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Abstract. We propose a new real-time load sharing policy (LSP), whigtmaally dispatches the in-
coming workload according to the current availability of thperators. Optimality means here that the
global service permanently requires the engagement of srmaim number of operators while still re-
specting due dates. To cope with inherent randomness dyetator failures as well as non-stationary
fluctuating incoming workload, any optimal LSP rule will mssarily rely on real-time updating mech-
anisms. Accordingly, a permanent monitoring of the traffmrkioad, of the queue contents and of
other relevant dynamic state variables is often realized bgntral workload dispatcher. In this contri-
bution, we abandon such a "classical" approach and we peapbsdly decentralized algorithm which
fulfils the optimal load sharing process. The underlyingsiidialized decisions rely on a "smart tasks"
paradigm in which each incoming task is endowed with an artwus routing decision mechanism.
Incoming jobs hence possess, in this paper, the statusami@ubus agents endowed with "local intelli-
gence". Stigmergic interactions between these agents the®ptimal LSP to emerge. We emphasize
that beside a manifest strict relevance for applications,otass of models is analytically tractable,
a rather uncommon feature when dealing with multi-agentdyins and complex adaptive logistics
systems.

1 General Context

The reduction of manpower or other resource costs is anaster) managerial challenge in any production and
service network. Such contraction of the operating costsooisly relies on an optimized workload sharing be-
tween the available operators. Processing the full incgnvad by using the minimum number of available
operators, while still respecting given due dates, is tldhe basic optimization objective. The operator random
failures as well as the non-stationary fluctuating incomiragkload force the optimal load sharing policy (LSP)
to be based on a permanent monitoring of the system state(eue contents, instantaneous traffic, etc). While
this information updating process, on which our adaptivénogl LSP will be based, is often fulfiled by a cen-
tral dispatcher, our present contribution shows how fulgehtralized mechanisms, of multi-agent type, are also
perfectly suitable to achieve the same objective.

A large body of the available literature focuses attentioriie customer side. Thus, the problem consists in min-
imizing the customers’ average waiting time and, thereftive maximum total load on each server is minimized.
Here, we adopt the complementary point of view of the serpimwider and try to minimize the number of en-
gaged operators while nevertheless respecting due datéesr& as adaptive load balancing, the above mentioned
classical problem has first been addressed using centtaliaeagement (see [3] for instance) and more recently
by using decentralized mechanisms (see [5] among othead} tNat although our model does not, stricto sensu,
optimize customer satisfaction, it allows however to botihimaximum waiting time in the system by an ad-hoc
tuning of control parameters. While numerous aspects af bzdancing and load sharing have been abundantly
discussed over the last three decades, relatively litttenaion is devoted to information gathering costs. Along
these lines, let us mention contribution [4], where with #i@ to minimize the average waiting time, the au-
thors take explicitly into account the monitoring costs.eTitimate goal in [4] is to find a tradeoff between the
benefit and the costs of information gathering needed foraalayptive load sharing mechanism. To that purpose,
an autonomous load sharing mechanism is derived, whichtadgtimally the number of monitored servers to
the current workload. This study is hence somehow relatedegresent work, where our aim is to optimally
determine the number of servers to engage in order to facautinent load.

The present work shares several similarities with wellsna@ongestion control problems arising in the Internet

[1, 2,8, 12, 17] where one tries to regulate the data flows tadasongestion at servers (operators in the present
case and gateways in the Internet). In both cases, the tdtigual is to simultaneously ensure queue stability and
maximization of resource utilization (busy period here imdughputin the Internet framework). To that purpose,

one implements feedback information flows to warn aboutesetengestion. While the presence of randomness
definitely favors flexible and decentralized managemenbth bontexts, there exist however manifest differences.
Indeed, the agent character is in the present paper caryid¢idebtasks themselves while it is managed for the

most part by the servers in the Internet. While in congestamtrol problems, fairness between the different users
(in terms of throughput or delay) is essential, this featsreot required in the present case. Furthermore, it is
common in congestion control mechanisms to use randonimizatdiscard packets when a buffer gets congested


https://core.ac.uk/display/147946919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and hence ensure that fairness between users. On the gonwae is used in our framework to dispatch the

tasks between the servers, hence forming a noise-induabilityt mechanism. Several congestion control rules

[8, 12, 17] generate stable oscillations of the queue cormted these will also be observed here. In both cases,
the oscillations are due to the presence of informationydeléhe underlying controller, a phenomena thoroughly

investigated for self-interested agents competing forrmomresources [14].

The dynamics to be discussed here exhibits optimal loadrghantirely due to decentralized history-based rout-
ing mechanisms. The complete lack of central managemenggdknts’ autonomy, their ability to learn and the
stigmergic agent type of interactions imply that our clagsnodels belongs to the field of Complex Adaptive
Logistics Systems (CALS). Instances of CALS might also gyaeén the framework of supply chains. In [19],
the need, in supply chain management, for coordinatiotesfies leading to adaptive, flexible and collective be-
haviours is exhibited and it is showed that coherent globaBliour can be generated by using only elementary
components with local interactions. This contributionleikps how basic concepts and operational tools of Com-
plex Adaptive Systems (CAS) fit naturally and efficiently toacacterize the supply chains dynamics. In this
context, contributions [18, 19] expose the dynamics of sngieueing systems (QSs) for which feedback loops
and delays coexist and yield temporal oscillations of theugucontents. While the relevance and legitimacy of
CAS have since long been emphasized in basic sciemneephysics, chemistry and biology), it is remarkable
that CAS also strongly enter into the engineering world ghample in logistics [13, 21], in traffic issues [15] and
in production and service systems [9, 10, 11]. Note in addithat, besides its direct relevance to load sharing
problems, the analytical tractability of the present clafsmodels contributes to enrich the, so far, short list of an-
alytically solvable CALS. In closing, we emphasize that agnseveral possibilities to implement our algorithm,
Radio-Frequency-ldentification-Devices (RFID) attackedhe incoming tasks provide a natural solution. The
available RFID technology now directly allows for a wide ilmmentation of local intelligence to circulating items
in production systems, as it is testified in [6, 16, 20], whésiplore how this technology leads to an effective and
efficient management of business processes.

In section 2, we describe our basic modelling frameworkeletisn 3, we introduce our multi-agent type dynamic
load sharing algorithm. In section 4, we study the emergeficelf-organized stable load sharing, by using
analytical considerations as well as simulation resuttshé Appendix, we describe in more details the oscillatory
behaviour that appears in the queue content dynamics.

2 Basic Modelling Framework

We consider a production center fed by an incoming flow ofsaskdelled by a non-stationary, random renewal
process with raté (t). The production center is therefore a generic QS Witparallel servers. Each incoming
taskj (j € N) requires a specific amould > 0 of processing time. The;’s are characterized by i.i.d. random
variables with general probability distribution, whoseanés fixed to 1.

The objective is to realize an optimal load sharing policfirae by:

(0): Optimal Load Sharing Policy (LSP)

i) "Process the global incoming workload by permanently engaigpg the minimal number
of available servers" or equivalently, using QS terminologymaximize the busy period
of the engaged servers".

i) "Keep the average waiting time below a given level".

To achieve the objectivé’, one can rely either on a centralized solutiar.(a central dispatcher) or on ad-hoc
decentralized control mechanisms. Our aim here is to @by using a multi-agent decentralized framework.
Such decentralization permanently ensures strong réscéind high flexibility to cope with random and non-

stationary environments. In the sequel, we assume nomptae LSP {.e. a task cannot be transferred from one
server to another after its execution has started).

Server Parameters. A serverMy, a € {1,2,...,N}, is characterized by:
i) its processing ratgq,
i) its queue capacity parameféy > 0, that plays the role of a congestion threshold,
iii) atwo states ("open" or "close") warning semaphgyecontrolled by the queue capacity paraméfgr

"Smart Task" Agent Character of Incoming Jobs. Each incoming task has the capability to:

i) record its sojourn time spent into the system.¢. T =W +V, W being the waiting time in the queue avid
the processing time),

ii) identify the serven, a € {1,2,...,N}, that did process the task,

iif) compute a set of individual dispatching probabilites, a € {1,2,...,N — 1}, that characterize, for each
task, an autonomous routing strategy,



iv) read the state of the semaphoBssattached to each server.

As we assumed the incoming task size to be i.i.d. with meamelsérvice times d¥l, inherit the randomness and
are hence also i.i.d. random variables with identical distron and meaq};.

3 Multi-Agent Type Algorithm
A "smart task" behaves as follows:

i) On entry:
An incoming task first reads the stateSf If S; is open, the task entekd;. If S is closed, the task routing
is: enterM; with probability p; and, with probability(1 — p;), read the state @, to tentatively joinM,. If
S is open therM, processes the task. % is closed, the task enters with probabiljgy into M, and with
probability (1 — py) reads the state @& to tentatively joinMs. The rule is then applied iteratively.

i) On exit:
If the sojourn timer; o of the outgoing tasKj (j € N), processed byly, exceed¥y (i.€. Tj ¢ > €a) then(j
setsS, to the statéclosed" In words, when a task processedMy has spen%y in the system, it triggers
immediately the closing 0§, even if the processing is not yet completed. Converselyxith grovided
Tja < %q, {j sets to the statéopen”

Note that, even when a semaph8seis closed, g4-based partial incoming traffic continues to be processeal by
congested servd,. The tasks joining such an overloaded server ultimatelplertae reopening of the associated
semaphore as soon as the workload becomes undercritical @ < €x).

The ability for each travelling task to monitor informatitait by predecessors and to process this information to
autonomously decide its routing strategy confers to thizaglyics a manifest adaptive multi-agent character (see
Figure 1 for a summarizing sketch of the model).
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Figure 1: N-parallel servers queueing system with decentralized $bating mechanism.



4 Emergence of Optimal Load Sharing Dynamics

From now on, we assume that the numbeof potentially available servers is sufficient to always diarthe
offered workloadi.e.
At)

z’c;l:l Ha
By the construction of the multi-agent dynamics, given icties 3, our LSP automatically ensures permaneintly
the engagement of the minimal number of serversigrglieue stability. As exposed in the Appendix, we observe
(see Figure 2) that for large enoufgy’s, a € {1,...,N}, the queue contents exhibit stable temporal oscillations
whose maximum values are given by:

<1

a—1
Qmax1 = G1A (t) — 1, Qmaxa = GaA(t) rl (1-p)—1, ae{2,..,N}. 1)

i=
Tuned by the control paramete®s, a € {1,...,N}, these maximum possible queue contents can be used to
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Figure 2: Left Temporal evolution of the queue contents for interarriiales uniformly distributed ir{0.16;0.36]
(A(t) =3.8), K =10, service times uniformly distributed |8.5;1.5] (U1 = o = U3 = s =1), 61 =b2=C3 =64 =
26 andeg =0.22—0.7(a — 1), a € {1,2,3}. Right Corresponding server utilization.

calibrate the waiting room sizes and hence, due to Littke/g to limit the task waiting times. In particular, tasks
subject to deadlines can be handled within the present fkanke As shown in the Appendix, it is here worth to
emphasize that the queue content of the engaged serversvaaighes, thus ensuring maximum busy period and
hence optimal load sharing.

Let us now discuss in more details the role played by the tijieg probabilitiespg, introduced in Section 2.
Remember that a congested server continues to be fed by @eckohcoming flow with rate:

p1A (t) for serveMy, and
paA () (1 pi) for serveMy, a € {2,...,N}.

Consequently, after a congestion occurs, the queue indfdhe congested server will effectively decrease iff the
following condition is satisfied:

p1A(t) — 1 <0 for serveiM,, and @)
PaA ()% (1~ pi) — Ha <O for serveMg, a € {2,...,N}.

To fulfil condition (2) the dispatching probabilities;, o € {1,...,N — 1}, have to be chosen as:

_ M
P1= ) &
and p
a
Pa = — — &, 0€{2,..,N—-1}
AONEL (A= p)

with )\“—(%) >¢e >0 andW’w > & >0,a €{2,..,N—1}. This choice ensures stability of the queue

i=1 \* M

contents. The smaller the value of thgs is, the closer to optimality the load sharing i®( the busy period of
the engaged servdf, convergesto 1 wheg, — 0). A too drastic reduction of the partial traffielarge= pq



small) yields poor reactivity of the system. Indeed, theiltesy long delay before the reopening of the semaphore
is likely to empty the queue, thus leading to a decrease dfuisg period.

As noted in [4], the incoming flow rat& (t) can itself be estimated, in real-time, by elementary agesigent
interactive mechanisms. This ultimately enables each §ask € N, to estimate autonomously the ad-hoc dis-
patching probabilitie, j, a € {1,...,N — 1}, which characterize its routing strategy. With this, oadsharing
algorithm becomes fully decentralized, all routing demisi being taken by the circulating items themselves. One
possibility to implement such a decentralized traffic eation reads as follows:

Multi-Agent Type Traffic Load Estimator. Each task{; (i € N) stores, upon arrival, its entry tintein the
system on a register permanently accessible to the othles. tashe traffic estimatoﬂj (t), computed by the
incoming task{j (j € N), relies on an observation window of sike {j reads the entry-timg_x of the Kth
preceding task and estimates the instantaneous traffic by:

— ti—ti_k
M) ==

As clearly illustrated in Figure 2, this very rough estinoatbf the global incoming traffic is sufficient to complete
the overall objectivey and this, despite the underlying randomness. There is ablji@n optimal trade-off to
select an appropriate value of the observation windowaluing mostly the reactivity, we prefer small values of
K for the observation window. As illustrated in Figure 3, simalues ofK lead indeed to highly reactive response
(i.e. the length of the transient adaptive phase is almost nédgigi This is in particular perfectly suitable for
non-stationary incoming traffic load.
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Figure 3: Temporal evolution of the queue contents for service timesformly distributed in [0.5;1.5]
(M=to=Mz=Wa=1), €4 =6, =63 =4 =26 andeg = 0.22—0.7(a — 1), a € {1,2,3}. Interarrival times
uniformly distributed in[0.32;072] (A(t) = 1.9) for 0 <t < 450 and uniformly distributed ifD.16;0.36] (A (t) = 3.8)
fort > 450,K = 10.

Quantitatively, the length of the adaptive phase thus oapethds on the effective delay between the time a conges-
tion effectively occurs and the time it is detected. Thisagiefor serveiMy, is equal tdé, (see the Appendix for
more details). Note that depending on the specific managesseres, larger observation windoWscould also

be selected whenever smooth reactions are required famsysgliability or to avoid large set-up costs. Observe
that most internet congestion control mechanisms rely latively large values oK for the observation window

to smoothly react to bursty traffic.

5 Conclusion and Perspectives

In a competitive environment, to attract new and to keeplloyatomers is the basic concern of any service
provider, which definitely requires a high service custatian to match all specific demands. Service customiza-
tion affects both the quantity and the nature of the incondegiands. Focusing on quantitative aspects, one
should clearly expect that high service customization ssmaly leads to non-stationary and highly fluctuating
rate of the service demand. Hence, constructing efficiemicgepolicies able, in such random and time-dependent
environments, to entirely fulfil customer satisfaction lghnaintaining the operating costs at the lowest possible
level is definitely a complex challenge. The ubiquitous istationary and fluctuating nature of the underlying de-
mand imposes flexibility and reactivity to be key charast@s of any efficient algorithm required by the system
management. Among other classical problems, we focus hetbeoconstruction of an optimal service policy



which enables the sharing of the global incoming workloatveen a set of available servers. In general, such a
load sharing policy will be achieved by a central operatoicWldispatches, by an on-going real-time information
gathering of a set of relevant system state variables, t@iimg jobs among the available servers. Leaving aside
such a centralized point of view and hence following a vigsreecent trend emerging in production and service
systems, we explicitly show how the same task can also begibrfealized using a fully decentralized algorithm.
Our basic idea relies on a multi-agent perspective implyiregservice management to be performed by the jobs
themselvesi(e. "smart tasks" paradigm). We are able to explicitly show hotoaomous smart tasks can ensure,
in real-time, that the global load is processed by the mimmmumber of engaged operators while permanently
avoiding the system to get congested. The intrinsic siriplaf our algorithm, the analytical tractability of our
models which offers an intimate understanding of the ojrggatynamics and, finally, the possibility, using RFID
(i.e. Radio-Frequency-ldentification-Devices), to confer atbaamous agent character to incoming jobs, clearly
suggest how the implementation could actually be reali@ed.present basic model offers several possibilities for
refinements to cover realistic situations. For exampleriéss” issues could be addressed by adding an additional
mechanism which would ultimately ensure that all incomiagks wait in average the same time before being
served.
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7 Appendix: Queue Content Oscillatory Behaviour - Siphon Dyiamics

We discuss here in more details the emergence of the tempse#iations observed for the queue contents, as
illustrated in Figure 2. We focus, for the discussion of teimporal oscillatory behaviour, on a deterministic ap-
proach. This approach, due to the law of large numbers (LiSNg|so relevant in presence of fluctuations when
the¢y’s, a € {1,...,N}, are sufficiently largeife. quasi-deterministic stable cyclo-stationary queue lagmhs
emerge independently of the inter-arrival and service tiistxibutions). Note qualitatively that the relative impo
tance of the fluctuations around the task average sojourn(iivhich is the sum of the preceding tasks individual
processing times) decreases for large queue coQigft) (a quantitative characterization is given in [7]). Figure
4 explicitly exhibits that the larger tHé,’s are, the smoother the oscillations are.
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Figure 4: Left Temporal evolution of the queue contents for interarriiales uniformly distributed ir{0.16;0.36]
(A(t) =3.8), K =10, service times uniformly distributed |8.5;15] (U1 = o = U3 = s =1), 61 =b2=C3=64=
200 andsq =0.22—0.7(ar — 1), o € {1, 2,3}. The smoothing effect due to the underlying LLN is manifgestbservable
by comparing Figures 2 and Right Corresponding server utilization.

Along the lines exposed in [7], we start by characterizirgydhcillations of the first queue contédi(t). During
an initial phaseQ;(t) increases at rat& (t) — y1, the whole trafficA (t) is indeed dispatched til;, which is
not yet overloadedM; is considered as congested whei(t) reaches the levedi iy — 1. Indeed, at this time,
a newly incoming task(j will spend in averag& in the systemi(e. its mean waiting time will be equal to

(€11 —1) u_ll =% — i and its processing time will be equal in average&gc). The queueQ;(t) reaches its
auto-siphoning threshold when the congestion is first dedeevhich happens whefj did wait 67 in the system.
This then starts a second operating phase during wQich) decreases at raf@A (t) — u3. This second phase
lasts until a task detects thisly is not congested anymore, this happens after a time d@layitiated whenQ (t)

reached again the leveh s — 1. The alternance between these two operating phasessgeeee content stable



oscillations whose amplitud® and period1; are respectively given by :
A= (1— pl) 1A (t)

and
pPri—piA(t)  A()—ph
A)—pr p—piA(t) ]
The maximum and minimum values of these oscillations arergrespectively by Eq. (1) and

Qmin1 = P161A(t) — 1.

To understand the underlying delay mechanism, it is erdiging to visualize the queue dynamics by using the
hydrodynamic analogy sketched in Figure 5. We emphasizectirdrary to the flow dynamics discussed in [7]
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Figure 5: Hydrodynamic analogyLeft: The task entering dp is the first one of a whole clustéf of tasks that will
detect congestion. This task triggers the alternatiof) from the increasing to the decreasing statg at¢i1. The
last task belonging to clustéf is the one entering the system just befarend triggers the switch d4(t) from the
decreasing to the increasing stateiat ©7. This simple delay dynamics repeats and creates stabléatiscis of the
queue contentRight: The “Tantalus glass” siphon model. The water level corradpdo the queue leng®;(t). The
continuous inflow and outflow rates are respectively giverd tty and ;. The periodic alternate siphoning outflow is
(1—p1) A(t). The siphon leaves a water residue of heigfit1A (t) — 1, due to the continuous inflow durirg. The
effective siphon length i€l — p;) €14 (1).

where there is a feedback loop fed by physical items, herietiaback is purely informational§. the items leave
the system after service but deliver an indicative feedlbatke following tasks).

The oscillation frequency dq (t), a € {2,...,N}, are identical t&Q4(t), hence
Mg =M1, ae{2,.. N}

This is illustrated in Figures 6 and 7 (respectively coroegbing to Figures 2 and 4), where we exhibit the Fourier
componentsi(e. the spectrum) of the queue dynamics obtained by simulatiosrhall, respectively large, values
of ¢», a € {1,...,N}. As expected, for large values &}, the spectrum exhibits a sharp mode.(the signal-to-
noise ratio is enhanced).

For serverdg, a € {2,...,N}, the oscillations exhibit an additional structure. NanfelyQq (t), a € {2,...,N},
it exists an alternation between three distinct operathmagsps:

i) When all the serverdlg, B € {1,...,a — 1}, are overloaded and hence their semaphores are clbked,

receives a traffic with rate:
a-1

A(t) ﬂ (1-p).

Indeed, from the full incoming workloadi(t), one has to substract tipg-based partial traffics, that feed the
congested servers. As a consequence, during this pRadg,increases at raté(t) i";ll (1-pi) — Ua-

ii) Once serveM, becomes congesteQq (t) starts to empty. Provided all servevis, 3 < {1,...,a — 1},
remain congested, the incoming traffic continues to be titieal toMy. As My is congested, it only
receives @q-based part of this traffic an@q (t) hence decreases at rgggA (t) [195* (1 - pi) — Ha-

iii) Whenever one among the servédg, B € {1,...,a — 1}, is no longer congested (therefore its semaphore
has been reopened), this server attracts the full incomorglead and henchl, is not fed anymore. Thus,
Qqu (t) decreases at rately.
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Figure 6: Spectrum of the queue content dynamics for interarrivalesinuniformly distributed in[0.16;0.36|
(A(t) =3.8), K =10, service times uniformly distributed |8.5; 15| (L1 = o = Uz =y =1), 1 =6r =63 =64 =
26 andey = 0.22—0.7(a — 1), a € {1,2,3}.

The alternance between these three phases is completelynieed by the queue dynamics of the yet engaged
servers. Basically, the time at which a queue starts to ennjgigers the feeding of the next server to be en-

gaged. The oscillatory behavior@f (t), a € {2,...,N}, is characterized by maximum and minimum values given
respectively by Eqg. (1) and:

a—1

Qmina = GaPaA(t) Ij! (1-p)—1, ae{2,...,N}L

Consequently, the amplitude of these queue content dsmilkais given by:

Q

Do =FaAt)[]1(1—pi), ae{2,..,N}
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