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Abstract. Adult stem cells reside in a specialized microenvironment, the niche, which controls their behavior. As mammary stem
cells, and consequently their niches, are still poorly defined, we look at better-characterized adult mammalian stem cell niches
in the hematopoietic system and the skin. We attempt to define the mammary stem cell niche functionally, based on the widely
used mammary fat pad reconstitution assay.

We note that the concept of the niche needs to be extended from the specialized microenvironment described in the hematopoietic
system, to a model that takes into account the macroenviroment, as recently shown in the skin, and systemic clues as we will
illustrate for the mammary gland where the reproductive hormones are major determinants of stem cell activation. In fact, in the
mammary gland a special type of stem cells is determined only during pregnancy.

Reproductive hormones act on hormone receptor positive cells, sensor cells, in the mammary epithelium to induce paracrine
signaling that leads to activation of stem cells. Some of the downstream mediators are in common with other niches such as Wnt

and possibly Notch signaling. Other signals are specific to the mammary gland such as amphiregulin and RANKL.
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INTRODUCTION

The breast undergoes most of its development after
birth under the control of systemic hormones. Repro-
ductive hormones are messengers of systemic require-
ments to the mammary gland tissue and orchestrate ma-
jor changes in this organ by modulating local signaling
pathways [15,41].

The rudimentary ductal system present at birth be-
gins to expand during puberty. With repeated menstru-
al cycles, its complexity increases. The most dramatic
increase in epithelial cell number occurs during preg-
nancy. Throughout lactation there is little cell prolifer-
ation; in the absence of breastfeeding or after weaning,
the breast involutes and returns to a state that morpho-
logically resembles a pre-pregnancy gland. With ev-
ery new pregnancy this cycle is repeated; this seeming-
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ly unlimited regeneration capacity is attributed to the
presence of breast epithelial stem cells.

Adult stem cells are capable of self-renewal and can
give rise to differentiated cell lineages. In the breast
two cell lineages are distinguished; the luminal cells
that line the lumen and thereby form a tube and the
contractile myoepithelial cells that form a meshwork
around the luminal cells.

Studying the hematopoeitic system, Schofield first
recognized that stem cells do not operate in isolation but
depend on their microenvironment; he coined the term
“niche” for the microanatomical space that is formed by
neighboring cells that allows only one stem cell to fit in
and maintains the self-renewal capacity of this cell [94].
As a stem cell divides, one cell has to leave the niche;
it may still be multipotent but has less self-renewal
capacity than the cell that remains in the niche [37,133].
A cell that has left the niche but finds an empty niche
and homes to it can reacquire stem cell properties [45,
82].

The concept of the niche has since been con-
firmed experimentally in Drosophila melanogaster and
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Caenorhabditiselegans[62]; stem cells and their nich-
es have been well characterized for instance in the
drosophila gonads and midgut [26,51,70,135].

In mammals, adult stem cells have been mapped in
few tissues. Schofield had hypothesized that the niche
for hematopoietic stem cells is at the interface with the
bone in the bone marrow and indeed, hematopoietic
stem cells (HSCs) have been identified there, either next
to immature osteoblasts or next to fenestrated endothe-
lial cells [20,139]. Epidermal stem cells are found in
the bulge area of hair follicles [25], the crypt was iden-
tified as the location for intestinal stem cells [6], and in
the brain, stem cells are in the subventricular zone [55].

The identity and localization of mammary epithelial
stem cells is still debated, consequently, the niche com-
ponents remain to be defined. Here, we take a look at
what is known about mammalian adult stem cell niches
in different tissues and the signaling that occurs within
them. We will speculate about the composition of the
mammary stem cell niche and discuss potential signals
operating between niche and stem cells.

STEM CELL NICHES: DIFFERENT LEVELS
OF CONTROL

Hematopoietic niche

The best-characterized adult stem cell is the hemato-
poietic stem cell [127,133]; murine HSCs were identi-
fied based on their ability to provide reconstitution of
all blood cell lineages in lethally irradiated mice [7,
117,134]. Adult HSCs home to two niches in the bone
marrow, the endosteal one, in which they physically
interact with a subset of immature osteoblasts [3,79],
and the vascular one (Fig. 1) [59,118], in which they
attach to the fenestrated endothelial cells of bone mar-
row sinusoids [113,114]. The endosteal zone favors
quiescence, whereas the vascular niche is thought to
allow differentiation and ultimately mobilization to the
circulation [54].

Experiments with genetically engineered mice
showed that activation of parathyroid receptor 1
(PTH1R) signaling as well as ablation of the bone mor-
phogenetic protein (BMP) receptor (BMPR1A) signal-
ing in the bone-marrow stroma resulted in an increase
in both the number of osteoblasts and HSCs in the bone
marrow [20,139] and revealed the role of immature
osteoblasts as central components of the niche.

Osteoblasts secrete and/or activate factors (Fig. 2)
such as angiopoietin, stem cell factor (SCF) and the
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Fig. 1. Hematopoetic Stem Cell Niche.Schematic representation of
the endosteal and perivascular hematopoietic stem cell niches and
their cellular components. HSC: hematopoietic stem cell; OB: im-
mature osteoblast; OC: osteoclast; RC: reticular cell; VC: sinusoid
vascular cell. MP: myeloid precursor; L P: lymphocyte precursor.

matrix acid glycoprotein, osteopontin [1,80] which ac-
tivate their respective receptors Tie2, c-Kit, and CD44,
on HSCs. Tie2/Ang-1 and KIT signaling maintain
HSCs quiescent ensuring their self-renewal capacity [1,
66,116]. Osteopontin, recognized by S1-integrin on
the HSCs’ membrane physically sequesters HSCs in
the niche thereby indirectly inhibiting HSC prolifera-
tion [80,105].

Reticular cells are specialized fibroblasts that con-
stitute the vascular niche and contribute to the en-
dosteal niche; they express CXCL12/SDF-1 (stromal
cell-derived factor-1) that binds to the chemokine re-
ceptor CXCR4 on the HSCs membrane. This interac-
tions and the resulting signaling are required to main-
tain HSCs in vascular niches [110].

A central signaling pathway in self-renewal and dif-
ferentiation of HSCs is canonical Wnt signaling. Con-
stitutive activation of this signaling cascade blocks dif-
ferentiation and leads to accumulation of functionally
defective HSCs [53,92]. Ectopic expression of the se-
creted Wnt antagonist dickkopf-1 (Dkk-1) in niche cells
results in a failure to maintain HSCs quiescent and con-
sequent loss of self-renewal ability [109]. On the other
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Fig. 2. Hematopoetic Stem Cell Niche. The scheme shows the sig-
naling molecules and their receptors in the HSC that regulate HSC
behaviour; SCF/KIT, Jagged1/Notch and Wnt/Fz are involved in os-
teoblast induced cell renewal; osteopontin/CD44; angiopoietin/Tie2
and also Wnt/Fz are involved in osteoblast induced quiescence of
the stem cells and CXCL-12/CXCR4 in reticulocyte induced quies-
cence. Both PTH/PTH1R stimulation and BMP/BMPR1A downreg-
ulation leads to an increase in obsteoblast number and consequently
in the HSC number. HSC: hematopoietic stem cell; OB: immature
osteoblast; RC: reticular cell.

hand activation of the Wnt signaling pathway increases
the ability of HSCs to reconstitute the hematopoietic
system of irradiated mice [87]. Wnt-5a which acti-
vates noncanonical and inhibits canonical Wnt signal-
ing maintaining HSCs in a quiescent state [76]. Tak-
en together, these somewhat contradictory data suggest
that canonical Wnt signaling has an important role in
controlling the stem cell pool, however, the biological
consequences of activating this signaling cascade are
dose and stage-dependent.

Notch signaling has been implicated in the control
of the HSC pool as ectopic activation of this pathway
results in an increased number of HSCs [49,104]. Con-
sistent with a role of Notch signaling in hematopoesis,
both receptors and ligands are expressed in the bone
marrow [85]. However, loss-of-function experiments
suggest that the pathway is not essential [68].

Loss of the transcription factor c-myc in HSCs in-
creases the expression of cell adhesion proteins in stro-
mal cells that seemingly retain HSCs in an extended
niche resulting in decreased HSC differentiation [5,
132].

Epidermal niche(s)

Another organ system amenable to functional stud-
ies is the skin; it comprises multilayered interfollicu-
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lar epidermis (IFE) and different appendages, such as
hair follicles, sweat glands and sebaceous glands [9]
(Fig. 3). Epidermal stem cells are found in the IFE,
in the sebaceous glands and in the bulge region of the
hair follicle; stem cells of the bulge region have been
isolated and have been shown to reconstitute all epider-
mal compartments [46,115] and will be discussed here.
In the bulge, stem cells can interact with surrounding
epithelial cells, the inner and outer root sheath cells,
as well as with the basement membrane and fibroblasts
(Fig. 3). To what extent these different interactions are
important to stem cell function is currently a matter of
debate.

The surface protein, g1-integrin, used by HSCs to
bind osteopontin, mediates binding to the basal mem-
brane component laminin and collagen in epithelial
cells and is enriched in epidermal stem cells versus
more differentiated populations [48,65]. It is function-
ally important as blocking S1-integrin by ectopic ex-
pression of a dominant negative mutant results in dif-
ferentiation [140].

The transcription factor p63 is essential for the estab-
lishment of stratified epithelia [72,136]. Whether it has
a role in stem cell maintenance like in the thymus [21,
95] or whether itis required for the commitment to strat-
ification is debated [56,57]. Interestingly, p63 is down-
regulated by activation of Notch signaling in suprabasal
cells [78]. In contrast to its stimulatory effects in the
stem cell compartment of the hematopoietic system,
Notch stimulates differentiation in the skin [86].

Overexpression of the transcription factor c-myc pro-
motes differentiation of stem cells [2,126] suggesting
that its role in the skin is different from its role in the
hematopoietic system. However, loss-of-function ex-
periments are required to draw this conclusion.

Central to activation of bulge stem cells is period-
ic activation of canonical Wnt signaling [42,111,120].
Upon elevation of the levels of 3-catenin hair follicles
enter anagen (phase of rapid proliferation) [64,121]
whereas Wnt signaling is suppressed during telogen
(phase of mitotic quiescence, regression phase) [31,
84]. Expression of the bone morphogenetic proteins
(BMPs)-2 and -4 in the dermis and subcutaneous fat
cycles out of phase with respect to this recurrent Wnt
signaling activation [84]. High BMP signaling activi-
ty keeps the hair follicle refractory whereas low BMP
signaling activity renders it competent for regenera-
tion [84]. Thus, stem cell activity is not only influenced
by the microenvironment but ultimately controlled by
signaling from another organ; Plikus and colleagues in-
troduced the term “macroenvironment” to describe this
long distance signaling.
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Fig. 3. Epidermal Stem Cell Niche. Schematic diagram of the skin and its cellular components. EP: epidermis, ESC: epidermal stem cell; MC:
matrix cells; DP: Dermal papilla; FB: fibroblast; AD: adipocyte; VC: Vascular Cell Ba.L.: basal cells layer; BM: basement membrane; ORS:
outer root sheath; |RS: inner root sheath; St.C.: stratum corneum; Gr. L.: granular layer; Sp. L.: spinous layer.

BREAST EPITHELIAL STEM CELLSAND
THEIR NICHE

As breast epithelial stem cells can give rise to myoep-
ithelial and luminal cells, it has been surmised that stem
cells express markers of both the luminal and myoep-
ithelial cell lineage [83,106,107]. Cells co-expressing
both type of markers have been identified; they are
located in an intermediate position between the my-
oepithelial and luminal cells in the human breast [39].
These cells are epithelial and hence express the panep-
ithelial marker EpCAM but they do not express proteins
found on the apical membrane of differentiated luminal
cells, such as MUCL1. Such cells were purified from
reduction mammoplasty specimens. Consistent with
being bipotential progenitors, the MUC—/ESA+ cells
gave rise to both luminal and myoepithelial cell types
in 2D and 3D cultures [39]. However, in vitro cultures

have limitations; for example hormone receptor expres-
sion does not occur and it remains to be shown that
these populations reconstitute in vivo. More recently,
a stem cell zone has been localized in the ducts based
on inmunohistochemistry assays for putative stem cell
and niche markers [123].

In rodents, reconstitution of epithelium-divested
mammary fat pads provides a functional assay for stem
cells [27,32,137]. In 3-week-old prepubertal mice the
inguinal mammary gland can be surgically cleared of
the endogenous epithelium. Any part of the mammary
gland is able to give rise to a new ductal system when
grafted to such a cleared fat pad [81,137] independently
of age, reproductive history or reproductive state of the
donor mice [30]. The reconstitution ability is lost over
seven consecutive transplant generations [27].

The reconstitution of the cleared fat pad by en-
grafted mammary epithelial cells (MECs) has been
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Fig. 4. Epidermal Stem Cell Niche. Schematic representation of
the signaling pathways that regulate epidermal stem cell behavior
in the hair bulge region. Out of phase waves of Wnt and BMP
signaling induce proliferation or maintain quiescence respectively.
ESC: epidermal stem cell; FB: fibroblast; AD: adipocyte; ORSC:
outer root sheath cell; IRSC: inner root sheath cell; TA: transient
amplifying cell.

very successfully used as an assay for stem cell ac-
tivity combined with immunophenotyping and fluo-
rescence activated cell sorting (FACS) of MECs [69,
96,108,128]. This line of work revealed subpopula-
tions of MECs with distinct reconstitution potential.
Cells with high reconstitution potential are enriched in
a population expressing the glycosyl phosphatidylinos-
itol (GPI)-anchored protein CD24 and high levels of
(1 (CD29) and a6 (CD49) integrin (CD24+ CD29hieh
CD49hish) [96,108].

Consistent with the role of integrins in binding ECM
components, these surface molecules are highly ex-
pressed in cells that interact with the basal lamina [93].
Indeed, cells in the CD24+ CD49Migh CD29hish com-
partment bear myoepithelial characteristics; they ex-
press Keratin 14 [96,108], high levels of the epidermal
growth factor receptor (EGFR), and do not express the
estrogen receptor @ (ERa) [4]. Taken together, these
observations suggest that the mammary stem cells lo-
calize basally within the mammary epithelium, possi-
bly with extensive direct contact to the basal lamina.

Previous studies based on morphological character-
istics had attributed a particular phenotype to stem cells.
Based on their appearance by electron microscopy or
by toluidine blue stain on ultrathin sections, they were
called “small light cells” (SLC) [22,99]. SLCs are
found dispersed in an intermediate position between
luminal and myoepithelial cells like the bipotential pro-
genitor cells in the human breast described above [22,
99]. The SLCs were shown to be the only cells that en-
ter mitosis when mammary explants were cultured [99].

Consistent with these cells being stem cells, their num-
bers decrease as the reconstitution potential of mam-
mary epithelium diminishes upon serial transplanta-
tion [99].

These two lines of work point to two different scenar-
ios for the localization of mammary stem cells (Fig. 5):
in the first, the mammary stem cell is part of the my-
oepithelial sheet; in the second scenario, the mammary
stem cell is located between the luminal and myoep-
ithelial layers. These two models may not be mutu-
ally exclusive; the morphologically defined SLCs may
express the same surface markers as the myoepithelial
cells and therefore part of the CD24!°%/ CD29%&h and
CD49"ish population in FACS sorting.  Alternative-
ly, light cells may simply contaminate the FACS sort-
ed population; obviously, even a single contaminating
stem cell should, by definition, reconstitute a mammary
gland.

While SLCs represent around 3% of the epithelial
cell population [22] estimates of stem cell frequency
based on FACS sorting vary between different group
from 1in 200 [73] to 1 in 5000 MECs [96].

A FUNCTIONAL DEFINITION OF THE
MAMMARY STEM CELL NICHE

In both the scenarios presented above (Fig. 5), the
microenvironment of the putative stem cell comprises
neighboring luminal and myoepithelial cells as well as
more or less extensive contact with the basal lamina.
Based on the functional definition of a stem cell by
the reconstitution assay, various other factors that de-
termine the stem cell’s repopulation ability can be dis-
cerned. These may directly or indirectly affect signal-
ing in the mammary stem cell niche and may or may
not be considered part of the niche.

Firstof all, MECs only give rise to a ductal tree when
they are grafted to the mammary fat pad; when they
are transplanted to other adipose tissues they yield only
very limited outgrowth [77]. Thus, similar to the skin,
signals from cells not in direct contact with the stem
cell are important for the stem cell function. The con-
tribution of different cell types within the fat pad, such
as fibroblasts, adipocytes, endothelial, perivascular and
immune cells, remains to be determined.

An additional level of complexity stems from the
fact that the gland has to coordinate all its activities
with systemic requirements conveyed, above all, by
the female reproductive hormones estrogens, proges-
terone and prolactin. Indeed, MECs that are grafted
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Fig. 5. Localization of the mammary gland stem cell. A: Schematic diagram illustrating the cellular composition of a milk duct in the mouse
mammary gland: LC: luminal cell; MC: myoepithelial cell; MSC: mammary stem cell AD: adipocyte; FB: fibroblast. B: Localization of
the mammary gland stem cells based on functional studies of different FACS sorted populations. The population enriched for cells of high
reconstitution potential expresses myoepithelial markers. C: localization of the mammary stem cells based on morphological characteristics.

Small light cells (SLCs) localize in an intermediate position between myoepithelial and luminal layer and do not reach the lumen.

to a cleared fat pad will only grow out when estrogens
are present; in ovariectomized females no ductal out-
growth occurs; local estrogen administration restores
it [29]. The systemic hormonal milieu translates into
local cues via the estrogen and progesterone receptors
present on a subset of luminal epithelial cells, that we
call the sensor cells [15]. These sensor cells are either
part of the niche or near the niche, they may directly
or indirectly signal to the stem cells. As the hormonal
milieu changes, the niche and it’s signaling also change.

THE NICHE DURING PUBERTY

The fat pad reconstitution assay reflects growth as it
occurs physiologically during puberty. Pubertal duc-
tal outgrowth is driven by ovarian estrogens [29,75]
that act through ER« in the mammary epithelium [67],
which is expressed in about 30% of the luminal ep-
ithelial cells at this stage [90,138]. When ERa~/~
MECs are grafted to cleared fat pads no outgrowth oc-
curs; however, when ER« deficient cells are mingled
with WT cells, they contribute extensively to the duc-

tal outgrowth and give rise to both myoepithelial and
luminal cells [67]. Thus, ER«a deficient mammary ep-
ithelia contain stem cells; a finding that is consistent
with the observation that the cell fraction enriched for
stem cells is hormone receptor negative [4]. The ER
negative stem cell can only unfold its potential when
it is in vicinity of an ER« positive cells that translate
estrogen action into a paracrine signal. Whether the
hormone receptor positive sensor cell is actually part
of the niche and interacts directly with the stem cell or
whether it may be a few cell diameters away from the
stem cell remains unclear.

Which are the downstream mediators of estrogens?
The EGFR ligands epidermal growth factor (EGF),
transforming growth factor o (TGF«), and amphireg-
ulin administered locally, can restore ductal elongation
in ovariectomized mice arguing that EGFR signaling
is important downstream of ER« [24,50,100]. The
physiologically relevant EGF family member is am-
phiregulin; its transcription is specifically and selec-
tively induced by 17-(-estradiol in the puberal mam-
mary epithelium [23]. The membrane-bound pro-
tease TACE/ADAM17 cleaves and thereby activates
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Fig. 6. Model of pubertal mammary stem cell niche: Estrogens from the systemic environment acting on ER« receptor positive sensor cell,
induce expression of amphiregulin that is activated by TACE and acts via the EGFR on stromal cells. The basal membrane is disrupted in this
phase of the development. In response to this stimulation, the stromal cells release factors like FGFs and MMPs that in turn impinge directly
or indirectly on the stem cell to modulate its behavior. See text for further explanations. M SC: mammary stem cell; LC: luminal cell; MC:

myoepithelial cell; FB: fibroblast, AD: adipocyte; HR: hormone receptor, here: ERa.

amphiregulin [61,112]. Both amphiregulin and TACE
are required in the mammary epithelium for ductal
outgrowth [23,103]. In chimeric epithelia formed by
amphiregulin—/— and WT cells, the mutant cells prolif-
erate and contribute to cell both compartments consis-
tent with amphiregulin acting as a paracrine mediator
of estrogen action [23]. The mutant cells never give
rise to an entire ductal segment but are always observed
within a few cell diameters of WT cells [23] indicating
that close interactions are required during ductal out-
growth to relegate the estrogen-induced signals to ERa
negative stem and/or progenitor cells.

In the absence of EGFR, the cognate receptor of
amphiregulin, ductal outgrowth fails to occur. Tis-
sue recombination studies revealed that EGFR deficient
stroma abolishes the growth of a wild type epithelium
whereas EGFR deficient epithelium grows in a WT fat
pad [131] indicating that the prime target of amphireg-
ulin are stromal cells, which may in turn release factors
to stimulate either the niche or the stem cells (Fig. 6).

During estrogen-driven ductal outgrowth, epithelial
cells at the tip of the growing ducts, are in direct contact
with the stroma because the basal lamina is disrupted
in this zone of active proliferation [88]. Thus, it is
conceivable that stromal cells may be part of the niche

(Fig. 6).

The nature of the stromal factors released in response
to amphiregulin that talk back to the mammary ep-
ithelium remains to be elucidated as well as the cell
type within the stroma that is responsible for secret-
ing/activating these factors. Furthermore, it is unclear
whether these stromal factors act directly on the stem
cell or impinge on niche cells.

Candidate stromal factors are the matrix metallo-
proteinases (MMP) —14 and —2 [58], previously re-
ported as EGFR targets which may activate mem-
brane bound/ECM-sequestered growth factors and/or
components of ECM such as collagens, laminin, fi-
bronectin, proteoglycans, the TGF-4 inhibitor decorin,
and FasL [101]. Other attractive contenders for the stro-
mal mediators are the fibroblast growth factors (FGFs)
—7 and —2 [102], they elicit ductal morphogenesis
in a 3D matrigel assay [97] and stimulate growth and
branching of EGFR~/~ mammary organoids in cul-
ture [103]. Interestingly, FGF-2 (basic FGF) is a criti-
cal component in the medium for mammospheres [33,
35] suggesting that activation of FGF signaling is im-
portant to stem cells [33]. Whether these FGFs are
induced in the stroma in response to amphiregulin and
whether they act directly on the stem cell or indirect-
ly via niche cells both in vivo and in mammospheres
remains to be determined.
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Fig. 7. Model of pregnancy-associated stem cell niche. Systemic progesterone and prolactin, in the presence of estrogens, act together in
the development of the mammary gland during pregnancy. These hormones reach their receptors in luminal cells belonging to the stem cell
microenvironment. In response, the sensor cells release several factors like IGF-2, Wnt 4 and RANKL. These influence the surrounding cells, and
may directly or indirectly influence the stem cells and parity induced-stem cells. M SC: mammary stem cell; PI-M SC: parity identified-mammary

stem cell; LC: luminal cell; MC: myoepithelial cell; FB: fibroblast; AD: adipocyte; HR: hormone receptor; BM: basal membrane.

It is also possible that default inhibitory influences
exerted on the niche are relieved by a stroma-derived
factor. TGF-3 acts as a key negative regulator of
proliferation on many epithelial cell types including
MECs [28,36]. Intriguingly, decorin is a TGF-8 in-
hibitor highly expressed in mammospheres [33] and
could be secreted by stromal cells in response to EGFR
stimulation.

TGF-3 regulates the expression of Wnt-5a [89], a
Whnt that activates non canonical wnt signaling [52,60,
122,130] and can inhibit canonical wnt signaling [71,
119,129]. Wnt-5a mediates a subset of TGF-3 in-
hibitory actions and in Wnt-5a—/— mammary epithelia
the highly proliferative ductal tips, terminal endbuds
(TEBs) are enlarged [89] suggesting that down modu-
lation of TGF-3/Wnt-5a signaling and, by extension up
regulation of canonical wnt signaling, may indeed pro-
mote activation of stem cells. However, it is difficult
to reconcile these functional data with the observation
that expression of Wnt-5a mRNA is enriched in the
TEBs compared to subtending ducts [58] when TGF3
activity and hence Wnt-5a expression should be down
modulated at the active growth front.

In the mammary gland, as in the hematopoietic sys-
tem and in the epidermis, Wnt signaling may be impor-
tant in determining the stem cell compartment. Mice

that ectopically express Wnt-1 in the mammary ep-
ithelium have an increase in the CD29"igh CD4ghigh
compartment [96] and tumors arising in the mammary
glands of these mice express progenitor markers [63].
Moreover, microRNAs, which have been shown to be
enriched in stem cell populations, are increased when
Whnt-1 is overexpressed in MECs [43]. Whether wnt
signaling is required in the stem cell itself, in niche
cells, or exerts more indirect effects remains to be ad-
dressed.

Expression of Notch-3, SCF and the Wnt receptor
Frizzled 2 has been found increased when expression
profiles of mammospheres and of cells grown on adher-
ent plates were compared [33] suggesting that Notch,
Whnt and Kit signaling all of which are important in the
hematopoietic niche may also have a role in the mam-
mary gland niche. Consistent with such a scenario,
inhibition of Notch signaling interferes with growth
of mammospheres [34]. In vivo data, however, sug-
gest that regulation of Notch signaling is complex and
cell type dependent. Both ectopic activation [47,98] as
well as loss of function [91] can interfere with ductal
outgrowth arguing that the timing and the level of ex-
pression as well as the targeted cell type will need to
be considered. BMP signaling function has not been
addressed in the mammary gland.
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STEM CELL NICHE DURING PREGNANCY

Once the ducts reach the edges of the fat pad, they
cease to grow; this usually coincides with the onset
of sexual maturity. With recurrent estrous cycles the
complexity of the ductal system increases through lat-
eral branching driven by cyclic increases in serum pro-
gesterone levels [88]. During early pregnancy, pro-
gesterone levels increase and sidebranching is further
enhanced; later, prolactin drives alveologenesis. It is
not clear to what extent this proliferation requires stem
cell activity or merely reflects an expansion of transient
amplifying cells.

During pregnancy a novel stem cell population be-
comes apparent, the parity-identified stem cells, (PI-
SCs). These cells were tracked using double trans-
genic mice, which express Cre driven by the milk pro-
tein, whey acidic protein (WAP) promoter and a LacZ
gene that is preceded by a floxed stop codon (WAP-
Cre/Rosa26-flox-stop-flox-lacZ). In these double trans-
genic mice, MECs that differentiate and hence express
WAP will induce Cre recombinase resulting in the ex-
cision of the stop codon in front of the LacZ gene
and expression of [3-galactosidase. Subsequently, the
cells express the enzyme constitutively and can readily
be visualized by a simple X-gal staining [124]. Con-
trary to the widely held belief that differentiated cells
are lost during involution, these cells that have ex-
pressed WAP remain all over the ductal system after
post-lactational remodeling. When epithelium from
parous double transgenic mice is transplanted to cleared
mammary fat pad, LacZ positive cells contribute sub-
stantially to the outgrowth and are found in all cellu-
lar compartments [124], moreover, they are present in
the CD24+/CD49f"#h population [69]. Interestingly,
when PI-SCs are grafted on their own, as achieved by
injecting them into cleared fat pads in limiting dilutions,
they do not give rise to complete ductal outgrowths
but form lobules indicating that their intrinsic potential
is more restricted than that of the common mammary
SCs [12,124,125].

A few PI-SCs develop during estrous [10] but the
bulk of PI-SCs is induced during pregnancy [124]. This
points to the existence of a pregnancy-specific stem
cell niche. Intriguingly, the pregnancy stem cell niche
can induce adult testicular cells into milk-producing
MECs [11]. The male germ cells are capable of self-
renewal upon transplantation and contribute to both lu-
minal and myoepithelial cell lineages in the reconsti-
tuted glands [11].

What distinguishes the pregnancy niche from the
niche in the virgin female? During pregnancy the same
cell types will be interacting with stem cells as in the
virginanimal (Figs 6 and 7). In contrast to the “pubertal
niche” the basal membrane remains intact during preg-
nancy suggesting that interactions with the stroma may
be less extensive at this stage. At this stage, the my-
oepithelial layer is less continuous probably allowing
luminal cells to contact the basal membrane [88].

Progesterone and prolactin act in the presence of
estrogens, that are required for progesterone receptor
(PR) expression, to induce side branching and alveolo-
genesis [17,18] (for review see [13]) by acting on their
respective sensor cells. As a result local signals are
induced that may directly impinge on stem cells or act
on neighboring luminal or myoepithelial cells, possibly
stromal cells that are part of the niche (Fig. 6).

Receptor Activator for Nuclear Factor xB Ligand
(RANKL) [14,74], Wnt-4 [16], calcitonin [44] and in-
sulin like growth factor-2 (IGF-2) [14] (Fig. 7) have
been implicated downstream of the pregnancy hor-
mones. We speculate that Wnt-4 mobilizes stem cells
either acting on them directly or indirectly through ac-
tivation of niche cells. The offspring is induced to
proliferate by RANKL. The functional importance of
calcitonin induction by progesterone in this context is
unclear. IGF-2 is an important factor for maintaining
human embryonic stem cells in culture [8]; whether its
role in alveologenesis in the mammary gland is linked
to effects on stem cells remains to be tested.

A better understanding of PI-SCs and their niche
is very important in light of the observation that ear-
ly pregnancies have a protective effect against can-
cer. This is evident from epidemiologic studies on hu-
mans [40] and can be reproduced in rodents [19,38].
Indeed, Wagner and Smith argue that the specific prop-
erties of the P1-SC population that set them apart from
MSCs may underly the protective effect of pregnancy.

CONCLUSIONS

Thinking about stem cells and their niches has been
largely influenced by the pioneering work performed
in the readily accessible hematopoietic system. In the
mammary gland, in addition to the immediate microen-
vironment, various stromal components and above all
the systemic hormonal milieu are crucial control ele-
ments of stem cell function. The female reproductive
hormones acting through sensor cells within the lumi-
nal epithelium, trigger a cascade of paracrine signal-
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ing events that impinge on stem cells and their nich-
es. Some signaling pathways have been implicated that
appear to be of general importance to stem cells and
their niches such as Wnt, Notch, BMP signaling. Inthe
mammary gland, their exact role remains to be estab-
lished. In addition a number of pathways with organ-
specific functions, such as amphiregulin in the mamma-
ry niche versus osteopontin in the hematopoeitic niche
have been identified.

The challenge is to reconcile morphological hall-
marks of stem cells in situand FACS phenotyping ex vi-
vo so that the stem cells and their niches can eventually
be defined and characterized in vivo. We need to inte-
grate the models about stemness and differentiation as
in the hematopoietic system where cells are single and
live in suspension, with the complex 3D structure of
the mammary gland that changes substantially during
development, as well as the mesenchymal interactions
that influence it.

A better understanding of the mammary niche and its
dependence on developmental stage and hormonal mi-
lieu will provide novel insights into how breast cancer
arises.
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