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Abstract

Let g be the Lie algebra of a semisimple linear algebraic group. Under mild conditions on the characteristic of the
underlying field, one can show that any subalgebra of g consisting of nilpotent elements is contained in some Borel
subalgebra. In this note, we provide examples for each semisimple group G and for each of the torsion primes for G
of nil subalgebras not lying in any Borel subalgebra of g. To cite this article: P. Levy, G. McNinch, D. Testerman
C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Soit g l’algèbre de Lie d’un groupe algébrique linéaire semi-simple. Si on impose certaines conditions sur la ca-
ractéristique du corps de définition, on peut montrer que toute sous-algèbre de g ne contenant que des éléments
nilpotents est contenue dans une sous-algèbre de Borel. Dans cette note, nous donnons des exemples pour chaque
groupe semi-simple G et pour chacun des nombres premiers de torsion pour G des sous-algèbres d’éléments nilpo-
tents qui ne sont contenues dans aucune sous-algèbre de Borel de g. Pour citer cet article : P. Levy, G. McNinch,
D. Testerman C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Version française abrégée

Soit k un corps algébriquement clos de caractéristique p > 0. Par ‘groupe algébrique sur k’ nous
entendons un schéma en groupes affine de type fini sur k. Soit G un groupe algébrique semi-simple défini
sur k (G est lisse et connexe) et soit U un sous-groupe (algébrique) unipotent de G. Si U est réduit, on
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sait que U est contenu dans un sous-groupe de Borel de G (cf. [6, 30.4]). Nous nous intéressons au cas où
U n’est pas réduit, plus précisément au cas des p-sous-algèbres de Lie de Lie(G).
Theorem 0.1 Supposons que p ne soit pas un nombre premier de torsion de G. Alors tout sous-groupe
unipotent (non nécessairement réduit) de G est contenu dans un sous-groupe de Borel de G.

La démonstration repose essentiellement sur Theorem A de [9].
Theorem 0.2 Supposons que p soit un nombre premier de torsion pour G. Il existe un sous-groupe
unipotent de G, de dimension 0, qui n’est contenu dans aucun sous-groupe de Borel de G.

On démontre ce théorème en construisant des p-sous-algèbres de Lie de Lie(G), formées d’éléments
nilpotents, et qui ne sont contenues dans aucune sous-algèbre de Borel. Il y a deux types de constructions :

a) Si G̃→ G est le revêtement universel de G et p divise l’ordre du noyau (schématique) de G̃→ G, on
peut construire une p-sous-algèbre commutative de Lie(G), formée d’éléments nilpotents, dont l’image
réciproque dans Lie(G̃) n’est pas commutative ; une telle sous-algèbre n’est pas contenue dans une
sous-algèbre de Borel de G. Lorsque G est simple, l’algèbre ainsi construite est de dimension 2, et elle
est annulée par la puissance p-ième.

b) Si p est de torsion pour le système de racines de G (par exemple p = 2, 3, ou 5 si G est de type E8),
il existe une p-sous-algèbre commutative de Lie(G), de dimension 3, annulée par la puissance p-ième,
et non contenue dans une sous-algèbre de Borel.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0 and let G be a semisimple linear algebraic
group over k. Let g be the Lie algebra of G. Under mild conditions on G and p it is straightforward to
show that any nil subalgebra of g, that is, a subalgebra consisting of nilpotent elements, is contained in
a Borel subalgebra (see §2 below). J.-P. Serre has asked the following question: is it true that if p is a
torsion prime for G then there exists a nil subalgebra of g which is contained in no Borel subalgebra?
In this note, we establish a positive answer to this question. Moreover, if p is not a torsion prime for G,
every nil subalgebra of g lies in a Borel subalgebra. Our argument in fact applies to the more general
setting of unipotent subgroup schemes of a semisimple group scheme over k.

We outline two separate cases. In the first case, assume that G is simply connected. The scheme-
theoretic centre Z of G is a finite group scheme. Now by a Heisenberg-type subalgebra of g, we mean a
p-subalgebra which is a central extension of an abelian nil algebra by a 1-dimensional algebra. If p divides
the order of Z, we exhibit a Heisenberg-type restricted subalgebra of g whose centre is central in g. This
gives a construction of a suitable nil algebra in Lie(Gad), where Gad is the corresponding adjoint group.
In [3], Borel, Friedman and Morgan study a similar situation. More precisely, for K a compact, connected
and semisimple Lie group with simply connected cover K̂, they study pairs and triples of elements in
K̂ whose images commute in K. Secondly, assume p is a torsion prime for the root system of G. Then
we will exhibit a commutative 3-dimensional restricted nil subalgebra of g which is not contained in any
Borel subalgebra.

In [5], Draisma, Kraft and Kuttler study subspaces of g, rather than subalgebras, consisting of nilpotent
elements. Under certain restrictions on p, they show that the dimension of such a subspace is bounded
above by the dimension of the nil-radical of a Borel subalgebra. Moreover, they show that when the
restrictions on the prime are relaxed there exist subspaces of this maximal possible dimension which do
not lie in a Borel subalgebra. We refer the reader as well to the article of Vasiu ([11]) in which he studies
normal unipotent subgroup schemes of reductive groups.
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2. Good characteristics

Throughout this note, k is an algebraically closed field of characteristic p > 0. By ‘linear algebraic
group defined over k’ we mean an affine group scheme of finite type over k. Let G be a semisimple linear
algebraic group over k; in particular, G is a smooth group scheme with restricted Lie algebra g, the
p-operation being denoted by X 7→ Xp. Let T be a fixed maximal torus of G, W = W (G,T ) the Weyl
group of G, Φ = Φ(G,T ) the root system, Φ+ a positive system in Φ, ∆ = {α1, . . . , α`} the corresponding
basis and B ⊂ G the associated Borel subgroup containing T . For α ∈ Φ, let α∨ denote the corresponding
coroot. If Φ is an irreducible root system then there is a unique root of maximal height with respect to ∆,
noted here by β. Write β =

∑`
i=1miαi and β∨ =

∑`
1m
′
iα
∨
i . Recall that p is bad for Φ if mi = p for some

i, 1 ≤ i ≤ `, and p is torsion for Φ if m′i = p for some i, 1 ≤ i ≤ `. (If the Dynkin diagram is simply-laced
then mi = m′i for all i.) We say that p is good for Φ if p is not bad for Φ and that p is very good for Φ
if p is good for Φ and p - (`+ 1) when Φ is of type A`. Finally, we will say p is good, (respectively, very
good) for G if p is good (resp. very good) for every irreducible component of Φ = Φ(G,T ). We will say
that p is bad for G if p is bad for some irreducible component of Φ and that p is torsion for G if p is
torsion for some irreducible component of Φ or p divides the order of the fundamental group of G.

Before considering the case of non-torsion primes, we introduce one further definition:
Definition 2.1 ([1, Exposé XVII, 1.1]) An algebraic group U over k is said to be unipotent if U admits
a composition series whose successive quotients are isomorphic to some subgroup scheme of the algebraic
group Ga.

We include the proof of the following theorem which follows directly from the literature in the case of
very good primes.
Theorem 2.2 Let G be a semisimple group and p a non-torsion prime for G. Let U be a unipotent
subgroup scheme of G. Then U is contained in a Borel subgroup of G.
Proof. Consider first the case where G is of type A`. The result follows from [1, 3.2, Exposé XVII]
and induction if G = SL`+1. For the other cases, as p does not divide the order of the fundamental group
of G, we have a separable isogeny π : SL`+1 → G which induces a bijection on the set of Borel subgroups,
whence the result follows.

In case G = Sp2`, we argue similarly: a unipotent subgroup of G fixes a nonzero, isotropic vector in the
natural representation of G and again by induction lies in a Borel subgroup of G. Indeed, this argument
works as well for the orthogonal groups when p 6= 2.

Consider now the case where G = G2 and p = 3. By the result for SO7, we know that U fixes a
nontrivial singular vector in the action of G on its 7-dimensional orthogonal representation. One checks
that the stabilizer of such a vector is a parabolic subgroup of G2. Indeed this is clear for the group of
k-points as the long root parabolic lies in the stabilizer and is a maximal subgroup. One checks directly
that the stabilizer in g of a maximal vector with respect to the fixed Borel subgroup is indeed a parabolic
subalgebra with Levi factor a long root sl2.

Now consider the case where p is a very good prime for G. As G is separably isogenous to a simply
connected group, we may take G to be simply connected. Then G satisfies the following so-called standard
hypotheses for a reductive group G (cf. [7, 5.8]):
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– p is good for each irreducible component of the root system of G,
– the derived subgroup (G,G) is simply connected, and
– there exists a non-degenerate G-equivariant symmetric bilinear form κ : g× g→ k.

We proceed by induction on dimG, the case where dimG = 3 and G = SL2 having been handled
above. By [1, Exposé XVII, 3.5], U has a nontrivial center Z(U) and either there exists X ∈ Lie(Z(U))
with Xp = 0 and so U ⊂ CG(X) or there exists u ∈ Z(U) with up = 1 and U ⊂ CG(u). Then applying
Theorem A of [9], together with a Springer isomorphism between the variety of nilpotent elements and
the variety of unipotent elements, we have that U lies in a proper parabolic subgroup P of G. Let L be a
Levi subgroup of P ; then L satisfies the standard hypotheses as well. Taking the image of U in P/Ru(P ),
we obtain a unipotent subgroup scheme of (L,L) which is, by induction on the dimension of G, contained
in a Borel subgroup BL of L. We then have that BL ·Ru(P ) is a Borel subgroup of G containing U .

It remains to consider the case where the root system of G is not irreducible and p is not a very good
prime for G. In this case, G is separably isogenous to a direct product of simply connected almost simple
groups, and the result follows as in the case of type A` above.

We note that the conclusion of the proposition holds for reduced unipotent subgroup schemes even if
the characteristic is a torsion prime for G. (See [6, 30.4].)

Before presenting our examples, we fix some additional notation. If G is separably isogenous to a simply
connected group then we can and will choose a Chevalley basis {hi, eα, fα : 1 ≤ i ≤ `, α ∈ Φ+} for g,
satisfying the usual relations. If G is not separably isogenous to a simply connected group, then we can
choose {hi, eα, fα : 1 ≤ i ≤ `, α ∈ Φ+} satisfying the usual Chevalley relations; however, the hi will not be
linearly independent and a basis of g can be obtained by extending {hi : 1 ≤ i ≤ `} to a basis of Lie(T ).
We use the structure constants given in [10] for g of type F4; for g of type E`, we use those given in [8].
Our labelling of Dynkin diagrams is taken as in [4]. It will sometimes be convenient to represent roots as
the `-tuple of integers giving the coefficients of the simple roots, arranged as in a Dynkin diagram.

3. Heisenberg-type subalgebras

Here we take G to be simply connected. For G = SLmp, let Eij denote the elementary mp×mp matrix
with (r, s) entry δirδjs. Set X =

∑m−1
j=0

∑p−1
i=1 Ejp+i,jp+i+1 and Y =

∑m−1
j=0

∑p−1
i=1 iEjp+i+1,jp+i. Then

Xp = 0 = Y p, [X,Y ] = I and hence the Lie algebra generated by X and Y is nilpotent.
Similar examples exist for other types with a non-trivial centre:
- if p = 2 and G = Spin(2`+ 1, k) then let X = eα`

and Y = fα`
.

- if p = 2 and G = Sp(2`, k) then let X =
∑d `

2 e
i=1 eα2i−1 and Y =

∑`
1 ifαi

.
- if p = 2 and G = Spin(2`, k) then let X = eα`−1 + eα`

and Y = fα`−1 + fα`
.

- if p = 3 and G is of type E6 then let X = eα1 + eα3 + eα5 + eα6 and Y = fα1 − fα3 + fα5 − fα6 .
- if p = 2 and G is of type E7 then let X = eα2 + eα5 + eα7 and Y = fα2 + fα5 + fα7 .
In each of the above cases Xp = 0 = Y p and [X,Y ] is a nontrivial element of z(g), the center of G; in

particular [X,Y ] is a nontrivial semisimple element. Hence there does not exist a Borel subalgebra of g
which contains both X and Y .

Now let Gad denote an adjoint type group with root system Φ and π : G → Gad the corresponding
central isogeny (cf. §22 of [2]); then ker(dπ) is central in g. Applying 22.6 of [2], we see that π induces
a bijection between Borel subgroups of G and Borel subgroups of Gad. Moreover, by ([2, 22.4]), dπ is
bijective on nilpotent elements in the unipotent radical of a Borel subgroup. We deduce that there is no
Borel subalgebra of Lie(Gad) which contains both dπ(X) and dπ(Y ). Setting h = kdπ(X) + kdπ(Y ), we
have our desired example.
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Suppose now that the root system of G is not irreducible. Set X =
∑`
i=1 eαi

∈ g, so X ∈ Lie(B).
Then there exists a cocharacter τ : Gm → T with X in g(τ ; 2), the 2-weight space with respect to
τ and Lie(B) = ⊕i≥0g(τ ; i). In particular, ad(X) : g(τ ; i) → g(τ ; i + 2) for all i ∈ Z. It is clear that
ad(X) : g(τ ;−2)→ g(τ ; 0) = Lie(T ) is surjective.

Suppose now that G0 is isogenous to G and p divides the order of the fundamental group of G0. Let
π : G → G0 be a central isogeny; our assumption on p implies that there exists 0 6= W ∈ ker(dπ). Then
W ∈ Lie(T ); hence there exists a unique Y ∈ g(τ ;−2) for which [X,Y ] = W . Set h ⊂ Lie(G0) to be
the restricted subalgebra generated by dπ(X) and dπ(Y ). The proof that h does not lie in any Borel
subalgebra of Lie(G0) goes through as above. Note that in most cases, Xp 6= 0.

4. Commutative subalgebras

In this section we study the case where p is a torsion prime for an irreducible component of the root
system of G. In each case we construct a 3-dimensional commutative restricted subalgebra of g spanned
by nilpotent elements e, X, Y , with ep = Xp = Y p = 0, which lies in no Borel subalgebra of G. It suffices
to consider the case where G is simple. In what follows we will use the Bala-Carter-Pommerening notation
for nilpotent orbits in g.

The case p = 2.
Here we take e to be an element of type A3

1 if G is of type D` or E`, of type A1× Ã1 if G is of type B`
or F4, and of type Ã1 if G is of type G2.

If the Dynkin diagram of G is simply-laced then it has a (unique) subdiagram of type D4. We will
work within this subsystem subalgebra. Set e = e

10 0
0

+ e
00 1

0
+ e

00 0
1

, X = e
11 0

0
+ e

01 1
0

+ e
01 0

1
, Y =

f
11 1

0
+ f

11 0
1

+ f
01 1

1
.

If G is of type B` or F4 then the Dynkin diagram of G has a (unique) subdiagram of type B3, which we
label with roots β1, β2, β3, where β3 is short. Here we let e = eβ1 + eβ3 , X = e110 + e011, Y = f111 + f012.

Finally, if G is of type G2 then let e = eα1 , X = e11, Y = f21.
The case p = 3.
Here either G is of type E`, ` = 6, 7, 8 or G is of type F4. We take e to be an element of type A2

2 ×A1

if G is of type E` and of type A1 × Ã2 if G is of type F4. If G is of type E6, E7 or E8 then we can
restrict to the (standard) subsystem of type E6: let e = e 10000

0
+ e 01000

0
+ e 00010

0
+ e 00001

0
+ e 00000

1
,

X = e 11100
0

+ e 00110
1

+ e 00111
0
− e 01100

1
+ e 01110

0
, Y = f 11110

0
+ f 00111

1
+ f 11100

1
− f 01111

0
+ f 01110

1
.

If G is of type F4 then let e = eα1 +eα3 +eα4 , X = e0111 +e1110−e0120 and Y = 2f1111−2f1120 +f0121.
The case p = 5.
Here G is of type E8. We choose e to be an element of type A4 ×A3. Let e = eα1 + eα2 + eα3 + eα4 +

eα6 + eα7 + eα8 , X = e 1111000
1

+ 2e 0011110
1

+ 2e 1111100
0

+ 2e 0011111
0

+ 2e 0111110
0

− e 0121000
1

− e 0111100
1

,

Y = f 1111110
0

+ f 1121000
1

+ f 1111100
1

+ 2f 0011111
1

+ 2f 0111110
1

+ f 0121100
1

− 2f 0111111
0

.

Note that in each of the above cases, there exists eα (resp. eβ , fγ) in the expression for e (resp. X, Y )
such that α+ β − γ = 0.
Proposition 4.1 Let h = ke+ kX + kY , with e, X, Y as above. Then h is not contained in any Borel
subalgebra of g.
Proof. Suppose h is contained in a Borel subalgebra. Then for some g ∈ G, Ad g(h) ⊂ b, where b
is the Borel subalgebra corresponding to the positive Weyl chamber. By the Bruhat decomposition, we
have g = u′nu, where u, u′ ∈ U+ and n ∈ NG(T ). But now Ad g(h) ⊂ b if and only if Ad(nu)(h) ⊂ b,
thus we may assume that u′ = 1. Let w = nT ∈ W . We will explain our argument for the case where G
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is of type D4 and p = 2. Note that Adu(e) = e+ x, where x is in the span of all positive root subspaces
for roots of length greater than 1. Thus Adnu(e) ∈ b implies, in particular, that w(α1) ∈ Φ+. Applying
a similar argument to X and Y , we see that w(α2 + α3) ∈ Φ+ and w(−(α1 + α2 + α3)) ∈ Φ+. Taking
the sum w(α1) + w(α2 + α3) + w(−(α1 + α2 + α3)) = 0, we have a contradiction. This argument works
for all the examples given above, using the observation that if eα and eβ have non-zero coefficients in the
expression for e then α and β are not congruent modulo the subgroup ZΦ (and similarly for X, Y ).

Finally, the examples of §3 and Proposition 4.1 give the following result:
Theorem 4.2 Let G be a semisimple algebraic group over k and p a torsion prime for G. Then there
exists a non-reduced unipotent subgroup scheme of G which does not lie in any Borel subgroup of G.

We conclude with one further proposition which describes to some extent the nature of the 3-dimensional
subalgebras defined above.
Proposition 4.3 Let e, X and Y be as in Proposition 4.1. Any non-zero element of h = ke⊕ kX ⊕ kY
is conjugate to e and NG(h)/CG(h) ∼= SL(3, k).
Proof. In each case, e is a regular nilpotent element in Lie((L,L)), for some Levi factor L of G
normalized by T . Note that (L,L) is a commuting product of type Am subgroups and hence p is good
for (L,L). We choose τ to be a cocharacter of (L,L) (and hence a cocharacter of G), associated to e (see
[7, 5.3]). In particular e ∈ g(2; τ). Then one checks that g(τ ;−1) ∩ Cg(e) = kX ⊕ kY . This then implies
that the group C = CG(e) ∩ CG(τ(k×)) normalizes h. It can be checked that the adjoint representation
induces a surjective morphism C → SL(kX ⊕ kY ). But we can apply a similar argument to an analogous
subgroup of CG(Y ). Thus NG(h) contains the subgroups SL(ke ⊕ kX) and SL(kX ⊕ kY ), and hence
contains SL(h). In particular, all non-zero elements of h are conjugate by an element of NG(h). It follows
from our remark on root elements in the expressions for e, X and Y that there can be no cocharacter in
G for which e, X and Y are all in the sum of positive weight spaces. This then implies that NG(h)/CG(h)
is isomorphic to SL(h).
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