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Full Motion and Flow Field Recovery From
Echo Doppler Data

Muthuvel Arigovindan, Michael Sühling, Christian Jansen, Patrick Hunziker, and Michael Unser*

Abstract—We present a new computational method for recon-
structing a vector velocity field from scattered, pulsed-wave ultra-
sound Doppler data. The main difficulty is that the Doppler mea-
surements are incomplete, for they do only capture the velocity
component along the beam direction. We thus propose to combine
measurements from different beam directions. However, this is not
yet sufficient to make the problem well posed because 1) the angle
between the directions is typically small and 2) the data is noisy
and nonuniformly sampled. We propose to solve this reconstruc-
tion problem in the continuous domain using regularization. The
reconstruction is formulated as the minimizer of a cost that is a
weighted sum of two terms: 1) the sum of squared difference be-
tween the Doppler data and the projected velocities 2) a quadratic
regularization functional that imposes some smoothness on the ve-
locity field. We express our solution for this minimization problem
in a -spline basis, obtaining a sparse system of equations that
can be solved efficiently. Using synthetic phantom data, we demon-
strate the significance of tuning the regularization according to
the a priori knowledge about the physical property of the motion.
Next, we validate our method using real phantom data for which
the ground truth is known. We then present reconstruction results
obtained from clinical data that originate from 1) blood flow in
carotid bifurcation and 2) cardiac wall motion.

Index Terms—Color Doppler imaging, color flow imaging,
echocardiography, nonuniform sampling, projected sampling,
pulsed wave Doppler, regularized reconstruction, shift-invariant
spaces, tissue Doppler imaging, ultrasound Doppler, variational
reconstruction, vector field reconstruction, velocity field recon-
struction.

I. INTRODUCTION

PULSED-WAVE ultrasound Doppler (PWD) imaging is an
effective tool for the monitoring of vascular and cardiac

function [1]–[3]. The imaging system sends a periodic pulse
train along a set of scan lines and measures the backscattered
signal. By analyzing the Doppler frequency-shift in the received
signal, the system retrieves a set of axial velocity estimates;
these are the projected components of the true three-dimen-
sional (3-D) velocity along the direction of the ultrasound beam.
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These axial components are resampled on a regular grid and pre-
sented in a color coded form that is known as the color flow
image. See [1] for a comprehensive treatment of the various as-
pects of such systems. In the context of clinical echocardiog-
raphy, PWD imaging is better known as color Doppler imaging
when used to assess blood flow, and tissue Doppler imaging,
when applied to tissue motion.

The color flow image sequence contains the instantaneous ve-
locity information, but it is incomplete; in particular, the system
is blind to the motion that is orthogonal to the beam. Neverthe-
less, such a partial velocity field has been used for the determi-
nation of quantitative parameters such as flow volume [4]–[6].
Further, qualitative and to some extent quantitative motion anal-
ysis obtained from this kind of data was found to be clinically
useful in several instances [7], [2], [8]–[10], [3]. It can, there-
fore, be expected that the availability of full vector field should
lead to a better quantitative analysis.

An alternative to the Doppler methods is to use computational
means to recover a full velocity field from a temporal sequence
of -mode intensity images. This is typically done using optical
flow algorithms; a comparative evaluation of such techniques
in the context of echocardiography can be found in [11]. A re-
cent enhancement involves the use of a local affine model that
is well adapted to the motion of the heart [12]. One can also
think of improving the performance of optical flow techniques
by combining it with Doppler data to improve the reconstruc-
tion quality of this local affine method [13]. Even though these

-mode motion analysis techniques hold promises for clinical
practice, they have not superseded Doppler imaging which is
generally believed to be more reliable and applicable to a wider
range of situations. In that respect, the down-sides of optical
flow techniques are:

1) They do not work at all for estimating blood flow because
there is no visible structure on which to lock.

2) These methods are all based on the assumption that a ma-
terial point gives rise to the same intensity value in succes-
sive frames. It is still not entirely clear to which extent this
assumption is valid in ultrasound imaging because of the
presence of multiple scatters that induce speckle which is
not necessarily correlated with movement [14], [15].

3) There is some lack of temporal resolution because op-
tical flow computations are based on frame-to-frame dif-
ferences. This is in contrast with Doppler measurements
for which the equivalent averaging time (proportional to
the inverse of the pulse repetition rate) is significantly less.

Doppler imaging would therefore come out as the method of
choice for assessing motion if it were not for its basic limita-
tion of only providing partial velocity measurements; i.e., pro-
jections along the direction of the beam.
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Fig. 1. Scan-line schemes for 2-D acquisition. (a) Cone-beam or sector-scan
acquisition. (b) Parallel-beam acquisition.

In this paper, we propose a new approach for reconstructing
the true velocity field from the PWD data only. It is distinct and
complementary to the optical flow techniques in the sense that it
is also intended to work for blood flow estimation. We formulate
the task as the problem of finding a continuous vector function
that is the minimizer of a suitable criterion. Specifically, we con-
sider a quadratic cost functional that is a weighted sum of a data
term and a physically inspired smoothness functional (regular-
izer). The regularizer enforces some coupling between and
velocity components. We demonstrate that the partial nature of
the data makes this coupling crucial.

We search for the continuous solution in a shift-invariant
space, since it allows, by choosing the step size, a trade-off
between computational complexity and reconstruction accu-
racy. We choose a -spline basis for the shift-invariant space,
since it gives the best trade-off, as justified in Section III-E.
The -spline solution is conveniently expressed in the form
of a sparse system of linear equations, thanks to the exact
computation of derivatives of the regularization functional [16].

Using a synthetic phantom, we demonstrate the superiority
of our coupled regularizer over the conventional regularizers.
We also validate our method using a real phantom experiment.
Finally, we present reconstruction results for blood flow in the
carotid bifurcation and cardiac wall motion along with some
quantitative validation.

II. RECONSTRUCTION PROBLEM

In this section, we give a brief description of the form of a
typical PWD data set. Then, based on a simple motion model,
we describe the indeterminacy of the Doppler data.

A. Form of the Data

A Doppler imaging system measures axial velocities at some
selected locations in the cross-sectional plane under considera-
tion. The selected locations are typically on a noncartesian
grid. These nonuniform measurements are scan-converted (re-
sampled in a regular grid) and then displayed in a color-coded
form. A typical two-dimensional (2-D) data set will contain
the set of sampling locations , the corresponding beam di-
rections , and the Doppler measurements satisfying

, where is the true velocity field. Note that
the sampling locations are nonuniform, especially when
there are multiple views.

Fig. 1 gives the schematic of two commonly used sampling
geometries. The solid lines with arrows represent the scan lines

(ultrasound beam), whereas the dotted lines represent the sam-
pling grid along the scan lines. In the cone-beam or sector-beam
scheme, the beams are launched from a single point along a
series of regularly spaced angles. In the parallel-beam acquisi-
tion, beams are launched with a fixed angle from a set of points
spaced regularly along a line. A typical parallel-beam probe
has the capability of steering the beam angle, which means that
different Doppler images can be acquired without moving the
probe (multiple acquisitions).

In this paper, we consider two types of data sets: 1) samples of
multiple acquisitions of the same cross-sectional plane obtained
from a cone-beam probe placed at different locations (sample
locations and beam directions are transformed into a common
reference plane); and 2) multiple acquisitions from a parallel-
beam probe obtained by beam steering.

B. Deficiency of Doppler Data

Now we will demonstrate the deficiency of Doppler data with
the help of a toy example. Specifically, let us consider a plane
rotating with an angular velocity about the center ; its
velocity field is given by

(1)

(2)

where and are the and components of the velocity field.
Let the measurement device be a cone beam probe located at the
origin of the coordinate system. The probe measures the samples
of the following function:

Here is the direction of the beam from the
probe, whose components, in the present geometry, are given by

Then reads

It is clear from the above equation that we cannot recover the
motion parameters individually from the samples of

, no matter how many. We can only recover the products
and . In other words, any rotating plane with an angular

velocity, , and a center of rotation, , is a candidate so-
lution, provided and . Hence, there is
no reconstruction method that can recover the motion uniquely.

We can resolve this ambiguity if we have the value of one
of the components ( or ) at any point. In fact, the minimal
measurement set required to determine all the three parameters
is the following 1) samples of the function at two points
that do not lie on the same scan line 2) a sample of one of the
components. Since it is not practical to obtain a measurement of
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a single velocity component, the only feasible way to resolve the
ambiguity of Doppler data is to combine multiple acquisitions,
which is the strategy adopted in this work.

III. PROPOSED METHOD

Let be the velocity field. Our
aim is to recover from the given Doppler measurement set

. We search for the solution in the space of uniform
-splines; in other words, we restrict the velocity field to be of

the following form:

(3)

(4)

Here, is the -spline of degree and is the step size
that controls the accuracy. is the grid size. The idea is to
formulate the reconstruction as the minimizer of a quadratic
functional. Consequently, the expansion coefficients are ex-
pressed as a solution of a linear system of equation. We study
three forms of the quadratic functional.

A. Least Squares Method (LS)

The least squares -spline solution is the minimizer of the
following quadratic cost functional:

(5)

Let , , and .
Now, the task is to express the above functional in terms of .
Let and . The
vectors and are computed as

where the sample matrix is defined as

(6)

Let and be the diagonal matrices defined by

where and are the components of . Further, let

It can be verified that

We now define

(7)

(8)

Then, becomes

Let . Putting all these elements together, we
express (5) in the following standard matrix form:

(9)

where

(10)

(11)

Note that is a square matrix of size . Finally, the least
squares reconstruction—i.e., the minimizer of (9)—is given by
the solution of the following equation:

(12)

where . In the case where is not of full rank, we
consider the minimum norm solution which is given by

, where is the generalized (Moore–Penrose) inverse
of .

B. Regularized Least Squares Method (RLS)

The reconstruction in the regularized least squares methods
is the minimizer of an extended cost functional; it is obtained
by adding a smoothness functional to the original least squares
criterion, i.e.,

(13)

A smoothness functional that is frequently used for the
estimation of deformation fields is the weighted sum of mem-
brane spline and thin-plate spline regularizers [17], [18] applied
to each component. Specifically, we have

(14)

where

(15)

(16)

with and . It is important to note that this fairly
standard regularizer does not have any coupled terms, meaning
that it does not enforce any special relationship between velocity
components.
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The main task now is to express and in terms of
the expansion coefficients. In the appendix , we show that these
can be written down relatively simply in terms of digital filtering
operations and -inner products as given below

(17)

(18)

The digital filters and are conveniently characterized by their
-transforms and . For -splines they take

the following form:

(19)

(20)

where denotes the -transform of
the discrete -spline of degree . Equations (17) and (18) can
also be written as

(21)

(22)

where and are the circulant matrices corresponding to
and , respectively. This together with (9)

yields the following expression for :

(23)

where

Thus, the minimizer of (23) can be formally expressed as

where . In practice, we do
not compute the inverse but we solve the system using direct or
iterative methods that are efficient for sparse systems.

C. Vector Regularized Least Squares (VRLS)

We now introduce the concept of a vector regularization that
relies on an extended smoothness functional that couples the
velocity components. The criterion to minimize is

(24)

where is our extended smoothness functional. The func-
tional, , is based on the divergence and curl of the ve-
locity field, which are defined as

(25)

(26)

The divergence of the velocity field quantifies the rate change of
the density of the medium at a given point. The curl of a velocity
field, on the other hand, is equal to twice the angular velocity
within an infinitesimal neighborhood at the point of interest. We
construct as given below

(27)

Since the divergence gives the density change, the first term in
the (27) quantifies the overall compression rate, whereas the
second term gives the spatial roughness of this compression rate.
Both terms are related to the deformation of the medium. The
third term sums up the squared angular velocity. It does not di-
rectly quantify the deformation, but will tend to penalize rota-
tions including rigid ones. The last term, on the other hand, is
indeed a measure of deformation, as it captures the spatial vari-
ation of the angular velocity.

The idea behind using this regularizer is that it includes every
derivative-based quantity that has a direct physical interpreta-
tion. This allows one to incorporate some a priori knowledge of
the type of velocity field and also to specify physically plausible
solutions. Interestingly, we have verified that any rotationally in-
variant functional of order lesser or equal to two takes the form
(27). The proof will be published elsewhere.

As shown in the Appendix , the various terms in (27) can be
written as

(28)

(29)

(30)

(31)
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where the underlying digital filters are defined as follows:

(32)

(33)

(34)

(35)

(36)

(37)

Here, . In
matrix form, (28)–(31) read

The cost functional, , now becomes

(38)

where

(39)

(40)

(41)

(42)

Note that the functional, , includes as a special
case. To show this, we first observe from (32), (33), and (19)
that

Similarly, using (35), (36), and (20), we get

These two relations in turn imply

Thus, we conclude that if
and . In fact, it can be shown that this relation
is valid for any vector function and not just for those that are
included in our -spline reconstruction space.

Finally, the solution for the VRLS method—i.e., the mini-
mizer of (38)—is given by

where

(43)

Note that this kind of regularized reconstruction method
that involves the projected sampling model has been proposed
for velocity field reconstruction from tagged MRI data [19].
However, the approach of Suter et al. differs from the proposed
method in two respects: 1) it does not involve any physics based
regularization; 2) the method involves the computation of glob-
ally supported functions which is computationally expensive,
whereas the proposed method is tailored for computational
efficiency, as will be demonstrated in the subsequent sections.

D. Structure of the Linear System of Equations

Let us now have a closer look at the structure of the matrices
involved and make a few comments on the numerical methods
for solving the linear system of equations. We only consider the
linear system that correspond to VRLS method since the other
methods are special cases of the VRLS method. It can be shown
that the matrix given in (43) can be express as

(44)

where

(45)
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(46)

(47)

and , , and are the circulant matrices corresponding
to some filters , , and , respec-
tively. The filters are given by

The above matrices are of size . From (45)–(47),
it can be observed that the sample matrices , , and
are sparse. In particular, assuming that each grid interval has a
sample point (worst case sparsity), it can be verified that an ele-
ment is zero for (fi-
nite support of -splines). Hence, the matrices are block-band
diagonal of width and each of the constituent block of
size is also band diagonal of width . More-
over, these matrices are symmetric and each constituent block
is symmetric as well. Next, from the expression (32)–(37), the
filters are symmetric and of length . This implies that the
matrices , , and have the same structure as that of
the sample matrices (with the additional property of being cir-
culant). As a result, the matrices , , and also have
the same sparsity and symmetry.

Hence, the overall matrix is sparse and symmetric.
Since is typically nonsingular as in any regularized
linear problem, it is positive definite.

It can be shown that the RHS of the linear system of equations
is given by

(48)

where

We now consider an important point on the ordering of coeffi-
cients and to get the coefficient vector . Until now,

we used the concatenated ordering
to facilitate the derivations. However, there is an alternative or-
dering that is physically more meaningful

The corresponding linear system of equations is given by

where

(49)

(50)

The main advantage of this modified linear system is that the
matrix retains the sparse structure of its constituent matrices

, , and with 2 2 matrices playing the role of the
scalars elements in the latter ones. In this configuration, the
nonzero elements are all concentrated near the diagonal. This al-
lows us to conclude that the solution can be obtained by solving
a sparse, well-conditioned, diagonally-dominant, and positive-
definite linear system of equations. Hence, we have at our dis-
posal a rich set of computationally efficient iterative methods to
achieve the required reconstruction. This is the primary advan-
tage of the proposed scheme over an analytical method such as
the one presented in [19].

E. Computational Complexity

The computational task essentially consists of two parts: 1)
constructing the linear system of equations, 2) and solving the
system. The first is much less demanding than the second.

The first part is essentially the computation of the matrices
, , and using (45)–(47) and then adding the circulent

matrices. The latter is negligible whereas the former is propor-
tional to where is the number of samples points.

The second part, which is the computation of the solution, has
a complexity that is proportional to the number of nonredundant
and nonzero elements in . Because of the symmetry and
the sparsity properties identified before, the number of nonzero
elements is equal to . Hence, the complexity
of solving the linear system is proportional to .
On the other hand, since the approximation error for the
spline discretization is , the reconstruction accuracy is
proportional to . As a consequence, becomes a trade-off
factor that allows a compromise between the computational
complexity and the reconstruction accuracy. In this regard,

-splines give the best trade-off since they have the highest
approximation order for a given support size [20] (support size
determines the computational complexity).
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IV. EXPERIMENTS

To demonstrate the feasibility of the proposed formulation
and to compare different methods, we first study the reconstruc-
tion of synthetic data. We then move to real phantom data, where
the motion is controlled and known a priori. Finally, we present
reconstruction results obtained from two types of clinical data
for the assessment of: 1) blood flow in the carotid bifurcation,
and 2) cardiac wall motion. We use a Gaussian noise model in
our experiments, since the noise in Doppler systems is usually
found to be Gaussian [1].

A. Tuning the Parameters of the Algorithm

We tune the regularization parameters by a two-step proce-
dure. First, the parameter search space is constrained by incor-
porating some a priori knowledge on the type motion if avail-
able. Next, by performing multiple reconstructions, the param-
eters are updated by an iterative search within the constrained
search space such that the difference between the data term of
the cost functional and the noise variance is minimum. In
other words, the parameters are obtained as the minimizer of the
following cost:

(51)

where is the reconstructed velocity field, and is the
noise variance. The idea behind this strategy is that, if the recon-
struction function coincides with the underlying true velocity
field, then the error in the data term is entirely due to noise im-
plying that .

Since is an increasing function with respect to each
regularization parameter, we can achieve a faster convergence if
we keep the parameters proportional to .

B. Validating the Reconstructed Function

While it is easy to validate the reconstructed field in a test case
where the ground truth is known, it is less straightforward to do
so in a clinical scenario. Here, we propose a cross-validation
strategy for the quantitative assessment of our method. The idea
is to use only part of the available data for field reconstruction by
the above mentioned method (including the iterative search for
optimal parameter determination). We then evaluate (51) using
the data that was left out from the reconstruction process. If the
cost (51) is sufficiently close to the minimum attained during
the iterative reconstruction, then we are able to conclude that the
reconstructed field is consistent with the full data set, suggesting
that it is a good approximation of the underlying true velocity
field.

C. Synthetic Rotating Phantom

Here we consider the vector field scenario described in Sec-
tion II-B, which corresponds to a planar rotation with a con-
stant angular velocity. We demonstrated earlier that the single
probe measurement set is ambiguous and does not permit the re-
covery of the motion parameters. Hence we consider measure-
ments from two probe locations, since it is the only practical
way to resolve the ambiguity. We study the performance of all
three method on such a measurement set.

Fig. 2. Schematic for synthetic phantom experiment.

The required Doppler data is simulated for two sector scan
probes. Let and be the loca-
tions, and let be the angle subtended by the probe locations
with respect to the center of rotation (Fig. 2). The idealized
phantom data is now obtained by sampling two functions
and , where

Here, , , and

We are also adding noise to make the problem more realistic.
Each of the functions and are uniformly sampled
with respect to the polar coordinate systems with origins , and

, respectively. However, note that the samples are nonuni-
form with respect to our cartesian reconstruction system. Let

be the set of sample locations for the probe
. The input for the algorithm is given by the following list of

triplets:

where , and with
being some independent and identically distributed (i.i.d.)

Gaussian measurement noise with variance . Note that the
richness of the data set is controlled by the magnitude of , and
that the reconstruction becomes easier as tends to 90 .

Now we consider the choice of regularization parameters. For
a rigid rotation, the divergence is zero. The gradient of curl is
zero as well, except at the boundaries. Hence, the appropriate
setting will be . How-
ever, since the gradient of curl is nonzero at the boundaries, the
choice will lead to a sizable error therein. A good
compromise can be achieved by choosing

, where is an adequately chosen
positive real number. The constant is chosen iteratively to
match the variance as described before. For the RLS method,
we need to set , since a rigid rotation contains the
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Fig. 3. Reconstruction error for synthetic phantom experiment.

Fig. 4. Reconstruction error for synthetic phantom experiment.

first order spatial variation. Hence, the appropriate setting is
.

Before presenting our results, we define the following quan-
tities:

where is the true velocity field. Note that the input
signal-to-noise ratio (SNR) is computed over the available
sample locations, whereas the reconstruction SNR is computed
over the reconstruction grid.

Fig. 3 gives reconstruction SNR for VRLS, RLS, and LS as
a function of , for input SNR equal to 44.5 dB. It can be ob-
served that the reconstruction error decreases with increasing

, as one expects. Also, one can clearly see the superiority of
VRLS. Fig. 4 gives the reconstruction SNR for all three methods
as a function of the input SNR with . Note that VRLS
performs the best, and that the reconstruction error for the con-
ventional LS approach is far worse (off by more than 30 dB). All

Fig. 5. VRLS Reconstruction error for synthetic phantom with nonrigid mo-
tion. Input SNR = 10 dB.

the reconstructions were done on a 16 16 grid with and
with the number of samples equal to the number of grid points.

Note that when there is no input noise, the reconstruction
error is dominated by the minimum amount of smoothing that
is required to make the linear system of equations well condi-
tioned.

D. Synthetic Phantom With Nonrigid Motion

In this experiment, we consider a more complex model for
the synthetic phantom. Specifically, we adopt a nonrigid motion
model given by

(52)

where , , and . The first term
is the curl-free component and the second is the divergence-
free component. In continuum mechanics, they are identified
as the irrotational and solenoidal components of the velocity
field. In this experiment too, the input data are the measurements
simulated for two sector scan probes (Fig. 2) with some i.i.d
Gaussian noise.

Since the velocity field has a nonzero divergence and a
nonzero curl, we have to choose . The remaining
parameters and are refined iteratively. Interestingly, we
found that the resulting parameters satisfy

where is a suitable constant. In other words, the ratio
is equal to the ratio of the energies of divergence-free and curl-
free parts of the original velocity field.

The chosen range for the reconstruction grid is (essen-
tial support of the Gaussian) and the average sampling density
is 28 samples per unit area. Fig. 5 compares the reconstruction
result for VRLS obtained for different values of the step size
with , , and . The input SNR is 10 dB.
The reconstruction SNR is nearly constant when is sufficiently
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Fig. 6. Reconstructed motion field for the rotating real phantom.

small and falls off drastically when it becomes too large. For
practical purpose, the choice offers a good compromise
in terms of quality and computational cost ( ).

We also performed reconstruction with two modified probe
setting for : 1) three views with the third view in the
middle of the first two (angle between the outer views is 30
and angle between adjacent views is 15 ); 2) two views with
angle 45 . The first modification yields an SNR of 15.2 dB,
whereas second yields 25.5 dB. Qualitatively, we can say that
the improvement in the first case is due to a better noise removal,
whereas the improvement in the second is due to an increase in
the amount of information, which is more significant than that
of the first. We observed that, for the second, the SNR increases
as the separation angle gets larger (the optimal angle being 90 .
With some simplifying assumptions on the probe geometries,
the reason for this behavior can be explained analytically for any
type of velocity field. We are skipping this proof due to space
limitations.

E. Real Phantom Experiment

The real phantom that we constructed for this experiment
is a cylindrical tissue-mimicking object (gelatin) of radius 7.5
cm immersed in a water container. The object rotates with a
constant angular velocity of 0.5 rad/s. Doppler data were ac-
quired using a sector scan probe, and reconstruction was per-
formed from views differing by 10 . The regularization param-
eters were tuned in the same way as in the synthetic phantom
experiment. Fig. 6 shows one frame of the -mode intensity
image with the superimposed reconstructed motion field. Since
we know the true velocity field, we can compute the ideal mea-
surements at the sample locations. Hence, we can compute the
input noise variance, which was found to be 14.27 dB. The re-
construction SNR for the VRLS method is 14.67 dB. The av-
erage angular reconstruction error is 3 . The average radial ve-
locity in the reconstructed velocity field is about 3.5% of the
peak velocity in the true velocity field.

Fig. 7. Selected color Doppler images of carotid bifurcation. (a) � = 70 .
(b) � = 90 . (c) � = 110 .

F. Blood Flow in Carotid Bifurcation

Blood flow patterns in the carotid bifurcation have been
reported to have significant influence on the development of
artherosclerosis [21] which is a leading cause of heart attack
and stroke. In this experiment, we attempted to reconstruct the
complete blood-flow distribution in the carotid bifurcation from
multiple-view Doppler data acquired using a parallel-beam
probe setup with steering capability. We performed three ac-
quisitions with beam angles , 90 , 110 . These were
acquired without moving the probe.

Imaging was performed using an Acuson Sequoia Echo 512
machine with Siemens 6L3 probe. An ultrasound frequency of
3.5 MHz was used. The penetration depth is 30 mm. Color cali-
bration was done for the axial velocity ranging from
to 0.17 m/s.

We extracted the frames corresponding to the -peak over
two cycles. Fig. 7 gives one of the extracted frames for each
view angle. The top of the color scale represents the peak neg-
ative axial velocity and the bottom represents the peak positive
velocity. Note that the color map has been inverted for the first
view when compared to the other two views. The noise variance
of the Doppler data was estimated by comparing frames corre-
sponding to different cycles. It was found to amount for 9% of
the signal energy.

We used 75% of the total samples that were selected ran-
domly (data set A) for reconstruction and the remaining sam-
ples (data set B) for validation. Since we do not have any a
priori knowledge about the flow pattern, all the four regulariza-
tion parameters were tuned iteratively. The minimum attained
[(51)] was in the order of . Fig. 8(a) gives a visualization
of the reconstructed flow field, whereas the Fig. 8(b) gives the
flow profiles across the vessels before and after the bifurcation.
We observe that, in the flow profiles after bifurcation, the max-
imum velocity is shifted towards the interior of the bifurcation,
whereas in the flow profile before bifurcation, the maximum
velocity stays approximately in the center of the vessel. This
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Fig. 8. Reconstructed results for the carotid bifurcation. (a) Reconstructed flow
field. (b) Velocity profile across different parts of the vessels.

Fig. 9. Color coded reconstructed velocity components. (a) Horizontal compo-
nent (left to right is positive). (b) Vertical component (downwards is positive).

agrees with model-based predictions [22], and constitutes a sig-
nificant clinical finding. Fig. 9(a) and (b) visualizes the recon-
structed velocity components in a color coded form.

Next, we cross validated the reconstructed flow field using
data set B. Specifically, we evaluated the cost (51) for the recon-
structed function. The cost was close to the attained minimum
during the iterative search; i.e., of the order of . This in-
dicates that the chosen values for the regularization parameters
are matched to the data, and that the reconstructed velocity must
be close to the underlying true flow field.

G. Myocardial Motion Recovery

The data for this experiment are from a healthy individual
and were acquired using a sector scan probe from two echocar-
diographic standard views: 1) apical long axis view, and 2)
parasternal long axis view.

Imaging was performed using a Philips SONOS 5500 system
with S4 ultraband cardiac transducer. An ultrasound frequency
of 1.8 MHz was used. The penetration depth is 150 mm.
Color calibration was done for the axial velocity ranging from

to 12 m/s.
Along with the Doppler images, the data set contains -mode

intensity images that reveal the anatomical structure of the cross
sectional plane. The acquisition was done by an experienced
echocardiographer who adjusted the probe such that both ac-
quisitions are from the same cross-sectional plane. Hence, the
premise of this data set is that the image planes are related by
a rigid transformation (translation+rotation). To reconstruct the
motion field in one image plane, one, therefore, has to register
the two data sets and superimpose them onto a common refer-
ence system. To this end, we computed the required transfor-
mation by identifying a pair of landmarks (base of the mitral
valves) in both the sequences.

The noise variance estimated using periodicity in this case
is 22% of the signal energy. In this experiment too, we used
75% of the samples for reconstruction and the rest for validation.
Parameter tuning was performed as in the previous experiment.
The attained minimum of the cost (51) was in the order of
in this case and the cost for the validation data set was also of
the same order.

Note that the minimum attained in this experiment is less than
that of the previous experiment. This is probably due to the fact
that there are two additional sources of error: 1) misalignment
of cross-sectional planes, and 2) error in registering two images.
The effect of the later can be reduced if one uses more land-
marks.

By looking at the -mode images, we manually generated re-
gions of interest (binary masks) specifying the cardiac wall that
is visible in the given images. Fig. 10 shows the reconstructed
motion fields displayed over the regions of interest for the frame
corresponding to the leading edge of the -wave of the associ-
ated electrocardiogram (ECG). Note that, even though the re-
constructed motion fields in the apical and parasternal planes
are related by a transformation, the displayed motions fields do
not look exactly so, since the regions of interest are slightly dif-
ferent.

The reconstructed velocity field was also validated in a qual-
itative manner by comparison of the motion directions deter-
mined from grayscale images by several echocardiographic ex-
perts. In this way, we could confirm that the results found by
our algorithm are generally in good agreement with the expert
readings.

H. Discussion

The above experimental examples demonstrate the effective-
ness of the proposed method. We observe a striking difference
between the performance of the vector regularizer and the more
traditional thin-plate spline regularizer. This is due to the fact
that the vector regularizer introduces a coupling between the

and components whereas the thin-plate spline regular-
izer—which works well when the sample are complete (both
components available)—treats the components independently.
The incompleteness of the Doppler data makes the coupling
crucial, and hence the improvement of coupled regularizer over
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Fig. 10. Reconstructed motion field from two view cardiac Doppler data. (a)
Apical long axis view. (b) Parasternal long axis view.

the uncoupled one is significant. Another point that makes the
proposed vector regularizer attractive is that it allows one to
incorporate some a priori knowledge on the motion. This term
can be specified to penalize pure (or elastic) deformation only;
in other words, the null space of the regularization operator
can be chosen to include all forms of rigid motion such as
translation and rotation.

Our reconstruction method is formulated in the continuous
domain. Our choice of spline reconstruction space is compu-
tationally attractive; it allows an optimal trade-off between the
complexity and accuracy, since -splines have the maximum
approximation order for a given support size [20] (
convergence in the sense). Further, the exact solution is ex-
pressed simply in the form of a sparse linear system of equation.
The proposed computational framework is general and flexible.
The user can easily fine-tune the regularization for his particular
application. Practically, changing the regularization functional
only amounts to adjusting some weights or eventually adding
a convolution matrix. In fact, one can use a set of templates of
such matrices to get any quadratic functional as a weighted sum.

All the reconstructions were done with the grid size in the
range 32–50. The corresponding size of the linear system is in

the range 2048 – 5000. Thanks to the right choice of the basis
functions, the matrices are sparse and hence it takes only 3–9 s to
solve by direct methods using Matlab on a Apple G5 system. We
also implemented a multigrid algorithm [23] for the case

, and . We verified that the multigrid solver will
speed up by at least one order of magnitude. The same strategy
should also work for the more general case but will require a
significant programming effort as well as a reengineering of the
structure of the current program, which is an adaptation of the
scalar algorithm developed in [24].

It should be noted that, as far as we know, our method is the
first attempt to recover vector velocity field from Doppler data
only. Our method opens up new possibilities in clinical diag-
nosis. In particular, we can now recover full velocity field from
blood flow, which has not been possible before. Further, for
tissue motion, our method yields more accurate result compared
to intensity-based approaches due to the reasons explained in
the introduction. We believe that integrating our algorithm in
imaging machines that have capability of obtaining multiple
view acquisitions will be a promising direction, since this will
eliminate the inaccuracies due to manual alignment.

Another strength of the proposed method is that it can inte-
grate multiple acquisitions efficiently. This is due fact that 1)
the method is formulated for arbitrarily spaced samples and 2)
number of sample points does not significantly affect the com-
putational complexity.

Finally, it should be noted that the proposed formulation is
perfectly extendable to thee-dimensional (3-D). The only prac-
tical difficulty there is to acquire synchronized multiple view
data. Fortunately, the prospects are getting better with the re-
cent generation of 3-D probes.

V. CONCLUSION

We demonstrated the feasibility of recovering true velocity
field from pulsed wave Doppler data. We adopted a minimiza-
tion approach, where the cost to be minimized is a weighted
sum of data error and a smoothness functional. We proposed
a derivative-based smoothness functional that allows one to in-
corporate an a priori knowledge about the motion and set up
to penalize the deformation. We proposed a continuous solu-
tion for this minimization problem, and showed how the so-
lution could be obtained by solving a system of linear equa-
tions. We demonstrated the effectiveness of the method using
experimental examples. We also demonstrated the importance
of tuning the smoothness functional, and showed how the data
indeterminacy can be overcome by a suitable choice of vector
regularization.

APPENDIX

Our goal is to find expressions for and in terms
of the -spline expansion coefficients. Each constitutive term
is a bilinear functional involving the velocity components. They
are of the following form:

(53)
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where and are expressed as

(54)

(55)

Here, and are the symbolic replacements for the velocity
components, and ; they either refer to the same component
(square terms) or different components (cross terms). This rep-
resentation facilitates deriving a generic computational formula
that will be useful for both square terms and cross terms. To de-
rive the formula, we first define

(56)

Substituting (54) and (55) in (53), we get the equation at the
bottom of the page. This in turn yields

(57)

where is defined by the following convolution:

(58)

Now define

(59)

(60)

Substituting we get

(61)

In other words, the bilinear form that
involves an integral over is re-expressed as a bilinear form
that involves a discrete inner product over . Hence (61)
gives a basic building block to represent any vector regular-
ization functional for -splines by discrete convolutions. The

discrete filter is completely determined by
the quadruple of derivative orders , the degree
of the -spline, and the scale [(56), (58), (59), (60)]. Let

and be -transforms of
and , respectively. Then

(62)

The next step now is to find explicit expression for .
To this end, we first write the Fourier expressions for -spline
[16]:

Let . Then

Consequently, the Fourier expression for defined in the
(56) is given by

(63)

Now, defined in the (58) is given by

Substituting (63) yields
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Now let us consider the case when is even. We rewrite
the above equation as

(64)

where

Since is even, is a polynomial in
(or even polynomial in ). Let

(65)

Substituting in (64) and applying an inverse Fourier transforma-
tion, we get

This yields

Hence, in -domain we get

Now, let be odd. We rewrite (64) as follows:

(66)

Note that is now a polynomial in , and
let

Substituting the above equation in (66) and applying the inverse
Fourier transformation, we get the first equation at the bottom
of the page, This yields the second equation at the bottom of the
page. where . In -domain
it reads

where
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In summary, the filter is given by (67), shown at the
bottom of the page, where

The filter, , has some symmetry properties. In
(67), all the terms in the right hand side are symmetric except

, which is anti-symmetric. Hence, we get

(68)

On the other hand, (58) and (59) imply

(69)

This these two relations together yield

(70)

The next step is to use (67) to get explicit expressions for each
of the terms in and . We first consider . Using
(53), (15) is written as

Substituting (61) in the above equation yields

(71)

The constituent filters in the -domain read

Using (67), the filters and are expressed as

Substituting these expressions in (71) yields (17). In a similar
way, we can establish (18).

Next, we intend prove (28). We first expand
using (25) and then substitute (53) for each resulting term. We
get

Using (61), this yields

where

Using (62) and (67) results

using

which proves (28). We obtain (29) in a similar way.
Next, to establish (30), we first expand it as follows:

Using (61) yields

if is even, and

otherwise,
(67)
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where

(72)

(73)

Now, using (70), we get
. Hence,

becomes

(74)

Applying the formula (67) in each of the terms in (72), (73), and
(74), we finally get

This proves (30). Equation (31) is established in a similar way.
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