
Graph Signature for Self-Reconfiguration Planning

Masoud Asadpour, Alexander Sproewitz, Aude Billard, Pierre Dillenbourg, and Auke Jan Ijspeert

Abstract— This project incorporates modular robots as build-
ing blocks for furniture that moves and self-reconfigures. The
reconfiguration is done using dynamic connection / discon-
nection of modules and rotations of the degrees of freedom.
This paper introduces a new approach to self-reconfiguration
planning for modular robots based on the graph signature
and the graph edit-distance. The method has been tested in
simulation on two type of modules: YaMoR and M-TRAN. The
simulation results shows interesting features of the approach,
namely rapidly finding a near-optimal solution.

Keywords: Modular self-reconfigurable robots, adaptive

furniture, graph isomorphism, graph signature, graph edit

distance.

I. INTRODUCTION

Future working and living environments will be com-

posed of places where people and new technologies co-

habit seamlessly. Thanks to the recent progress in tangible

interaction with computers [1], ubiquitous computing [2],

and augmented reality [3], a movement is observed towards

integrating technologies in everyday artifacts, ranging from

tables to walls and even carpets or kitchen furniture. This

new field is referred to as “roomware” [4] or interactive furni-

ture. It addresses the design and the evaluation of computer-

augmented room elements like doors, walls, furniture with

integrated information and communication technology.

Although roomware projects deal with user interaction,

users have few possibilities to contribute to the design. We

aim at developing roomwares able to adapt their morphol-

ogy to the users needs. We therefore envision scenarios

where parts of the furniture are capable of locomotion, self-

assembly, self-reconfiguration, and self-repair, depending on

user’s preferences. We believe this is where modular robotics

can contribute.

Modular robots are robots made of multiple simple robotic

modules that can attach and detach. Connectors between

units allow creation of arbitrary and changing structures

depending on the task to be solved. Using such simple mod-

ules as building blocks, constructing a variety of furniture

is possible. We call these robotic modules Roombots for

roomware-robots. Fig.1 shows some possible furniture.

These pieces of furniture should not fill a big part of the

available space, therefore they must be reusable as much

M. Asadpour is with Control and Intelligent Processing
Center of Excellence, ECE Dept. University of Tehran, Iran.
masoud.asadpour@ieee.org

A. Sproewitz and A.J. Ijspeert are with Bio-Inspired Robotics Group
(BIRG), A. Billard is with Learning Algorithms and Systems Laboratory
(LASA), P. Dillenbourg is with Centre de Recherche et d’Appui pour la For-
mation (CRAFT), all in Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland {alexander.sproewitz, auke.ijspeert,
aude.billard, pierre.dillenbourg}@epfl.ch

Fig. 1. Potential configuration of modules in (1) stool, (2) chair, (3) table
and stool forms. The actuated joints can be used to walk.

as possible. Ideally they should be able to modify their

structure upon request and reconfigure as another piece of

furniture which is really required. Reconfiguration is done

autonomously by sequences of movements, attachments and

detachments of the modules. Therefore, modular or self-

reconfigurable robots are a natural choice.

Modular robots are generally classified as lattice-type or

chain-type. Lattice-type modules use cluster-flow locomotion

and reconfiguration. In order to move, the robot continuously

reconfigures (modules attaching and detaching over a lattice

of other modules), thereby giving the impression that the

cluster “flows” on the ground and around obstacles. The

Crystalline robot [5], Telecube [6], and ATRON [7] are

examples of such robots. Chain-type robots normally loco-

mote in a static configuration (i.e. without doing reconfigura-

tion), using powered joints. See e.g. M-TRAN [8], CONRO

robot [9] and Polybot [10]. Reconfiguration is usually used to

adapt to a new environment or task. We work on chain-type

robots.

In this paper, we tackle the Self-Reconfiguration Planning

(SRP) problem on YaMoR [11] and M-TRAN [8] modules.

The goal of SRP is to find the optimal reconfiguration

steps from structure A to B, given by the user. We pro-

pose a framework for SRP based on graph signature and

graph edit distance. A configuration is represented in a

labeled directed graph form. Graph signature provides an

isomorphism-invariant code which enables us to compare

different configurations and find isomorphic ones. The signa-

ture is used to prune the redundant paths and avoid solving

some repeating sub-problems for multiple times. The graph

edit-distance metric provides a means to judge the amount

of difference (or similarity) between different configurations.

The distance measure is used to guide a stochastic gradient

descent method.

This paper is organized as follows: The state of the art

in SRP is explained in the next section. In the third section

our proposed method is described. The simulation results is

presented in the forth section. The paper is finalized with

conclusions and remarks for future developments.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147946959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. LITERATURE

A configuration is defined as a particular arrangement of

connectivity between independent modules. A configuration

can be represented in graph form, called configuration graph
(from now on, it is referred to as graph simply) where, the

vertices represent the modules and the edges represent the

connection between the modules. Self-reconfiguration is a

transition between two configurations by a series of atomic

movements (attach, detach 1). The goal of SRP is to design

an optimal algorithm that minimizes the number of steps (or

other measures of optimality e.g. time) required to reach a

final configuration, starting from an initial configuration .

SRP for the chain-type robots is more difficult than for the

lattice type because of the mechanical limitations. Individual

modules must be strong enough to perform motion while

lifting the weight of module chains, taking care of colli-

sion avoidance, and maintaining the stability of the whole

structure. As a consequence finding the optimal solution is

very difficult. Here, we prefer to find a feasible near-optimal

solution in a reasonable time instead of an optimal solution.

Hence, we look for a heuristics that can be executed rapidly

and respond with “some” guarantee of performance.

Casal and Yim [12], [13] present a divide-and-conquer

strategy to solve reconfiguration for closed-chain robots. The

configuration is first decomposed into a hierarchy of small

substructures belonging to a finite set. The sets of substrates

must be topologically non-homomorphic, must occur often

in the possible configurations, and reconfiguration between

them must be simple. Reconfigurations between the sub-

structures in a set are pre-computed and stored in a lookup

table. The entire reconfiguration then consists of an ordered

series of pre-computed actions happening locally among the

substructures. The authors present two algorithms for closed-

chain reconfiguration: The first algorithm reconfigures the

structure to an intermediate form (e.g. a single chain) and

build the final configuration from that intermediate structure.

The second algorithm tries to match the initial and final

configuration in a hierarchical manner, i.e. first matching the

number of levels, then the number of sub-structures per level,

and then the size of substructures, etc.

Yoshida et al [14] presents a centralized planner for

reconfiguring a group of M-TRAN modules. The planner

uses macro-actions with a block of modules instead of one.

Due to dealing with smaller number of substructures the

planning procedure is simplified. The authors propose a two-

layered motion planner consisting of a global flow planner
and a local motion-scheme selector. The global flow planner

searches the possible module-paths and motion-orders to

provide the global cluster movement. The local motion-

scheme selector verifies that the paths generated by the global

planner are valid for each member of the block according to

the possible motion orders.

Most approaches to SRP use stochastic optimization meth-

1Rotations does not change the configuration so they are not considered as
an action in SRP. Otherwise, different shapes of the robot during locomotion
must be considered as different configurations.

ods like Simulated Annealing and Genetic Algorithm, guided

by a heuristic. The heuristics are usually fitness functions that

reflect the amount of similarity between the configuration

currently being evaluated and the desired one. Murata et

al. [15] uses weighted probabilities based on potential fields

to guide the stochastic search procedure.

Pamecha et al. [16] introduces the concept of distance

between configurations. The distance metric is used as a

cost function in conjunction with Simulated Annealing to

guide the reconfiguration process. Different distance metrics

are proposed: The overlap metric counts the number of

non-overlapping modules in the configurations. The second

distance metric is the minimum number of moves required

for reconfiguration. This is not useful in practice since it

needs solving the reconfiguration problem first. The third

and the best distance metric in terms of performance and

computation time is the optimal assignment metric. It tries

to optimally assign the modules of the initial configuration to

the ones of the final configuration so that a cost function is

minimized. The algorithm that solves the optimal assignment

problem, called Hungarian method [17], needs O(n3) ×
O(d(u, v)) where n is the number of modules. d(u, v) is

a function that calculates the cost of assigning a module u
to another module v. If d is not calculable in O(1) the total

complexity would be higher than O(n3).

III. OUR METHOD

We propose a graph theoretic approach to SRP. Like many

others, we use stochastic optimization methods. However,

we guide the search process with two new heuristics that

are showed to be simplifying the planning process: a graph
isomorphism test, and a similarity metric.

The isomorphism test is a binary test that specifies whether

two labeled graphs are isomorphic or not. This test enables

us to cut some redundant branches in the search space and

avoid solving some repeating sub-problem for multiple times.

The similarity metric provides a means for direction. It

shows how much a graph looks topologically like another

one. It is based on the relative size of the Maximum Common

Sub-graph (MCS) of two graphs. It calculates an upper-

bound for the relative size of MCS in linear time (fixed

order if calculated incrementally). The similarity metric is

used to assign priority to different branches such that the

ones ending to graphs more similar to the goal graph have

higher priorities.

A. Search Strategy

Given the initial and the final configuration graphs, con-

nections between the modules are represented by a direc-

tional edge from male to female connectors. Genderless

connectors are treated as a special case(sec. III-D). Fig. 2

shows a sketch of the search strategy that we follow in SRP.

The vertical axis shows the similarity metric (ranging from

0 to 1). Each point on the paths is a configuration graph.

The initial configuration is processed in order to find the

list of feasible {attach,detach} actions (in conformance with

mechanical limits). By executing an action on the initial

S
im

ila
rit

y
M

et
ric

Initial config

Final config

op
tim

al

ne
ar

 o
pt

im
al

Local
min.

Loop

F

I

Steep path

0

1

Fig. 2. A sketch of the search strategy in the configuration space. For
illustration purpose, the space is shown in 2D; the real one is multi-
dimensional.

graph, some new graphs are achieved (e.g. 4 new graphs

are achieved from I in fig. 2). Similarity of the new graphs

with the final one is calculated. A priority is assigned to

each one and the one with the highest priority is selected

for further expansion. In case of tallying, one of them

is randomly selected. These steps are repeated until some

suitable solutions are found (or another termination criteria

is met).

Putting priority on the branches leads sometime to ignor-

ing an optimal solution which includes a local minimum, like

the leftmost path shown in fig. 2. In this case the planning

procedure would find a near-optimal solution. This is fine for

our application as far as this solution is found in a reasonable

time.

During exploration of the configuration space, loops in the

paths from the initial graph to the final one are inevitable.

First, because the attach and detach actions are reversible

(at least in theory) i.e. if two modules are connected in a

planning step, one possible action in the next step would

be detaching them and returning back to the configuration

in the previous step. Second, because some sequences of

actions can be executed in different orders and result in the

same configurations.

The loops are redundant paths that have already been

traversed once. In order to avoid them, we record what

we call a signature of the previously encountered graphs.

Whenever the signature of a graph is found in the records,

processing that graph is not continued anymore.

B. Graph Signature

Graph isomorphism is one of the important problems

in graph-theory. It is not proved yet whether it is NP-

complete [18] or not. However for special cases polynomial

time algorithms exist e.g. for planar graphs [19], graphs

with bounded genus [20], graphs with bounded degrees [21],

trees [22], ordered graphs [23], convex graphs, permutation

graphs, and interval graphs. The algorithm for ordered graphs

is best suited to our application due to its lower complexity.

Jiang and Bunke [23] prove that these type of graphs have

quadratic-time isomorphism test.

It is known that connected undirected graphs are Eulerian

if and only if all of their vertices have even degrees. Degree

of a vertex in an undirected graph is the number of edges

incident to it. A graph is called Eulerian if an Eulerian circuit

exists in the graph. An Eulerian circuit in an undirected

graph is a cycle that visits each edge exactly once. In a finite

connected undirected graph, it is always possible to construct

a cyclic directed path passing through each edge once and

only once in each direction [23]. By replacing undirected

edges with two directed edges in opposite directions we can

construct an Eulerian circuit. The sequence of the visited

vertices while traversing an Eulerian circuit is isomorphism

invariant. Therefore, the Eulerian circuit can be used to

generate a code or signature.

To adopt this theory, we need to provide a means for or-

dering the edges of the graph. We consider the fact that each

module in our application has a fixed number of connectors.

Also, we assume the connectors can be connected to with

a finite number of orientations. Therefore, the number of

connection points and angles is finite. If a unique identifier

is assigned to each case, it can be used as a label for the

edges. The labeled graph is trivially transformable to an

ordered graph by sorting the out-edges of the vertices in

lexicographic order.

For example Fig. 3 shows a possible indexing for the

connectors of a simulated YaMoR [11] module. Each module

has one rotational servo in front and 6 connectors (white

circles) that accept connections in 4 different orientations

(0◦, 90◦, 180◦, 270◦). So totally 144 (=6×6×4) different

relative positions exist. In Fig. 3, the front connector (index

0) of the module at behind is connected to the rear connector

(index 5) of the front module with 0◦ orientation, so their

connection must be labeled with 20 (=0×6×4+5×4).

Assume that out-edges of the vertices are sorted in de-

scending order and in-edges of the vertices are sorted in

ascending order. This is done only once, while inserting

the edges in the graph. Computing the signature of a graph

consists of the following steps: First, the biggest label in the

graph is found, say lmax (time order: O(|V |) where V is

the set of vertices). Then a vertex signature is computed for

every vertex that has out-edge with label lmax (best case:

O(|E|), worst case: O(|V ||E|) where E is the set of edges).

The vertex signature that has the highest lexicographic order

is called the signature of the graph.

Computing the vertex signature consists of a depth-first-

search (dfs) with two modifications: edges can be traversed

through either normal direction (from source to target) or

reverse direction, and out-edges of the vertices should be

traversed before their in-edges. Needless to say that the edges

are traversed only once. Each vertex is assigned an index.

The index reflects the order of visit i.e. the first vertex is

indexed with one and each time a new vertex is discovered

0

4

15

3

2

Fig. 3. Labeling the connections.

1

2

3 5

4

6

e1

e2
e3

e4

e5 e6

Backward
edge

Forward
edge

e7

7
e8

start

[1 e1 2][2 e2 3][3 e3 2][1 e4 4][4 e5 5][4 e6 6][6 –e7 1][1 –e8 7]
signature:

Fig. 4. An example of computing a vertex signature.

the index is incremented by one. The sequence of the

encountered vertices and edges during a visit is proved to be

isomorphism invariant [23]. The vertex signature is a string.

When traversing an out-edge, the string is concatenated with

[vs, l, vt] where vs and vt are the indices of the source

and target vertices and l is the edge label. For in-edges,

[vt,−l, vs] is concatenated.

Fig. 4 shows an example of computing a vertex signature.

We assume that the edges are sorted according to their label,

out-edges in descending order and in-edges in ascending

order. The vertex shown as start point is indexed with 1.

The out-edge e1 is traversed first. The newly visited vertex

is indexed with 2 and [1, e1, 2] is added to the signature. Then

vertex 3 is visited via e2. From vertex 3, vertex 2 is reached

via e3. Vertex 2 was already visited, so we back-track to 3.

From vertex 3 we have no other edges to traverse. We have

to back-track to 2, and then to 1. In vertex 1 the next edge

i.e. e4 is followed. Similar steps are repeated until vertex 6. It

has two in-edges, e6 and e7, and no out-edge. We had arrived

to it from vertex 4 via e6; so the next unvisited edge would

be e7. Since we are traversing e7 in reverse order, [6,−e7, 1]
is added to the signature. The procedure is continued until

all vertices and edges are visited once and only once.

C. Similarity Metric and Graph Edit Distance

The similarity metric that we use is defined on the basis

of graph edit distance. The graph edit distance is defined as

the shortest sequence of graph edit operations, i.e. {deletion,

insertion} of edges or vertices, that transform an initial graph

to a final graph. Edit distance is proved to have the following

relation with MCS of the input graphs, I and F [23]:

δ(I, F) = 1 − |MCS(I, F)|
max(|I|, |F |) (1)

where in our application |MCS| is the number of edges in

the maximum common edge-induced subgraph [24], and |I|
and |F | are the number of edges in I and F .

15

14

13

12

11

20

19

18

17

16
5

4

3

2

1

10

9

8

7

6

26 27 28 29 3025

24

23

22

21

31

32

33

34

3540 39 38 37 3623

21

23

21

44

23

21

23

21

129

23 21 23 21 92

23

21

23

21

23212321

21

23

21

23

11669

44

116

21

23

21

23

92

23

21

23

21 1129

2116

292

169

244

1623

1621

#edgesLabel

1129
1117
2116
193
192
268
145
144
1023
2021

#edgesLabel

21

23

21

93

23
23

23

21

129

21 44

21

23

21

212321

21

21

23

9269

117

116

21

21

23

68

21

23

21

11

10

9

8

20

19

18

17

3

2

1

0

7

6

5

4

20 21 22 2319

18

17

16

24

25

26

2731 30 29 28

23

21
35

34

33

32
116

21

23

21

36

35

34

33

32
21

21

Fig. 5. An example of calculating upper-bound for the size of maximum
common sub-graph. Common labels are marked with grey background in
the tables.

Our desired similarity metric is one minus this distance

metric: σ(I, F) = |MCS(I,F)|
max(|I|,|F |) . The similarity σ is maximum

(i.e.1) if the number of edges in MCS is equal to the

maximum number of edges of I and F , i.e. I is isomorphic

to F .

Unfortunately, finding the MCS is proved to be NP-

complete [18]. However having a rough estimation is enough

for our application. We calculate an upper-bound for its size

that is computable in linear time. The idea of the upper-

bound comes from [24] however, since we deal only with

labeled graphs our formulation could be simplified.

For calculating the upper-bound we categorize the edges

based on their label. We know that the necessary but not

sufficient condition for two vertices to be matchable in

isomorphism test is that the label of their incident edges are

matchable. So, before calculating the upper-bound we fill a

table for each graph (fig. 5). The columns of the table are

the labels that exist in the graph and the number of edges

with that specific label.

Let C1
l and C2

l be the number of edges of the input graphs

that have label l. The upper-bound is:

σUB(I, F) =
∑lmax

l=0 min(C1
l , C2

l)
max(|I|, |F |) (2)

Needless to mention that only the labels that exist in both

tables can be matched to each other. Using a hash table the

upper-bound is calculated in linear time O(max(|I|, |F |)).
D. Special cases

Some cases need special treatments: genderless connec-

tions and symmetric modules. Genderless connections are

undirected however our method needs a direction for the

Fig. 6. (left) Line configuration (right) Ring configuration

time to reconfigure from line to ring

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9

number of modules

pr
oc

es
si

ng
 ti

m
e

(s
)

Fig. 7. Computation time to reconfigure from line to ring

edges. We choose a direction that maximizes the graph

signature. That is to say, edge direction should be from

connectors with higher index to connectors from lower index.

When two connectors have the same index (e.g. front to

front connection) both directions should be tried to see which

direction leads to a bigger signature.

Some modules have symmetry in their geometry e.g.

YaMoR modules are symmetric around the line that connects

the connector 0 to 5 (fig. 3). So, the configuration in

fig. 3 looks similar to the case where the front module is

rotated 180◦ around this line. In this case, an orientation

that maximizes the signature is selected. So when running

isomorphism test on two symmetric modules, the largest

signature that can be acquired from a graph like them should

be compared to each other.

IV. RESULTS

The proposed method has been tested on the simulated

versions of YaMoR [11] and M-TRAN [8]. M-TRAN mod-

ules are composed of 2 rotational servos and 6 connectors.

YaMoR modules are like half a M-TRAN; so due to this

similarity and the sake of saving the space we mention only

the results on M-TRAN. Different reconfiguration problems

have been executed. Except some very special cases, the

results are similar to the ones that are presented here. The

connectors were set to be genderless. The planning process

is expected to run even faster on male-female connectors

because of the limitation on the number of possible actions

and therefore smaller search space.

A. Reconfiguration from line to ring

In order to differentiate the performance of our planner

from some overhead procedures (e.g. finding the next feasible

actions), which have to be executed anyway regardless of

the planner, we let the program solve the reconfiguration

Fig. 8. (left) Quadruped configuration (right) Snake configuration

problem from a line configuration (Fig.6 left) to a ring (Fig.6

right). We know that the line configuration can be reconfig-

ured to the ring by only one attachment. It needs examining

only one configuration graph. So only one iteration of the

algorithm is sufficient. This can reflect the overhead time.

We have executed the program several times for different

number of modules2. Fig.7 shows that the processing time

increases exponentially with the number of modules (number

of servos, precisely speaking). The reason is that, in order

to find the next possible actions we have to find feasible

detachment / attachment points. Finding possible detachment

points is relatively simple; we need only to find circuits in the

configuration graph. Finding the possible attachment points

is time consuming; we have to iterate over all possible shapes

(servo positions) within the same configuration, and find the

connectors that are perfectly aligned. Although we discretize

the servo positions at 90◦s (so servos can be in -90◦, 0◦, and

+90◦ positions), the combination of possible positions is still

a lot, increasing exponentially with the number of servos (3n,

n being the number of servos). This is one of the overheads

that imposes a big delay on the reconfiguration process. If

it could be replaced with another more efficient method, the

whole procedure could speed up a lot.

For the configurations composed of more than 5 modules,

the timing changes a bit. This is due to the growth of the

search space. The main memory is rapidly filled. After that,

the whole procedure is delayed due to working with virtual

memory.

B. Reconfiguration from quadruped to snake

The problem that we select as a benchmark for the rest of

the experiments is reconfiguration of four modules from a

quadruped configuration (Fig.8 left) to a snake (Fig.8 right).

We show the performance of our algorithm in processing

time and quality of the found solutions. A set of around 500

experiments (with different random seeds) were executed.

For each experiment, the number of encountered graphs

before finding a solution, and the number of actions in

the solution were recorded. In each experiment, the planner

continued running until at least 20 different solutions were

found.

1) The best sequence: The best solution ever found for

this reconfiguration problem consists of 9 attach/detach ac-

tions, however none of the experiments could find it at first

iteration. This means the similarity metric has came across a

2Computer spec: Intel� Core™2, CPU 6600 @ 2.4 GHz, 2 GB RAM

1 2
34

1

2

34 1

1 1

2

34

2

34

2 3

4 1 2 3 4

A B C

D E F

Fig. 9. The best solution ever found for reconfiguration from quadruped
to snake: A→B: attach module 4 to 1 (from the green-colored connector on
module 4 to the grey-colored connector on module 1 with 0◦ orientation);
B→C: detach 2 from 3, detach 4 from 1, attach 2 to 3 (grey to grey, 90◦);
C→D: detach 4 from 1, attach 4 to 1 (grey to grey, 90◦); D→E: detach 1
from 2, attach 1 to 2 (grey to grey, -90◦); E→F: detach 3 from 4

Number of graphs examined before finding the first solution

0

10

20

30

40

50

60

50000 100000 150000 200000 250000 300000 350000 More

Number of graphs

Pe
rc

en
ta

ge
 (%

)

Fig. 10. Number of graphs examined before finding the first solution

local minimum in the path from the quadruped to the snake

configurations. The sequence of reconfiguration is shown

in Fig. 9 (servo positions are not mentioned). The found

solution can be applied to both genderless and male-female

connectors.

The solution that is provided here is not guaranteed to be

the optimal solution. In order to prove its optimality we had

to do a complete search in the configuration space. Our anal-

ysis showed that for this specific problem the configuration

space grows by a rough factor of 16 (from each configuration

graph, around 16 new graphs are generated). So, to be sure

at least 169−1 ≈ 4.3×109 graphs must have been evaluated.

This means more than 25 years of computation time, which

was impossible!

Number of actions in the first found solution

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120 More

Number of actions

Pe
rc

en
ta

ge
 (%

)

Fig. 11. Number of actions in the first found solution

Number of graphs examined before finding the best solution

0

10

20

30

40

50

60

50000 100000 150000 200000 250000 300000 350000 More

Number of graphs

Pe
rc

en
ta

ge
 (%

)

Fig. 12. Number of graphs examined before finding the best solution
among the twenty found solutions

Number of actions in the best found solution

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120 More
Number of actions

Pe
rc

en
ta

ge
 (%

)

Fig. 13. Number of actions in the best found solution among the twenty
found solutions

2) The first found solution: Fig. 10 shows the histogram

(shown as percentage of the whole experiments) of the num-

ber of graphs encountered before finding the first solution.

The first solution is found 83% of the times before examining

up to 100k graphs. Moreover, in 53% of the cases the solution

is found earlier, before examining 50k graphs. This is a good

news; it means we have a solution available in a short time.

The planner continues running in order to enhance the found

solution. Meanwhile, we can either wait for the next solutions

to come or stop the planner and survive with the available

ones.

Fig. 11 shows the histogram (percentage) of the number of

actions in the first found solution. As mentioned earlier none

of the experiments could find the best solution at first time.

21% of the time the solution consists of up to 20 actions;

57% of the solutions consist of up to 30 actions; and 76%

consist of up to 40 actions. Most of the experiments end

up with a first solution that consists of 20-30 actions. This

means the first found solution is not too far from the optimal

solution.

From these results we can argue if the proposed algorithm

could not find any solution in a “short” time, two cases could

be imagined: either (1) no solution with a “short” sequence

of actions exists, or (2) the planner is going in a wrong

direction and if any solution is found it would be far from

optimality. Hence, we have to change the search path or even

change the planning strategy.

3) The best found solution: Fig. 12 shows the histogram

(percentage) of the number of graphs encountered before

finding the best solution among the 20 found solutions.

Compared to Fig. 10, percentage of 50K bin is decreased

and percentage of the other bins are increased. The largest

increment belongs to the 150K bin. However 50K bin is still

in majority. Fig. 13 shows the histogram (percentage) of the

number of actions in the best solution among the the 20

found solutions. This time most of the experiments end up

with a best solution that consists of 10-20 actions. The results

show that the planner is getting very close to the optimal

solution, however the price that we have to pay is a little bit

more computation time. Considering the quality of the found

solutions, a bit more computation time is negligible.

V. CONCLUSION

We have developed a framework for self-reconfiguration

planning which is based on the graph signature and the

graph edit-distance. The graph signature method proved to

be a very fast test for isomorphism of the configurations.

Recording the signature of the encountered configurations

enabled us to cut some redundant paths. A similarity metric

was introduced based on the graph edit-distance. The met-

ric rapidly calculates an upper bound for the size of the

maximum common sub-graphs. The results showed that a

near-optimal solution could be found rapidly. This means

the similarity metric creates a good gradient for the search

procedure.

The notions of graph signature and graph-edit distance are

very general and can be used with any other search strategies.

A possibility would be converting the priority among the

branches to probabilities. This is sometimes a good way of

escaping from local optimums.

However the computation time is still slow due to the

exponential growth of the configuration space, inverse kine-

matic problem, and collision avoidance issue. We are looking

for effective solutions to these problems.

We are looking for improving the design of the YaMoR

modules as the current version is not suited to serve as a

basis for the future Roombots. We believe the reconfiguration

planner would gives us some hints about the necessary

mechanical characteristics of the future module, e.g. shape,

degrees of freedom, and torque limits.

VI. ACKNOWLEDGMENTS

We would like to thank Y. Bourquin for his help on the

3D simulations. This work made possible thanks to funding

from Microsoft Research Labs and the EPFL (FIFO grant).

REFERENCES

[1] S. Jordà and G. Geiger and M. Alonso and M. Kaltenbrunner, “The
reacTable: Exploring the Synergy between Live Music Performance
and Tabletop Tangible Interfaces,” in Proceedings of the first inter-
national conference on Tangible and Embedded Interaction (TEI07),
Baton Rouge, Louisiana, 2007.

[2] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 66–75, Sep 1991.

[3] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Mac-
Intyre, “Recent advances in augmented reality,” IEEE Computer
Graphics and Applications, vol. 21, no. 6, pp. 34–47, 2001.

[4] Norbert Streitz and Peter Tandler and Christian Müller-Tomfelde
and Shin’ichi Konomi, “Roomware: Towards the next generation of
human-computer interaction based on an integrated design of real and
virtual worlds,” in Human-Computer Interaction in the New Millenium,
J. Carroll, Ed. Addison-Wesley, 2001, pp. 553–578.

[5] D. Rus and M. Vona, “A physical implementation of the self-
reconfiguring crystalline robot.” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2000, pp. 1726–1733.

[6] S. Vassilvitskii, J. Kubica, E. Rieffel, J. Suh, and M. Yim, “On the
general reconfiguration problem for expanding cube style modular
robots,” in Proceedings of the 2002 IEEE Int. Conference on Robotics
and Automation, 11-15 May 2002, pp. 801–808.

[7] E. H. Ostergaard and H. H. Lund, “Evolving control for modular
robotic units,” in Proceedings of CIRA’03, IEEE International Sym-
posium on Computational Intelligence in Robotics and Automation,
Kobe, Japan, 16-20 July 2003, pp. 886–892.

[8] H. Kurokawa, K. Tomita, A. Kamimura, S. Murata, Y. Terada, and
S. Kokaji, “Distributed metamorphosis control of a modular robotic
system m-tran,” in Distributed Autonomous Robotic Systems(DARS) 7.
Springer, 2006, pp. 115–124.

[9] W.-M. Shen, P. Will, A. Galstyan, and C.-M. Chuong, “Hormone-
inspired self-organization and distributed control of robotic swarms,”
Autonomous Robots, vol. 17, no. 1, pp. 93–105, 2004.

[10] D. Duff, M. Yim, and K. Roufas, “Evolution of polybot: A modular
reconfigurable robot,” in Proc. of the Harmonic Drive Intl. Symposium
and Proc. of COE/Super-Mechano-Systems Workshop, Japan, Nov
2001.

[11] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and
A. Ijspeert, “Exploring adaptive locomotion with YaMoR, a novel
autonomous modular robot with Bluetooth interface,” Industrial Robot,
vol. 33, no. 4, pp. 285–290, 2006.

[12] A. Casal and M. H. Yim, “Self-reconfiguration planning for a class
of modular robots,” in Proc. SPIE, Sensor Fusion and Decentralized
Control in Robotic Systems II, G. T. McKee and P. S. Schenker, Eds.,
vol. 3839, Aug. 1999, pp. 246–257.

[13] M. H. Yim, D. Goldberg, and A. Casal, “Connectivity planning
for closed-chain reconfiguration,” in Proc. SPIE, Sensor Fusion and
Decentralized Control in Robotic Systems III, G. T. McKee and P. S.
Schenker, Eds., vol. 4196, Oct. 2000, pp. 402–412.

[14] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and
S. Kokaji, “A self-reconfigurable modular robot : Reconfiguration
planning and experiments,” The International Journal of Robotics
Research, vol. 21, no. 10, pp. 903–916, 2002.

[15] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, “A
3-d self-reconfigurable structure,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 1998, pp. 432–439.

[16] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian, “Useful metrics
for modular robot motion planning,” IEEE Trans. on Robotics and
Automation, vol. 13, no. 4, pp. 531–545, 1997.

[17] H. W. Kuhn, “The hungarian methods for the assignment problem,”
Naval Research Logistic Quarterly, vol. 2, pp. 83–97, 1955.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: W. H. Freeman,
1979.

[19] I. S. Filotti and J. N. Mayer, “A polynomial-time algorithm for
determining the isomorphism of graphs of fixed genus,” in Proc. of
the 12th Annual ACM Symposium on Theory of Computing, 1980, pp.
236–243.

[20] G. Miller, “Isomorphism testing for graphs of bounded genus,” in Proc.
of the 12th Annual ACM Symposium on Theory of Computing, 1980,
pp. 225–235.

[21] E. M. Luks, “Isomorphism of graphs of bounded valence can be
tested in polynomial time,” Journal of Computer and System Sciences,
vol. 25, p. 4265, 1982.

[22] A. V. Aho, J. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, MA: Addison-Wesley, 1974.

[23] X. Jiang and H. Bunke, “Optimal quadratic-time isomorphism of
ordered graphs.” Pattern Recognition, vol. 32, no. 7, pp. 1273–1283,
1999.

[24] J. W. Raymond, E. J. Gardiner, and P. Willett, “RASCAL: Calculation
of Graph Similarity using Maximum Common Edge Subgraphs,” The
Computer Journal, vol. 45, no. 6, pp. 631–644, 2002.

