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For any partition λ of an integer n , we write

λ =< 1m1(λ), 2m2(λ), . . . , nmn(λ) >

where mi(λ) is the number of parts equal to i . We denote by r(λ) the number of parts of λ (i.e.
r(λ) =

∑n
i=1 mi(λ) ). Recall that the notation λ ` n means that λ is a partition of n .

For 1 ≤ k ≤ N , let ek be the k-th elementary symmetric function in the variables x1, . . . , xN , let hk

be the sum of all monomials of total degree k and let pk =
∑

i xk
i . Each of the sets {ek} , {hk} or {pk}

is a set of algebraically independent generators of the ring of symmetric functions over the field Q . The
expressions of hn and en in terms of the pk are the following [Mac, page 17]:

hn =
∑
λ`n

n∏
k=1

p
mk(λ)
k

kmk(λ) ·mk(λ)!
,

(−1)nen =
∑
λ`n

(−1)r(λ)
n∏

k=1

p
mk(λ)
k

kmk(λ) ·mk(λ)!
.

By specialization of the variables, one then obtains various interesting identities, see [Mac].
In this note we present in a special case two identities which are similar in nature to the above two,

except that the multiplicative behaviour is slightly different: instead of raising pk to the m-th power (where
m = mk(λ) ), we take one of the following products

pk(pk + k)(pk + 2k) . . . (pk + (m− 1)k) ,

or pk(pk − k)(pk − 2k) . . . (pk − (m− 1)k) .

In the special case we consider, the en , hn and pk are replaced by certain polynomials in a variable q ,
which we now define.

Let q be an indeterminate and for every positive integer k , consider the polynomial Pk(q) defined
inductively by the equations

∑
d|k Pd(q) = qk − 1 . By Möbius inversion, this is equivalent to the formula

Pk(q) =
∑

d|k µ(k/d)(qd − 1) , where µ denotes the ordinary Möbius function of number theory. Since∑
d|k µ(k/d) = 0 if k 6= 1 we obtain

Pk(q) =
{ ∑

d|k µ(k/d)qd if k 6= 1,
q − 1 if k = 1.

When q is a power of a prime, Pk(q) has a natural interpretation in terms of finite fields (see Lemma 1.2).
For every positive integer m we define

P+
k,m(q) = Pk(q) (Pk(q) + k) (Pk(q) + 2k) . . . (Pk(q) + (m− 1)k) ,

P−
k,m(q) = Pk(q) (Pk(q)− k) (Pk(q)− 2k) . . . (Pk(q)− (m− 1)k) .

Thus in particular P+
k,1(q) = P−

k,1(q) = Pk(q) . For m = 0 , we extend this definition by setting P+
k,0(q) =

P−
k,0(q) = 1 .
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THEOREM A. Let n be a positive integer. Then

∑
λ`n

n∏
k=1

P+
k,mk(λ)(q)

kmk(λ) ·mk(λ)!
= qn − qn−1 .

THEOREM B. Let n be a positive integer. Then

∑
λ`n

(−1)r(λ)
n∏

k=1

P−
k,mk(λ)(q)

kmk(λ) ·mk(λ)!
= −(q − 1) .

For n = 1 , both results reduce to the tautology q − 1 = q − 1 . For n = 2 , we obtain respectively

(q − 1)q
2

+
q2 − q

2
= q2 − q ,

(q − 1)(q − 2)
2

− q2 − q

2
= −(q − 1) ,

and for n = 3 , we have

(q − 1)q(q + 1)
6

+ (q − 1)
(q2 − q)

2
+

(q3 − q)
3

= q3 − q2 ,

− (q − 1)(q − 2)(q − 3)
6

+ (q − 1)
(q2 − q)

2
− (q3 − q)

3
= −(q − 1) .

For larger n , the complexity of the formulas grows rapidly. Note that if k = pa is a prime power, then
Ppa(q) = qpa − qpa−1

. Thus the first occurence of a polynomial Pk(q) having more than two terms appears
for n = 6 where P6(q) = q6 − q3 − q2 + q .

It is sometimes convenient to define P̃k(q) = Pk(q)/k and then

P̃+
k,m(q) = P̃k(q) (P̃k(q) + 1) (P̃k(q) + 2) . . . (P̃k(q) + (m− 1)) ,

P̃−
k,m(q) = P̃k(q) (P̃k(q)− 1) (P̃k(q)− 2) . . . (P̃k(q)− (m− 1)) .

With this notation, each term in the product in either theorem has the form

P̃+
k,m(q)
m!

or
P̃−

k,m(q)
m!

,

and this is simply a binomial coeeficient.
Since a polynomial is determined by its values for infinitely many choices of the variable, it is clear that

it suffices to prove the theorems when q = pa is a prime power. The proof in that case is based on a known
(but non trivial) result about the general linear group GLn(Fq) over the finite field Fq with q elements.
This result asserts that the number of semi-simple conjugacy classes of GLn(Fq) is equal to qn− qn−1 . For
this reason, we make no claim to originality as far as Theorem A is concerned: the proof simply consists in a
combinatorial count of the number of semi-simple classes of GLn(Fq) (Section 1). The proof of the second
theorem (Section 4) is more elaborate. It involves a Möbius inversion in the poset of parabolic subgroups
of GLn(Fq) (Section 2), followed by an analysis of the fixed points in the building of GLn(Fq) under the
action of a semi-simple element of the group (Section 3). As several formulas appearing in this paper find
their origin in the modular representation theory of finite groups (in relationship with a recent conjecture of
Alperin), we explain the connections in Section 5.
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We wish to raise two questions suggested by the results above:

(1) Is there a combinatorial proof of the theorems? One can hope for a more general combinatorial setting

which would specialize to our two statements. Suitable generating functions are expected to play some role.

A positive answer to this question would lead to a new proof of the above mentioned fact that the number

of semi-simple classes of GLn(Fq) is equal to qn − qn−1 .

(2) In the case mentioned at the beginning of this introduction, there is an involution which interchanges

the role of en and hn , see [Mac]. Is there some similar phenomenon in our situation? A positive answer

would allow to prove only one of the results and deduce the other one by applying the involution. Note in

this direction that if one changes the sign of Pk(q) , then P+
k,m(q) is replaced by (−1)mP−

k,m(q) .

1. Semi-simple classes of the general linear group

Let G denote the general linear group GLn(Fq) of invertible n× n matrices over the finite field Fq with

q elements, where q is a power of a prime p . Each g ∈ G acts on the vector space V = Fn
q and therefore

defines a structure of Fq[t]-module on V , such that t · v = gv for every v ∈ V . Two elements of G are

conjugate if and only if the corresponding Fq[t]-modules are isomorphic. Since the polynomial ring Fq[t] is

a principal ideal domain, every Fq[t]-module decomposes uniquely (up to isomorphism) as a direct sum of

indecomposable cyclic modules, that is, of the form Fq[t]/(fr) where f is an irreducible polynomial and

r ≥ 1 . Since we are interested in the action of g ∈ G , which is invertible, the possibility f = t has to

be excluded. A Jordan canonical form for g can be deduced from this: g is conjugate to a matrix which

decomposes with diagonal blocks, each block being the companion matrix of some polynomial fr as above.

Now g ∈ G is called semi-simple if the corresponding Fq[t]-module is semi-simple, that is, if each

integer r above is equal to 1. In other words the minimal polynomial of g must be square-free. Since an

irreducible polynomial f over a finite field has no multiple root, the simple module Fq[t]/(f) decomposes

over an algebraic closure Fq of Fq as a direct sum of one-dimensional Fq[t]-modules of the form Fq[t]/(t−a) .

Thus g ∈ G is semi-simple if and only if it is conjugate in GLn(Fq) to a diagonal matrix.

For later use we also recall that g ∈ G is semi-simple if and only if g is p-regular, that is, the order

of g is prime to p (where p is the characteristic of the field Fq ). Indeed the minimal polynomial of g

divides th− 1 where h is the order of g , and the cyclotomic polynomial th− 1 has no multiple root when

p does not divide h , hence is square-free. Conversely if p divides h , then it suffices to show that g′ = gh/p

is not semi-simple. But since g′ has order p , its minimal polynomial f is a divisor of tp − 1 = (t − 1)p ,

but is not t− 1 . Thus f = (t− 1)k is not square-free.

By a semi-simple class of G , we mean a conjugacy class of semi-simple elements of G , and this is the

same as a p-regular class. We first record a crucial result for the present paper.

(1.1) THEOREM (Steinberg). The number `(G) of semi-simple classes of the group G = GLn(Fq) is

equal to qn − qn−1 .
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Proof. We briefly indicate two different proofs. The first consists in applying Theorem 3.7.6 of [Car]
which asserts that `(G) = |Z| qr where Z is the centre of G and r is the semi-simple rank of the algebraic
group GLn(Fq) , that is, r = n − 1 . Note that the assumption of that theorem is that the derived group
of the algebraic group should be simply-connected (in the sense of the theory of algebraic groups), and this
is indeed the case here because the derived group is SLn(Fq) . Since Z is the group of scalar matrices, we
have |Z| = q − 1 and we obtain `(G) = (q − 1)qn−1 as required.

The second proof is based on the property that the number `(G) , which is the number of p-regular
classesof G , is also (by a well-known theorem of Brauer [CR, 17.11]) the number of isomorphism classes of
irreducible representations of G over an algebraically closed field k of characteristic p (e.g. k = Fq ). This
number is known for finite groups of Lie type, see [CR, 72.29]. Explicitly let T be the group of all diagonal
matrices and let Ti be the subgroup of matrices of the form diag(1, . . . , 1, a, a−1, 1, . . . , 1) where a and a−1

occur at the i-th and (i+1)-th position ( 1 ≤ i ≤ n− 1 ). Finally for every subset I of S = {1, . . . , n− 1} ,
let TI be the subgroup generated by all Ti for i ∈ I . Then by [CR, 72.29], we have `(G) =

∑
I⊆S |T/TI | .

Now |T | = (q − 1)n and |TI | = (q − 1)|I| , from which it follows that

∑
I⊆S

|T/TI | =
n−1∑
k=0

(
n− 1

k

)
(q − 1)n−k = (q − 1) ((q − 1) + 1)n−1 = (q − 1)qn−1 ,

as was to be shown.

Each semi-simple class of G contains a matrix g in canonical form, that is, with blocks on the diagonal
such that each block is the companion matrix gf of an irreducible polynomial f (and with zeros outside the
blocks). A permutation of the blocks does not change the conjugacy class, so that one can always arrange the
sizes of the blocks in decreasing order. Grouping together all blocks of the same size k (i.e. all irreducible
polynomials fi of the same degree k ), we define mk to be the number of blocks of size k . Then it is clear
that λ =< 1m1 , . . . , nmn > is a partition of n . We call it the partition associated with the semi-simple
class.

Conversely with any partition λ of n are associated several semi-simple classes of G : we must have
mk = mk(λ) blocks of size k and it suffices to choose mk irreducible polynomial of degree k and fill in
the blocks with their companion matrices, in any order.

These observations immediately lead to a proof of Theorem A.

Proof of Theorem A. We count the number of semi-simple clases of G = GLn(Fq) . It is equal to
qn− qn−1 by Theorem 1.1 and this provides the right hand side of the formula in Theorem A. The left hand
side is obtained by summing over all partitions λ of n the number of ways of choosing mk(λ) irreducible
polynomials of degree k (regardless of their order), for each 1 ≤ k ≤ n . This is the number of weak
compositions of mk = mk(λ) into r parts, where r is the number of irreducible polynomials of degree k

over Fq (different from the polynomial t if k = 1 ). Here a weak composition of mk is a decomposition
mk = x1 + . . . + xr in integers xi ≥ 0 , and the number of such weak compositions is equal to the binomial
coefficient (

mk + r − 1
mk

)
,

see [St, page 15]. Now r = P̃k(q) by Lemma 1.2 below, and therefore the binomial coefficient above is equal
to

P̃+
k,mk

(q)
mk!

,

– 4 –



so that the total number of semi-simple classes of G is

∑
λ`n

n∏
k=1

P̃+
k,mk(λ)(q)

mk(λ)!
.

This completes the proof.

(1.2) LEMMA. Let Fq be the finite field with q elements and let k ≥ 1 be an integer.

(a) The number of non-zero elements in Fqk which do not belong to an extension of Fq properly contained

in Fqk is equal to Pk(q) .

(b) The number of irreducible polynomials of degree k over Fq , distinct from the polynomial t (if k = 1 ),

is equal to P̃k(q) = Pk(q)/k .

Proof. (a) Since any intermediate field extension has the form Fqd where d|k , we have

qk − 1 = |F∗qk | =
∑
d|k

Pd(q) .

(b) Every element of Fqk , not lying in any proper subextension of Fq is a root of an irreducible

polynomial of degree k over Fq , and every irreducible polynomial of degree k over Fq has k distinct roots

in Fqk . All roots are non-zero except in the case of the polynomial t . Thus we obtain that the number of

irreducible polynomials of degree k , distinct from t , is equal to Pk(q)/k = P̃k(q) .

2. Parabolic subgroups and inversion

In this section we review some properties of parabolic subgroups and inversion. Let V = Fn
q be the n-th

dimensional vector space over Fq with basis (e1, . . . , en) . Consider the maximal flag of subspaces

F = (V1 < V2 < . . . < Vn−1)

where Vi =< e1, . . . , ei > . Let S = {1, . . . , n − 1} and for each subset J ⊆ S , consider the subflag FJ

consisting of the subspaces Vj for j ∈ J . The parabolic subgroup PJ is the stabilizer of FJ in the group

GLn(Fq) . In particular P∅ = GLn(Fq) , and PS = B is the Borel subgroup of upper triangular matrices.

We have clearly

(2.1) I ⊆ J ⇐⇒ PI ⊇ PJ .

For each J ⊆ S , the unipotent subgroup UJ is the normal subgroup of PJ consisting of those elements

which induce the identity on each successive quotient of the flag FJ (including the smallest subspace in FJ

and the quotient of V by the largest subspace). In particular U∅ = {1} and US is the full unipotent

subgroup of upper triangular matrices with entries equal to 1 on the diagonal, and this a Sylow p-subgroup

of GLn(Fq) (where p is the characteristic of Fq ). The passage from PJ to UJ is order-reversing. So in

particular every UJ is a subgroup of US , hence is a p-group.
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If J = {j1, j2, . . . , jk} (where 1 ≤ j1 < j2 < . . . jk ≤ n − 1 ), we consider the action of PJ on the
successive quotients Vj1 ⊕ Vj2/Vj1 ⊕ . . .⊕ Vjk

/Vjk−1 ⊕ V/Vjk
. Then we have by definition

PJ/UJ
∼= GLj1(Fq)×GLj2−j1(Fq)× . . .×GLjk−jk−1(Fq)×GLn−jk

(Fq) ,

and so PJ/UJ is a direct product of |J |+ 1 general linear groups.
In order to use induction arguments (in the form of a Möbius inversion, see Proposition 2.4), we generalize

our setting to direct products of general linear groups. Thus for the group GLn1(Fq)× . . .×GLnk
(Fq) , we

consider the sets Si = {1, . . . , ni − 1} and their disjoint union

(2.2) S = S1 × {1}
⋃

. . .
⋃

Sk × {k} .

Any subset J of S is a disjoint union

J = J1 × {1}
⋃

. . .
⋃

Jk × {k} ,

where Ji ⊆ Si . The parabolic subgroup PJ is the direct product PJ = PJ1 × . . . × PJk
and similarly for

the unipotent group UJ and for the quotient PJ/UJ .
Now define

c(GLn1(Fq)× . . .×GLnk
(Fq)) = k (the number of factors),

r(GLn1(Fq)× . . .×GLnk
(Fq)) =

k∑
i=1

(ni − 1) = |S| (the rank).

Then whenever G is a finite direct product of general linear groups over Fq , we define

`(G) = (q − 1)c(G) qr(G) ,

z(G) = (q − 1)c(G) .

By Theorem 1.1, `(G) is the number of semi-simple classes of G , that is also the number of classes of
elements of order prime to p . Indeed this number behaves multiplicatively with respect to direct products
of groups (since clearly c(G) and r(G) behave additively). The number z(G) is the order of the centre
of G , but it has another important characterization in the modular representation theory (see Section 5).

(2.3) LEMMA. If G is a finite direct product of general linear groups and PJ a parabolic subgroup

of G , then
c(PJ/UJ) = c(G) + |J | ,

r(PJ/UJ) = r(G)− |J | .

Proof. Since all these numbers behave additively, it suffices to check the formulas when G = GLn(Fq) ,
that is, c(G) = 1 . From a remark above we already know that c(PJ/UJ) = 1 + |J | . On the other hand if
J = {j1, . . . , jk} , then

r(PJ/UJ) = (j1 − 1) + (j2 − j1 − 1) + . . . + (jk − jk−1 − 1) + (n− jk − 1) = n− 1− k = r(G)− |J | ,

which completes the proof.

Now we can state the main result of this section.
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(2.4) PROPOSITION. Let G be a finite direct product of general linear groups over Fq and let S

be the corresponding subset as in (2.2). Then

(a) `(G) =
∑

J⊆S

z(PJ/UJ) ,

(b) z(G) =
∑

J⊆S

(−1)|J| `(PJ/UJ) .

Proof. (a) This is straightforward by Lemma 2.3:∑
J⊆S

z(PJ/UJ) =
∑
J⊆S

(q − 1)c(G)+|J|

= (q − 1)c(G)

|S|∑
k=0

(
|S|
k

)
(q − 1)k

= (q − 1)c(G) ((q − 1) + 1)|S|

= (q − 1)c(G) qr(G) = `(G) .

(b) If I ⊆ J , then PI ⊇ PJ ⊇ UJ ⊇ UI by (2.1). Then PJ/UI is a parabolic subgroup of PI/UI with
corresponding unipotent normal subgroup UJ/UI and quotient (PJ/UI)/(UJ/UI) ∼= PJ/UJ . Moreover any
parabolic subgroup of PI/UI arises in this way. Therefore the formula (a) applied to the group PI/UI

yields
`(PI/UI) =

∑
I⊆J⊆S

z(PJ/UJ) .

By Möbius inversion in the poset of all subsets of S , we have

z(PI/UI) =
∑

I⊆J⊆S

µ(I, J) `(PJ/UJ) .

Taking I = ∅ , we have µ(∅, J) = (−1)|J| and therefore

z(G) =
∑
J⊆S

(−1)|J| `(PJ/UJ) ,

as required.

3. Fixed points of the building

Let V = Fn
q be the n-th dimensional vector space over the finite field Fq with basis (e1, . . . , en) . Let P(V )

be the poset of all subspaces of V and let P(V ) be the proper part of P(V ) , that is P(V ) = P(V )−{0, V } .
The building of the general linear group GLn(Fq) is the simplicial complex ∆ = ∆(P(V )) associated
with P(V ) (i.e. the order complex of P(V ) ). By definition a k-simplex in ∆ is a flag of subspaces
W0 < W1 < . . . < Wk with Wi ∈ P(V ) . If Vi =< e1, . . . , ei > , the (n − 2)-simplex V1 < . . . < Vn−1 is
called the standard maximal flag , and its subflags are called standard flags.

The set of dimensions of the subspaces in a flag σ is a subset of {1, . . . , n− 1} , called the type of σ .
From elementary linear algebra, all flags of the same type are in the same orbit under the action of the group
G = GLn(Fq) . In particular every orbit contains a unique standard flag and thus ∆/G can be identified
with the set of standard flags. Moreover the stabilizer Gσ of a simplex σ of ∆ is conjugate to the stabilizer

– 7 –



of a standard flag, that is, a parabolic subgroup. (Note that throughout this paper a parabolic subgroup

refers only to what is usually called a standard parabolic subgroup, namely the stabilizer of a standard flag.)

Before we proceed any further, we recall that if a group H acts on a poset X by order-preserving

maps, then the set of orbits X/H is again a poset: for x, y ∈ X , then by definition the relation Hx ≤ Hy

between the orbits of x and y holds if there exists h ∈ H such that hx ≤ y . Now H also acts on

the simplicial complex ∆(X) and on its geometric realization |∆(X)| and we can consider the orbit space

|∆(X)|/H . Under a strong condition on the action of H , the order complex ∆(X/H) associated with the

poset X/H has a geometric realization which is homeomorphic to |∆(X)|/H . The condition is that X

should be a regular H-poset in the sense of Bredon [Br, page 116], that is: whenever σ = (x0 < . . . < xk)

and τ = (y0 < . . . < yk) are k-simplices such that for all i there exists hi ∈ H with hixi = yi , then

there exists h ∈ H such that hσ = τ . (We warn the reader that this notion of regular poset does not

coincide with the one defined by Curtis-Reiner [CR, 66.4].) All the posets we shall consider will turn out to

be regular.

We return now to the group G = GLn(Fq) , the G-poset P(V ) and the building ∆ = ∆(P(V )) .

We note that P(V ) is a regular G-poset, because G acts transitively on the set of flags of a given type.

For g ∈ G , we denote by P(V )g the poset of g-fixed points in P(V ) , and by ∆g = ∆(P(V )g) the

corresponding simplicial complex. The centralizer CG(g) acts on P(V )g and we shall prove below that

P(V )g is a regular CG(g)-poset.

We are interested in the orbit complex ∆g/CG(g) , which appears in our next result where the reduced

Euler characteristic χ̃(∆g/CG(g)) = χ(∆g/CG(g)) − 1 comes into play. We denote by [g] the conjugacy

class of g ∈ G .

(3.1) PROPOSITION. Let ∆ be the building of G = GLn(Fq) . Then

∑
semi−simple [g]

χ̃(∆g/CG(g)) = −z(G) ,

where [g] runs over the set of all semi-simple classes of G .

Proof. From Proposition 2.4, we know that

z(G) =
∑
J⊆S

(−1)|J| `(PJ/UJ)

where S = {1, . . . , n− 1} . First we use the fact that the number `(PJ/UJ) of p-regular clases of PJ/UJ is

equal to `(PJ) , because UJ is a normal p-subgroup of PJ . (This is an easy group-theoretic exercise, using

for instance the Schur-Zassenhaus theorem. Alternatively one can use the fact that `(PJ) is the number

of irreducible representations of PJ in characteristic p and that the normal p-subgroup UJ always acts

trivially on an irreducible representation [CR, 17.16].) Now PJ is the stabilizer Gσ of a standard flag σ ,

and we can interpret the sum above as running over the set ∆/G of standard flags, including the empty

flag (corresponding to P∅ = G ). The cardinality |J | of the flag σ is equal to dim(σ) + 1 (with the empty
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simplex of dimension −1 ). Therefore

z(G) =
∑

σ∈[∆/G]

(−1)dim(σ)+1 `(Gσ) = −
∑
σ∈∆

(−1)dim(σ)

|G : Gσ|
`(Gσ)

= −
∑
σ∈∆

(−1)dim(σ)

|G : Gσ|
∑

p−regular g∈Gσ

1
|Gσ : CGσ

(g)|

= −
∑

p−regular g∈G

1
|G : CG(g)|

∑
σ∈∆g

(−1)dim(σ)

|CG(g) : CG(g)σ|

= −
∑

p−regular [g]

∑
σ∈[∆g/CG(g)]

(−1)dim(σ)

= −
∑

p−regular [g]

χ̃(∆g/CG(g)) .

Note that we end up with the reduced Euler characteristic because the empty simplex appears in the sum.

Our strategy is to compute explicitly χ̃(∆g/CG(g)) for each semi-simple class [g] of G . As it does not
require more effort to determine the homotopy type of ∆g/CG(g) , we do so and single out in the process
the result for the reduced Euler characteristic (which is also the Möbius number of the corresponding poset).
We fix g ∈ G and we have to work with the proper part P(V )g/CG(g) of the poset P(V )g/CG(g) .

An element W of P(V ) (that is, a subspace of V ) is invariant under g if and only if it is an
Fq[t]-submodule of V , where t acts on V via g , as in Section 1. We decompose V as a direct sum of
simple Fq[t]-submodules, and then for each simple Fq[t]-module X we group together all simples isomorphic
to X into an isotypical component VX of type X . Then VX can be written VX = X ⊗ Y where Y is a
vector space whose dimension is the multiplicity of X in VX . Therefore

V =
s⊕

i=1

Xi ⊗ Yi

where s is the number of isotypical components. Any Fq[t]-submodule of V has the form

V =
s⊕

i=1

Xi ⊗ Zi

where Zi is an arbitrary subspace of Yi . It follows that the poset P(V )g is isomorphic to

P(V )g ∼= P(Y1)× . . .× P(Ys)

where P(Yi) is the poset of subspaces of Yi . Of course we consider the product order in this decomposition.
Now we introduce the action of CG(g) . By definition of the centralizer, it is the group of Fq[t]-auto-

morphisms of V . Any Fq[t]-endomorphism of V stabilizes every isotypical component and so EndFq [t](V )
is the direct product of the rings

EndFq [t](Xi ⊗ Yi) ∼= Ki ⊗ EndFq (Yi) ,

where Ki = EndFq [t](Xi) (a finite field extension of Fq by Schur’s lemma). Now any α⊗1 with α ∈ Ki acts
trivially on the poset of Fq[t]-submodules of Xi⊗Yi (because it stabilizes each simple summand of Xi⊗Yi ).
Thus we only need to consider the action of EndFq

(Yi) on P(Yi) , and in fact only GL(Yi) comes into play
since we are considering automorphisms. It follows from this analysis that

(3.2) P(V )g/CG(g) ∼= P(Y1)
/
GL(Y1) × . . . × P(Ys)

/
GL(Ys) .

Note that it is now clear that P(V )g is a regular CG(g)-poset (hence also P(V )g ), since we know that each
P(Yi) is a regular GL(Yi)-poset.
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(3.3) PROPOSITION. Let ∆ be the building of the group G = GLn(Fq) and let g ∈ G .

(a) If g is semi-simple and if at least one isotypical component of g has multiplicity ≥ 2 , then ∆g/CG(g)
is contractible. In particular χ̃(∆g/CG(g)) = 0 .

(b) If g is semi-simple and if every isotypical component of g has multiplicity 1, then the geometric

realization of ∆g/CG(g) is homeomorphic to a sphere Ss−2 , where s is the number of isotypical

components. In particular χ̃(∆g/CG(g)) = (−1)s .

(c) If g is not semi-simple, then ∆g is CG(g)-contractible. In particular ∆g/CG(g) is contractible and

χ̃(∆g/CG(g)) = 0 .

Proof. We first assume that g is semi-simple and use the decomposition 3.2. As before P(Yi) denotes
the proper part of P(Yi) , and similarly for orbit posets. We first describe each factor in the decomposi-
tion 3.2.

Since GL(Yi) acts transitively on the subspaces of a given dimension,

P(Yi)/GL(Yi) = [di − 1]

where [di − 1] = {1, . . . , di − 1} and di = dim(Yi) . This is contractible if di ≥ 2 (because there is a
maximal element in the poset) and empty if di = 1 . (In terms of simplicial complexes, this corresponds
to the fact that taking the type of flags allows to identify ∆(P(Yi))/GL(Yi) with the poset of non-empty
subsets of [di − 1] , and this is just a simplex of dimension di − 2 , hence contractible if di ≥ 2 and empty
if di = 1 .) Of course we also have P(Yi)/GL(Yi) = [di − 1] = {0, . . . , di} , and this is a lattice with proper
part [di − 1] . Note that di is the multiplicity of the i-th isotypical component. Note also that the reduced
Euler characteristic of [di− 1] (which can be viewed as the Möbius function µ(0, di) ) is equal to 0 if di ≥ 2
and −1 if di = 1 . The decomposition 3.2 is the direct product of lattices

P(V )g/CG(g) ∼= [d1 − 1]× . . .× [ds − 1] .

Now we can prove (a). If di ≥ 2 for some i , then (0, . . . , 0, 1, 0, . . . , 0) (with 1 in i-th position) has
no complement in the lattice (since 1 does not have a complement in [di − 1] ). It is well-known that this
implies the contractibility of the proper part of the lattice. In fact we have conical contractibility in the
sense of Quillen [Qu, 1.5], because

(a1, . . . , as) ≤ (a1, . . . , ai−1, ai + 1, ai+1, . . . , as) ≥ (0, . . . , 0, 1, 0, . . . , 0) .

In terms of Möbius functions, which behave multiplicatively with respect to direct products, we have

χ̃
(
P(V )g/CG(g)

)
=

s∏
j=1

µ(0, dj) = 0

since µ(0, di) = 0 .
Turning to the proof of (b), we assume that di = 1 for all i . Then the lattice P(V )g/CG(g) is

isomorphic to the direct product of s copies of the poset with 2 elements, that is, the lattice of all subsets of
a set of cardinality s . Therefore the simplicial complex associated to the proper part of the lattice consists
of all proper faces of a simplex of cardinality s (i.e. of dimension s− 1 ). Thus one obtains the boundary of
an (s− 1)-simplex, which is homeomorphic to a sphere of dimension s−2 . The reduced Euler characteristic
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is (−1)s−2 . This is obtained directly in terms of Möbius functions, since one has to multiply s times the

value −1 .

Finally we recall the proof of (c), which is standard. Some power h of g has order p by assumption.

Since the minimal polynomial of h is a divisor of tp−1 = (t−1)p different from t−1 , the subspace V h of

h-invariant points of V is a non-zero proper subspace, hence an element of P(V )g . It is invariant under g

because g commutes with h . Then P(V )g is conically contractible via

W ≥ W ∩ V h ≤ V h ,

where W ∩ V h 6= 0 since it is the eigenspace of the action of h on W . The conical contraction above is

CG(g)-equivariant, so P(V )g is CG(g)-contractible (see [TW] for more details). This implies that the orbit

poset is contractible.

We have included statement (c) for completeness. Note that it holds more generally for the fixed points

∆H under the action of a subgroup H having a non-trivial normal p-subgroup, using the fact that a p-group

always has non-zero fixed points when acting on a vector space in characteristic p .

4. Proof of Theorem B

After having prepared the grounds in the previous sections, the proof of Theorem B is now easy. We use

the formula of Proposition 3.1 for the group G = GLn(Fq) . The number −z(G) is equal to −(q − 1) by

definition, and this gives the right hand of the formula in Theorem B. Thus we have to show that the other

side of the formula 3.1, namely ∑
semi−simple [g]

χ̃(∆g/CG(g)) ,

gives the sum over all partitions of n which appears in Theorem B.

By Proposition 3.3, the reduced Euler characteristic above vanishes, unless g has isotypical components

with multiplicity 1. In that case we shall say that the class [g] has defect zero, because the condition is

equivalent to the requirement that CG(g) be of order prime to p (see the analysis in the last section), and

this is the definition of a class of defect zero in representation theory.

We know from Section 1 that a partition is associated with every semi-simple class. Conversely with

any partition λ of n are associated several semi-simple classes of G : we must have mk = mk(λ) blocks

of size k and it suffices to choose mk irreducible polynomial of degree k (distinct from the polynomial t

when k = 1 ) and fill in the blocks with their companion matrices, in any order. In order to get a class

of defect zero, all isotypical components must have multiplicity 1, and so the only new requirement is that

the mk irreducible polynomials of degree k must be all distinct , for each 1 ≤ k ≤ n . Thus the number of

semi-simple classes of defect zero associated with a partition λ is equal to

n∏
k=1

(
P̃k(q)
mk(λ)

)
,

because by Lemma 1.2, P̃k(q) is the number of irreducible polynomials of degree k , distinct from t .
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For any semi-simple class [g] of defect zero associated with the partition λ , the number s of isotypical
components for the action of g on V is the same as the number of irreducible summands of the action of g

(because all multiplicities are 1), and this is the number of parts of the partition, i.e.

s =
∑

k

mk(λ) = r(λ) .

Therefore χ̃(∆g/CG(g)) = (−1)s = (−1)r(λ) by Proposition 3.3 and we obtain

∑
semi−simple [g]

χ̃(∆g/CG(g)) =
∑
λ`n

n∏
k=1

(−1)r(λ)

(
P̃k(q)
mk(λ)

)

=
∑
λ`n

n∏
k=1

(−1)r(λ)
n∏

k=1

P−
k,mk(λ)(q)

kmk(λ) ·mk(λ)!
.

This completes the proof.

5. Connections with modular representation theory

Several formulas of the previous sections find their origin in the modular representation theory of finite
groups, specialized to the case of the general linear group. In this section we explain how these formulas
generalize to important conjectures for arbitrary finite groups.

For an arbitrary finite group G and a prime p , we consider the irreducible p-modular representations
of G , namely the irreducible kG-modules, where k is an algebraically closed field of characteristic p . As
before we write `(G) for the number of isomorphism classes of irreducible kG-modules. By a well-known
theorem of Brauer [CR, 17.11], it is also the number of p-regular conjugacy classes of G , and Steinberg’s
result 1.1 asserts that for G = GLn(Fq) in natural characteristic p , we have `(G) = qn − qn−1 .

Among the p-modular representations, we consider the irreducible kG-modules which are projective
modules over the group algebra kG . The number of isomorphism classes of such modules is written z(G) .
It is also the number of p-blocks of G of defect zero. When G = GLn(Fq) , it is well known that the
Steinberg module St is a projective irreducible kG-module in characteristic p . Now GLn(Fq) has an
abelian quotient GLn(Fq)/SLn(Fq) of order q − 1 and the tensor product of St with any of the q − 1
possible representations of dimension 1 is again a projective irreducible kG-module. It is also known that
this gives the complete list of projective irreducible kG-modules, so that z(G) = q − 1 . Thus we recover
the notation of the previous sections.

Alperin’s conjecture [Al] asserts that for an arbitrary finite group G , the number `(G) is equal to

`(G) =
∑
P

z(NG(P )/P ) ,

where P runs over the set of all p-subgroups of G up to conjugation (including P = 1 ). For G =
GLn(Fq) in natural characteristic p , this specializes to the statement (a) in Proposition 2.4, because only
the p-subgroups UJ give a non-zero contribution. Thus Alperin’s conjecture holds for GLn(Fq) and the
prime p (in fact also for the other primes). For groups of Lie type this was proved by Alperin in some cases
and by Cabanes [Cab] in general.
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The second statement in Proposition 2.4 is obtained from the first one by a Möbius inversion. The
same idea can be applied to an arbitrary finite group G , using the poset Sp(G) of non-trivial p-subgroups
instead of the parabolic subgroups. This was first observed by Robinson [KR] who proved that Alperin’s
conjecture is equivalent to the following statement:

z(G) =
∑

σ∈[∆(Sp(G))/G]

(−1)dim(σ)`(Gσ) ,

where ∆(Sp(G)) is the order complex of Sp(G) and Gσ denotes the stabilizer of the simplex σ . In
fact ∆(Sp(G)) can be replaced by any G-complex which is G-homotopy equivalent to it (see [We, §6]).
For a finite group of Lie type (such as GLn(Fq) ), this fact applies with the building of G (see [TW] for
the G-homotopy equivalence). Thus the second formula in Proposition 2.4 is a special case of Robinson’s
conjectural formula (using also the fact that `(PJ) = `(PJ/UJ) ).

Finally the proof of Proposition 3.1 generalizes without change to an arbitrary finite group, using
∆(Sp(G)) instead of the building. This appears in [Th, 6.3] and one gets the conjectural formula

−z(G) =
∑

p−regular [g]

χ̃
(
∆(Sp(G))g/CG(g)

)
.

Proposition 3.1 is a special case of this formula.
The crucial tool for the proof of Theorem B is Proposition 3.1. We could have proved this proposition

by applying the results mentioned in this section, but it would not have been a very direct approach and
it would not have shortened the proof substantially. This is why we have preferred a more streamlined
approach.
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