
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Journal of Systems Architecture 53 (2007) 417–436

www.elsevier.com/locate/sysarc
Systematic methodology for exploration of performance –
Energy trade-offs in network applications using Dynamic

Data Type refinement q

Stylianos Mamagkakis a,d,*, Alexandros Bartzas a, Georgios Pouiklis a,
David Atienza b,c,1, Francky Catthoor d,1, Dimitrios Soudris a,

Antonios Thanailakis a

a VLSI Design and Testing Center-Democritus University, Thrace, 67100 Xanthi, Greece
b DACYA/UCM, 28040 Madrid, Spain

c LSI/EPFL 1015 Lausanne, Switzerland
d IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium

Received 30 January 2006; received in revised form 20 October 2006; accepted 4 December 2006
Available online 7 February 2007
Abstract

Modern network applications require high performance and consume a lot of energy. Their inherent dynamic nature
makes the dynamic memory subsystem a critical contributing factor to the overall energy consumption and to the execution
time performance. This paper presents a novel, systematic methodology for generating performance-energy trade-offs by
implementing optimal Dynamic Data Types, finely tuned and refined for network applications. Our systematic methodology
is supported by a new, fully automated tool. We assess the effectiveness of the proposed approach in four representative, real-
life case studies and provide significant energy savings and performance improvements compared to the original
implementations.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Dynamic data type refinement; Embedded systems; Low-energy consumption
1383-7621/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.sysarc.2006.12.001

q This work is partially supported by the European Union
funded project AMDREL IST-2001-34379, http://vlsi.ee.duth.gr/
amdrel, the Spanish Government Research Grant TIN 2005/
05619 and E.C. Marie Curie Fellowship contract HPMT-CT-
2000-00031. A small part of this work is published in DATE’06.

* Corresponding author.
E-mail addresses: smamagka@ee.duth.gr (S. Mamagkakis),

ampartza@ee.duth.gr (A. Bartzas), gpouikli@ee.duth.gr
(G. Pouiklis), datienza@dacya.ucm.es (D. Atienza), catthoor@
imec.be (F. Catthoor), dsoudris@ee.duth.gr (D. Soudris),
thanail@ee.duth.gr (A. Thanailakis).

1 Also professor at the Katholieke Univ. Leuven, Belgium.
1. Introduction

In the last years, there is a trend towards net-
works and network applications implemented with
embedded consumer devices. The complexity of
modern wired and wireless networks is increasing
to support a wide variety of services. Additionally,
increased interaction with the environment (e.g., in
wireless networks) has increased the dynamism of
the data access pattern in network applications
.

https://core.ac.uk/display/147946931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.freebsd.org
http://www.freebsd.org
mailto:smamagka@ee.duth.gr
mailto:ampartza@ee.duth.gr
mailto:gpouikli@ee.duth.gr
mailto:datienza@dacya.ucm.es
mailto:catthoor@
mailto:dsoudris@ee.duth.gr
mailto:thanail@ee.duth.gr

418 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
[13]. Such complex systems require a combination
of hardware and middleware components; in order
to deliver the required functionalities without
increasing complexity too much and keeping a short
time to market. This has led to an increased reliance
on Dynamic Data Types (DDTs from now on).
DDTs are structures, which allow data to be
dynamically allocated and deallocated at run-time
(releasing the memory they occupied back to the
Operating System, when it is no longer needed)
and provide an easy way for the designer to connect,
access and process data [29]. They can cope, in the
most efficient way, with the variations of run-time
needs (e.g., network traffic, user interaction) and
the massive amounts of data processed and stored.

Various factors contribute to the dynamism of
network applications. Depending on the input of
the application, the different functions and the num-
ber of times that they are executed differ. The size of
the data storage, needed for these functions, varies
as well. Therefore, dynamically adjustable storage
is necessary, allowing to free memory when it is no
longer needed. A static memory allocation at com-
pile time is not efficient at all, because the worst case
situation has to be assumed in the beginning and
implemented for the whole execution time. There-
fore, especially in embedded systems, where memory
is a scarce resource, dynamic memory allocation and
management is required. If not, far more memory
space would be occupied than really needed at run-
time. The data structures used to implement
dynamic memory allocation are the Dynamic Data
Types (DDTs). The most common examples of
DDTs are single and double linked lists.

On the one hand, inefficient use of the DDTs
results in performance losses by adding computa-
tional overhead to the internal DDT usage mecha-
nisms. On the other hand, each access of the
DDTs to the physical memory (where the data is
stored) consumes energy. Energy consumption is
the limiting factor in the amount of functionality
that can be placed in these devices, because portable
computers like PDAs and notebooks using wireless
communications rely on limited battery energy for
their operation. These two factors cannot be opti-
mized with the same DDT implementation (i.e., a
fast DDT is not always the most energy efficient,
as is shown in the experimental results in Section
5) and the designer must be able to choose a bal-
anced DDT implementation, in order to achieve
the required performance in every case, while mini-
mizing the energy consumption.
In the embedded systems community, designers
deal with data management at different levels of
abstraction, ranging from abstract data types and
dynamic memory allocation down to the storage
of data at the register level. In order to achieve large
reductions in energy consumption, memory foot-
print and/or execution time, optimizations at the
data structure level are needed. Apart from the
memory used to store the data records, the internal
mechanisms of the DDTs add memory overhead to
create their own internal structures and access
mechanisms. Nevertheless, they can achieve great
memory footprint gains in comparison to a stati-
cally allocated, compile-time memory solution [18].

A dynamic network application consists of vari-
ous functions and concurrent tasks. Each function
(or task) accesses and processes its own set of data
in different ways and patterns, leading to a complex
overall dynamic behavior. Each set of data is
assigned to a specific DDT. The final decision about
the optimal combination of the different DDTs that
should be implemented in the network application,
is influenced of this complex algorithmic-based
dynamic behavior. Therefore, no general, domain-
specific, optimal solution exists but only custom,
application-specific ones. Additionally, the different
configurations available to networking applications
add one more layer of complexity and demand fur-
ther customization of the DDTs to achieve optimal
results. Thus, the decision should be in accordance
to both the application’s algorithmic-based dynamic
behavior and the dynamic behavior influenced by
the network configuration. Finally, the system
design restrictions also have to be met. This decision
requires a very complex exploration task. A system-
atic, step-by-step methodology is needed to help the
designer to make the right trade-off choice for each
DDT in the networking application.

This exploration should not be taken lightly
without the proper methodology and tool automa-
tion support. To develop and test n different DDT
implementations manually, one would have to
rewrite the source code of an application n times.
This procedure is not applicable to realistic applica-
tions consisting of thousands of code lines. In addi-
tion, a way to profile and extract metrics for a cost
function is also needed in order to choose optimal
solutions. Our choice of optimal solutions is based
on Pareto points, which represent an optimal imple-
mentation only if no other implementation has bet-
ter results in all the metrics, which are explored.
Thus, a point is said to be Pareto-optimal, if it is

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 419
no longer possible to improve upon one cost factor
without worsening any other [11].

In this paper, we present a systematic and auto-
mated methodology to perform DDT refinement
of any given network application, with any network
configuration, using Pareto-optimal trade-offs. This
gives the designer a way to improve performance
and energy consumption at a high abstraction
design level without considering any changes in
the hardware and the functionality of the applica-
tion. More specifically the innovations in this paper
are focused on:

• Network configuration sensitivity: Our proposed
methodology provides for the first time optimiza-
tions, which are sensitive to the specific configu-
ration of the network (and not just to the
application).

• Multi-objective optimizations: Instead of focus-
ing on a single metric, we provide for the first
time optimization solutions for (up to) four
different metrics, including energy consump-
tion, memory accesses, performance and memory
footprint.

• Fully automated exploration: For the first time,
we produce a systematic exploration framework
which is consistently automated by a set of tools.

With the use of our proposed methodology and
automation support, we manage to reduce signifi-
cantly the targeted metrics. Also, we manage to
reduce dramatically the design time of our explora-
tion by pruning the available solution space during
one of the steps of our proposed methodology
(according to the metric that we want to optimize).
The remainder of the paper is organized as follows.
In Section 2, we provide an overview of the related
work. In Section 3, we define the basic search space
of available DDT solutions. In Section 4, we present
our proposed systematic Dynamic Data Type
refinement methodology for network configura-
tions. In Section 5, the case studies are introduced
and the obtained simulation results are analyzed.
Finally, in Section 6 we draw our conclusions.

2. Related work

Data management and data optimizations for tra-
ditional (i.e., non-dynamic) embedded applications
have been extensively studied in the related literature
[6,12,15,28]. The work presented in [5,24] are good
overviews about the vast range of proposed tech-
niques to improve memory footprint and decrease
energy consumption in statically allocated data.
Also, from the methodology viewpoint, several
approaches have been proposed to tackle this issue
at the different levels of abstraction (e.g., memory
hierarchies), such as the Data Transfer and Storage
Exploration (DTSE) methodology [7]. However, in
modern dynamic applications the behavior of many
algorithms is heavily determined by the input data.
This often means that multiple and completely differ-
ent execution paths can be followed, leading to com-
plex, dynamic data usage according to the behavior
of the users. Therefore, our approach focuses on
optimizing the Dynamic Data Types for modern net-
work application with run-time memory allocation
needs, contrary to the aforementioned static (i.e.,
compile-time) data allocation optimizations.

In general-purpose software and algorithms
design [1,3,29], primitive data structures are com-
monly implemented as mapping tables. They are
employed to accomplish software implementations
with high performance or with low memory foot-
print. Additionally, the Standard Template C++
Library (STL) [26] or other proposed templates
[19] provide many basic algorithms and data struc-
tures needed for implementing dynamic data struc-
tures in a general context. For embedded system
software, several transformations of data structures
for compilers have simplified local loops in impera-
tive programs [22]. Nevertheless, none is suitable for
exploration of complex dynamic data structures
used in modern wired and wireless network applica-
tions, because they handle only very simple data
structures (e.g., arrays or pointer arrays), which
mostly focus on performance.

More attention is paid to energy consumption
and other embedded systems criteria in [9,14,17].
A fast, stepwise, cost-driven, and automated explo-
ration and refinement is proposed in [2,17] for mul-
timedia applications at system level, which operate
on large and irregular data structures that typically
exist in this application domain. We tried to use the
same exploration for network applications (which is
the context of this paper) but we realized that
contrary to multimedia applications, we could not
find a universally good DDT solution per applica-
tion (regardless of the configuration of the applica-
tion). Contrary to multimedia applications, which
mostly have a sequential access behavior of the
DDTs, in network applications the access behav-
ior of the DDTs changes considerably (in some
cases even completely) with different configuration

420 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
implementations. Thus, we had to do an additional
step of exploration, which was related to network-
sensitive criteria in order to arrive at optimal
Dynamic Data Types. Some of these criteria include
the number of nodes in a network, throughput, etc.
(see Section 4 for more details).

The work presented in this paper is more related
to [30–32]. However, there are major differences to
the work presented there. First of all, we concen-
trate on data structure optimizations in the context
of various network applications. We extend the
range of applications, without being limited to a
specific hardware network router. In fact, in this
paper we use a network routing application, a con-
text switching application, a network firewall and a
network scheduling application, which are indepen-
dent of specific hardware implementations. Sec-
ondly, we analyze the software implementation of
energy efficient data structures, as opposed to
explicitly designing and using specifically configured
physical memories. In our context, we assume that
the embedded platform is already designed and that
our Dynamic Data Types, which are tuned to the
network application, are incorporated in the mid-
dleware on top of the given platform hardware.
Thirdly, we extend considerably the exploration of
the Dynamic Data Type design space. This exten-
sion is done by adding the factor of network config-
uration to explore the search space more
consistently (see Section 4 for more details). Our
approach studies the optimizations and possible
trade-offs related to additional design metrics that
are key factors in embedded systems, such as low-
energy consumption and memory accesses, on top
of the usual ones, namely performance and memory
footprint. Finally, we support the whole methodol-
ogy flow for the first time with fully automated
tools, which reduce significantly the design time
needed for the optimizations.

3. Dynamic data type search space

A DDT is a software abstraction by means
of which we can manipulate and access data.
The implementation of a DDT has two main
components:

• It has storage aspects that determine how data
memory is allocated and freed at run-time and
how this memory is tracked.

• It involves an access component. This means that
once the data is stored in the memory, it still
needs to be accessed from within the algorithm.
These two components have a big influence on
performance.

Even though the number of DDT basic building
blocks is as such limited, developers tend to write
custom DDTs for each application. Therefore, the
number of alternatives are limited to the developer’s
skill and the available time to implement each one of
them. We have developed and used 10 different DDT
implementations for our exploration and final refine-
ment. We chose not to use the tree data type in our
exploration, because previous experimental results
[17] have proven that their poor locality provides
very bad energy efficiency results. Also, we explored
only data types that are allocated and deallocated
dynamically at run-time (through malloc/free

and new/delete operands). The more complex
DDTs were created by using the basic DDTs, their
variations and multi-layer combinations of them:

Basic DDTs:

• Array (AR): is a set of sequentially indexed ele-
ments of type T. Each element of the array is a
record of the application.

• Single Linked List (SLL): is a single linked list of
vectors of type T. Each element of the list is con-
nected with the next element through a pointer.

• Double Linked List (DLL): is a double linked list
of vectors of type T. Each element of the list is
connected with the next and the previous element
with two pointers, one pointing to the previous
element and one to the next.

Variations of Basic DDTs:

• Pointer (P): in the pointer variation of each basic
DDT, the record of the application is stored out-
side the DDT and is accessed via a pointer. This
leads to a smaller DDT size but also to an extra
memory access to reach the actual data. All
DDTs used in our exploration comply to this
variation except the simple array.

• Roving Pointer (O): The roving pointer is an aux-
iliary pointer helping us to access a particular ele-
ment of a list with less accesses. For example, for
an array if you access element n + 1 immediately
after element n, your average access count is
1 + 1 instead of n/2 + 1.

Then, these simple DDTs can be combined in
multi-layered structures that offer a compromise

Table 1
The different DDT implementations used

Abbreviation Description

SLL(AR) ‘‘Pointer’’ single linked list of arrays
SLL(ARO) ‘‘Pointer’’ single linked list of arrays (roving

pointer)
DLL(AR) ‘‘Pointer’’ double linked list of arrays
DLL(ARO) ‘‘Pointer’’ double linked list of arrays (roving

pointer)
SLL ‘‘Pointer’’ single linked list
SLL(O) ‘‘Pointer’’ single linked list (roving pointer)
DLL ‘‘Pointer’’ double linked list
DLL(O) ‘‘Pointer’’ double linked list (roving pointer)
AR Simple array
AR(P) ‘‘Pointer’’ array of pointers

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 421
between flexibility, memory use and access time (as
can be seen in Table 1). For instance, a ‘‘pointer’’
linked list of 100 elements has an access count of
51, while a ‘‘pointer’’ single linked list of arrays
(10 list elements and 10 array elements) has an
access count of 3.5. The trade-off of the second
DDT, which is faster, is that it requests more mem-
ory from the system and is more difficult to be main-
tained. Table 1 presents the DDTs, which are used
in our exploration. Their corresponding average size
and average number of accesses, which are needed
to access a random element of the DDT (i.e., ran-
dom access count) or to access the next element in
the DDT (i.e., sequential access count), are pre-
sented in Table 5 in Appendix A.

Generally, the factors that influence the overall
performance of the memory system are the amount
of memory accesses, the optional auxiliary mecha-
nisms to access the data (e.g., pointers, roving
pointers) and the access pattern based on the imple-
mented algorithm and its configuration. The dissi-
pated energy is related to the accesses to memory
and the memory size that DDTs occupy [20]. The
energy consumption per memory access increases
with the size of the memory. Hence, energy can be
saved either by reducing the number of memory
accesses, or by reducing the memory footprint of
the DDTs, thus storing data into smaller (less
energy hungry) memories. Of course, by doing both
at the same time, the energy consumption is reduced
much more.

The memory accesses measured are the ones
made by the DDTs to access the allocated data of
the application [8]. No accesses to instruction mem-
ories are measured in the context of this paper. Sep-
arate, complementary methodologies can be used, in
addition to our work, to reduce the energy of the
instruction memory [4]. In the context of this paper,
the energy estimations are calculated using the
model in [25] and concern the energy dissipated by
the memory. This model depends on memory foot-
print factors (i.e., memory size, internal structure
of banks and sub-banks, memory leaks, working
time of the memory and technology) and energy
consumption factors created by memory accesses
(i.e., number of memory accesses, energy consump-
tion in active mode, size of the memory and technol-
ogy). In the results presented in this paper (Section
5), we have employed the 0.13 lm technology node.
Nevertheless, it is possible to easily change, in a
modular way, this feature and others related to
the memory hierarchy (e.g., memory sizes, number
of memories, etc.) and memory model. In the con-
text of this paper, we calculate energy consumption
for a flat memory hierarchy (i.e., consisting of a sin-
gle on-chip SRAM).

4. Dynamic data type refinement methodology

4.1. Methodology overview

Our methodology enables the systematic refine-
ment of Dynamic Data Types for network applica-
tions, implemented in embedded systems. Our
systematic approach is supported by a number of
tools to fully automate the whole process (as shown
in Fig. 1). It is able to handle the exploration of
more than one data structure in each application,
thus providing a proposed combination of DDTs
for the implementation of each data structure
(e.g., for an application with three different data
structures our framework might propose a combi-
nation of: a single linked list for the first one, a poin-
ter double linked list for the second one and a
simple array for the third one). The whole frame-
work enables us for the first time to automatically
explore a big number of DDT combinations for var-
ious network configurations for real-life network
applications and to be able to arrive at truly optimal
solutions.

The designer just inputs in our DDT exploration
framework:

(1) The desired network application.
(2) The design constraints of the embedded sys-

tem where the application runs and our opti-
mizations objectives.

(3) The different network configurations that the
application uses.

Fig. 1. Tool support of the Dynamic Data Type Refinement methodology flow.

422 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
The output of our DDT exploration framework
is the optimal combination of DDTs that should
be implemented.

The goals of the proposed optimization method-
ology and automated exploration framework are:

• Optimized Dynamic Data Types: We refine the
implementation of the Dynamic Data Types in
the applications of the embedded system and
thus reduce their memory footprint, their number
of memory accesses, their energy consumption
and increase their performance (compared to
the original implementation).

• Automated exploration: We automate the refine-
ment, which is done by exploring a set of DDT
implementation from our library. The goal is to
provide automated optimizations to the embed-
ded system designer without requiring his exper-
tise in the field of Dynamic Data Type refinement.

• Reduced design time: We prune the search space
of potential solutions with a stepwise approach,
thus reducing the design time that our proposed
tool requires to provide an optimized DDT
solution.

In the following subsections we analyze in detail
the steps of the proposed optimization methodology
(as shown in Fig. 2) and the way that each step is
linked with the tools of the automated exploration
framework (as shown in Fig. 1).

4.2. DDT exploration at application-level

In the first step of our proposed methodology (as
shown in the upper part of Fig. 2), we explore the
DDTs at the application-level, in order to find opti-
mal DDT combinations for the dynamic data access
behavior of the application under study. This means
that we find a set of DDT combinations that have
the potential to give the best results for the applica-
tion under study regardless of the network configu-
ration of the final implementation. The reason that
we can pinpoint these DDTs is because there are
some algorithmic characteristics of the application,
which favor some DDTs more than others. For
example, the algorithmic characteristic and conse-
quent memory accesses of a LIFO queue favors
double linked lists more than single linked lists,
because the last record of the list is always accessed.
Since we want to automate the process of pinpoint-
ing these DDTs (without wasting the valuable time
of the designer), we choose to do an exhaustive
exploration of the search space of the available
DDT solutions.

Fig. 2. Dynamic Data Type Refinement methodology flow.

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 423
To assist and automate this exploration step, we
developed a library-based exploration framework
similar to [18,26]. We attach to each candidate
DDT of the network application a profile object
and run the application for one typical input trace.
The profiling reveals the dominant data structures
of the application, which are then explored (typically
2–4 DDTs are accessed dynamically more than 90%
of the time, see Section 5 for more details). We need
to insert just once inside the source code the adequate
instrumentation in order to link each dominant data
structure of the network application with our C++
DDT library (as seen in the left part of Fig. 1). The
instrumentation of the code is the only step not auto-
mated, requiring the designer to manually intervene
in the code. The C++ DDT library is comprised of
10 different DDTs (as explained in Section 3).

The instrumentation consists of typical functions
to operate the DDTs (e.g., add one more record,
access the record or remove the record). The explo-
ration is done in an automatic way by keeping the
same instrumentation and changing the DDT
implementation for each dominant data structure.
All the DDTs in our C++ library (and combina-
tions of them) are used in the exploration and are
simulated and profiled at run-time. The whole pro-
cedure takes from 0.8 up to 64 s per simulation for a
single DDT combination according to the applica-
tion. By using the term simulation we mean an exe-
cution of the application under study using as input
any network trace. At this point we do not need to
evaluate different network configurations because
we want to exploit only the inherent algorithmic
characteristics of the network application.

We simulate all combinations of DDTs for the
chosen network applications. For example, if there
is one dominant data structure, we have to simulate
10 times, one time for each different DDT. If there
are 2 dominant data structures, then we have to sim-
ulate 100 times (i.e., 10 different DDTs for the first
dominant data structure combined with 10 different
DDTs for the second dominant data structure). If
there are 3 dominant data structures, then we have
to simulate 1000 times (i.e., 10 different DDTs for
the first dominant data structure, combined with
10 different DDTs for the second dominant data
structure, combined with 10 different DDTs for
the third dominant data structure).

4.3. Pruning of the DDT results

After the exhaustive exploration of DDTs at the
application-level, we prune the best DDT solutions
(as shown in the middle part of Fig. 2) according

424 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
to our embedded system constraints and according
to the metric (or metrics for multi-objective optimi-
zations). This means that we select only a small sub-
set of DDT combinations out of all the available
DDT combinations. We apply two criteria in order
to discard DDT combinations:

(1) If an implementation of a DDT combination
exceeds the constraints of our embedded sys-
tem design, this combination is discarded.
For example, if we have a constraint of 4
MB memory in our embedded system design
and the exploration at the application-level
supplies a combination of DDTs, which uses
5 MB, we reject this combination.

(2) If we want a single objective optimization
(e.g., just energy efficiency), we can discard
90% of the DDT combinations that give the
worst results for this metric (i.e., energy).
For multi-objective optimizations of two,
three or four optimization objectives we can
discard 80%, 60% and 20%, respectively of
the DDT combinations that give the worst
results for all the metrics that are involved in
the optimization. For example, if we want to
optimize for energy efficiency and perfor-
mance, we discard 80% of the DDT combina-
tions that have the worst energy efficiency and
the worst execution time.

This pruning step reduces the available search
space that is explored in the next step (i.e., explora-
tion at network configuration-level) and is needed in
order to reduce the total design time of the whole
exploration. For example, if we evaluate in the first
step that there are 2 dominant DDTs in our applica-
tion, then we do the exploration at application-level
and simulate the combination of 10 different DDT
solutions for each dominant DDT. Therefore, the
exhaustive exploration at the application-level
requires 100 simulations, which provides us with
100 DDT combinations. With the use of our prun-
ing script (as seen in the lower left part of Fig. 1)
we discard 80 DDT combinations (for an energy
and performance optimization). Therefore in the
end we remain with 20 possible solutions, which
we explore further in the next step of our methodol-
ogy (i.e., exploration at network configuration
level).

Note that the percentages of the DDT combina-
tion that we can prune (according to the number of
objectives that we want to optimize concurrently) is
not random. After exhaustive experimental results,
we evaluated that the best 10%, 20%, 40% and
80% of the available DDT combinations always give
us the best results for a specific application doing
optimizations for one, two, three and four metrics
respectively. We realized that the other DDT combi-
nations are non-optimal regardless of the network
configuration. Still we do not know which specific
DDT implementation (out of the DDT combina-
tions that were not pruned) is the optimal for a spe-
cific network configuration.

4.4. DDT exploration at network configuration-level

In the last step of our proposed methodology (as
shown in the lower part of Fig. 2), we explore the
DDTs at the network configuration-level. Even
though we manage to prune heavily the available
DDT search space in the previous step, we do not
manage to select the optimal DDT combination
for our multi-objective optimization. Although the
algorithmic characteristics play a significant role
on the optimal DDT selection (i.e., these character-
istics enable the pruning in the first place), the net-
work configuration has the final word on which
DDT combination we should choose.

Different network configurations (in addition to
algorithmic characteristics of the application)
account for the second reason why network applica-
tions access data in different ways (and thus require
different optimal DDT combinations). For example,
a routing application accesses data differently; if it is
configured for a classroom with 30 seats (i.e., up to
30 network nodes) or if it is configured for a confer-
ence room with 4 seats (i.e., up to 4 network nodes).
In the context of this paper, when we refer to a spe-
cific network configuration we mean a range of net-
work parameters. Therefore, we explore between
the configuration of a small network (i.e., 2–4
nodes) and a big network (i.e., 20–30 nodes). How-
ever, the exact exploration of parameters (e.g.,
exploring for an exact number of nodes), which
can easily change during run-time, is out of the con-
text of this paper.

The general network configurations, which are
important for the DDT exploration, are: the maxi-
mum number of nodes in the network, the maxi-
mum throughput of the network and the typical
packet sizes used (e.g., Maximum Transmission
Unit packet size and Acknowledgement packet
size). Finally, other network parameters, which are
used for the DDT exploration, are application-spe-

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 425
cific. For example, the Patricia tree size (or Radix
tree size) is an important parameter for the IPv4
routing application and affects greatly the DDT
exploration. Other examples are the level of fairness
used in the Deficit Round Robin scheduling appli-
cation (i.e., Quantum) and the number of rules acti-
vated in a firewall application (case studies are
presented in Section 5). Note that all these configu-
rations are known at design time or are calibrated
periodically and do not change at run-time.

This exploration step requires input traces, which
are typical for the network configuration. These net-
work traces usually contain the activity of a whole
week for a certain network and consist of several
Gigabytes of data. With the help of our tool, we
parse these input traces and extract automatically
the parameters of the network. In order to test the
validity of our results, we use a total of 10 traces
from 8 different networks. The first three networks
came from the National Laboratory for Applied
Network Research [23] and originate from the total
campus and satellite buildings activity. The rest
come from Dartmouth University’s collection of
wireless network traces [16] on the corresponding
campus buildings (an example of these traces can
be seen in Fig. 3).
Fig. 3. Wireless network traces from five diffe
The above network configurations, and conse-
quently their traces, come from wired and wireless
networks. Also, the number of maximum nodes dif-
fer from trace to trace, as does the time when the
traces were taken and the data transfer rates. This
results in different traffic patterns that influence
the dynamic behavior of the tested applications,
contributing to a wider and more appropriate explo-
ration. For example, a MTU (i.e., Maximum Trans-
mission Unit) packet of bigger size can lead to
bigger DDT elements, while more users (i.e., nodes
in the network) could lead to more elements,
depending always on the functionality of each appli-
cation. Some of the variations between the network
configurations are presented in Table 2.

To automate this exploration step we have devel-
oped an extension to our DDT exploration frame-
work. The first part of the tool (written in Perl)
can recognize automatically the differences between
the various network configuration implementations.
This is done by parsing the available network traces
and extracting the network parameters from the raw
data in the traces. Then, the second part of the tool
(written in C++) can automatically do the DDT
implementation for all the different network config-
urations in the application.
rent Dartmouth University’s buildings.

Table 2
Range of network configurations that were explored

Trace characteristics Range

Max. number of nodes 16–100
Average daily traffic 1.8–12.4 GB
Average packet size 405 B–22 KB
Data transferred by 50,000

packets
36 MB–1.1 GB

Access points (in wireless
networks)

2–13

Transfer rate (of the 50,000
packets used)

3.3–101.2 Kbps (wireless
networks)

426 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
More specifically, we take the remaining DDT
combinations of the previous step and simulate each
one of them for the different network configura-
tions. For example, this means that we perform
approximately 80 simulations, if we explore for 4
different network configurations in an application
with 2 dominant data structures for 2 optimization
objectives (i.e., 20% of 100 DDT combinations
equals 20 DDT combinations. Twenty DDT combi-
nations times 4 different network configurations
equals 80 simulations). If we had not reduced the
Table 3
Reduction of total simulations needed to explore the design space
for 2 optimization objectives (namely, energy vs. performance or
mem. footprint vs. mem. accesses)

Network
applications

Exhaustive
simulations

Reduced
simulations

Pareto-
optimal

1. Route 1400 271 7
2. URL 500 110 4
3. Firewall 2100 546 6
4. Scheduling 500 60 3

Fig. 4. (a) Performance vs. energy Pareto space of the URL applicati
exploration space in the previous step, we would
have had to perform 400 simulations. Reduction
of total simulations needed to explore the design
space for 2 optimization objectives for all the net-
work applications can be seen in Table 3.
4.5. Output of our exploration framework

The output of our exploration framework is
either a single optimal DDT (if a single optimization
objective was requested, for example energy) or a set
of Pareto-optimal DDTs (if a multi-objective opti-
mization was requested, for example energy vs. per-
formance as seen in Fig. 4). Hence, instead of giving
the designer a single DDT combination, our Pareto
Point Analyzer (as seen in the lower right part of
Fig. 1) parses all the DDT combinations from the
previous step and gives a Pareto-optimal set, repre-
sented by a Pareto curve (also known as Pareto
frontier). Every point in the set is better than any
other solution in at least one metric. That is, it con-
sumes, for example, the least energy under a given
time constraint or it finishes earlier under a given
memory footprint constraint of the embedded sys-
tem. Thus, design constrains can be implemented
directly in the exploration approach and get the best
trade-offs from the final DDT implementation. The
achieved trade-offs that we produce by applying our
methodology in the four applications (see Section 5)
are presented in Table 4. Therefore, Table 4 is an
overview of all the experimental results, within the
context of this paper.

The Pareto space of all the solutions are selected
and our tool produces graphically the Pareto curves
on, (b) Pareto-optimal points for performance vs. energy graph.

Table 4
Trade-offs achieved among Pareto-optimal points

Application Energy (%) Execution time (%) Memory accesses (%) Memory footprint (%)

1. Route 90 20 88 30
2. URL 52 13 70 82
3. IPchains 38 3 87 63
4. DRR 93 48 53 80

Fig. 5. Pareto charts for the route application: (a) execution time vs. energy (table size 128), (b) execution time vs. energy (table size 256),
(c) accesses vs. memory footprint (BWY I).

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 427
that the embedded designer requested in his multi-
objective optimization. For example, three Pareto
curves can be seen in Fig. 5. The rest of the DDT
combinations are discarded (i.e., the discarded
DDT combination are not Pareto-optimal for the
specific network configuration and the specific opti-
mization objectives). Now the designer has a set of
application-tuned, configuration-tuned Pareto-
optimal DDT implementations (usually 3–4 differ-
ent DDT combinations per network configuration),
which are within his design constraints and fulfill
the needs of his multi-objective optimization. The
algorithm, that we implement in order to evaluate
the Pareto Curve can be found in [11]. Our experi-
mental results validate the need of this step, because
we show that different network configurations have
different Pareto-optimal DDT combinations
and thus there is no single, general DDT combina-
tion that serves equally well all the network
configurations.

5. Case studies and simulation results

We apply the proposed methodology to four
realistic case studies, representing different modern
network applications, selected from a broad variety:

428 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
the first one is a routing application, the second one
is a context switching algorithm, the third one is a
firewall application and the fourth one is a schedul-
ing application. All applications are taken from the
NetBench Benchmarking suite [21].

In the following subsections, we briefly describe
the different dynamic data access behavior of the
four case studies (due to the different algorithmic
characteristics). Then, we apply the proposed meth-
odology to explore the combinations of the DDTs
that provide the Pareto-optimal solutions for each
network configuration, in order to minimize the
memory footprint, the number of memory accesses,
the energy consumption and the execution time. In
all of our experiments, we request a set of two
multi-objective optimizations, namely energy vs.
performance and memory accesses vs. memory foot-
print. We have chosen these 2 sets, because these are
the most contradicting optimization factors and
thus the hardest to achieve manually. The Pareto-
optimal combinations for these two sets can be seen
in Tables 6 and 7 in Appendix A. To validate the
correctness of our approach, we compared the
results of our methodology with the results obtained
from a truly exhaustive exploration (i.e., without
any pruning) and we found that they match.

The results were obtained with gcc-3.3.3 on a
Pentium4 1.6 GHz with 512 MB RAM running
Linux kernel 2.6.4. The 512 MB RAM that we use
for our simulation framework limit the number of
traffic traces that we can use during the simulation
of our applications. Every memory access is logged
during the simulation and this means that some
application simulations (namely DRR and URL)
run out of memory before they can finish the simu-
lation of some memory access intensive traffic
traces. All the performance results presented here
are average values after a set of 10 simulations for
each application, where all the final values were very
similar (variations of less than 2%). A set of 10 sim-
ulations are needed because the internal processes of
the Linux kernel sometimes alter the measured exe-
cution time of the simulated applications.

5.1. Methodology applied to a network routing

application

The first case study is the IPv4 routing algorithm
[10]. It implements the table lookup along with the
internet checksum for the header. It makes the
necessary changes to the IP header (e.g., to the
Time-To-Live value), then fragments the packet if
necessary and forwards it. The routing table uses a
radix tree structure (also known as Patricia tree),
which is the data structure to hold both host
addresses and network addresses. The address being
searched for and the addresses in the tree are consid-
ered to be sequences of bits.

Each internal node represents a bit position to
test. This allows the same functions to maintain
and search one tree containing fixed-length 32-bit
Internet addresses. An entry in the routing table
matches a search key, if we perform the logic func-
tion ‘‘AND’’ to the search key with the network
mask of the entry and it equals the entry itself. A
given search key might match multiple entries in
the routing table, with a single table for both net-
work route and host routes, the table must be orga-
nized so that more specific routes are considered
before less specific routes.

In the first step, we determine, which are the
dominant DDTs of the application (i.e., the ones
that are accessed the most). Two dominant DDTs
are present in the Route application. The radix_
node structure that forms the nodes of the tree
and the rtentry structure, which holds the route
entries and contains other useful pointers. This
means that we simulate automatically a maximum
of 100 combinations of DDTs (i.e., 10 different
DDTs for the first dominant data structure com-
bined with 10 different DDTs for the second domi-
nant data structure) to do the exploration at the
application-level.

After the pruning for 2 optimization objectives,
explorations are done at the network configuration
level. For the simulation, 7 network configurations
are used, utilizing 7 different networks (i.e., 2 wired
traces from [23] and 5 wireless from [16]). Addition-
ally, we do the exploration for 2 different network
configuration, which are application-specific,
namely the size of the Radix Tree (i.e., for
128 entries and for 256 entries). The maximum num-
ber of simulations for an exhaustive exploration
would have been 1400 (·7 different networks · 2
application-specific configurations · 100 DDT com-
binations). The number of simulations using our
methodology is reduced to 271 due to the pruning
implemented according to our 2 optimization objec-
tives (we have chosen not to apply any design con-
straints). During the simulation, the log files are
created, containing detailed information concerning
the behavior of the DDTs: the number of memory
accesses, the memory footprint, the dissipated
energy and the execution time.

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 429
For the graphical output, we parse the log files
with the postprocessing tool and we produce the
Pareto-optimal points for memory accesses vs.
memory footprint and execution time vs. energy
(i.e., our chosen optimization objectives). Then,
the Pareto curves are drawn (Fig. 5), giving the
designer a visual aspect of the solutions that we
found. In Fig. 5, the Pareto-optimal curves are
depicted. These curves can be produced for each
combination of metrics essential to the designer.
For example, in Fig. 5b the Pareto-optimal curve
is depicted, for routing a table size of 128 elements
and for 7 different networks. Each network configu-
ration is represented by a curve and each point rep-
resents the combination of DDTs along with the
corresponding values concerning memory accesses,
memory footprint, dissipated energy and execution
time. For example, in Fig. 5b the Pareto-optimal
point within the solid circle is the combination of
AR/DLL DDTs, with energy dissipation 6.4 mJ,
execution time 0.2 s, memory footprint 396,042
Bytes and 5,179,083 accesses. For comparison rea-
sons, if double linked lists were used, the application
would demand 68.8% more memory footprint, 12%
more energy and 12.5% gains in execution time from
the best Pareto-optimal point of each corresponding
metric (Fig. 5b and c). We do not provide compar-
ative results with the initial DDT of the IPv4 appli-
cation (i.e., a tree). As we mention explicitly in
Section 3, the tree DDT was not modeled in our
design search space (due to its very poor locality
attributes); and thus we cannot provide consistent
comparisons with the rest of the modeled DDTs.

Trade-offs can be achieved up to 90% for the dis-
sipated energy, 20% for the execution time, 88% for
the memory accesses and 30% for the memory foot-
print. Comparing these solutions with the remaining
Pareto points, which do not belong to the Pareto-
optimal curve, the gains become bigger. Particu-
larly, we experience a reduction in memory accesses
up to a factor of 8, for memory footprint up to a
factor of 12, for dissipated energy up to a factor
of 11 and for execution time up to a factor of 2.

5.2. Methodology applied to a context switching

algorithm

The second case study is URL-based switching
[21] (referred to as URL from now on), which is a
commonly used context-switching mechanism. In
URL, all the incoming packets to a switch are
parsed and switched according to the URL
requested by it. The algorithm works as follows: a
table with patterns is formed. During the initializa-
tion phase, each pattern corresponds to a specific
kind of data (e.g., to be served by a particular ser-
ver). Therefore, there is a route indicating where
packets containing similar patterns should be for-
warded to. This route is also written to the table
of patterns. During the normal execution phase of
the application, the header of each packet is parsed
and searched to find possible similarities to a pat-
tern in the aforementioned table. Then, the packet
is forwarded to the route corresponding to the pat-
tern match that was found.

Our proposed methodology is applied to URL. In
the first step, the dominant data structures of the
application were located. The first one is class
StrTreeNode (in the initial implementation it
was formed with a single linked list). The second
dominant data structure is a class named Pat-

ternNode, also forming a single linked list. Then,
again the profiling instrumentation of our proposed
framework is inserted and the interface functions
implementing and alternating DDT combinations
and input followed. Without the application of our
pruning step (again for 2 optimization objectives),
we would simulate the application a maximum of
500 times (100 different DDT combinations · 5 dif-
ferent networks) to explore the DDTs at network
configuration level. The number of simulations using
our methodology is reduced to 110. In the third step
of our methodology, the simulation results were
again filtered to get Pareto-optimal points, which
are depicted in Fig. 6.

One can compare Fig. 6 to Fig. 4 to see the reduc-
tion of the Pareto-optimal points compared to the
whole spectrum of available DDT solutions at the
beginning of the third step. Combinations of DDTs
that are not superior in at least one of the metrics
have been rejected (i.e., because they are not Par-
eto-optimal). In URL the best combination of DDTs
in terms of energy gives a 52% reduction in compar-
ison to the most energy-consuming Pareto-optimal
point. This percentage is the average of the five
traces. The corresponding reduction percentage of
time is 13%, of memory footprint 70% and of mem-
ory accesses 82%. Other combinations can take up to
double execution time to run, consume up to 30 times
more energy, have up to 4 times more memory acces-
ses and allocate up to 5 times more memory footprint
comparing to the average of the Pareto-optimal.

A comparison with the initial Netbench DDT
implementations is worthwhile (both DDTs were

Fig. 6. URL application simulated for five different networks (curves). Pareto charts for: (a) execution time vs. energy, (b) memory access
vs. memory footprint.

430 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
implemented as single linked lists). The execution
time is reduced by 20% and energy by 80%. In the
case of this application, it is very hard to pinpoint
the reason for the bad performance of the initial
DDT implementation, because for each network
configuration the combination of optimal DDTs is
very different (as can be seen in Tables 6 and 7 in
Appendix A).

5.3. Methodology applied to a network firewall

The third case study is the IPchains firewall
application [21]. The IPchains algorithm inserts
and deletes rules from the packet filtering section
of the kernel. The kernel starts with three lists of
rules; these lists are called chains. Each chain is a
checklist of rules. Each rule says ‘‘if the packet
header matches certain criteria, then perform a set
of actions to the packet’’. When the rule does not
match the packet, the next rule in the chain is con-
sulted. Finally, when there are no more rules to con-
sult, the kernel looks at the chain policy to decide
what to do. In a security-conscious system, this pol-
icy tells the kernel to reject or deny the packet.

After we insert the profiling instrumentation of
our proposed framework, we determine the domi-
nant DDTs. Two dominant data structures are pres-
ent in IPchains, the structure ip_fw which contains
fields to be filled when adding or replacing a rule
(i.e., the source and destination IP address, name
of the interface via which the packet is received,
TOS value) and the structure ip_fwuser, which
is used when the application is calling some of the
commands of the aforementioned structure. This
results in 100 DDT combinations to be simulated
for these two structures. Then we insert the interface
functions that enable the automated alteration of
DDTs combinations and network traces.

Seven different networks and three application-
specific configurations (i.e., 100, 200 and 500 rules
for the firewall) were used to perform exploration
at the network configuration level. Thus, for an
exhaustive exploration 2100 DDT combinations
would have been simulated (i.e., · 7 networks · 3
application-specific configurations · 100 DDT com-
binations), without implementing our pruning. The
number of simulations using our methodology is
reduced to 546. Initially, simulation with 2 wired
traces from [23] for all the combinations of DDTs,
is performed. Then, the 5 wireless traces from [16]
were used. After using our tools, results were
obtained for each combination of DDTs and with
the use of the developed parsing tool, Pareto-optimal
points for memory accesses vs. memory footprint
and execution time vs. energy have been produced.
In Fig. 7 the Pareto-optimal curves are depicted.
These curves can be produced for each combination
of metrics essential to the designer. For example, in
Fig. 7c the Pareto-optimal curve is depicted, imple-
menting 500 rules and 7 different networks. For each
different network we have the Pareto-optimal curve
and for each point the corresponding values concern-
ing memory accesses, memory footprint, dissipated
energy and execution time. For example, in Fig. 7c
the Pareto-optimal point within the solid circle is
the combination of SLL/DLL DDTs, with energy
dissipation 35.92 mJ, execution time 0.893 s, mem-
ory footprint 4,831,790 Bytes and 4,292,601 accesses.

For comparison purposes, opposed to the double
linked list DDT implementation, the application

Fig. 7. IPchains application. Pareto charts for execution time vs. energy: (a) 100 rules, (b) 200 rules, (c) 500 rules and (d) accesses vs.
memory footprint (BWY I).

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 431
demands 2.5 times more memory footprint and 21%
more energy from the best Pareto-optimal point of
each corresponding metric (Fig. 7c). In the case of
this application, it is very hard to pinpoint the rea-
son for the bad performance of the initial DDT
implementation, because for each network configu-
ration (and more specifically for each number of
rules) the combination of optimal DDTs is very
different (as can be seen in Tables 6 and 7 in
Appendix A).

Nevertheless, we can achieve trade-offs up to 38%
for the dissipated energy, 3% for the execution time,
87% for the memory accesses and 63% for the mem-
ory footprint. Apparently, when we compare these
solutions with the remaining Pareto points, which
do not belong to Pareto-optimal curve, the gains
become bigger, several degrees of magnitude. Partic-
ularly, for memory accesses up to 39, for memory
footprint up to 8, for dissipated energy up to 63
and for execution time up to 8.
5.4. Methodology applied to a network scheduling

application

The fourth case study is the Deficit Round Robin
(DRR from now on) fair scheduling algorithm that
is commonly used for scheduling according to avail-
able bandwidth [27]. The algorithm is implemented
in various switches currently available (e.g., Cisco
12000 series). In the DRR algorithm, the scheduler
visits each internal non-empty queue, increments a
variable called deficit (representing the amount
of data the queue can transmit) by the value quan-
tum and determines the number of bytes in the
packet at the head of the queue. If the variable
deficit is less than the size of the packet at the
head of the queue, then the scheduler moves on to
service the next queue. If the size of the packet at
the head of the queue is less than or equal to the var-
iable deficit, then the variable deficit is
reduced by the number of bytes in the packet and

Fig. 8. DRR application simulated for five different networks (curves). Pareto charts for: (a) execution time vs. energy, (b) memory access
vs. memory footprint.

432 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
the packet is transmitted on the output port. The
scheduler continues this procedure to the rest of
the queues, traversing them in a round robin way.

The dominant data structures in DRR are two:
the first is the class Packets, which is used to cre-
ate and encapsulate the information of the packets
to be scheduled in queues. The second one is the
class Deficit_node, used to create the queue
nodes, in which the packets are stored and
scheduled.

In this case study, we would simulate the applica-
tion 500 times in order to explore the DDT combi-
nations exhaustively (i.e., · 5 networks · 100 DDT
combinations). The number of simulations using
our methodology is reduced to 60. In each simula-
tion 50,000 packets were scheduled, and using five
network configurations taken from five traces of
network traffic from Dartmouth University [16].
After the exploration at application-level, the prun-
ing for 2 optimization objectives and the explora-
tion at network configuration level, the simulation
results were again automatically filtered to get the
Pareto-optimal points depicted in Fig. 8.

In DRR in terms of energy, a 93% reduction was
achieved among Pareto-optimal points. The corre-
sponding percentage of execution time reduction is
48%, of memory footprint 53% and of memory
accesses 80%. Note that these statistics come from
comparisons only among the optimal DDTs. Other
combinations can take more than double the time to
run, 30 times more energy (consumed in the
dynamic memory subsystem) and 4 times more
memory accesses than the average of the Pareto-
optimal. Seventy-nine combinations have been left
out of the above statistics calculations due to their
unacceptably high memory footprint (we considered
40 MBytes as a design constraint).

Finally, a comparison with the initial Netbench
implementation is interesting (both data structures
were initially implemented as single linked lists).
The execution time is reduced by 22% and the
energy consumption is reduced by 80%. The reason
for the bad initial implementation is that the sched-
uling application creates huge lists of many packets
and thus the memory footprint overhead of the
‘next’ pointers in each record of the linked list
becomes very big. Most of our proposed DDT com-
binations (which are arrays or arrays of lists) do not
have such a big memory footprint overhead and
thus can be put in smaller memories (and smaller
memories consume less energy per access).

6. Conclusions

In this paper, we presented a systematic
approach to explore all possible implementations
and combinations of DDTs using a novel methodol-
ogy and supporting an automation framework,
which has led to significant improvements in terms
of energy consumption, execution time, memory
accesses and memory footprint. This methodology
shows, that the choice of an optimal implementa-
tion of a Dynamic Data Type can be flexibly tuned
to the specific needs of each application (according
to algorithmic characteristics), each network con-
figuration (according to the range of network
parameters), each optimization objective and each
embedded system constraint. The design flow meth-
odology was verified under various conditions,
traces and DDT implementations. Furthermore, it

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 433
was shown that we can reach, with the use of our
methodology, significant energy savings and perfor-
mance speedup compared to the original bench-
marks implementation without any increase in
Table 5
The different DDT implementations used

Abbreviation Sequential access count

SLL(AR) 3 · Ne + Na

SLL(ARO) 3 · Ne + Na

DLL(AR) 3 · Ne + Na

DLL(ARO) 3 · Ne + Na

SLL 3 · Ne

SLL(O) 3 · Ne

DLL 3 · Ne

DLL(O) 3 · Ne

AR Na

AR(P) 2 · Na

Ne is the number of elements in the DDT, Na is the number of element in
size of one element of type T.

Table 6
Optimal DDT combination (Pareto point for energy vs. execution time

Network configurations Applications

Route (128 size) URL

BWY I AR/DLL AR/
BWY II DLL(O)/AR AR/
COS – AR/
UFL I – AR/
UFL II – AR/
Berry AR/DLL(O) –
Brown AR/DLL(O) –
Collis AR/DLL(O) –
Sudikoff DLL(O)/DLL –
Whittemore AR/DLL –

The combinations presented here are the ones with less needed time to

Table 7
Optimal DDT combination (Pareto point for memory accesses vs. mem

Network configurations Applications

Route (128 size) URL

BWY I SLL(AR)/SLL(AR) SLL(AR)
BWY II DLL(ARO)/SLL(O) SLL(O)/S
COS – DLL/DL
UFL I – DLL(AR
UFL II – SLL/DLL
Berry SLL(AR)/SLL –
Brown SLL(AR)/SLL –
Collis SLL(AR)/SLL(O) –
Sudikoff SLL(AR)/SLL –
Whittemore SLL(AR)/SLL(ARO) –

The combinations presented here are the ones with less memory footpr
memory footprint and memory accesses. Finally,
trade-offs among the Pareto-optimal choices pro-
vide alternative solutions to the designer. In the
future, we plan to extend the exploration for energy
Random access count Average size

N e

2�Na
þ 3 5sw þ N e

Na
N e

2�Na
þ 3�Na

N e
þ 1 7sw þ N e

Na
� ð3sw þ sTÞ

N e

4�Na
þ 3 6sw þ N e

Na
� ð4sw þ sTÞ

N e

4�Na
þ Na

5�N e
þ 5

4 8sw þ N e

Na
� ð4sw þ sTÞ

N e

2 þ 1 4sw + Ne(2sw + sT)
N e

2 þ 1
N e

6sw + Ne(2sw + sT)
4Ne + 1 5sw + Ne(3sw + sT)
N e

4 þ 2
N e
þ 1

4 7sw + Ne(3sw + sT)
1 Na · sT

2 Na(sT + sw)

the array, sw is the width of a word on the architecture and sT the

) for each network configuration

IPchains (200 rules) DRR

AR DLL(O)/SLL(O) –
AR DLL(O)/DLL(O) –
AR – –
AR – –
AR – –

SLL/SLL(O) AR/AR
DLL/DLL(O) AR(P)/DLL(O)
DLL/SLL(O) AR/AR
DLL(O)/DLL(O) DLL(O)/AR
SLL/DLL(O) AR/AR(P)

finish execution.

ory footprint) for each network configuration

IPchains (200 rules) DRR

/SLL SLL(O)/SLL –
LL(AR) SLL(O)/SLL –
L(O) – –
O)/SLL(AR) – –
(O) – –

AR/AR SLL(AR)/AR
AR/AR SLL(AR)/AR
AR/AR SLL(AR)/AR
AR/AR DLL(ARO)/AR
AR/AR DLL(ARO)/AR

int.

434 S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436
efficient DDTs with the use of complex memory
hierarchies and extend the search space for perfor-
mance-centric DDTs with the tree data structure.

Appendix A

In the appendix, we summarize in Table 5 the
average size, average sequential access count and
the average random access count of each DDT in
our library. In Table 6, we give the multi-objective
Pareto-optimal DDT combinations for all our
applications and different network configurations.
Our objectives in this case are energy consumption
and execution time. In Table 7, we give the multi-
objective Pareto-optimal DDT combinations for
all our applications and different network configura-
tions. Our objectives in this case are memory foot-
print and memory accesses.

References

[1] Alfred V. Aho, John E. Hopcroft, Jeffrey Ullman, J.D.
Ullman, J.E. Hopcroft, Data Structures and Algorithms,
Addison-Wesley Longman Publishing Co., Inc., 1983.

[2] David Atienza, Mark Leeman, J.M. Mendias, Francky
Catthoor, V. de Florio, G. Deckoninck, Some experiences
on dynamic memory management refinement at system-level
for multimedia applications, in: DCIS ’03: Proceedings of the
Conference on Design of Circuits and Integrated Systems,
2003.

[3] Yossi Azar, Yossi Richter, Management of multi-queue
switches in qos networks, Algorithmica 43 (1–2) (2005).

[4] Francisco Barat, Murali Jayapala, Tom Vander Aa, Rudy
Lauwereins, Geert Deconinck, Henk Corporaal, Low power
coarse-grained reconfigurable instruction set processor, in:
Proceedings of the 13th International Workshop Field-
Programmable Logic and Applications (FPL 2003), Septem-
ber 2003.

[5] Luca Benini, Giovanni de Micheli, System-level power
optimization: techniques and tools, ACM Transactions on
Design Automation of Electronic Systems 5 (2) (2000) 115–
192.

[6] Luca Benini, A. Macii, E. Macii, M. Poncino, Increasing
energy efficiency of embedded systems by application-specific
memory hierarchy generation, IEEE Design & Test of
Computers (April–June) (2000) 74–85.

[7] Francky Catthoor, Eddy de Greef, Sven Wuytack, Custom
Memory Management Methodology: Exploration of Mem-
ory Organisation for Embedded Multimedia System Design,
Kluwer Academic Publishers, 1998.

[8] Francky Catthoor, Alexander De Graaf, Reinder Nouta,
Rene Van Leeuwen, et al., Unified Meta-Flow Summary for
Low-Power Data-dominated Applications, Kluwer, 2000.

[9] Angel Dominguez, Sumesh Udayakumaran, Rajeev Barua,
Heap data allocation to scratch-pad memory in embedded
systems, Journal of Embedded Computing (2005).

[10] FreeBSD. freebsd operating system, 2003. <http://www.
freebsd.org>.
[11] Tony Givargis, Frank Vahid, Jorg Henkel, System-level
exploration for pareto-optimal configurations in parameter-
ized systems-on-a-chip, in: ICCAD ’01: Proceedings of the
2001 IEEE/ACM International Conference on Computer-
aided Design, Piscataway, NJ, USA, IEEE Press, 2001, pp.
25–30.

[12] P.A. Green Jr., The art of creating reliable software-
based systems using off-the-shelf software components, in:
SRDS ’97: Proceedings of the 16th Symposium on Reliable
Distributed Systems (SRDS ’97), Washington, DC, USA,
IEEE Computer Society, 1997, p. 118.

[13] J.L. da Silva Jr., M. Sgroi, F. De Bernardinis, S.F. Li, A.
Sangiovanni-Vincentelli, J. Rabaey, Wireless protocols
design: challenges and opportunities, in: CODES ’00: Pro-
ceedings of the 8th International Workshop on Hardware/
software Codesign, New York, NY, USA, ACM Press, 2000,
pp. 147–151.

[14] Julio Leao da Silva Jr., Chantal Ykman-Couvreur, Miguel
Miranda, Kris Croes, Sven Wuytack, Gjalt de Jong, Francky
Catthoor, Diederik Verkest, Paul Six, Hugo De Man,
Efficient system exploration and synthesis of applications
with dynamic data storage and intensive data transfer, in:
DAC ’98: Proceedings of the 35th Annual Conference on
Design Automation, ACM Press, 1998, pp. 76–81.

[15] M. Kandemir, J. Ramanujam, A. Choudhary, Improving
cache locality by a combination of loop and data transfor-
mations, IEEE Transactions on Computers 48 (2) (1999)
159–167.

[16] David Kotz, Kobby Essien, Analysis of a campus-wide
wireless network, in: Proceedings of the 8th Annual Inter-
national Conference on Mobile Computing and Networking,
September 2002, pp. 107–118. Revised and corrected as
Dartmouth CS Technical Report TR2002-432.

[17] Marc Leeman, David Atienza, Francky Catthoor, Geert
Deconinck, Vincenzo de Florio, Jose Manuel Mendias, Rudy
Lauwereins, Methodology for refinement and optimisation
of dynamic memory management for embedded systems in
multimedia applications, in: Proceedings of Signal Process-
ing Symposium (SiPS), Seoul, Korea, August 2003. IEEE
Signal Processing Society and IEEE Circuits and Systems
Society, pp. 369–374.

[18] Marc Leeman, Chantal Ykman, David Atienza, Vincenzo
De Florio, Geert Deconinck, Automated dynamic
memory data type implementation exploration and opti-
mization, in: ISVLSI ’03: Proceedings of the IEEE
Computer Society Annual Symposium on VLSI
(ISVLSI’03), Washington, DC, USA, IEEE Computer
Society, 2003, p. 222.

[19] M. Herlihy, V. Luchangco, M. Moir, W. Scherer, Software
transactional memory for dynamic-sized data structures, in:
Proceedings of the Annual ACM Symposium on Principles
of Distributed Computing, ACM Press, 2003.

[20] Stylianos Mamagkakis, Alexandros Mpartzas, Georgios
Pouiklis, David Atienza, Francky Catthoor, Dimitrios
Soudris, Jose Manuel Mendias, Antonios Thanailakis,
Design of energy efficient wireless networks using dynamic
data type refinement methodology, in: Proceedings of Wired/
Wireless Internet Communications (WWIC 2004), 2004, pp.
26–37.

[21] Gokhan Memik, William H. Mangione-Smith, Wendong
Hu, Netbench: A benchmarking suite for network proces-
sors, in: Proceedings of the 2001 IEEE/ACM International

http://www.freebsd.org
http://www.freebsd.org

S. Mamagkakis et al. / Journal of Systems Architecture 53 (2007) 417–436 435
Conference on Computer-aided Design, IEEE Press, 2001,
pp. 39–42.

[22] Steven S. Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers Inc., 1997.

[23] NLANR, National Laboratory for Applied Network
Research. <http://www.nlanr.net>.

[24] Preeti Ranjan Panda, Franky Catthoor, Nikil D. Dutt, K.
Danckaert, Erik Brockmeyer, C. Kulkarni, Data and mem-
ory optimizations for embedded systems, ACM Transactions
on Design Automation for Embedded Systems (TODAES) 6
(2) (2001) 142–206.

[25] A. Papanikolaou, M. Miranda, F. Catthoor, H. Corporaal,
H. De Man, D. De Roest, M. Stucchi, Karen Maex, Global
interconnect trade-off for technology over memory modules
to application level: case study, in: SLIP ’03: Proceedings of
the 2003 International Workshop on System-Level Intercon-
nect Prediction, New York, NY, USA, ACM Press, 2003,
pp. 125–132.

[26] P. Plauger, A. Stepanov, M. Lee, D. Musser, The Standard
Template Library, Prentice-Hall, 1998.

[27] M. Shreedhar, George Varghese, Efficient fair queueing
using deficit round-robin, IEEE/ACM Transactions on
Networking 4 (3) (1996) 375–385.

[28] S. Steinke, L. Wehmeyer, B. Lee, P. Marwedel, Assigning
program and data objects to scratchpad for energy reduc-
tion, in: DATE ’02: Proceedings of the Conference on
Design, Automation and Test in Europe, Washington, DC,
USA, IEEE Computer Society, 2002, p. 409.

[29] Derick Wood, Data Structures, Algorithms, and Perfor-
mance, Addison-Wesley Longman Publishing Co., Inc.,
1993.

[30] Sven Wuytack, Francky Catthoor, Hugo De Man, Trans-
forming set data types to power optimal data structures, in:
ISLPED ’95: Proceedings of the 1995 International Sympo-
sium on Low power Design, New York, NY, USA, ACM
Press, 1995, pp. 51–56.

[31] Sven Wuytack, Julio Leao da Silva Jr., Francky Catthoor,
Gjalt de Jong, Chantal Ykman-Couvreur, Memory manage-
ment for embedded network applications, in: Readings in
Hardware/Software Co-design, Kluwer Academic Publish-
ers, 2002, ISBN 1-55860-702-1, pp. 465–476.

[32] Ch. Ykman-Couvreur, J. Lambrecht, D. Verkest, F. Catt-
hoor, H. de Man, Exploration and synthesis of dynamic data
sets in telecom network applications, in: ISSS ’99: Proceed-
ings of the 12th International Symposium on System
Synthesis, Washington, DC, USA, IEEE Computer Society,
1999, p. 85.

Stylianos Mamagkakis received his
Diploma in Electrical and Computer
Engineering from the Democritus Uni-
versity of Thrace, Greece, in 2002. He is
currently a senior PhD candidate in
the VLSI Design and Testing Center in
the Democritus University of Thrace.
His research interests include optimiza-
tions in dynamic memory management
on multimedia and wireless network
applications for low power and high

performance, embedded systems using high-level design optimi-
zations. He has published more than 20 papers in international
journals and conferences. He was investigator in four
research projects funded from the Greek Government and
Industry as well as the European Commission. He is a member of
the IEEE.

Alexandros Bartzas received his Diploma
in Electrical and Computer Engineer-
ing from Democritus University of
Thrace, Greece, in 2003. He is currently
a PhD Candidate in the VLSI Design
and Testing Center of Democritus Uni-
versity of Thrace. His research interests
include dynamic memory optimizations,
dynamic data assignment and access
scheduling for embedded systems using
system-level design optimizations. He

was investigator in four research projects funded by the Greek
Government and Industrial Partners, as well as the European

Commission. He is a member of the IEEE.

Georgios Pouiklis received his Diploma
in Electrical and Computer Engineer-
ing from the Democritus University
of Thrace, Greece, in 2003 and his
M.Sc. in 2005 from the same institution.
He is currently a PhD candidate in the
Space Research Laboratory of the
Democritus University of Thrace. His
research interests include embedded
software optimization methodologies
and mixed signal IC design for space

applications. He has been a researcher in three European research
projects funded by the Greek government, the European

Commission and the European Space Agency over the last four
years.

David Atienza received the M.Sc. and
PhD degrees in Computer Science from
Complutense University of Madrid
(UCM), Spain in June 2001 and June
2005, respectively. Currently he is Post-
Doc at the Integrated Systems Labora-
tory at EPFL, Switzerland. He also holds
the position of invited Assistant Profes-
sor at the Computer Architecture and
Automation Department (DACYA) of
UCM. His research interests include

several aspects of design technologies for integrated circuits and
systems, with particular emphasis on dynamic memory man-

agement on embedded systems, flexible Networks-On-Chip
(NoC) interconnection paradigms for Multi-Processors System-
on-Chip, design automation and low-power design. In these
fields, he is reviewer and co-author of various publications in
prestigious journals and international conferences: ACM
TODAES, IEEE Trans. on VLSI Systems, VLSI Journal, Journal
of Embedded Systems, DATE, DAC, etc. Also, he is part of the
Technical Program Committee of the IEEE/ACM DATE
conference.

http://www.nlanr.net

ystems Architecture 53 (2007) 417–436
Francky Catthoor received a Ph.D. in El.
Eng. from the K.U. Leuven, Belgium in

1987. Since then, he has headed several
research domains in the area of archi-
tectural methodologies and system syn-
thesis for embedded multimedia and
telecom applications. His current
research activities mainly belong to the
field of system-level exploration, with
emphasis on data storage/transfer and
concurrency exploitation, both in cus-

tomized and programmable (parallel) instruction-set processors.
All this within the DESICS division at IMEC, Leuven, Belgium

436 S. Mamagkakis et al. / Journal of S
where he is currently a research fellow. He is also professor at the
K.U. Leuven. He has (co-)authored over 500 papers in interna-
tional conferences and journals, and has worked on 8 text books
in this domain. He was the program chair and organizer of sev-
eral conferences including ISSS’97 and SIPS’01.

Dimitrios Soudris received his Diploma
in Electrical Engineering from the Uni-
versity of Patras, Greece, in 1987. He
received the Ph.D. Degree in Electrical
Engineering, from the University of
Patras in 1992. He is currently working
as Assoc. Professor in Dept. of Electrical
and Computer Engineering, Democritus
University of Thrace, Greece. His
research interests include low power
VLSI design, embedded systems design,

and VLSI Signal Processing. He has published more than 150
papers in international journals and conferences. Also, he is co-

editor in two books of Kluwer and Springer. He is leader and
principal investigator in numerous research projects funded from
the Greek Government and Industry as well as the European
Commission (ESPRIT II-III-IV and 5th & 6th IST). He has
served as General Chair and Program Chair for the International
Workshop on Power and Timing Modelling, Optimisation, and
Simulation (PATMOS) and he will be General Chair of IFIP-
VLSI-SOC 2008. Also, he received an award from INTEL and
IBM for the project results of LPGD #25256 (ESPRIT IV) and
awards from Int. Conferences VLSI 2005 and ASP-DAC 05 for
the results of the project AMDREL IST-2001-34379. Finally, he
is a member of the IEEE, the VLSI Systems and Applications
Technical Committee of IEEE CAS and the ACM.

Antonios Thanailakis was born in Greece
on August 5, 1940. He received B.Sc.
degrees in physics and electrical
engineering from the University of
Thessaloniki, Greece, 1964 and 1968,
respectively, and the Msc. and Ph.D.
Degrees in Electrical Engineering and
Electronics from UMIST, Manchester,
UK in 1968 and 1971, respectively. He
has been a Professor of Microelectronics
in Dept. of Electrical and Computer

Eng., Democritus Univ. of Thrace, Xanthi, Greece, since 1977.
He has been active in electronic device and VLSI system design

research since 1968. His current research activities include
microelectronic devices and VLSI systems design. He has pub-
lished a great number of scientific and technical papers, as well as
five textbooks. He was leader for carrying out research and
development projects funded by Greece, EU, or other organiza-
tions on various topics of Microelectronics and VLSI Systems
Design (e.g. NATO, ESPRIT, ACTS, STRIDE).

	Systematic methodology for exploration of performance - Energy trade-offs in network applications using Dynamic Data Type refinement
	Introduction
	Related work
	Dynamic data type search space
	Dynamic data type refinement methodology
	Methodology overview
	DDT exploration at application-level
	Pruning of the DDT results
	DDT exploration at network configuration-level
	Output of our exploration framework

	Case studies and simulation results
	Methodology applied to a network routing application
	Methodology applied to a context switching algorithm
	Methodology applied to a network firewall
	Methodology applied to a network scheduling application

	Conclusions
	Appendix A
	References

