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Abstract

Several computer vision problems, like segmentation, tracking and shape modeling, are increasingly being solved using level set meth-
odologies. But the critical issues of stability and convergence have always been neglected in most of the level set implementations. This
often leads to either complete breakdown or premature/delayed termination of the curve evolution process, resulting in unsatisfactory
results. We present a generic convergence criterion and also a means of determining the optimal time-step involved in the numerical solu-
tion of the level set equation. The significant improvement in the performance of level set algorithms, as a result of the proposed changes,
is demonstrated using object tracking and shape-contour extraction results.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The level set approach has been extensively used in com-
puter vision for motion segmentation (Mansouri and Kon-
rad, 2003), object tracking (Chang et al., 2004; Paragios
and Deriche, 2000) and shape modeling (Malladi et al.,
1995). All these problems are formulated using curve (con-
tour) evolution concepts. The central idea of the level set
technique, as developed by (Adalsteinsson and Sethian,
1995; Osher and Sethian, 1988), is to evolve a higher
dimensional function whose zero-level set always corre-
sponds to the position of the propagating contour. Com-
pared to the active contours methods (Kass and Witkin,
1988), often used in the curve evolution context, the advan-
tages of the level set methodology are its ability to handle
merging/splitting of the evolving contour, numerical stabil-
ity of the solution and the elegance of the implicit represen-
0167-8655/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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tation of the evolving contour using the zero-level set
concept. Also the final extracted contour is independent
of the curve initialization, unlike other active contour mod-
els such as the snakes (Kass and Witkin, 1988), where the
final object contour is very much determined by the con-
tour initialization. The only major drawback of this level
set method is that by embedding the evolving contour as
the zero-level set of a higher dimensional function, a one-
dimensional curve evolution problem is transformed into
a two-dimensional problem. This adds to the computa-
tional complexity and renders the standard level set
method incapable of real time implementation. To reduce
the computational labor involved, two well-known schemes
exist, namely the Narrow Band and the Fast Marching

approach (Adalsteinsson and Sethian, 1995). Paragios
and Deriche (2000) have proposed a new approach that
combines the Narrow Band and Fast Marching methods
by employing the idea of selective propagation over a small
window.

Level set methodologies ultimately involve the solution
of a continuous spatio-temporal partial differential equa-
tion. While a closed form solution has not been found as
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yet, an approximate numerical solution of the differential
equation (using a finite difference scheme) has been used
in different level set based applications (Mansouri, 2002;
Mansouri and Konrad, 2003; Chang et al., 2004; Osher
and Sethian, 1988). But in all these level set based applica-
tions, the critical issues of numerical stability and conver-
gence have been ignored. The time-step, involved in the
numerical solution of the differential equations, has been
assigned an arbitrary value independent of the speed of
the evolution process. Also, arbitrary convergence (stop-
ping) criteria have been employed for the iterative solution
of the level set equation (Mansouri, 2002; Malladi et al.,
1995). Either these issues have not been attended to Chang
et al. (2004), or the time-step value and the convergence cri-
teria employed do not guarantee satisfactory results (Man-
souri, 2002; Malladi et al., 1995; Mansouri and Konrad,
2003). We discuss the stability issues related to the solution
of the difference equations, in general, and the level set
equation in particular. Based on these, we present a scheme
for determining the optimal time-step. We also propose a
generic convergence criteria based on the length of the con-
tour at different stages of the evolution process.

2. Level set method

Given a closed (N � 1) dimensional hyper-surface
c(t = 0), we briefly discuss the Eulerian formulation for
the motion of the hyper-surface c(t), propagating along
its normal direction with speed F(x), where x 2 RN . The
main idea of the level set methodology is to embed the
propagating interface as the zero-level set of a higher
dimensional function U(x, t). Let U(x, t = 0) be defined by

Uðx; t ¼ 0Þ ¼ �d ð1Þ

where d is the distance from x to c(t = 0), and the plus
(minus) sign in Eq. (1) is chosen if the point x is outside (in-
side) the initial hyper-surface c(t = 0). Thus, we have an
initial function Uðx; t ¼ 0Þ : RN ! R with the property that

cðt ¼ 0Þ ¼ fxjUðx; t ¼ 0Þ ¼ 0g ð2Þ

The goal is to produce an equation for the evolving func-
tion U(x, t) that contains the embedded motion of c(t) as
the zero level set U = 0. The spatio-temporal partial differ-
ential equation describing the dynamics of the level set
function, introduced by Osher and Sethian (1988), is given
by

oUðxðtÞ; tÞ
ot

þ F ðxðtÞÞjrUðxðtÞ; tÞj ¼ 0; given Uðx; t ¼ 0Þ

ð3Þ

We refer to this as the Eulerian formulation of the curve
evolution problem because the underlying coordinate sys-
tem remains fixed. The approximate discrete solution of
the differential equation (3) obtained by using a finite grid
in the spatial domain and by substitution of finite difference
approximations for the spatial and temporal derivatives,
also proposed by Osher and Sethian, is as given below:
Unþ1
ij ¼ Un

ij � DtðmaxðF ij; 0ÞDþ �minðF ij; 0ÞD�Þ ð4Þ

where Dt is the finite time-step of the above iterative
solution, Fij is the speed function at the grid location
(i, j), and

Dþ ¼ ½maxðD�x
ij Þ

2 þminðDþx
ij Þ

2 þmaxðD�y
ij Þ

2 þminðDþy
ij Þ

2�1=2

D� ¼ ½maxðDþx
ij Þ

2 þminðD�x
ij Þ

2 þmaxðDþy
ij Þ

2 þminðD�y
ij Þ

2�1=2

ð5Þ

where

D�x
ij ¼ ðUn

i;j � Un
i�1;jÞ=hx

Dþx
ij ¼ ðUn

iþ1;j � Un
i;jÞ=hx

D�y
ij ¼ ðUn

i;j � Un
i;j�1Þ=hy

Dþy
ij ¼ ðUn

i;jþ1 � Un
i;jÞ=hy

ð6Þ

are the forward and backward differences of the level set
function Un

i;j at some particular time iteration n and grid
location (i, j). hx and hy are the grid spacings in the x and
y direction, respectively.

3. Stability and CFL condition

In most level set implementations, the value of the time-
step Dt has been arbitrarily assigned. A large time-step
speeds up the inherently slow curve evolution process,
but the question is: how large value of Dt can we use? In
(Mansouri, 2002; Malladi et al., 1995) an arbitrarily
assigned Dt = 0.0001 is used, while in (Mansouri and Kon-
rad, 2003), Dt = 7 · 10�5 is used. While approximating the
solution to differential equation in the continuous domain
(3) by a finite difference scheme (4), the question of numer-
ical stability arises. In fact, we implemented the difference
equation (4) with different time-steps Dt. We observed that,
for small values of the time-step, though the convergence
was slow, curve evolution results were satisfactory. When
large time-steps were used to speed up the evolution pro-
cess, we often got garbage outputs. Clearly there is a stabil-
ity issue that depends on the value of the time-step Dt

employed.
We clarify what stability we are talking about. While

solving a differential equation numerically using a differ-
ence scheme, we encounter approximation errors at each
iteration. If these approximation errors keep accumulating
over time, the process might become unstable and can
cause the solution to go haywire. However, the interesting
thing is that, even if we had used a very accurate scheme,
the same problem could arise. One might wonder how
this can happen since we know that the scheme is
accurate!

The answer is that the accuracy considers only local
error, whereas the stability problem that is occurring in this
case is a global issue. This is exactly where the Courant–
Friedrichs–Levy (CFL) condition comes into the picture.
This states that the numerical range of dependence must
always contain the theoretical range of dependence of the
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solution or instability will occur. Otherwise, the scheme, no
matter how accurate, will always magnify errors in each
step and therefore be unstable. The application of the
above principle to the level set theory yields the following
stability condition:

F max � Dt 6 minðhx; hyÞ ð7Þ

where hx and hy are the grid spacing in the x and y direc-
tion, respectively and Fmax is the maximum absolute speed
of all the points on the grid. This means that the evolving
contour can cross no more than one grid at each time step.
Thus, the CFL condition places an upper bound on the
time-step Dt and hence on the rate of curve evolution.
Hence, the need for an optimal time-step, which not only
avoids numerical instability but also keeps the rate of curve
evolution as high as possible.

4. Convergence criteria

In almost all level set based curve evolution problems
(Mansouri, 2002; Malladi et al., 1995; Mansouri and Kon-
rad, 2003), the evolution process is stopped when the iter-
ation count n exceeds a particularly large threshold N0.
In (Mansouri, 2002) an N0 of 1000 and in (Mansouri and
Konrad, 2003) an N0 of 20,000 are employed. Thus, they
evolve the curve for a large number of iterations assuming
that, at the end of the process, the desired contour will be
obtained. But, there are few inherent problems associated
with this form of stopping criteria, specially when a large
value of N0 is used.

• The desired contour might have been obtained long
before the iteration process ends. Thus, a lot of compu-
tational resource is wasted, and considering the time
complexity of the level set implementations, this unnec-
essarily increases the execution time.

• Ideally, the speed function which guides the dynamics of
the higher dimensional function, must force the embed-
ded curve to slow down and finally attain steady-state at
a certain stage of the curve evolution process. Very
often, the speed function is ‘‘leaky’’ in the sense that it
cannot force the evolution process to reach steady-state
and hence the curve never stops propagating. The
‘‘leaky’’ nature is mostly due to aberrant nature of the
data based on which the speed function is computed.
Thus, if the iteration process is continued for a long
time, the results would be unsatisfactory.

These two issues make it obvious that we cannot run the
iteration process for an arbitrarily long time. Also, we
must be careful so as not to stop the process prematurely.
Hence, the need for a convergence criteria. We propose a
general convergence criteria which stops the curve evolu-
tion process at the correct instant giving satisfactory
results. This requires us to determine the length of the
evolving contour at various stages of the iteration process.
We store the current length of the contour in a variable
Lc(n). When the curve evolution process reaches steady-
state, it is obvious that the variable Lc(n) remains almost
constant. Based on these observations, we state the conver-
gence criteria:

If the iteration count n exceeds a particular threshold N0

and the rate of change of contour length dLcðtÞ
dt

���
��� < � over a

fixed number of iterations Dn, STOP the iteration process.

The zero crossings at that instant gives the desired contour.

N0 is chosen sufficiently large to ensure that the conver-
gence criteria is never met in the initial stages of the curve
evolution process, when the evolution process is slow.
Thus, only when n exceeds N0, we check for convergence.
If the condition dLcðtÞ

dt

���
��� < � is satisfied at a later stage, we

do not stop the process immediately. Instead, we check
whether the condition is maintained over a fixed number
of iterations Dn before halting the process. This check
needs to be performed because the evolution process often
slows down temporarily even before steady-state is
reached. Thus, only if the rate of evolution is low for a long
time we terminate the process. As far as the final results are
concerned, the choice of the thresholds is very flexible.
Typical values are N0 = 500, � = 5 pixels/iteration and
Dn = 50.

5. Results: level set based algorithms

5.1. Object tracking

To demonstrate the criticality of the stability and con-
vergence issues in level set based algorithms, we use a con-
tour-based object tracking algorithm similar to the one
described in (Mansouri, 2002). We modify the algorithms
suitably so as to introduce the concept of an optimal
time-step Dtopt and also replace their stopping criteria with
our proposed convergence criteria. Finally, we compare the
results obtained using our algorithm with that using the
algorithms in (Mansouri, 2002). We have used images
(frames) from two real video sequences to demonstrate
the superiority of our modified level set algorithm.1

Assume that I0 and I1 are the consecutive color images,
indexed by coordinates (i, j). Let Un

ij denote the level set
function value at coordinate (i, j) on the grid at iteration
n. Starting from a region R0 in I0, we wish to estimate a
region bR1 in image I1. Let hx and hy be the grid spacing
in the x and y directions respectively. The level set algo-
rithm, using the optimal time-step Dt and the proposed
convergence criteria is given below:

(1) n :¼ 0, k :¼ 0, flag :¼ 0.
(2) For all grid points (i, j):
• if (i, j) 2 R0, U0
ij ¼þ min

ðh;kÞ2dR0

maxðji� hjhx; jj� kjhyÞ,
• if ði; jÞ 2 Rc

0, U0
ij ¼� min

ðh;kÞ2dR0

maxðji� hjhx; jj� kjhyÞ,
where dR0 is the boundary of the region R0.
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(3) For all grid points (i, j):
Fig. 1.
tracked
F ði; jÞ
¼ min
fl1 ;l2 :kl1k6d;kl2k6d;ðiþl1 ;jþl2Þ2R0g

kI1ði; jÞ � I0ðiþ l1; jþ l2Þk2

þ min
fl1 ;l2 :kl1k6d;kl2k6d;ðiþl1 ;jþl2Þ2Rc

0
g
kI1ði; jÞ � I0ðiþ l1; jþ l2ÞÞk2
(4) The optimal time-step Dt is given by
Dtopt ¼ c �minðhx; hyÞ=F max
where Fmax is the maximum absolute speed and c

(=0.75–0.90) is the factor of safety.
(5) For all grid points (i, j)
Unþ1
ij ¼ Un

ij � DtoptðmaxðF ij; 0ÞDþ �minðF ij; 0ÞD�Þ
where the symbols have the same meaning as in Eqs.
(6) and (5).

(6) n :¼ n + 1.
(7) If n > N0, based on the zero level set of Un(i, j), deter-

mine the current contour C(n) and its length Lc(n).
Else go to step (5).

(8) Perform the convergence test.

• case (a): if jLc(n) � Lc(n � 1)j < � AND flag = 0

flag :¼ 1, k :¼ k + 1, go to step (5),
• case (b): if jLc(n) � Lc(n � 1)j < � AND flag = 1

if k > DN, go to step (9)
else k :¼ k + 1, go to step (5),

• case (c): if jLc(n) � Lc(n � 1)j > � AND flag = 1
flag :¼ 0, k :¼ 0, go to step (5).
(9) STOP. The estimated region is bR1 ¼ fði; jÞ :
Uði; jÞ > 0g.
Level set based tracking using our algorithm: (a) The person on the r
person and his contour in three successive frames obtained using the
In Fig. 1, we show the tracking results obtained in three
successive frames using our tracking algorithm, involving
the optimal time-step and the convergence criteria.
Fig. 1a shows the person to be tracked and his contour
in white. The tracking problem is to track the person (right
side) by tracking his contour in the successive frames.
Fig. 1b–d shows the tracked person and his contour in
three successive frames obtained using our algorithm. To
appreciate the results shown in Fig. 1, we need to simulate
situations which demonstrate the criticality of the stability
and the convergence issues.

To demonstrate the superiority of our algorithm, we sim-
ulate two situations. In the first situation, the time-step used
deliberately violates the CFL condition (7), for some given
speed function F. This situation can arise when the time-step
is arbitrarily set with complete disregard to the speed func-
tion information that dictates the rate of curve evolution
(Mansouri, 2002; Mansouri and Konrad, 2003; Malladi
et al., 1995). In Fig. 2, we compare the results of the tracking
algorithm used in (Mansouri, 2002) with that of our algo-
rithm. Using an arbitrary time-step Dt = 0.001, that violates
the CFL condition, obscure results are obtained after 500
time-iterations due to the numerical instability (see
Fig. 2b). However, as shown in Fig. 2c, our algorithm avoids
this instability problem by ensuring (using the speed func-
tion) that the optimal time-step value satisfies the CFL con-
dition and hence gives satisfactory tracking results.

To further demonstrate the instability problem, we use a
different example-the ‘‘hall-monitor’’ video sequence. As
shown in Fig. 3, we try to use the same tracking algorithm
ight as the tracked object and his contour is shown in white. (b)–(d) The
optimal time-step and the convergence test.



Fig. 2. Demonstration of the numerical instability issue: (a) The person on the right as the tracked object and his contour is shown in white. (b) and (c)
The tracked person and his contour in two successive frames obtained using time-steps Dt = 0.001 (that violates the CFL condition) and Dtopt = 0.00035
(that preserves the CFL condition), respectively.

Fig. 3. Illustration of the instability problem: (a) The person as the tracked object in the first frame and his contour is shown in white. (b)–(d) The person
and his evolving contour in the successive frame at intermediate steps of the evolution process. The time-step Dt was set to violate the CFL condition and
inject numerical stability in tracking process.
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to track the person from one frame to the next frame.
Fig. 3a shows the person as the tracked object in the first
frame and his contour is shown in white. Our problem is
to track the person in the next (successive) video frame
using the given contour in the first frame. We use the track-
ing algorithm described earlier to solve this problem. To
demonstrate the adverse effects of numerical instability,
the time-step Dt is set to deliberately violate the CFL con-
dition and inject numerical stability in tracking process.
This situation can arise when the time-step is arbitrarily
set with complete disregard to the speed function informa-
tion. Fig. 3b–d shows the person and the evolving contour
at intermediate steps of the evolution process. It is obvious
that the curve evolution process has broken down in the
face of numerical instability and given rise to obscure
and unsatisfactory tracking output.
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Next, the above instability problem is deliberately sup-
pressed by using a time-step value that satisfies the CFL
condition, so as to highlight the importance of the conver-
gence issue. In most level set algorithms, either the conver-
gence criteria is not been explicitly mentioned (Chang et al.,
2004) or the basis for the termination of the curve evolu-
tion process is not obvious (Mansouri, 2002; Mansouri
and Konrad, 2003; Malladi et al., 1995). In the latter case,
the process is arbitrarily stopped after a few thousand time
iterations assuming that the propagating curve has finally
locked on to the desired object boundary. In the absence
of a good stopping criteria, the level set algorithm cannot
detect the slowing down of the curve propagation in the
Fig. 4. Importance of the convergence criteria: (a) The person on the right as th
person and his contour in two successive frames using some poor convergence
numerical stability in either case.

Fig. 5. Level set based tracking using our algorithm: (a) The person on the r
tracked person and his contour in three successive frames obtained using the
vicinity of the desired object boundary. If the iteration pro-
cess is not terminated at the right instant and the speed
function is ‘‘leaky’’, the curve often permeates through
the object boundary resulting in unsatisfactory outputs.
Fig. 4b and c depicts the tracking results obtained in two
successive frame as a result of the evolution process being
blindly continued up to 1000 iterations, similar to Man-
souri (2002). In spite of the assured numerical stability,
the absence of an effective convergence criteria degrades
the tracking output in each frame.

Using the above examples, we clearly demonstrated the
relevance of the CFL condition in maintaining numerical
stability and the role of a good convergence criterion that
e tracked object and his contour is shown in white. (b) and (c) The tracked
criteria. The time-step Dt was set to violate the CFL condition and inject

ight as the tracked object and his contour is shown in white. (b)–(d) The
optimal time-step and the convergence test.
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terminates the curve evolution process at the correct
instant. We have incorporated both the stability and the
convergence criteria in a tracking algorithm (Mansouri,
2002) and showed that the performance improves with
these criteria.

In Fig. 5, we show the tracking results obtained in three
successive frames of the earlier video sequence using our
modified tracking algorithm. The algorithm involves the
optimal time-step and the convergence criteria as described
earlier. Fig. 5a shows the person (left side) to be tracked
and his contour in white. The tracking problem is to track
the person by tracking his contour in the successive frames.
Fig. 5b–d shows the tracked person and his contour in
three successive frames obtained using our algorithm.

In most of the above examples, the same video
sequence is used. As a final demonstration of our tracking
Fig. 6. Level set based tracking for the ‘‘hall-monitor’’ sequence: (a) The perso
(b) and (i) The tracked person and his contour in the successive frame during i
was used to ensure numerical stability along with our proposed convergence c
algorithm, we use images from the popular ‘‘hall-monitor’’
video sequence and try tracking the person in this partic-
ular sequence. Fig. 6a shows the person to be tracked and
his contour is shown in white in a particular frame. The
tracking problem is to track the person in the next frame
by tracking his contour. Fig. 6b–i depicts the curve evolu-
tion process using two successive frames. Fig. 6b shows
the person in the next frame along with the initial contour.
The contour in the previous frame is used to initialize the
level set function in next frame. This contour gradually
evolves, as depicted in the Fig. 6c–i, to lock on to the true
shape-contour of the person. After convergence of the
contour (curve) evolution process, the final contour of
the person in this next frame is show in Fig. 6i. The above
tracking process continues for the succeeding frame and
so on.
n as the tracked object in the first frame and his contour is shown in white.
ntermediate stages of the curve evolution process. An optimal time-step Dt

riteria.
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5.2. Shape-contour extraction using curve evolution

In this section, we demonstrate the stability and con-
vergence issues using the level set based shape-contour
extraction algorithm similar to those described in (Mal-
ladi et al., 1995; Osher and Sethian, 1988). Discussion
of underlying shape-contour extraction problem that
leads to the level set implementation is beyond the scope
of this paper, but the proposed algorithmic modifications
would be similar to those described in the tracking algo-
rithm in Section 5. The problem of shape-contour extrac-
tion is one in which we keep evolving a contour (curve),
starting from some initial estimate, until it locks on to
the true object boundary. Our prime motive is to demon-
strate how the shape-contour extraction algorithms
described in (Malladi et al., 1995; Osher and Sethian,
1988) overlooks the stability and convergence issues
and how our proposed modifications improve the perfor-
mance of these algorithms. The images from the popular
‘‘hall-monitor’’ video sequence are used for demonstrat-
ing the curve evolution process for shape-contour
extraction.
Fig. 7. Illustration of the instability problem: (a)–(f) Certain intermediate resu
white is the evolving contour and our goal is to extract the contour of the perso
the CFL condition and inject numerical stability into the evolution process.
To illustrate the consequences of using a time-step that
violates the CFL condition we use Dt = 0.01. The upper
bound of the time-step, as determined by (7) for some given
speed function F, is Dt = 0.0025. Fig. 7 shows the results of
the curve evolution process starting from the initial con-
tour. Here the initial contour is the bounding box shown
in white in Fig. 7a. Numerical instability injected into the
evolution process is obvious from the results shown in
the Fig. 7. After a few iterations, the system becomes unsta-
ble and entire curve evolution process breaks down. These
figures demonstrate the importance of numerical stability
and the CFL condition.

In Fig. 8, we have once more shown the results of the
curve evolution process except for the fact that we have
used a safe Dtopt = 0.001 (<0.0025) to ensure the numerical
stability of the evolution process. Using Fig. 8a–f, we dem-
onstrate the importance of the convergence criteria once
numerical stability is guaranteed. Clearly, as far as the
shape-contour extraction is concerned, the evolving con-
tours are more meaningful in the Fig. 8a–f than in
Fig. 7a–f. As shown in Fig. 8e–f, in the absence of a conver-
gence criteria we are unable to terminate the evolution
lts of the curve evolution process using a level set algorithm. The curve in
n. The time-step Dt for the level set algorithm was deliberately set to violate



Fig. 8. Importance of the convergence criteria: (a)–(f) The level set based curve evolution process at certain time iterations. The curve in white is the
evolving contour and our goal is to extract the contour of the person. The time-step Dt was set to ensure numerical stability but no convergence criteria
was employed to stop the process at the correct instant.
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process at the correct instant. This not only leads to a wast-
age of computational resource but also leads to unsatisfac-
tory shape-contours as shown in Fig. 8f. Thus, employing
our convergence criteria, we are able to stop the evolution
process at the correct instant and extract a shape-contour
similar to the one shown in Fig. 8d.
6. Comparison of performances

To summarize the improvement in the performance of
existing level set based algorithms, as a result of the intro-
duction of our proposed optimal time-step and conver-
gence criteria, we compare the performance of our
modified algorithm along with the primitive level set algo-
rithms in the Table 1. It is not feasible to demonstrate the
improvement in stability of our algorithm quantitatively.
But, in the earlier sections, we have demonstrated pictori-
Table 1
Comparison of performances

Reference to the level set
paper/algorithm

No/unsatisfactory
convergence criteria
used

Using our proposed
convergence criteria

Iteration
count

Execution
time (s)

Iteration
count

Execution
time (s)

Malladi et al. (1995) 2000 40 850 20
Mansouri (2002) 1000 35 640 25
Mansouri and Konrad

(2003)
1000 35 800 20

Chang et al. (2004) – – 750 15
ally how the instability problems are avoided using results
from the curve evolution process. Below we depict the
improvement in performance only in terms of the execution
time (convergence issues).

While generating the results used in the Table 1, we have
assumed that the stability criteria was adhered to by both
our algorithm and the corresponding primitive algorithms.
In our case, the iteration count and hence the execution
time is purely determined by the convergence criteria. In
the reference algorithms, the iteration count (stopping cri-
teria) was chosen empirically based on the image size and
the length of the initial contour (Mansouri, 2002; Malladi
et al., 1995; Mansouri and Konrad, 2003; Chang et al.,
2004).

It is clear from the table that, as the number of iterations
in the level set algorithm is set empirically, a lot of compu-
tational resource goes waste, and considering the time com-
plexity of the level set implementations, this unnecessarily
increases the execution time. Our convergence test stops
the iteration process once the desired contour has been
attained and hence does away with the undue wastage of
computational resources.
7. Conclusion and future work

Our goal was to demonstrate that the existing level
set based algorithms are not only vulnerable to numerical
instabilities but can also lead to unsatisfactory results
due to the deployment of poor stopping criteria. As evident
from the results shown in this paper, both numerical
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stability and a good convergence criteria are essential for
satisfactory performance of level set algorithms.

We have proposed a robust convergence criteria and a
method of determining the optimal time-step for the
numerical solution of the level set equation. The time-step
is optimal in the sense that, for a given speed function, it
ensures maximum rate of curve evolution without threaten-
ing the numerical stability of the solution. The convergence
criteria takes a lot of factors into account while deciding
when to halt the propagating curve. This makes the conver-
gence criteria robust to situations, like the temporary slow-
down of the evolution process prior to steady state, which
could prematurely halt the curve propagation yielding
unsatisfactory results.

A detailed discussion of the computer vision problems
used to validate our findings is beyond the scope of this
paper. Though we use object tracking and shape-contour
extraction algorithms for validation purpose, the stability
and convergence issues are generic in nature and can be
extended to other level set based applications. Fast level
set algorithms, like ‘‘Narrow Band Level Set’’, along with
our proposed stability and convergence solutions can dras-
tically improve the reliability and performance of level-set
based applications in computer vision.
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