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1. Introduction

Let A be a complete excellent local domain of Krull dimension 2 and K its field of fractions. We further
assume that 2 is invertible in A and that the residue field of A is algebraically closed. We first show
that the unramified Brauer group of K (with respect to all discrete valuations of K) vanishes. Using this
result we prove that every rank 4 quadratic form which is isotropic in all completions of K with respect
to discrete valuations, is isotropic. For K = C((x, y)) this was announced by P. Jaworski in 1999, at a
conference on quadratic forms in Oberwolfach. The results presented here, obtained immediately after
the conference, are a consequence of our efforts to give a short proof of Jaworski’s announcement. They
subsequently led to various generalizations, notably in the case when the residue field of A is real closed
(see [1] and, for further developments, [2] and [3]). Jaworski’s proof has now appeared as well [6].

2. The unramified Brauer group

Let A be as above and m its maximal ideal. Let π : X → Spec(A) be a desingularization [8] of Spec(A).
Since X is obtained from Spec(A) by a sequence of blowing ups and normalizations, the map π is proper.
We denote by Xn the fibre of Spec(A/mn+1).
We prove a result (Lemma 2.2) in the spirit of Lemma 3.3 of [5].

Lemma 2.1. The natural maps
Pic(Xn) → Pic(Xn+1)

are surjective.

Proof. This follows from the exact sequence of sheaves

0 −→ mnOX

mn+1OX
−→

( OX

mn+1OX

)∗
−→

( OX

mnOX

)∗
−→ 1 ,

noting that

H2
(
X,

mnOX

mn+1OX

)
= H2

(
X0,

mnOX

mn+1OX

)
= 0

because X0 is of dimension 1.

Lemma 2.2. The canonical homomorphism

Br(X) → lim
←

Br(Xn)

is injective.

Proof. Let A be an Azuamya algebra over X. Denote by An the algebra obtained from A under base
change from X to Xn and suppose that it is trivial for each n. Let

un : An
∼→End(Vn)

be an isomorphism, where Vn is a locally free sheaf on Xn. The sheaf Vn is determined by An up to a
line bundle. By Lemma 2.1 we can successively modify each Vn in such a way that Vn is isomorphic to
Vn+1 ⊗OXn+1

OXn
. In this case the isomorphisms un also form a projective system. By [5], 5.1.4, the

projective system (Vn, n ∈ N) gives a locally free OX -module V and an isomorphism

u : A ∼→End(V ) .
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Corollary 2.3. The Brauer group of X is trivial. In particular, the unramified Brauer group of K is
trivial.

Proof. In fact, since Xn is a curve over Spec(A/mn+1) and A/m is algebraically closed, Br(Xn) = 0 (See
[5], page 101). By a well-known purity theorem ([4], Proposition 2.3) an unramified element of Br(K) is
in the image of Br(X) → Br(K) and hence is zero.

3. Quadratic forms

Theorem. Let A be a complete excellent local domain of Krull dimension 2 and K its field of fractions.
Assume that 2 is invertible in A and that the residue field of A is algebraically closed. Every rank
4 quadratic form q over K which is isotropic over every completion of K at a discrete valuation, is
isotropic.

Proof. After scaling we may assume that q =< 1, a, b, abd > with a, b, d ∈ K∗. If d is a square, then q is
the norm form of the quaternion algebra A =

(
a,b
K

)
. The condition that q is isotropic at all completions

implies that A is split at all completions of K. In particular A is unramified in Br(K) and hence, by
2.3, is zero. In particular, q is hyperbolic.
Suppose now that d is not a square. Let L = K(

√
d). The field L satisfies the same assumptions as K.

The form qL over L has trivial discriminant and is isotropic at all completions of L at discrete valuations.
By the previous case, qL is hyperbolic. The form q therefore contains a multiple of < 1,−d > ([7], Ch. 7,
Lemma 3.1) and, being of discriminant d, also contains a subform of discriminant 1. Hence q is isotropic.

References

1. J.-L. Colliot-Thélène, M. Ojanguren and R. Parimala, Quadratic forms over fraction fields of two-dimensional henselian
rings and Brauer groups of related schemes, Proceedings of the International Colloquium on ‘Algebra, Arithmetic &
Geometry’ held at T.I.F.R., Mumbai, 2000.

2. J.-L. Colliot-Thélène, Ph. Gille et R. Parimala, Arithmétique des groupes algébriques linéaires sur certains corps
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