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Abstract—In a companion paper (see Self-Similarity: Part
I—Splines and Operators), we characterized the class of scale-in-
variant convolution operators: the generalized fractional deriva-
tives of order . We used these operators to specify regularization
functionals for a series of Tikhonov-like least-squares data fitting
problems and proved that the general solution is a fractional spline
of twice the order. We investigated the deterministic properties
of these smoothing splines and proposed a fast Fourier transform
(FFT)-based implementation. Here, we present an alternative
stochastic formulation to further justify these fractional spline
estimators. As suggested by the title, the relevant processes are
those that are statistically self-similar; that is, fractional Brownian
motion (fBm) and its higher order extensions. To overcome the
technical difficulties due to the nonstationary character of fBm,
we adopt a distributional formulation due to Gel’fand. This allows
us to rigorously specify an innovation model for these fractal pro-
cesses, which rests on the property that they can be whitened by
suitable fractional differentiation. Using the characteristic form
of the fBm, we then derive the conditional probability density
function (PDF) ( ( ) ), where = ( ) + [ ]
are the noisy samples of the fBm ( ) with Hurst exponent .
We find that the conditional mean is a fractional spline of degree
2 , which proves that this class of functions is indeed optimal
for the estimation of fractal-like processes. The result also yields
the optimal [minimum mean-square error (MMSE)] parameters
for the smoothing spline estimator, as well as the connection with
kriging and Wiener filtering.

Index Terms—Fractional Brownian motion, fractional splines,
interpolation, minimum mean-square error (MMSE) estimation,
self-similar processes, smoothing splines, Wiener filtering.

I. INTRODUCTION

I N the preceding paper [1], we demonstrated the power of
the differential formulation of splines by constructing an ex-

tended family of fractional splines. These functions are speci-
fied in terms of a differential operator L, which, in the present
case, is constrained to be scale invariant (or self-similar). We
also investigated an alternative variational formulation which al-
lowed us to recover a subset of these splines (the ones associated
with self-adjoint operators) based on the minimization of some
scale-invariant “spline energy” involving the same type of oper-
ator. We used this deterministic framework to specify a general
parametric class of smoothing spline estimators for fitting dis-
crete signals corrupted by noise.
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Differential operators also naturally arise in the theory of con-
tinuous-time stochastic processes; for instance, it is often pos-
sible to specify a process as the solution of a stochastic
differential equation , whose driving term
is white Gaussian noise with variance —this type of repre-
sentation is often referred to as the innovation model of the
process [2], [3]. Now, in the standard case where L is shift
invariant and its inverse is well defined in the -sense (i.e.,

), this procedure defines a stationary
process whose power density is . The
interpretation is simply that L is the whitening operator of the
process.

Interestingly, there is a perfect parallel between the determin-
istic differential equations used to define general L-splines, and
the stochastic ones just mentioned above. In our previous work,
we have taken advantage of this fact to derive an equivalence be-
tween spline interpolation and the optimal, continuous-time es-
timation of stationary processes from their integer samples [4].
In particular, we showed that every continuous-time stationary
process with a rational power spectrum has a natural exponen-
tial spline space associated with it and that this space contains
the optimal solutions of all related minimum mean-square error
(MMSE) interpolation and estimation problems.

Following this line of thought, it seems quite natural to
extend those stochastic results to the classical polynomial
splines [5] and their fractional extensions specified in [1]. Un-
fortunately, this is far less trivial than we would have thought
initially because of the lack of correspondence between
spectra and stationary processes. Indeed, the price to pay for
self-similary is the zero of order in the frequency response
of L at , which makes the differential system unstable
and substantially complicates the mathematical analysis. Here,
as suggested by the title, the relevant stochastic processes are
those that are statistically self-similar [6]. These were charac-
terized in 1968 by Mandelbrot and Van Ness [7] and named
fractional Brownian motion (fBm) because they can be viewed
as an extension of Brownian motion, also known as the Wiener
process. In this respect, we note that there is an early mention
of a link between (thin-plate) splines and fractals in a paper by
Szeleski and Terzopoulos in computer graphics, the argument
being that both types of entities give rise qualitatively to the
same type of frequency behavior [8]. The main difficulty in
dealing with fBms is that they are nonstationary,1 meaning that

1It can be shown that there is no mean-square-continuous stationary process
whose covariance function is self-similar. However, a careful distributional ex-
tension using Gel’fand and Vilenkin’s mathematical framework can lead to the
definition of Gaussian stationary processes that are self-similar, discontinuous,
and of infinite power (e.g., white noise) [9]. Qualitatively, these correspond to
fBm’s with H < 0.

1053-587X/$25.00 © 2007 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147946584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BLU AND UNSER: SELF-SIMILARITY: PART II—OPTIMAL ESTIMATION OF FRACTAL PROCESSES 1365

Fig. 1. Synthesis and analysis of a self-similar stochastic process: The fBm process x(t) is generated by fractional integration of white Gaussian noise with
suitable initial condition that guarantee that Efjx(0)j g = 0. The whitening operator of the process is a fractional derivative operator @ of corresponding order.
Even though x(t) is not necessarily stationary, it can be transformed into a stationary process y(t) through the application of the fractional finite difference operator
� . Since � is a “good” discrete approximation of the continuous-time operator @ , the correlation function c (�) is well defined and concentrated around
the origin. In fact, this function may be thought of as a regularized version of the Dirac impulse. Note that � can be chosen arbitrarily.

they do not have a well-defined power spectrum. The corollary
is that the mathematics of fBm-like processes are much more
involved than those of ordinary stationary processes. Yet, it is
possible to define some generalized notion of power spectrum
for these processes[10]; for fBm, these follow a characteristic

power law, which justifies the common denomination of
“ noise.” There are a few results available on the prediction
of such process from their past [9], [11]–[14] and on optimal
signal detection in noise [15]. Also relevant to the topic is
the wavelet-based technique for generating fBm-like processes
that was proposed by Meyer et al. [16].

The purpose of this paper is to close the gap by showing that
the fractional splines are the optimal function spaces for interpo-
lating and estimating fractal processes. A key technical point is
the rigorous statement (in the distributional sense) that the frac-
tional derivatives are the whitening operators for fBms and their
higher order extensions. This allows us to prove our main the-
orem, which states that the continuous-time Wiener estimator
of a generalized fBm, given its (possibly noisy) samples at the
integers, is a fractional smoothing spline of order ,
where is the order of self-similarity (Hurst exponent) of
the process.

The paper is organized as follows. In Section II, we intro-
duce the notation while briefly reviewing the key properties of
fractional smoothing spline filters. In Section III, we address
the issue of the stochastic modeling of self-similar processes.
Our contribution is the proposal of an innovation model for
the generation of fBm and their extension for Hurst exponents

(cf. Fig. 1). In effect, the fBm is generated by suitable
fractional integration of a white noise process. The major dif-
ficulty here is of technical nature: it requires giving a precise
mathematical meaning to the objects and operations involved
(within the context of distribution theory) and searching for an
effective way of imposing boundary conditions at the origin
that are specific to self-similar processes. To this end, we rely
on Gel’fand’s theory of generalized stochastic processes (cf.
Section III-B), which allows us to safely manipulate fBms, for

instance, compute fractional derivatives and antiderivatives. In
Section IV, we use the proposed distributional characterization
of fBm to solve our basic estimation problem. Our main result
is an explicit formula for the posterior probability density func-
tion (PDF) for any , where

are the samples of a fBm process cor-
rupted by additive Gaussian stationary noise . This automati-
cally yields the optimal spline estimator that includes a rapidly
decaying nonstationary component. We then proceed with the
derivation of the best “stationary” estimator which turns out to
be computationally equivalent to the “deterministic” smoothing
spline algorithm investigated in the Part I paper [1].

II. FRACTIONAL SPLINE ESTIMATORS

In this section, we briefly recall the key features of the frac-
tional smoothing splines that were specified in Part I [1] using
a deterministic, variational formulation. In the process, we also
adapt the notation slightly to make it more suitable for a statis-
tical formulation.

Our basic estimation problem is to recover an unknown con-
tinuous-time function given a sequence of
noisy samples , where
is a perturbation signal (noise) whose influence we want to min-
imize.

The fractional spline estimator of degree (or, equivalently,
of order ) is a continuous-time function that depends
upon the discrete measurements and takes the generic form

(1)

where is the fractional symmetric B-spline of degree
(cf. first row of Table I). It is uniquely characterized by the se-
quence of its B-spline coefficients .

For the class of smoothing spline estimators described in [1],
the B-spline coefficients are obtained by appropriate filtering of
the input data: . The digital smoothing spline
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TABLE I
PRIMARY FUNCTIONS AND OPERATORS FOR SMOOTHING SPLINE ESTIMATION AND THE MODELING OF FRACTAL PROCESSES

filter is parametrized by the degree of the spline, a regular-
ization factor , and a positive-definite convolution kernel

whose discrete Fourier transform is . Here, to sim-
plify the notation, we combine the two latter entities into a single
weighting function

which we assume to be bounded. Using this formalism, we
rewrite the frequency response of the filter (cf. [1, Eq. (20)]) as

(2)

where

(3)

is the discrete-time Fourier transform of the sampled B-spline
basis function.

Putting these elements together, we express the smoothing
spline estimator in terms of the input

(4)

where

(5)

is an equivalent fractional spline basis function that represents
the “impulse response” of the estimator, keeping in mind that
the input is discrete, while the output is analog.

In Part I [1], we have shown that this spline estimator is op-
timal in the sense that, for a given input sequence , it
minimizes the regularized error criterion

where is a generalized fractional derivative of order
(cf. definition in Table I). Using our present notation,

we can write the equivalent frequency domain criterion

whose minimum over all functions is achieved by the
spline estimator (4).

Since the digital filter is guaranteed to be bounded-input
bounded-output (BIBO) stable (cf. [1, Theorem 2]) and the frac-
tional B-spline basis functions are -stable for ,
there is no compelling reason for restricting ourselves to input
signals that are in , other than the fact that the variational
criteria listed above may no longer be well defined. In the se-
quel, we will lift this hypothesis and consider the application of
the spline estimator (4) to stochastic signals that are not square
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summable. It is important to note that this does not change any-
thing from a computational point of view, meaning that the fast
smoothing spline algorithm introduced in [1, Sec. IV] and the
corresponding frequency domain analysis remain valid.

III. STOCHASTIC MODELING OF SELF-SIMILAR PROCESSES

To justify the use of the above smoothing spline estimator
on statistical grounds, we first need to introduce an appro-
priate mathematical framework that allows us to characterize
fractal-like processes and to apply linear operators to them,
including the fractional derivatives listed in Table I. Since this
cannot be handled by standard stochastic calculus, we had
to turn to Gel’fand and Vilenkin’s theory of generalized sto-
chastic processes which constitutes the statistical counterpart
of Schwartz’s theory of distributions.

A. Self-Similar Processes: Review of Standard Results

There are a number of technical difficulties with the modeling
of self-similar processes, with fBm being the most prominent
example. This is primarily due to the fact that these processes are
nonstationary, meaning that their spectral power density cannot
be defined in the conventional sense. Fortunately, the -lag in-
crement derived process , where
denotes the realization of an fBm-like process, is zero-mean,
second-order stationary.

In the statistical literature, a process whose increments are
stationary is referred to as being intrinsic stationary. These pro-
cesses are often characterized by their variogram [17]

which measures the variance of the increment process as
a function of the time lag.

A real valued stochastic process is self-sim-
ilar with index (or Hurst exponent) if, for any

where denotes the equality of all underlying finite-dimen-
sional distributions.

The fBm with Hurst exponent is a zero-mean
Gaussian process that is both self-similar and intrinsically sta-
tionary [7]. In particular, this implies that its variogram is self-
similar of order (in the sense that ) and
is therefore given by

(6)

where is simply a scaling factor (cf. [1, proof of Propo-
sition 1]). The variance of the fBm has the same self-similar
functional form

(7)

which is time dependent, confirming that the process is
nonstationary.

If we know both the time-varying variance and the variogram
of the process, we easily obtain the autocorrelation function, due
to the relation

In the case of the fBm process, this yields the following explicit
form of the autocorrelation:

(8)

which is also self-similar of order . Conversely, it can be
shown that the 2-D function defined by (8) is nonnegative defi-
nite (see Theorem 1 below) and that it is the only possible para-
metric form of correlation that corresponds to a process that is
both self-similar and intrinsically stationary [18].

The notion of intrinsic stationarity can be further generalized
by considering processes whose th-order increments are sta-
tionary [12], [19]. Among those, one can also identify the ones
that are self-similar, which leads to an extended notion of frac-
tional Brownian motion for larger Hurst exponents such that

, where is the order of the increment. Such
processes can be obtained, for example, from the -fold integra-
tion of a conventional fBm with suitable initial conditions [20].
This leads to an autocorrelation function of the form

(9)

where is a constant and . In the litera-
ture, the constant is sometimes expressed as

, where is a spectral energy factor;
the standard normalized case corresponds to the choice
and .

B. Generalized Stochastic Processes: Gel’fand–Vilenkin’s
Approach [21]

In order to perform linear operations such as differentiation
on random processes, a fruitful approach is to consider them
as random distributions and to extend the applicability of the
distributional calculus to these processes. In particular, this for-
malism provides a rigorous definition of white noise, which
plays such as fundamental role in statistical signal processing.
A very stimulating and fundamental presentation of this theory
can be found in [21].

Although Gel’fand and Vilenkin’s approach is a natural
extension of the now classical theory of distributions [22],
it seems to have been somewhat neglected in the standard
literature on random processes, including fBm’s. One notable
exception relating to signal processing is [23]. By contrast,
the Itô stochastic calculus and its Stratonovich variant have
received a much greater attention, in particular, in statistical
physics and financial mathematics [24], [25]. Both types of
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approaches have their advantages and limitations; for instance,
the Itô calculus can handle certain nonlinear operations on
random processes that cannot be dealt with the distributional
approach. Gel’fand’s theory, on the other hand, is ideally suited
for performing any kind of linear operations, including some,
such as fractional derivatives, which are extremely cumbersome
to define in a traditional (nondistributional) framework.

Most readers may recall that a distribution is not defined
through its point values (samples), but rather through a series
of scalar products (linear functionals) with all test func-
tions (Schwartz’s class). These test functions are indef-
initely differentiable and they, as well as all their derivatives,
have very rapid decay (i.e., faster than ).
In an analogous fashion, a generalized stochastic process
is not defined by the probability law of its pointwise samples

, but by the probability law
of its scalar products with arbitrary test functions .

Specifically, given , is a random variable
characterized by a probability density . The character-
istic function of this random variable is used to define a func-
tional of , as follows:

where is the expectation operator. This functional is
called the characteristic form of the process . It is important to
understand that it concentrates all the information available on
the generalized stochatic process . For instance, if one wants
to access the joint probability of the random variables

, then it suffices to take
the inverse Fourier transform of
with respect to . This is because the prob-
ability density of the set of random variables is
given by

Conversely, if is a continuous form of positive type2 and
satisfies , then it is the characteristic form of a gener-
alized stochastic process . The continuity of the functional
expresses the fact that tends to when tends to

as ; it is an essential ingredient that allows the exten-
sion of the characteristic form to potentially larger function
spaces than . For instance, if is continuous with respect to
the -norm then, due to the density of in , we may extend
the functional to arbitrary functions of . For continuous
processes such as fBm, we can even let tend to , the Dirac
distribution: the continuity property of the characteristic form
will ensure that is well defined.

Conceptually, this means that the characteristic form can be
viewed as the distributional, infinite-dimensional extension of
the classical characteristic function. To get a better feeling for

2i.e., if the matrix Z = [Z(� � � )] is positive irrespective of
N 2 n f0g and of the choice of � 2 S .

this connection, we note that the characteristic function (i.e., the
Fourier transform of the probability density) of the sample
of a stochastic process is defined by , which can
also be expressed as ; this corresponds to a one-dimen-
sional analysis of the process with the test functions

parametrized by . The argument obviously also
holds in higher dimensions by considering the -dimensional
subspace of test functions with

.
The advantage of working with scalar products instead of

point values is that it is possible to exploit duality properties
to perform linear operations such as differentiation, Fourier
transforms or convolutions. For instance, using the definitions

, we are able to compute the fractional
derivative of a stochastic process. This can be moved automati-
cally to the characteristic form

(10)

More generally, if is some filter, the characteristic form of
is given by , where .

Similarly, using the definition , the charac-
teristic form of the Fourier transform of a stochastic process is
given by

(11)

The case of generalized, zero-mean Gaussian processes is espe-
cially simple to deal with since they are completely defined by
their mean and autocorrelation. Specifically, if is the
correlation form3 of the zero-mean process , then its charac-
teristic form is given by

(12)

Conversely, if is a continuous positive distribution of ,
then (12) defines a generalized zero-mean Gaussian process.
Stationary processes have a simpler characteristic form

(13)

where is a filter such that is the power spectral
density of the process . Of particular interest is the case of
the normalized Gaussian white noise , which is defined via
its characteristic form

Applying Parseval identity and the definition (11) of the Fourier
transform of a stochastic process, we easily get the “intuitive”
result that the Fourier transform of a white noise is a white noise
as well.

However, if we lift the Gaussian hypothesis, other versions of
white noise processes can be obtained, such as the generalized
Poisson process, which has the following characteristic form:

3defined by hc (t; t ); �(t) (t )i = Efhx; �ihx;  ig for all �;  2 S .
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In their book, Gel’fand and Vilenkin give the explicit expres-
sion of the characteristic form of an even broader class of non-
Gaussian white noiselike processes [21].

C. Fractional Integrals/Antiderivatives

One of the classical definition of fBm involves a fractional in-
tegral of a Wiener (or Brownian motion) process [7], [18]. It is
therefore tempting to introduce an extended family of integral
operators (fractional antiderivatives) that are inverse operators
for , where . To this end, we have to make the distinc-
tion between left and right inverse denoted, respectively, by
and . When , we propose the following operators:

and

(14)

When is regular and decreases fast enough,4 defines a
true function, which is either in when is not a half-integer,
or is continuous and slowly decreasing (but not in ) when is
a half-integer. It is easy to verify that satisfies
for every function of , i.e., Identity.

Moreover, it can be checked that and are adjoint of
one another (in a similar way as and are adjoint), i.e.,

when and are in . Due to duality,
we can thus claim that , i.e.,
Identity.

This allows to extend the right fractional derivative inverse
to a subset of tempered distributions according to the

rule

It is interesting to note that both types of antiderivative op-
erators are scale invariant of order . Intuitively, they may
be thought of as (fractional) integrals to which one has im-
posed special boundary conditions at the origin. This has also
the benefit of producing a result that is reasonably localized,
i.e., square ntegrable in the case when . The left an-
tiderivative operator, for instance, has a special Dirac distribu-
tion annihilation property in the sense that , for

, where . The right antiderivative
operator, on the other hand, will produce a function (or distri-
bution) that has a th-order zero at the
origin: , for . When we are dealing
with a function, this can be achieved by correcting the usual in-
tegral with a suitable polynomial that is in the null space of .
In both cases, these are properties that are strictly tied to the
origin , indicating that the operators are not shift invariant.

Due to the above distributional relations, we can readily
apply these antiderivative operators to a wide class of gen-
eralized stochastic processes , in particular, the Gaussian
stationary ones specified by (26). For instance, by using the

4For instance, when  is not a half-integer, we may wish to ensure that
the remainder of the Taylor development of �̂(!) near ! = 0 be at least
O(j!j ) for some positive ", and that j�̂(!)jd! < 1, which is
automatically satisfied when � 2 S .

definition , we can directly move the
right antiderivative to the characteristic form, which yields

(15)

Of course, the restriction here is that the right-hand side of
(15) be well defined, which will typically be the case when

.

D. Distributional Characterization of fBm

We now present our first theoretical result on the characteri-
zation of fBm.

Theorem 1: The usual fractional Brownian
motion process is characterized by the form

(16)

where , with the constant
being defined according to (6) or (8).

Proof: We already know that an fBm is a Gaussian process
with correlation .
We thus only have to prove that

In order to do this, we choose and introduce the function
whose Fourier transform is

. Obviously,
tends to when . More

precisely, Lebesgue dominated5 convergence theorem ensures
that tends to
when .

Then, we observe that

because of the following Fourier equivalences:
•

;
• ;
• .
Let us denote by the integrable function

. We have the limit
result . Moreover,

is dominated, up to a constant, by
. Finally, using Lebesgue dominated convergence the-

orem, we obtain the claimed Fourier expression

5Notice that jc (t; t )�(t)�(t )j is “dominated” by (jtj + jt j + jt �
t j )j�(t)�(t )j, which is integrable.
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Note that this proof is also a direct method for showing that
the expression (8) effectively defines a correlation (i.e., a posi-
tive quadratic form).

It is also possible to extend the expression (16) by making use
of the left fractional antiderivative of ,
defined in Section III-C. Note that is an arbitrary-free
parameter. Thanks to this notation, we rewrite the characteristic
form of the fBm as

(17)

The advantage of this formula is that it also yields a natural ex-
tension of the fBm for noninteger Hurst exponents . Note
that positive integer values of are excluded because they cor-
respond to antiderivatives that are not necessarily
square integrable. Using the same technique as in Theorem 1,
it is then possible to compute the autocorrelation of the process
defined by (17), resulting in a form that is identical to (9). This
also yields a direct relation between the amplitude factor in
(17) and the constant in (9), as follows:

(18)

This shows that the generalized fBm that is concisely defined by
(17) with is in fact equivalent to the one introduced
by Perrin et al. with the help of more traditional techniques [20].

By setting in the definition (17), we see that, for
, we have . This results in

, i.e., the usual derivative of an extended fBm of ex-
ponent is an extended fBm of exponent . More gen-
erally, we can show that an extended fBm with noninteger
Hurst exponent is -times continuously differentiable and
that is a usual fractional Brownian motion
with Hurst exponent . In fact, by substituting

in (17), we observe that the Fourier transform of the
probability density of equals 1, which means
that with probability one. Likewise, we can show
that an extended fBm with exponent is -times continu-
ously differentiable and that all its derivatives vanish at :

for .

E. Whitening Properties of the Fractional Derivatives

We now wish to reinterpret the formula (17) that defines
both the usual fBm and the “extended”
one . By using the characteristic form

of the normalized Gaussian
white noise and the duality between right and left primitive
(10), we identify the characteristic form of the fBm with the
characteristic form of , as follows:

which proves the identity between the two processes.

Proposition 1: The extended fractional Brownian motion
with arbitrary noninteger positive Hurst exponent can be
expressed as a right th antiderivative of a Gaussian
white noise

(19)

As a corollary, we get that the th derivative of an
fBm is a white noise

(20)

which follows from the right-inverse property
Identity.

Note that, for , the formula (20) is equivalent
to the one that was proposed in [20, eq. (6)].

F. Fractional Increment Process

As mentioned in Section III-A, the standard approach for
dealing with intrinsically stationary processes is to consider
their increment so that the problem reduces to the characteriza-
tion of a stationary process. Alternatively, when the process is
intrinsically stationary of order , one can apply an th-order
differentiator, which yields a (generalized) derived process that
is stationary as well [12], [19].

Here, we propose another possibility that is specifically tai-
lored to the characterization of th-order self-similar processes.
It is stochastic transposition of the localization technique
discussed in [1, Sec. II and III]. Specifically, we chose to
apply a discrete operator—the th-order fractional finite dif-
ference—that closely approximates the whitening operator of
the process (i.e., ). This produces a derived process that is
stationary, essentially decorrelated, and yet well defined in the
classical sense (i.e., mean-square continuous) for .

Proposition 2: Let be an fBm with nonin-
teger Hurst exponent . Then, the derived process

is zero mean, stationary with covariance
function

i.e., can be expressed as the convolution of a normalized
Gaussian white noise with a fractional B-spline according to

Proof: Using the definition of (cf. Table I) and the fact
that its adjoint is simply , we have that

. Moreover, expressing as an antiderivative
of white noise according to (20) and using the duality definition
for , we find that

It is now a simple matter to verify by applying the definition (14)
that . The result then follows by noticing
that .

Practically, this means that we have at our disposal a digital
filter that we can apply to —or to its sampled values
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—to produce an output signal (respectively, output se-
quence) that is stationary, with a very short correlation distance
and therefore much easier to handle mathematically. The whole
concept is schematically represented in Fig. 1.

IV. OPTIMAL ESTIMATION OF FRACTAL-LIKE SIGNALS

We are now ready to investigate the problem of the MMSE es-
timation of fBm signals. To this end, we will first derive the pos-
terior distribution of at a fixed location given a series
of noisy samples of a fBm with Hurst exponent . In
particular, we will establish that the posterior mean is a fractional
spline of degree , which justifies the use of spline estimators.
The next step will be to specify a Wiener-like filtering algorithm
that will perform the MMSE estimation of simultaneously
for all . We will show that this can be achieved via an ap-
propriate tuning of the smoothing spline algorithm described in
Section II and that the solution is also applicable for general-
ized fBm’s with Hurst exponents greater than 1.

A. Posterior Estimation of fBm

Let be an fBm with Hurst exponent . We suppose
that we are observing the signal indirectly through a series of
noisy measurements at the integers , where

is additive stationary noise that is independent from .
The noise is zero mean and is characterized by its second-order
statistics . Our goal is to construct
the best estimator of given the measurements . To get a
complete handle on this problem, we derive the posterior distri-
bution , which fully specifies the information about
the signal that is contained in the measurements.

Theorem 2: Let be a realization of an fBm
of noninteger Hurst exponent . Then, the pos-
terior probability density of given the measurements

, where is a zero-mean
Gaussian stationary noise independent of with autocorre-
lation , is the Gaussian density

with time-varying mean

(21)

where is the fractional
smoothing spline of degree specified by (4), (5), and
(2) in Section II with

(22)

The conditional variance is given by

(23)

with

(24)

where is the equivalent smoothing spline basis function
defined by (5).

Our proof of this result, which uses the characteristic form of
the fBm, is given in Appendix I.

As a direct application of Theorem 2, we get the MMSE esti-
mator of the fBm process , which is simply the conditional
mean [3]. The key point for our purpose is that this
estimator is a fractional spline, albeit not exactly the smoothing
spline solution (4) that we may have wished for initially.

Corollary 1: Consider the noisy samples of an fBm process
, as specified in Theorem 2. Then, the MMSE esti-

mator of given is the function defined in Theorem
2, which is a fractional spline of degree . The corresponding
minimum estimation error at location is

as specified in (23).
The above results call for the following comments.

1) The optimal fBm estimator is the sum of two terms
that are both fractional splines of degree . The first
component is precisely the smoothing spline fit
of , as specified in Section II, with the optimal choice of

given by (22). The second term is
a nonstationary correction that ensures that the estimate is
zero at , which is consistent with the property that

is zero with probability one.
2) The variance of the estimator is made up of two terms as

well. The first is 1-periodic. The second is a correc-
tion that expresses the fact that the optimal spline estimate
is more accurate near the origin because of the preference
that is given to the value zero.

3) Interestingly, the correction function is the fractional
smoothing spline fit of the autocorrelation of the noise
whose value at the origin has been normalized to one. Since

and takes its maximum for , one can
expect this function to decay rapidly as one moves away
from . For instance, when the noise is white, then

, which typically decreases like
; that is, the rate of decay of the fractional

B-splines (cf. [26, Theorem 3.1]).
4) When the measurement noise is zero, we have that

and . Then,
corresponds to the fractional spline

interpolation of the input signal . This is equivalent to a
smoothing spline estimate with . As expected, the
estimation error is zero at the integers because of
the interpolation property of the underlying basis function

.
5) The optimal estimator is undistinguishable from

the smoothing spline solution in the following sit-
uations: a) when the measurement noise is negligible, b)
when , which may happen because of a) or
simply by chance, and c) in all cases for sufficiently
large, that is, as one moves away from the origin, which
has a very special status due to the self-similarity of the
underlying process.

6) An efficient way to implement the estimator is to apply
the Fourier domain algorithm that was presented in [1].
The procedure is to first run the algorithm on to
obtain the smoothing spline . Second, one applies
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the same algorithm to the autocorrelation sequence of the
noise . One then corrects by subtracting a
reweighted version of the latter spline so as to produce a
result that is zero at the origin.

7) The Hurst exponent of the standard Wiener (or Brownian
motion) process is . This corresponds to a simple
piecewise linear spline estimator with . In the noise-
free case, we recover a classical result by Lévy [11] that
states that the optimal estimator of a Brownian motion
process is obtained by linearly interpolating the samples.
In that case, the estimate is entirely determined by the two
neighboring samples. This is not so for other values of
(or when ) because the smoothing spline filter
generally has an infinite-impulse response, which induces
coupling.

If one excludes the simpler case of Brownian motion, the
present results on the prediction of fractal processes are new to
the best of our knowledge. In principle, they should also be gen-
eralizable for fBm’s with , but we expect the formulas
to become more complicated. In the sequel, we will investigate
the general case as well but adopt a less frontal approach by
searching for the optimal estimator within the slightly more re-
strictive class of Wiener-filter-like (or stationary) solutions.

B. Wiener Filtering of Fractal Processes

The main point that differentiates the optimal fBm estimator
given by (21) from that of a stationary process (cf. [4, Theorem
5]) is the correction term , which makes the esti-
mator vanish at the origin. Its presence is a consequence of the
fBm being nonstationary. This lack of stationarity is obviously a
source of complication; it requires the use of an advanced math-
ematical formulation and makes the task of finding the best es-
timator much more difficult.

While we have at our disposal a general closed-form solu-
tion for , it may be justifiable in practice to discard the
second, nonstationary part of the MMSE estimator for the fol-
lowing reasons.

1) The exact location of the origin ( in our model) will
rarely be known (or controllable) in practice, especially, if
we are dealing with time series.

2) The Wiener-like estimators that are available for stationary
processes have the advantage of computational simplicity.
The same can be said for the smoothing spline part of

, which can be implemented by digital filtering of
the input data.

3) The estimation error in Corollary 1 does not behave like
the estimation error of a stationary process, which is nec-
essarily periodic (cf. Appendix II). Instead, one may wish
the wholeness of the nonstationary behavior of the fBm to
be captured by the linear estimator, whilst the estimation
error would be indistinguishable from the estimation error
of a stationary process.

4) There is an alternative “kriging” formulation from the field
of geostatistics that yields the best linear unbiased (BLU)
estimator of from sampled data (typically, nonuni-
form and multidimensional) [17], [27]. This nonparametric
estimator is computed from the variogram (which does not
include absolute positional information). Under suitable

conditions, this estimator is also known to be the solution
of a variational spline problem [28], [29].

Because of these considerations, it makes good sense to search
for a suboptimal solution that has the simplicity of a stationary
(or Wiener) estimator. In particular, we want to find out whether
or not we can improve upon the smoothing spline estimator

. The key requirement for such a formulation is expressed
by Remark 3), which implies a restriction on the possible linear
estimators, as described by the following proposition.

Proposition 3: Let be an fBm of arbitrary (noninteger)
Hurst order and its noisy samples, where

is a zero-mean Gaussian stationary discrete process that is
independent of . We build the linear estimator of :

(25)

In order for the estimation error to behave
like the estimation error of a stationary process, it is necessary
and sufficient that

for (26)

in the sense of distributions.
The proof is given in Appendix II.
The interesting aspect of this result is that it allows us to

evacuate the difficulties associated with the nonstationary char-
acter of fractal processes. It is also suggests that the root of the
problem lies within the (random) polynomial part of the signal,
which is included in the null space of the whitening operator

. In fact, the presence of this null-space component is
somewhat artificial for it is only here to ensure that the fBm
has the correct boundary conditions at the origin. Thus, a pos-
sible interpretation of Proposition 3 is that the fBm can be made
stationary through the removal of its polynomial trend, which
is entirely captured by any estimator satisfying (26). Inciden-
tally, this polynomial reproduction property also plays a funda-
mental role in wavelet theory [30], [31]. Specifically, when we
perform a wavelet analysis of order of an fBm, the
polynomial component of the process is entirely projected onto
the coarser scale approximation with the consequence that the
discrete wavelet coefficients end up being stationary within any
given scale. This is the fundamental reason why wavelets act
as approximate whitening operators for fractal-like processes
[32], [33].

For , we also note that the “stationarizing” hypothesis
is in fact equivalent to the no-bias constraint that is used for
deriving unbiased kriging estimators [17], [27]. In that particular
framework, the random process to estimate is expressed as the
sum of an unknown constant (the trend) and a random process
of known variogram.

Under the “stationarizing” hypothesis (26), we are able to
provide the best linear estimator of a fBm. Not so surprisingly,
when , this estimator is precisely the first term of
(21) that was given in Theorem 2, namely . Note that the
result below is valid for values of larger than 1 as well.

Theorem 3: Let be an fBm of arbitrary (noninteger)
Hurst order and its noisy samples, where
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is a zero-mean Gaussian stationary discrete process with
autocorrelation , independent of . Then, the
least mean-square linear estimator (25) satisfying the “station-
arizing” conditions (26) is given by

where, as in Theorem 2, is the smoothing spline of degree
defined by (5) and (2), with chosen according to (22). The

variance of the estimation error is given by

For a proof, see Appendix III.
This result closes the loop by showing that the optimal esti-

mator of an fBm is indeed a smoothing spline with matching pa-
rameters. In particular, the spectral regularization should
be set proportional to the power spectrum of the noise.

For instance, when the measurement noise is white with vari-
ance , then is a scalar that is inversely
proportional to the signal-to-noise ratio. This means that the
smoothing effect of the spline gets stronger as the power of the
noise increases, which is consistent with our expectation. Under
those circumstances, the effect of the smoothing spline is analo-
gous to that of a Butterworth filter of order with a cutoff
frequency .

Theorem 3 also gives an explicit expression for the estima-
tion error. By considering the expression for given by (18),
we observe that coincides with the primary
variance component in Theorem 2 when .
Note that this error is a symmetric 1-periodic function that is
minimal at the integers. We expect it to take its maximum at
the half-integers because these points are the furthest away from
the sampling locations (integers). We also expect the variance to
increase and to flatten out as the smoothing gets stronger, that
is, when is large relative to . In that respect, the
second variance term in (23), , quantifies the loss of
performance of the stationary estimator in Theorem 3 over the
optimal one specified in Corollary 1. Here, too, in concordance
with what has been said earlier in Section IV-A, this variance
bias can be expected to decrease rapidly as one moves away
from the origin. This provides some solid, quantitative justifi-
cation for using the stationary solution (smoothing spline) as a
substitute for the optimal one.

Among the proposed solutions, one can single out the
smoothing splines of odd degrees , which cor-
respond to the optimal solution for the estimation Brownian
motion ( (linear splines) for ) and its generalized
counterparts (in particular, (cubic splines) for ).
It is noteworthy that the basic versions of these estimators have
a fast recursive implementation [34]. One surprising finding
of our investigation is that there is no fractal interpretation for
the fractional smoothing splines of even degree (i.e., ),
whose building blocks are not piecewise polynomials, but
rather “radial basis functions” of the type [26].
Thus, an open question is whether or not there exist a class

of (non-self-similar) processes corresponding to these basis
functions, or equivalently, a positive-definite form
(similar to (9)) that is made up of such building blocks.

Finally, we note that the smoothing spline solution in The-
orem 3 for is equivalent to the BLU estimator that
could have been derived using the kriging formalism with com-
patible hypotheses (cf. [35] for a treatment of the multidimen-
sional case). The key point, however, is that the present cardinal
spline framework also yields a fast algorithm that is generally
not available for kriging. Since kriging is originally designed
for dealing with nonuniform data, the standard approach is to
restrict the data to a given number of neighbors of (which
is suboptimal) and to recompute the estimator by solving the
normal equations for each position . Clearly, the advantage of
using splines is that the optimal solution can be com-
puted at once for using all available data. This is com-
putationally much more efficient, but only possible because we
are taking advantage of the shift-invariant structure provided by
the uniform grid.

V. CONCLUSION

In this pair of papers, we have established a formal connection
between deterministic splines and stochastic fractal processes
(fBm’s). The fundamental, unifying relation that appears in both
contexts is the differential equation

(27)

that defines a self-similar system with continuous-time input
and output . This characterization is complete in the

sense that the fractional derivative , which is indexed by the
order and an asymmetry parameter , spans the whole class
of differential operators that are both shift and scale invariant.

We can formally construct all the varieties of deterministic
fractional splines identified in [1] by exciting the system with a
weighted stream of Dirac impulses ,
where the ’s are some suitable coefficients. Likewise, we
have shown that we could generate all brands of fBm’s, in-
cluding the generalized ones with Hurst exponent

, by driving the system with white Gaussian noise.
While the above differential description is appealing concep-

tually, we must be aware that it is fraught with technical dif-
ficulties. Indeed, the price to pay for self-similarity is that the
system (27) is unstable with a pole of order at . In
particular, this means that the Green function of —the fun-
damental building block of the fractional splines—is not in .
Likewise, the generalized stochastic processes that are gener-
ated by (27) are nonstationary. This calls for a special mathe-
matical (distributional) treatment and also requires the specifi-
cation of boundary conditions. Another nontrivial aspect is that
the fractional operators are typically nonlocal, in contrast with
the classical integer-order derivatives.

The connection also extends nicely beyond the generation
process. For instance, we have shown that the MMSE estimator

of an fBm with Hurst exponent given its—possibly,
noisy—samples at the integers lies in a fractional spline space of
degree . We derived the corresponding smoothing spline es-
timator that can be assimilated to a hybrid version of the Wiener
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filter for which the input is discrete and the output analog. In par-
ticular, we are able to specify the Wiener filter for the Wiener
process (with ) bringing together two seemingly in-
compatible aspects of the research of Norbert Wiener. In that
particular case, the optimal estimator happens to be a piece-
wise-linear smoothing spline estimator that has a fast recursive
implementation. As for the estimators for arbitrary values of ,
we have shown that they could all be implemented efficiently by
means of an FFT-based algorithm.

APPENDIX I
PROOF OF THEOREM 2

We will proceed in three main steps: first, we derive the
general expression of the (Gaussian) posterior distribution
of given a finite number of measurements of ;
second, we calculate the expression of the posterior expectation
of given for ; finally, we evaluate the
expression of the posterior standard deviation of given

.
a) Step 1—Posterior probability of : Taking a more

general point of view, we first compute the posterior density
probability of given measurements , where

. We will then set
and to get the desired result.

Using Bayes’ rule, we have

We thus have to compute the joint probability density of
. This will be done

through its Fourier transform; i.e., its characteristic function,
which is expressed using and , the characteristic forms
of the processes and

where we have denoted

Performing the inverse Fourier transform of this expression, we
obtain the posterior probability density of given

This is a Gaussian density with mean and variance
, where . Using the

definition of , , and , and denoting by its th component,
has to satisfy

(28)

for all .
b) Step 2—Computation of : We let tend to

infinity and observe that finding from the set of (28) is still
well posed because the quadratic form characterized by the
(infinite) matrix is positive definite; i.e., if there is
a solution—which is not ensured when —then this
solution is unique.

We will reinterpret (28) from an interpolation view-
point. By inspection of (8), we observe that

is in the
span . Denoting by , the
unique interpolating function that belongs to this span,6 we thus
have the interpolation formula

where is the function of specified in (24); the second
line above has been obtained by using the interpolation condi-
tion and the fact that . This iden-
tity can also be reformulated using a smoothing spline basis

: , where

6In Fourier variables, ' is obtained by '̂ (!) = �̂ (!)=B (e ).
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To do this, we write

(29)

which allows to express in terms
as

Replacing in the interpolation formula, we get

The second term on the right-hand side is evaluated as

This shows that as posed by (29) satisfies
, which is precisely

(28) up to a factor 1/2. is thus the solution we are
looking for, which implies that

The last technical step is to show that the random quan-
tity is well defined (convergent) almost surely; this
is ensured by the fact that decreases fast enough

to tame the divergence of as
.

c) Step 3—Computation of : The variance of the
posterior density is given by . Since

, it remains to compute . We have

To evaluate this expression, we first notice that

because and span the same space and be-
cause the right- and the left-hand sides coincide at the integers.
Second, the following sequence of equalities:

shows that

where the constant is obtained as by enforcing
the equality at because .

Putting things together, we obtain

which yield the expression for .
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APPENDIX II
PROOF OF PROPOSITION 3

We will work with the correlation form of the estimation error
. In order to deal with continuous-time processs only, we

extrapolate the discrete stationary process to a continuous
stationary process with correlation function , such that

.
Let be a function of Schwartz’ class . Then, under the

hypothesis that decreases fast enough as , we have
, where

Since is an fBm, the correlation form of can be
expressed as

for all whereas, if were a stationary process with
correlation function , the correlation form of would be
given by

We are interested in the conditions on such that
for all .

Let us define the subspace of

for (30)

It is easy to check through the Parseval identity that these con-
ditions are equivalent to for .

When , the correlation form of the estimation error of
an fBm becomes similar to the one of a (hypothetical) stationary
process with . If we enforce the identity

for all and , then
we end up with the following equation:

Now, because the collection of numbers

may assume arbitrary independent values, the only possibility
for this identity to hold is that for
for all . In other words: . Using the definition
(30) of , we get that in the sense of
distributions.

APPENDIX III
PROOF OF THEOREM 3

We follow the same first lines of the proof of Proposition
3 in Appendix II, and we note that the autocorrelation of the
continuous-time process is related to the discrete one
through , i.e., .
After replacing (as the result of a limit process) by ,
we get , where

This leads to the variance of the estimation error
, which is obtained as , as follows:

where we have defined
. Notice that, whenever this expression is finite, we

automatically have that is square inte-
grable, which also implies that for .
Thus, minimizing the variance of the estimation error with
respect to subject to the “stationarizing” constraint is
simply equivalent to minimizing this same variance without
any constraints.
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This minimum is obviously given by

where we have used the fact that is an even func-
tion. Thus, by identifying left- and right-hand sides, we
get that . Note that, even if the
minimization has been performed over estimators that sat-
isfy , the optimal solu-
tion actually satisfies twice as many conditions, namely,

.
As a bonus, we have the expression of the variance of this

minimum estimator

Similar to the proof of Theorem 1, we use the following limit:

where . Using Lebesgue’s dominated con-
vergence theorem, we then express the error as
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