediate sequence, transformed several times from one
sequence to the next, and finally consumed several times
from the last sequence. The number of iterations (kept at
1000 for legibility) in the first loop are not varied in the
set of benchmarks as the results have been found to scale
linearly with it. The different parameters that have been ex-

Optimized sequence sequence relative sequence
Sequences reads writes sequence access

accesses reduction
None 85828 63950 100.00% 0.00%
[A] 54375 32497 58.00% 42.00%
[B] 32149 32497 43.16% 56.84%
[A,B] 696 1044 1.16% 98.84%
[C] 85480 63602 99.54% 0.46%
[A,C] 54027 32149 57.54% 42.46%
[B,C] 31801 32149 42.70% 57.30%
[A,B,C] 348 696 0.70% 99.30%
[D] 85480 63602 99.54% 0.46%
[A,D] 54027 32149 57.54% 42.46%
[B,D] 31801 32149 42.70% 57.30%
[A,B,D] 348 696 0.70% 99.30%
[C,D] 85132 63254 99.07% 0.93%
[A,C,D] 53679 31801 57.07% 42.93%
[B,C,D] 31453 31801 42.23% 57.77%
[A,B,C,D] 0 348 0.23% 99.77%

Table 1: Relative sequence accesses of the 3D Reconstruc-
tion application depending on which sequences are removed

plored can be seen below, and the results can be found in
Table 2. As can be observed, in one few case, the trans-
formation can sometimes lead to an increase in memory ac-
cesses. Therefore it is important to use the cost analysis to
determine when performing the optimization is beneficial.

• p : Probability that an element is used from the input

• ni : Number of input reads required to make an ele-
ment in the first intermediate sequence

• L : Number of subsequent loops transforming one in-
termediate sequence to the next

• no : Number of times the last intermediate sequence is
consumed

6 Conclusion

In this paper we presented a methodology to remove in-
termediate dynamic buffers, specifically sequences. Due
to the common trend towards reliable embedded software
design, these sequences are increasingly wasting memory
bandwidth and increase the energy consumption through the
memory accesses. Our results show that we can achieve
real gains in removing these sequences with a systematic,
stepwise approach. The proposed optimization actually
performs a source-to-source transformation which removes
the intermediate data and introduces on-demand sequences,

9

59



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

p ni L no Accesses Accesses Relative
Before After Gains

50% 1 1 1 3000 1000 66.67%
50% 1 1 5 5000 5000 0.00%
50% 1 5 1 7000 1000 85.71%
50% 1 5 5 9000 5000 44.44%
50% 2 1 1 4000 2000 50.00%
50% 2 1 5 6000 10000 -66.67%
50% 2 5 1 8000 2000 75.00%
50% 2 5 5 10000 10000 0.00%

100% 1 1 1 5000 1000 80.00%
100% 1 1 5 9000 5000 44.44%
100% 1 5 1 13000 1000 92.31%
100% 1 5 5 17000 5000 70.59%
100% 2 1 1 6000 2000 66.67%
100% 2 1 5 10000 10000 0.00%
100% 2 5 1 14000 2000 85.71%
100% 2 5 5 18000 10000 44.44%

Table 2: Scalability of methodology in function of the num-
ber of loop-nests and the number of data elements

without altering the input-output behaviour of the applica-
tion. As a by-product of removing these memory accesses,
the memory footprint is also reduced as the storage for the
intermediate sequences is no longer necessary. Neverthe-
less, the systematic approach to calculate the relevant mem-
ory footprint tradeoffs is not within the scope of this paper
and will be investigated in future work. Although the trans-
formations are systematic, they are not yet fully formalized
and thus resort to a pattern-based approach. Future work
will address the formalization of this transformation to ex-
tend it to handle sloppier code.

References

[1] S. Agrawal et al. Optimizing stream programs using linear
state space analysis. In CASES, ACM, 2005.

[2] D. J. Armstrong. The quarks of object-oriented develop-
ment. volume 49, USA, 2006. ACM Press.

[3] L. Benini et al. System-level power optimization: tech-
niques and tools. ACM TODAES, 2000.

[4] J. Beyer. Cbench: Compiler benchmark, 2006.
http://cbench.sourceforge.net.

[5] G. Bilardi et al. Algorithms for computing the static single
assignment form. Journal of the ACM, May 2003.

[6] F. Catthoor et al. Custom Memory Management Methodol-
ogy – Exploration of Memory Organisation for Embedded
Multimedia System Design. Kluwer Academic Publishers,
Boston, USA, 1998.

[7] E. De Greef. Storage Size Reduction for Multimedia Appli-
cations. PhD thesis, Katholieke Universiteit Leuven, Jan-
uary 1998.

[8] D.Renz et al. Implementing lazy streams in c++. Morehead
Electronic Journal of Applicable Mathematics, 4, May 2005.

[9] A. Gill et al. A short cut to deforestation. In FPCA , June
1993.

[10] S. M. Inc. The collections framework, 2005.
http://java.sun.com/docs/books/tutorial/collections/.

[11] M. Kandemir et al. Improving cache locality by a combina-
tion of loop and data transformations. IEEE Transactions on
Computers, February 1999.

[12] M. Leeman et al. Methodology for refinement and optimi-
sation of dynamic memory management for embedded sys-
tems in multimedia applications. In SIPS, August 2003.

[13] M. Leeman et al. Intermediate variable elimination in a
global context for a 3d multimedia application. In ICME,
July 2003.

[14] Micron Technology, Inc. 128MSDRAM.
http://www.micron.com/dram.

[15] S. Muchnick. Advanced compiler design & implementation.
Morgan Kaufmann Publisher, San Francisco, CA, 1997.

[16] D. Musser et al. STL Tutorial and Reference Guide.
Addison-Wesley Publishing Company, 2nd edition, 2001.

[17] Glassgow haskell compiler. http://www.haskell.org/ghc/.

[18] P. R. Panda, et al. Data and memory optimizations for em-
bedded systems. ACM TODAES, April 2001.

[19] M. Pollefeys et al. Metric 3D surface reconstruction from
uncalibrated image sequences. In Lecture Notes in Com-
puter Science, 1998.

[20] F. Quillere et al. Optimizing memory usage in the polyhedral
model. ACM TOPLAS, September 2000.

[21] P. Raghavan et al. Distributed loop controller architecture
for multi-threading in uni-threaded VLIW processors. In
DATE, 2006.

[22] A. Santos. Compilation by Transformation in Non-Strict
Functional Languages. PhD thesis, 1995.

[23] SGI. Standard template library, 2006.
http://www.sgi.com/tech/stl/.

[24] Target jr, 2002. http://www.targetjr.org.

[25] D. van Arkel et al. Fusion in practice. In In Implementation
of Functional Languages, (LNCS), 2002.

[26] P. Vanbroekhoven et al. Advanced copy propagation for ar-
rays. In LCTES, 2003.

[27] P. Wadler. Deforestation: Transforming programs to elimi-
nate trees. In ESOP, 1988.

10

60


