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Abstract—This paper addresses the problem of correct re- as a part of the complexity-adaptive signal approximatioat-s
covery of multiple sparse correlated signals using distribted  egy [2], where the signal is approximated using threshgldin

thresholding. We consider the scenario where multiple seiss
capture the same event, but observe different signals thatra
correlated by local transforms of their sparse componentsin
this context, the signals do not necessarily have the sameaspe
support, but instead the support of one signal is built on loal
transforms of the atoms in the sparse support of another sigal.
We establish the sufficient condition for the correct recovey of
such correlated signals using independent thresholding othe
multiple signals. The condition is relevant in scenarios ware
low complexity processing such as thresholding is neededorf
example in sensor networks. The validity of the derived receery
condition is confirmed by experimental results in noiselesand
noisy scenarios.

Index Terms—sparse approximations,

thresholding, local

if the recovery condition is satisfied, or using more complex
algorithms otherwise. Therefore, it is crucial to perforine t
worst case analysis and derive the sufficient condition unde
which a sparse signal could be recovered by thresholding.
Recovery of correlated signals by thresholding has been
considered in [3], where the correlated signals share a emmm
sparse support, but are observed under different noisyi<ond
tions. Sparse representation of correlated signals hasdise
presented within the concept of distributed compressesirsgn
for two correlation models: common sparse component with
sparse innovations, and common sparse supports [4]. The
recovery algorithms in [4] are based on greedy and convex

transforms Lo . . .
optimizations algorithms. The thresholding recovery gsial

for correlated signals that we present here differs from the
previous work [3], [4] in one major assumption: we do not
Sparse signal approximation refers to a particular signaquire the signals to share the same support (i.e., to have
representation as a linear combination of a few functiomxactly the same atoms in the representation). Instead, we
(atoms) chosen from an overcomplete dictionary. In the lasilow each atom in one signal to have its corresponding atom
decade sparse approximations have attracted a lot ofiatientin another signal, which is obtained by a local transformhsuc
partly due to the fact that they offer convenient solutioos f as shift, scaling, or any combination of those. These sgynal
signal coding and compression. With the design of flexibte dican be, for example, obtained by a set of sensors that look
tionaries, sparse representations have also found afiptisa at the same event, but record different observations, asrsho
in signal analysis and distributed signal processing. on the Fig. 1. We derive the sufficient recovery condition for
This paper deals with sparse approximations of correlatéds correlation model, validate it on randomly generatéd 1
signals, where sparse components of different signals aignals and illustrate its usage on seismic signals.
linked with local transforms. A variety of correlated si¢jsats
can be modeled this way, like videos and multi-view images |
at low bit rates, seismic signals, etc. In particular, walelth (=] -
the sufficient condition for the recovery of sparse compatsien [=]
of such correlated signals using thresholding. Threshglis — [=] !
=
[ ]

|. INTRODUCTION

a fast algorithm where sparse components are simply chosen
as those that have the highest inner product with the signal.
However, in case of redundant dictionaries, thresholdioesd

not guarantee to find the correct signal elements. The saffici
condition for the correct signal recovery by thresholdirag h Fig. 1. Sensors observe the same event and record correlasetvations.
been given in [1]. When a given signal satisfies the recovery

condition, thresholding becomes an interesting approach f

sparse recovery, due to its very low complexity compared Il. SPARSE CORRELATION MODEL

to other sparse approximation algorithms (Matching Ptrsui We consider two signalg; andy. that have sparse repre-
Basis Pursuit Denoising). Moreover, thresholding can e sesentations in dictionarie® and ¥, respectively. We assume
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that the signals are not exactly sparse, but they can beThe type of signal correlation under different local trans-
approximated by sparse decompositiongrofitoms up to an forms given by Assumptions 1 and 2 can be found in many

approximation error, i.e.: practical cases where the same signal is observed by sensors
m at different positions. Locality of the transforms is highl
= Prag+e = Zal,k@k +e1 important in practical cases as different parts of the digna
1 can be captured under different transforms, like for exampl
m at different distances to the sensor. Since the signal ledioe
y2 = Vjas+ex= Z az k¥j, + ez, (1) model includes a noise component, slight deviations froen th
k=1 assumed model (e.g., occlusions, interference) can bedsons

where I = {ix},J = {jx},k = 1,..m label the sets of ered as noise components and hence the signal correlation

atoms that participate in the sparse decompositiong/;of Mmodel is not very restrictive.

andys,, respectively. Matrice®; and ¥ ; denote respectively We are now interested in establishing the conditions under
sub-matrices ofb and ¥ with respect to/ and .J. We are Which thresholding, performed independently on each signa
particularly interested in signals that are correlated digal recovers the correct sparse representations of signatsd
transforms of the atoms in different signals. The correfati ¥2- This can be stated as follows:

model is described in the rest of this section through two Problem 1: Assume that we are given two correlated sig-

assumptions. nals y; and y» in EQ.(1), and the assumptions 1 and 2
Assumption 1. We assume that signalg; and y, are hold. Suppose that thresholding recovers the correct itpars
correlated in the following way: pattern of the signaly;. We want to derive the sufficient

condition for the correct sparse recovery of the sparsitiepa

Yo = Zalk%‘k ey = Z ar i Fr(di) +e2, (2) J of the signaly, using thresholding, without having all the

— = information about the atom transforms.

where Fj,(-) denotes a transform of an atog, in y; to an I1l. SINGLE SIGNAL THRESHOLDING
atomzq;, , and it differs for eactk =1, ..., m.

In particular, we consider a special class of transfoifs
which result from a linear transform of the coordinate syste
in the spaceH where the signal and the dictionaries are d
fined. Letv denote the vector of coordinateskhandu denote
the vector of coordinates obtained by transformingith an
arbitrary linear transfornf’, i.e.,u = T'(v). Let further atom o
¢ be defined as a continuous functiongdrzwormalized to have (@, 1) = i Z (D, i)l
the [, norm equal to one, i.egp = g(v)/||g||. Equivalently, el
we defineyy = h(v)/||h||. We consider the atom transformd\ext, theDictionary Inter Symbol Interferencie given as:

F which satisfy: [SI(®, 1) = (@, 1) +SlUII)M1(@I’I\ .
S

h(v) = F(g(v)) = g(T(v)) = g(u). ® _ _ _
o ) ) This function measures the interference of atoms in thesgpar
The second equality in Eq.(3) directly defines the class gbcomposition that can lead to incorrect recovery. We will

transformsF considered in this work, which result from ajenote the second term in the expression f61 (®, I) as
linear transforn’. These types of transforms have been shovg(rtq)l 1), ie. ’

to be of great practical use, for example in dictionary desig
for sparse image approximation [5]. The considered transto X(®r, I) :=sup 1 (P, I\ {I}).
can be illustrated by the following example. lel

Example 1:Consider a functiory(x) € R and an over- The recovery condition is given by the following theorem:
complete dictionary obtained by various local transforis o Theorem 1 (Gribonval, Nielsen, Vandergheynst [2]et
g(z), like shifts and scaling. These transforms can be realizgd= &z + ¢ be a noisy sparse representation of the data.
by a single transform of the: coordinate, which includes Moreover, assumer; ,k = 1,..|I| are the |I| nonzero
translatiorb and anisotropic scaling i.e.,z’ = (x—b)/s. This components ofz in decreasing order of magnitude, i.e.,
class of transforms obviously satisfies Eq.(3), where= = |z, | > |z1,| > ... > |2y, |. If for a certainm, 1 < m < [[],
andu = /. the following condition is satisfied:

We assume further that the signals satisfy the local trans-

We review here the conditions under which simple thresh-
olding algorithm recovers correctly the sparse represienta
of the signals [1]. Before describing their result, let usirte
some functions that will be used throughout the analysis.
Setwise cumulative coherence functidaefined in [6], is given

. oo d*el| o D*ell
forms applied to each atom, within the local support of that 2]t [197elloc + [127¢]] +1IS1(2,1) (5)
atom: |E3]S [2]] 0o
Assumption 2. For all £ and v such thate;, (v) # 0, it then each inner product of the observed datavith the
holds: atoms {¢;, }1<i<m exceeds all the inner products with the

y2(v) = y1(Ti(v)) = y1(u). (4) atoms{o;}icn qi,,...1,,3 indexed by the complementary set



I. In particular them = |I| largest inner products correspondf we go back now to our Example 1, we have the Jacobian

exactly to the supporf of . that is equal toia(”C )| = 1/s;, and hencely, = /55, where
For the general proof, please see the generalization of #)eis the scale transform for each pair of correlated atoms
theorem to the multi-channel case [1]. (Gir s Vi )-

We can now give the recovery condition for the sigpal
Theorem 2:Suppose we are given two correlated signals
= ®ja; + e and yo = Vjas + ey, Which satisfy
umptions 1 and 2. Furthermore, suppose that thresgoldin
recovers the correct sparsity pattdrof the signaly,, i.e., the
lar,m| _ |1®7e1]loo + [|PFe1]|o condition given by Eq.(6) is satisfied. If for all = 1,...,m
+ISI(®. D). (6) the following sufficient condition is satisfied:

IV. THRESHOLDING OF CORRELATED SIGNALS

We will first assume that the sparsity pattefnof the
signal y; can be recovered by thresholding, i.e., that S|gngfss
y1 satisfies:

llaxloo llaxloo
Before establishing the recovery conditions for the sigpal Crlarm| > Ckllai]leox(®, 1) + Ckl|®7e1]l0o
we prove the following lemma: + W% oo + llaslcopn (¥, .T) 9)

Lemma 1:Let two correlated signalg, andys in Eq.(1) be
correlated by the model in Eq.(2), with transforms defined Ryhere ¢}, = 1/, /|3Tk V>| then thresholding recovers all

Eq.(3). Let further assume that the condition in Eq.(4) Boldsparse components of the signal i.e., each inner product

Then, for allk = 1,...,m, it holds: of the signaly, with the atoms{%k}lgkgm exceeds all the
(2, ;) = Crlyr, di, ), inner products with the atom@); }ic 1\ (j,.....;,,} indexed by
" § the complementary sef.
where: 1 1 1 Proof: We start the proof by bounding the inner products of
= =—F, the signaly; with {¢;, },k = 1,...,m, similarly to the proof
6T5—5V>| |24 | Tk of the Theorem 9 in [1]:
and J; = 32| is the Jacobian of the linear transfoffy. {ly1, di ) Yiper = @iy = ®5Pra; + Pley
Proof: From the definition of the inner product, we have: = a1+ (D50, — Iy)a; + Pley,
(Y2, 5, ) = / Y2 (V) (V)dv, where theiz-th term1 < k£ < m can be bounded as follows:
where S, represents the sukbspace wheére(v) # 0. Substi s 60} 2 lavel =272 = La)arloo = [[Ren oo
k I A% . - > _ * _ _ *
tuting v;, = h(v)/||hl|, we get: 2> |a,m| = (@71 = la)ar oo — [[®7€1 /o0 (10)
h(v) From Lemma 1, we havéy,, v, ) = Ci(y1,¢i,). When
(Y2,%5,) = /~ yQ(V)WdV. (7) combined with Eqg.(10) it gives the following inequality:
Sk

Thel, norm ||k can be evaluated as follows: (2, 5| = Crllarm] = [|(®781 = La)arlloe = [|D7e1]|o0)-

In order for|(y2, ;)| to be recovered by thresholding, the
Al = \/{(h, h) \// h2(v)dv = \// |—|du following condition has to be satisfied for dll< k < m:
Sk Sk

(Y2, 15, )| > sup [(y2, ¥u)]-
where S, represents the subspace wher@a) # 0 (or 1¢J

equivalently, wherep;, (u) # 0). The last equality is obtained We have that:
by applying a change of variables using the Eq.(3) and Eq.(4)

for u = Tj,(v). SinceT} is defined as a linear transform of l;p|<y2’¢l>| = P59l < |¥Te2]loc + | T5¥ sa2]|o0,
coord_mates, the mappin§, — Sy is smooth, and the changeso we have to show that the condition in Eq.(9) implies the
of variables holds. Furthermore, we have tfiat/ou| = 1/.J; following inequality:

does not depend on, and it can go in front of the integral: '

1 o Cr(lar,m| = (@7®r — La)arlleo — [|PTe1]|00) >

77 Il ® W% ealloc + W50 sas|oc,

We can now go back to the Eq.(7) and similarly apply a change equivalently:
of variables, using Eq.(3), (4) and (8) an(i obtain: Chlarm] > Cull (@507 — Ia)a oo + Crl[®er [l
(ee5) = [ (VI du T ealloe + U5 sas] (11)
Sk

lgll 7
Tropp has shown in [7] that the following inequalities hold:
Finally, 1/+/J; can go in front of the integral as a constant (@50 — L)
TP — 1d)T||co

C) and we get:
[EP

(y2,¥3,) —1/@/ w)pj, (w)du = Cy.(y1, ¢;, ) .M =|||<<I>7<1>1—Id)|||1,1=s11€15>u1(<1>1,1\{1}>, (12)

IRl =

< (@721 = La)llo0,c0 =



[[@3® 17| 0 <1950 [ oo = @501 ]||11 = p11(@, 1). (13) scales. The transformed atoms froththen yield the sparse

2lo0 support for the signal,, denoted as/, and also give the
Therefore, we have: values ofCj, for each pair of atomsg; i, 1),k =1,...,m.
The two signals have been constructed so that they verify the
(@701 — Ia)arlle < larlloosup pa(®r, I\ {1}) = Lemma 1.
lel
= HalHOOX((I)a I)a 50 'O"Sr;lax=1'05
W5V saz)ec < [lazlloops (W, J). ~0-Sax=1-30
40 % Su=155 ||
We can thus conclude that the condition given in Eq.(9) that +S,,,=1.80
has the same right hand side term as Eq.(11), but lower .| a8, =200 |

bounded by Eq.(12) and Eq.(13) implies also the condition
in Eq.(11).M The derived condition in Eq.(9) represents the
worst case analysis solution and in general case, it is glot. ti
The novel condition does not include the value dfl, J)

as the condition in Eq.(5) for signgh would include when 1op
the correlation model is not considered. Furthermore, deor
to test the condition in Eq.(9) we do not need the value of e -

the smallest coefficienfas,,| in the sparse decomposition sparsity (m)
of yo, which is needed in order to test the condition in

Eq.(5) for signaly,. On the other hand, in Eq.(9) we neeq:ig. 2. Number of false negatives versus the sparsityfor different values
to have the values of the constafj.. Note however that of the maximal scaling parameters.

we do not need to know the local transforms between sparse
components, but only the valués,. If we use the dictionary

false negatives [%]
n
M=}

50

in Example 1, we would just need to know the transform ‘ ‘ ‘ 02“2:30 gg
-a- =45

of scales between sparse components, or the bound on these + SNR = 50 dB

transforms. Therefore, the new condition can be testecgusin [ —2-SNR = 55 dB|

less information about the signg} than one would need in
order to test the Eq.(5).

V. EXPERIMENTAL RESULTS

false negatives [%]

A. Randomly generated 1D signals

The sufficient condition given by the novel theorem 2 has
been verified on pairs of one-dimensional synthetic signals
We have generated a dictionary of size M=1000, for signals | ‘ ‘ ‘ ‘
of length N=700. We have constructed a parametric dictignar ! 2 3sparsity (m) ¢ ° ¢
where a generating function undergoes random shift and scal
ing operations to generate the d'_ﬁer.ent atoms in the ‘?‘am Fig. 3. Number of false negatives versus the the sparsitjor different
We have used the second derivative of the Gaussian as R, the maximum scale is set constant 1.5.
generating function, i.eg(x) = (422 — 2) exp (—(2?)). The
dictionary has been constructed by applying the coordinateWe have verified the sufficient condition in Eq.(9) by
transformz’ = (x — b)/s. The shiftsb have been selectedrunning experiments over 10 different realizations of the
randomly from 1 to N, while the scaleshave been chosendictionary. For each dictionary we have performed 1004grial
randomly from a uniform distribution on the logarithmic Eca ony; andy. constructed as explained above. No false positive
from -1 to 3. All atoms have been normalized to have theas been recorded, and all components where Eq.(9) holds
unit norm. The Jacobian of this transformligs, and hence have been recovered. This is because the condition in Eq.(9)
we have the constarit = /s. The same dictionary has beeris sufficient. The condition of Eq.(9) is however not necegsa
used for both signals, hende= . as it is based on a worst case analysis. In order to evaluate th

We have performed experiments in noiseless and noigyality of the bound, we count the nhumber of false negatives
scenarios. In both cases the sigmpalhas been chosen such(when the condition is not fulfilled but thresholding stié-r
that condition in Eq.(6) is fulfilled, for different values the covers the correct). On Fig. 2 we plot the percentage of false
sparsitym. The sparsity patterh and the coefficients; have negatives (FN) depending on the number of sparse components
been chosen randomly. To construct the correlated signae m, for different maximal values of the transform scalg,.
have randomly chosen different transforffig, k = 1,...,m between all pairs of sighalg andy>. The maximum number
defined byb, and s, for each atom in the sparse support obf false negatives appears towards smaller sparsity values
the signal, from the range-2, 2) for b and (1, s;,4.) for the when s,,,,. increases. For largemn, the smaller number of




FN appears for large,,.... Although this might look counter- T i
intuitive, it can be easily explained. In order for the signa ~ '
y1 to be recovered by thresholding, it needs to have a low &34 Gw o ww 2

value of x(®, I), which then reduces the first term on the rhs ; ; ; ; ; ;
of EQ.(9), thus the condition holds in more cases. Finally, w

s ]
can see that the number of FN is small for most cases. ) _:7 \M\/\NWMM\A

Finally, Fig.3 shows the number of FN as a functiomafin 0 00 20 a0 40 50§ 600 700 @0 00 1000
the case where signals are distorted by additive white Gauss o w ]
noise. We can see that FN is now higher for smaller SNR value _ “’\/\/\N\/\’“
but then tends to the values obtained in the noiseless came wh | i
SNR increases. The influence of noise is smaller for small O 0 200 @0 40 50 w0 700 80 00 1000
or equivalently, for higher sparsity. sf ‘ ]

B. Seismic 1D signals o © AN

Seismic signals captured at neighboring locations exhibit o 70 20 0 0 g e0 70 0 w0 1000
the type of correlation assumed by Assumption 1. Two seismic
signals shown on the Fig. 4 are obviously correlated and the o . . .

. . . . Fig. 4. Seismic signalg; andy2 captured at two neighboring locations and
S_econ.d 5|gnal.|s SI‘.llft_ed. towards the front V_\"th r.esp_ect_ﬁ) thheir respective approximations, and p» with one Gabor atom per signal.
first signal. This shift is important to detect in seismicrgilp The signaly: andy- are correlated by a shift on theaxis, which is correctly
as it represents the propagation of the seismic wave. In fgtured by shifted Gabor atoms.

following, we approximate these signals with Gabor atoms:

z—bo . w tion is novel with respect to the state of the art work due & th
)¥)sin (2r—(z — b)), (14) : .

N particular correlation model based on the local transfoofns
where K is a normalization constant. Atoms are chosen frothe sparse signal components. The new model and the recovery
a dictionary, which is constructed by the discretizatiorpaf condition is important for practical cases of correlateghais
rameterss, b, w) that respectively represent scale, translatiofhere local geometric transforms are usually present. W sh
and frequency. The scales are discretized in a dyadic mantieat in both noisy and noiseless cases the number of false
i.e.,s =2 j=1,..log:(N), whereN is the signal length. negatives stays reasonably small. In the future work, weldvou
Translation (shift) parametéris chosen uniformly from 1 to like to apply the obtained conditions for correlated images
N with step 2, such that the dictionary is overcomplete ardoreover, we would like to extend the worst case analysis
its IST is not too high. Finally, to construct the dictionarypresented in this work to the average case analysis.
that is invariant to shifts and scales as given in the Eq.(3),
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