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Abstract—This paper addresses the problem of correct re-
covery of multiple sparse correlated signals using distributed
thresholding. We consider the scenario where multiple sensors
capture the same event, but observe different signals that are
correlated by local transforms of their sparse components.In
this context, the signals do not necessarily have the same sparse
support, but instead the support of one signal is built on local
transforms of the atoms in the sparse support of another signal.
We establish the sufficient condition for the correct recovery of
such correlated signals using independent thresholding ofthe
multiple signals. The condition is relevant in scenarios where
low complexity processing such as thresholding is needed, for
example in sensor networks. The validity of the derived recovery
condition is confirmed by experimental results in noiselessand
noisy scenarios.

Index Terms—sparse approximations, thresholding, local
transforms

I. I NTRODUCTION

Sparse signal approximation refers to a particular signal
representation as a linear combination of a few functions
(atoms) chosen from an overcomplete dictionary. In the last
decade sparse approximations have attracted a lot of attention,
partly due to the fact that they offer convenient solutions for
signal coding and compression. With the design of flexible dic-
tionaries, sparse representations have also found applications
in signal analysis and distributed signal processing.

This paper deals with sparse approximations of correlated
signals, where sparse components of different signals are
linked with local transforms. A variety of correlated signal sets
can be modeled this way, like videos and multi-view images
at low bit rates, seismic signals, etc. In particular, we establish
the sufficient condition for the recovery of sparse components
of such correlated signals using thresholding. Thresholding is
a fast algorithm where sparse components are simply chosen
as those that have the highest inner product with the signal.
However, in case of redundant dictionaries, thresholding does
not guarantee to find the correct signal elements. The sufficient
condition for the correct signal recovery by thresholding has
been given in [1]. When a given signal satisfies the recovery
condition, thresholding becomes an interesting approach for
sparse recovery, due to its very low complexity compared
to other sparse approximation algorithms (Matching Pursuit,
Basis Pursuit Denoising). Moreover, thresholding can be seen

as a part of the complexity-adaptive signal approximation strat-
egy [2], where the signal is approximated using thresholding
if the recovery condition is satisfied, or using more complex
algorithms otherwise. Therefore, it is crucial to perform the
worst case analysis and derive the sufficient condition under
which a sparse signal could be recovered by thresholding.

Recovery of correlated signals by thresholding has been
considered in [3], where the correlated signals share a common
sparse support, but are observed under different noisy condi-
tions. Sparse representation of correlated signals has been also
presented within the concept of distributed compressed sensing
for two correlation models: common sparse component with
sparse innovations, and common sparse supports [4]. The
recovery algorithms in [4] are based on greedy and convex
optimizations algorithms. The thresholding recovery analysis
for correlated signals that we present here differs from the
previous work [3], [4] in one major assumption: we do not
require the signals to share the same support (i.e., to have
exactly the same atoms in the representation). Instead, we
allow each atom in one signal to have its corresponding atom
in another signal, which is obtained by a local transform such
as shift, scaling, or any combination of those. These signals
can be, for example, obtained by a set of sensors that look
at the same event, but record different observations, as shown
on the Fig. 1. We derive the sufficient recovery condition for
this correlation model, validate it on randomly generated 1D
signals and illustrate its usage on seismic signals.
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Fig. 1. Sensors observe the same event and record correlatedobservations.

II. SPARSE CORRELATION MODEL

We consider two signalsy1 andy2 that have sparse repre-
sentations in dictionariesΦ and Ψ, respectively. We assume
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that the signals are not exactly sparse, but they can be
approximated by sparse decompositions ofm atoms up to an
approximation error, i.e.:

y1 = ΦIa1 + e1 =

m∑

k=1

a1,kφik
+ e1

y2 = ΨJa2 + e2 =

m∑

k=1

a2,kψjk
+ e2, (1)

where I = {ik}, J = {jk}, k = 1, ...m label the sets of
atoms that participate in the sparse decompositions ofy1
andy2, respectively. MatricesΦI andΨJ denote respectively
sub-matrices ofΦ and Ψ with respect toI and J . We are
particularly interested in signals that are correlated by local
transforms of the atoms in different signals. The correlation
model is described in the rest of this section through two
assumptions.

Assumption 1. We assume that signalsy1 and y2 are
correlated in the following way:

y2 =
m∑

k=1

a2,kψjk
+ e2 =

m∑

k=1

a2,kFk(φik
) + e2, (2)

whereFk(·) denotes a transform of an atomφik
in y1 to an

atomψjk
, and it differs for eachk = 1, ...,m.

In particular, we consider a special class of transformsF ,
which result from a linear transform of the coordinate system
in the spaceH where the signal and the dictionaries are de-
fined. Letv denote the vector of coordinates inH andu denote
the vector of coordinates obtained by transformingv with an
arbitrary linear transformT , i.e., u = T (v). Let further atom
φ be defined as a continuous function onH normalized to have
the l2 norm equal to one, i.e.,φ = g(v)/‖g‖. Equivalently,
we defineψ = h(v)/‖h‖. We consider the atom transforms
F which satisfy:

h(v) = F (g(v)) = g(T (v)) = g(u). (3)

The second equality in Eq.(3) directly defines the class of
transformsF considered in this work, which result from a
linear transformT . These types of transforms have been shown
to be of great practical use, for example in dictionary design
for sparse image approximation [5]. The considered transforms
can be illustrated by the following example.

Example 1:Consider a functiong(x) ∈ R and an over-
complete dictionary obtained by various local transforms of
g(x), like shifts and scaling. These transforms can be realized
by a single transform of thex coordinate, which includes
translationb and anisotropic scalings; i.e.,x′ = (x−b)/s. This
class of transforms obviously satisfies Eq.(3), wherev = x
andu = x′.

We assume further that the signals satisfy the local trans-
forms applied to each atom, within the local support of that
atom:

Assumption 2. For all k and v such thatφik
(v) 6= 0, it

holds:
y2(v) = y1(Tk(v)) = y1(u). (4)

The type of signal correlation under different local trans-
forms given by Assumptions 1 and 2 can be found in many
practical cases where the same signal is observed by sensors
at different positions. Locality of the transforms is highly
important in practical cases as different parts of the signal
can be captured under different transforms, like for example
at different distances to the sensor. Since the signal correlation
model includes a noise component, slight deviations from the
assumed model (e.g., occlusions, interference) can be consid-
ered as noise components and hence the signal correlation
model is not very restrictive.

We are now interested in establishing the conditions under
which thresholding, performed independently on each signal,
recovers the correct sparse representations of signalsy1 and
y2. This can be stated as follows:

Problem 1: Assume that we are given two correlated sig-
nals y1 and y2 in Eq.(1), and the assumptions 1 and 2
hold. Suppose that thresholding recovers the correct sparsity
patternI of the signaly1. We want to derive the sufficient
condition for the correct sparse recovery of the sparsity pattern
J of the signaly2 using thresholding, without having all the
information about the atom transforms.

III. S INGLE SIGNAL THRESHOLDING

We review here the conditions under which simple thresh-
olding algorithm recovers correctly the sparse representation
of the signals [1]. Before describing their result, let us define
some functions that will be used throughout the analysis.
Setwise cumulative coherence function, defined in [6], is given
as:

µ1(Φ, I) := sup
k/∈I

∑

i∈I

|〈φk, φi〉|.

Next, theDictionary Inter Symbol Interferenceis given as:

ISI(Φ, I) := µ1(Φ, I) + sup
l∈I

µ1(ΦI , I \ {l}).

This function measures the interference of atoms in the sparse
decomposition that can lead to incorrect recovery. We will
denote the second term in the expression forISI(Φ, I) as
χ(ΦI , I), i.e.,

χ(ΦI , I) := sup
l∈I

µ1(ΦI , I \ {l}).

The recovery condition is given by the following theorem:
Theorem 1 (Gribonval, Nielsen, Vandergheynst [2]):Let

y = Φx + e be a noisy sparse representation of the data.
Moreover, assumexlk , k = 1, ...|I| are the |I| nonzero
components ofx in decreasing order of magnitude, i.e.,
|xl1 | ≥ |xl2 | ≥ ... ≥ |xl|I| |. If for a certainm, 1 ≤ m ≤ |I|,
the following condition is satisfied:

|x|lm
||x||∞

>
||Φ∗

Ie||∞ + ||Φ∗
Ī
e||∞

||x||∞
+ ISI(Φ, I) (5)

then each inner product of the observed datay with the
atoms {φli}1≤i≤m exceeds all the inner products with the
atoms{φi}i∈I\{l1,...,lm} indexed by the complementary set



Ī. In particular them = |I| largest inner products correspond
exactly to the supportI of x.

For the general proof, please see the generalization of the
theorem to the multi-channel case [1].

IV. T HRESHOLDING OF CORRELATED SIGNALS

We will first assume that the sparsity patternI of the
signal y1 can be recovered by thresholding, i.e., that signal
y1 satisfies:

|a1,m|
||a1||∞

>
||Φ∗

Ie1||∞ + ||Φ∗
Ī
e1||∞

||a1||∞
+ ISI(Φ, I). (6)

Before establishing the recovery conditions for the signaly2,
we prove the following lemma:

Lemma 1:Let two correlated signalsy1 andy2 in Eq.(1) be
correlated by the model in Eq.(2), with transforms defined by
Eq.(3). Let further assume that the condition in Eq.(4) holds.
Then, for allk = 1, ...,m, it holds:

〈y2, ψjk
〉 = Ck〈y1, φik

〉,
where:

Ck =
1√

|∂Tk(v)
∂v

|
=

1√
|∂u

∂v
|

=
1√
Jk

,

andJk = |∂u

∂v
| is the Jacobian of the linear transformTk.

Proof: From the definition of the inner product, we have:

〈y2, ψjk
〉 =

∫

eSk

y2(v)ψjk
(v)dv,

whereS̃k represents the subspace whereψjk
(v) 6= 0. Substi-

tuting ψjk
= h(v)/‖h‖, we get:

〈y2, ψjk
〉 =

∫

eSk

y2(v)
h(v)

‖h‖ dv. (7)

The l2 norm ‖h‖ can be evaluated as follows:

‖h‖ =
√
〈h, h〉 =

√∫

eSk

h2(v)dv =

√∫

Sk

g2(u)|∂v
∂u

|du,

where Sk represents the subspace whereg(u) 6= 0 (or
equivalently, whereφik

(u) 6= 0). The last equality is obtained
by applying a change of variables using the Eq.(3) and Eq.(4)
for u = Tk(v). SinceTk is defined as a linear transform of
coordinates, the mappingSk → S̃k is smooth, and the change
of variables holds. Furthermore, we have that|∂v/∂u| = 1/Jk

does not depend onv, and it can go in front of the integral:

‖h‖ =
1√
Jk

‖g‖. (8)

We can now go back to the Eq.(7) and similarly apply a change
of variables, using Eq.(3), (4) and (8) and obtain:

〈y2, ψjk
〉 =

∫

Sk

y1(u)
√
Jk
g(u)

‖g‖
1

Jk
du.

Finally, 1/
√
Jk can go in front of the integral as a constant

Ck and we get:

〈y2, ψjk
〉 = 1/

√
Jk

∫

Sk

y1(u)φjk
(u)du = Ck〈y1, φik

〉.�

If we go back now to our Example 1, we have the Jacobian
that is equal to:|∂(x′)

∂(x) | = 1/sk and henceCk =
√
sk, where

sk is the scale transform for each pair of correlated atoms
(φik

, ψjk
).

We can now give the recovery condition for the signaly2:
Theorem 2:Suppose we are given two correlated signals

y1 = ΦIa1 + e1 and y2 = ΨJa2 + e2, which satisfy
assumptions 1 and 2. Furthermore, suppose that thresholding
recovers the correct sparsity patternI of the signaly1, i.e., the
condition given by Eq.(6) is satisfied. If for allk = 1, ...,m
the following sufficient condition is satisfied:

Ck|a1,m| > Ck‖a1‖∞χ(Φ, I) + Ck‖Φ∗
Ie1‖∞

+ ‖Ψ∗
J̄e2‖∞ + ‖a2‖∞µ1(Ψ, J) (9)

where Ck = 1/
√
|∂Tk(v)

∂v
|, then thresholding recovers all

sparse components of the signaly2, i.e., each inner product
of the signaly2 with the atoms{ψjk

}1≤k≤m exceeds all the
inner products with the atoms{ψi}i∈J\{j1,...,jm} indexed by
the complementary set̄J .
Proof: We start the proof by bounding the inner products of
the signaly1 with {φik

}, k = 1, ...,m, similarly to the proof
of the Theorem 9 in [1]:

{〈y1, φik
〉}ik∈I = Φ∗

Iy1 = Φ∗
IΦIa1 + Φ∗

Ie1

= a1 + (Φ∗
IΦI − Id)a1 + Φ∗

Ie1,

where theik-th term1 ≤ k ≤ m can be bounded as follows:

|〈y1, φik
〉| ≥ |a1,k| − ‖(Φ∗

IΦI − Id)a1‖∞ − ‖Φ∗
Ie1‖∞

≥ |a1,m| − ‖(Φ∗
IΦI − Id)a1‖∞ − ‖Φ∗

Ie1‖∞. (10)

From Lemma 1, we have〈y2, ψjk
〉 = Ck〈y1, φik

〉. When
combined with Eq.(10) it gives the following inequality:

|〈y2, ψjk
〉| ≥ Ck(|a1,m| − ‖(Φ∗

IΦI − Id)a1‖∞ − ‖Φ∗
Ie1‖∞).

In order for |〈y2, ψjk
〉| to be recovered by thresholding, the

following condition has to be satisfied for all1 ≤ k ≤ m:

|〈y2, ψjk
〉| > sup

l/∈J

|〈y2, ψl〉|.

We have that:

sup
l/∈J

|〈y2, ψl〉| = ‖Ψ∗
J̄y2‖∞ ≤ ‖Ψ∗

J̄e2‖∞ + ‖Ψ∗
J̄ΨJa2‖∞,

so we have to show that the condition in Eq.(9) implies the
following inequality:

Ck(|a1,m| − ‖(Φ∗
IΦI − Id)a1‖∞ − ‖Φ∗

Ie1‖∞) >

‖Ψ∗
J̄e2‖∞ + ‖Ψ∗

J̄ΨJa2‖∞,
or equivalently:

Ck|a1,m| > Ck‖(Φ∗
IΦI − Id)a1‖∞ + Ck‖Φ∗

Ie1‖∞
+ ‖Ψ∗

J̄e2‖∞ + ‖Ψ∗
J̄ΨJa2‖∞, (11)

Tropp has shown in [7] that the following inequalities hold:

‖(Φ∗
IΦI − Id)x‖∞

‖x‖∞
≤ ‖|(Φ∗

IΦI − Id)‖|∞,∞ =

= ‖|(Φ∗
IΦI − Id)‖|1,1 = sup

l∈I
µ1(ΦI , I \ {l}), (12)



‖Φ∗
Ī
ΦIx‖∞

‖x‖∞
≤ ‖|Φ∗

ĪΦI‖|∞,∞ = ‖|Φ∗
ĪΦI‖|1,1 = µ1(Φ, I). (13)

Therefore, we have:

‖(Φ∗
IΦI − Id)a1‖∞ ≤ ‖a1‖∞ sup

l∈I
µ1(ΦI , I \ {l}) =

= ‖a1‖∞χ(Φ, I),

‖Ψ∗
J̄ΨJa2‖∞ ≤ ‖a2‖∞µ1(Ψ, J).

We can thus conclude that the condition given in Eq.(9) that
has the same right hand side term as Eq.(11), but lower
bounded by Eq.(12) and Eq.(13) implies also the condition
in Eq.(11).� The derived condition in Eq.(9) represents the
worst case analysis solution and in general case, it is not tight.
The novel condition does not include the value ofχ(Ψ, J)
as the condition in Eq.(5) for signaly2 would include when
the correlation model is not considered. Furthermore, in order
to test the condition in Eq.(9) we do not need the value of
the smallest coefficient|a2,m| in the sparse decomposition
of y2, which is needed in order to test the condition in
Eq.(5) for signaly2. On the other hand, in Eq.(9) we need
to have the values of the constantCk. Note however that
we do not need to know the local transforms between sparse
components, but only the valuesCk. If we use the dictionary
in Example 1, we would just need to know the transform
of scales between sparse components, or the bound on these
transforms. Therefore, the new condition can be tested using
less information about the signaly2 than one would need in
order to test the Eq.(5).

V. EXPERIMENTAL RESULTS

A. Randomly generated 1D signals

The sufficient condition given by the novel theorem 2 has
been verified on pairs of one-dimensional synthetic signals.
We have generated a dictionary of size M=1000, for signals
of length N=700. We have constructed a parametric dictionary,
where a generating function undergoes random shift and scal-
ing operations to generate the different atoms in the dictionary.
We have used the second derivative of the Gaussian as the
generating function, i.e.,g(x) = (4x2 − 2) exp (−(x2)). The
dictionary has been constructed by applying the coordinate
transformx′ = (x − b)/s. The shiftsb have been selected
randomly from 1 to N, while the scaless have been chosen
randomly from a uniform distribution on the logarithmic scale
from -1 to 3. All atoms have been normalized to have the
unit norm. The Jacobian of this transform is1/s, and hence
we have the constantC =

√
s. The same dictionary has been

used for both signals, henceΦ = Ψ.
We have performed experiments in noiseless and noisy

scenarios. In both cases the signaly1 has been chosen such
that condition in Eq.(6) is fulfilled, for different values of the
sparsitym. The sparsity patternI and the coefficientsa1 have
been chosen randomly. To construct the correlated signaly2 we
have randomly chosen different transformsTk, k = 1, ...,m
defined bybk andsk, for each atom in the sparse support of
the signal, from the range(−2, 2) for b and(1, smax) for the

scales. The transformed atoms fromI then yield the sparse
support for the signaly2, denoted asJ , and also give the
values ofCk for each pair of atoms(φi,k, ψj,k), k = 1, ...,m.
The two signals have been constructed so that they verify the
Lemma 1.
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Fig. 2. Number of false negatives versus the sparsitym, for different values
of the maximal scaling parameters.
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Fig. 3. Number of false negatives versus the the sparsitym for different
SNR, the maximum scale is set constants = 1.5.

We have verified the sufficient condition in Eq.(9) by
running experiments over 10 different realizations of the
dictionary. For each dictionary we have performed 100 trials
ony1 andy2 constructed as explained above. No false positive
has been recorded, and all components where Eq.(9) holds
have been recovered. This is because the condition in Eq.(9)
is sufficient. The condition of Eq.(9) is however not necessary,
as it is based on a worst case analysis. In order to evaluate the
quality of the bound, we count the number of false negatives
(when the condition is not fulfilled but thresholding still re-
covers the correctJ). On Fig. 2 we plot the percentage of false
negatives (FN) depending on the number of sparse components
m, for different maximal values of the transform scalesmax

between all pairs of signalsy1 andy2. The maximum number
of false negatives appears towards smaller sparsity valuesm
when smax increases. For largerm, the smaller number of



FN appears for largesmax. Although this might look counter-
intuitive, it can be easily explained. In order for the signal
y1 to be recovered by thresholding, it needs to have a low
value ofχ(Φ, I), which then reduces the first term on the rhs
of Eq.(9), thus the condition holds in more cases. Finally, we
can see that the number of FN is small for most cases.

Finally, Fig.3 shows the number of FN as a function ofm, in
the case where signals are distorted by additive white Gaussian
noise. We can see that FN is now higher for smaller SNR value
but then tends to the values obtained in the noiseless case when
SNR increases. The influence of noise is smaller for smallm
or equivalently, for higher sparsity.

B. Seismic 1D signals

Seismic signals captured at neighboring locations exhibit
the type of correlation assumed by Assumption 1. Two seismic
signals shown on the Fig. 4 are obviously correlated and the
second signal is shifted towards the front with respect to the
first signal. This shift is important to detect in seismic signals
as it represents the propagation of the seismic wave. In the
following, we approximate these signals with Gabor atoms:

g(x) =
1

K
exp (−π(

x − b

s
)2) sin (2π

w

N
(x − b)), (14)

whereK is a normalization constant. Atoms are chosen from
a dictionary, which is constructed by the discretization ofpa-
rameters(s, b, w) that respectively represent scale, translation
and frequency. The scales are discretized in a dyadic manner,
i.e., s = 2j, j = 1, ..., log2(N), whereN is the signal length.
Translation (shift) parameterb is chosen uniformly from 1 to
N with step 2, such that the dictionary is overcomplete and
its ISI is not too high. Finally, to construct the dictionary
that is invariant to shifts and scales as given in the Eq.(3),
frequency has to be linked to the scale as:w = w0/s,
wherew0 is the basic modulating frequency and it is constant.
We have chosen it to be5N , which is the approximate
frequency of the given seismic signals. Seismic signalsy1 and
y2 are approximated by one Gabor atom per signal (m = 1),
and the approximated signals arep1 and p2, respectively
(see Fig. 4). The Gabor atoms recovered by independent
thresholding on two signals have the following parameters:
s1 = 128, s2 = 128, b1 = 571, b2 = 553, and the recovery
conditions in Eq.(5) for the signaly1 and Eq.(9) for the signal
y2 are shown to be satisfied. Therefore, the observed seismic
signals are sparse in the chosen dictionary, correlated by the
proposed model, and the derived recovery condition holds.
Interestingly, the condition in Eq.(5) evaluated for the signal
y2 does not hold (false negative), thus giving evidence that our
new condition in Eq.(9) is less conservative than the condition
in Eq.(5). Moreover, the recovered atoms directly give us the
shift between signals. The recovered shift is equal to the shift
evaluated by the cross-correlation of original signals, thus it
is correctly recovered.

VI. CONCLUSION

We have derived the sufficient condition for recovery of
sparse correlated signals by thresholding. The obtained solu-
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Fig. 4. Seismic signalsy1 andy2 captured at two neighboring locations and
their respective approximationsp1 and p2 with one Gabor atom per signal.
The signalsy1 andy2 are correlated by a shift on thex axis, which is correctly
captured by shifted Gabor atoms.

tion is novel with respect to the state of the art work due to the
particular correlation model based on the local transformsof
the sparse signal components. The new model and the recovery
condition is important for practical cases of correlated signals
where local geometric transforms are usually present. We show
that in both noisy and noiseless cases the number of false
negatives stays reasonably small. In the future work, we would
like to apply the obtained conditions for correlated images.
Moreover, we would like to extend the worst case analysis
presented in this work to the average case analysis.
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