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Abstract—Thousands of medical images are saved in databases every day and the need for algorithms able to
handle such data in an unsupervised manner is steadily increasing. The classification of ultrasound images is an
outstandingly difficult task, due to the high noise level of these images. We present a detailed description of an
algorithm based on multiscale elastic registration capable of unsupervised, landmark-free classification of
cardiac ultrasound images into their respective views (apical four chamber, two chamber, parasternal long axis
and short axis views). We validated the algorithm with 90 unselected, consecutive echocardiographic images
recorded during daily clinical work. When the two visually very similar apical views (four chamber and two
chamber) are combined into one class, we obtained a 93.0% correct classification (�2 � 123.8, p < 0.0001,
cross-validation 93.0%; �2 � 131.1, p < 0.0001). Classification into the 4 classes reached a 90.0% correct
classification (�2 � 205.4, p < 0.0001, cross-validation 82.2%; �2 � 165.9, p < 0.0001). (E-mail:
hunzikerp@uhbs.ch) © 2006 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Motivation
The automatic identification of image content in

medical images is an important preprocessing step in
computer-assisted diagnosis, content-based image re-
trieval and picture archival systems. Most database sys-
tems used in clinical environments today request a tex-
tural query, which implies that images are manually
classified. This task is tedious, error prone and often not
suitable for legacy images. For high-quality chest radio-
graphs, an algorithm capable of classifying radiographs
into frontal and lateral views has been described (Leh-
mann et al. 2003) and there is ongoing work in computed
tomography and magnetic resonance imaging (Glatard et
al. 2004). The classification of ultrasound (US) images is
particularly difficult, because US images have high
speckle-noise content, show nonconstant intensities even
for comparable structures and typically have discontin-
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uous structural boundaries, setting US data apart from
other image modalities used in medicine.

Echocardiography is a typical application of US
imaging and is the most frequently used tool in clinical
practice for the evaluation of human heart morphology
and function. During the examination, still images and
image loops are recorded from several transducer loca-
tions on the chest, leading to characteristic views that
show the same organ from different but distinct view-
points. Figure 1 shows representative examples of four
standard views (apical four chamber- and two chamber
views, parasternal long axis and short axis views). In this
paper, we present an algorithm capable of an unsuper-
vised landmark-free classification of such images into
their respective views.

Approach
Simple template matching is difficult to apply for

echocardiographic image classification. Differences in
heart size, shape and image intensities, combined with a
multitude of disease processes (each characterized by
alteration of different features of heart anatomy) would

require a huge template library and would render com-
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putational cost prohibitive. We therefore chose an adap-
tive approach that uses multiscale elastic registration to
match the unknown sample image onto known templates.
This computer vision approach allows the identification
of images by the use of only one or very few templates
per class.

By matching a sample image against the template
library, we obtain for each sample image a deformation
map and warped sample images corresponding to each of
the templates. Both deformation energy and the similar-
ity of the warped and the reference images can then be
used to classify the sample image. The smaller the de-
formation energy needed for optimal matching (calcu-
lated from the deformation map) and the more similar the
resulting image (difference between template and
warped sample), the higher is the probability that the
sample image and the template image belong to the same
class. Figure 2 gives an overview of the classification
process.

To achieve this, a multiscale approach for both the
images and the displacement map was chosen; this cir-

Fig. 1. Typical representations of the four view classes (p
two chamber views (A4 and A2) are recorded from the h
short axis views (LAX and SAX) are recorded from a pos

Fig. 2. Graphical representation of the registration algo
pyramid. Scaled images are fed into the optimization l
decrease. Once the optimum on this level is reached, t
resolving images or displacement
cumvents the problem of local minima during registra-
tion and reduces computational cost for the optimization
process. A gradient descent optimizer was used for reg-
istration. To ensure a sufficient degree of spatial coher-
ence, which is implied by the biophysics of the heart, the
allowed deformation was limited to that fitting into a
continuous B-spline–based model.

The use of splines throughout all aspects of the
algorithm, namely the model, scaling, warping and in-
terpolation, has several advantages, including their good
approximation properties, the easy and fast transforma-
tion from the discrete pixel-domain to the continuous
spline domain that allows spline interpolation, warping
and multidimensional scaling using standard filtering
techniques.

Models using cubic splines are physically plausible
(Ahlberg et al. 1967) and can represent all affine trans-
formations. Moreover, splines are scaleable in the sense
that any coarse level deformation can be represented at a
finer scale without loss of information, given an integer
ratio between scales. An excellent overview on the sub-
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ject of splines in medical imaging can be found online at
http://bigwww.epfl.ch/publications/unser0002.html.

METHODS

Registration Algorithm
We used a multidimensional, multiscale, intensity-

based image registration algorithm based on parametric
spline models to describe both the image and the defor-
mation map. Working in the spline domain offers con-
tinuous data and deformation models and is attractive
because of the availability of fast algorithms and analyt-
ically defined partial derivatives and integrals.

The input images are given as two two-dimensional
(2-D) discrete signals, the template image fTj[i] and the
sample image fS[i] to be classified. The index is i�I��2,
where I is a 2-D discrete interval representing the set of
all pixel coordinates in the image. The images were
transferred into continuous spline representations using a
third-order direct B-spline transform filter as described in
(Unser et al. 1993a, 1993b).

fTj�i� ) fTj�i� fS�i� ) fS�i� (1)

The local deformation u was described as a continuous
B-spline model of displacement vectors

u�i� � �ux�i�
uy�i�� (2)

each built from a lower number of coefficients (coarser
resolution) at each pyramid level compared with the
image data. This implicit spatial constraint enforces
smoothness of the solution in space, solves the problem
of under-determination and helps to reduce the impact of
noise.

The deformation u transforms the sample image
fS(i) into an image g that is to become as similar as
possible to the template image fTj(i) during the optimi-
zation process.

i � �ix, iy� g�i� � fS�ix � ux, iy � uy,� � fTj�i� (3)

g(i) � fTj(i)corresponds to the difference in intensity and
eqn (3) can therefore be considered to be an optimization
problem, where the mean absolute deviation (MAD) (eqn
(4)) of the two images is minimized

MAD �
1

�I��
i�I

�g�i� � fTj�i��. (4)

We used the MAD and not the mean-squared error to
render our system less sensitive to the shot-noise typi-
cally found in US images.

During the optimization process driven by a gradi-

ent descent algorithm (Press et al. 2002) along the local
intensity gradients, fS was progressively warped using
the deformation models ux and uy. The deformation
model was in turn incrementally updated according to
the local (smoothed) intensity gradients in g. Optimiza-
tion on each level was terminated as soon as MAD
increased or when two successive optimization loops did
not decrease the MAD by a prespecified level (we used
10–3 gray-levels per pixel).

The algorithm is a variation of the elastic registra-
tion procedure proposed by several groups of researchers
(Kybic and Unser 2003; Mattes et al. 2003; Musse et al.
2004).

Multiresolution Pyramids
We worked with a multiscale pyramid, to allow

large displacements without violating the Nyquist theo-
rem, to prevent the algorithm from being trapped in local
minima and to speed up computation by working on
smaller datasets. Down- and up-sampling of images and
deformation maps in pyramids was done using fast least-
square spline approximation using the digital filtering
approach described in (Unser et al. 1993a, 1993b). The
down-sampling filter decimates each axis by a factor of
two, leading to a data reduction of 1:22 per pyramid
level.

Image Warping
Cubic B-spline interpolation of the sample images

according to the calculated deformation map was done
progressively to warp the sample image until “best fit”
was achieved. This type of interpolation minimizes loss
as a result of resampling (Unser et al. 1993a, 1993b).

Classification
Each sample image thus yields one elastically reg-

istered/warped image for each template. Classification
was done using linear discriminant analysis, whereby the
classifier was constructed by an optimal combination of
(a) on a measure of similarity, and (b) a measure of the
effort needed for elastic registration. As measure of
similarity, the resulting MAD (eqn (4)) after image reg-
istration was used. As measure of effort needed for
elastic registration, we used a linear combination of
parameters that were calculated from the resulting dis-
placement map: they were displacement, strain and vari-
ation of strain.

The first parameter is the displacement for optimal
registration. To compensate for zero order movement as
a result of simple shifting, the mean overall displacement
is subtracted.

umax � maxi�I�u�i� � �u�

�u �
1

ux�i�,
1

uy�i�
T

. (5)
	�I��
i�I

�I��
i�I
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The other two parameters are based on the variation of
the displacement vectors denoting the amount of strain
needed to make the images match. They are calculated
from the partial derivatives of the deformation model u
The amount of strain (eqn (6)) s in u

smax � maxi�I�s�i�� s � 	�u
�x

,
�u
�y
T

(6)

and the standard deviation �s of s(i) (eqn (7))

�s �
1

�I��
i�1

�s�i� � �s�

�s �	 1

�I��
i�I

sx�i�,
1

�I��
i�I

sy�i� 
.

(7)

The rationale behind these parameters is that we expect
the need of a small displacement (eqn (5)), minimal
deformation or strain (eqn (6)) of maximal homogeneity
and smoothness (eqn (7)) to match two images of the
same class.

Actual classification was done by linear discrimi-
nant analysis. The three canonical functions and their
respective eigen values were determined by canonical
correlation analysis. To eliminate possible overfitting of
the strategy, which could result in apparently perfect
fitting of the training data at the expense of worse fitting
of new samples, cross-validation using a “leave-one-out”
strategy was done; the sample to classify was not used
for constructing the classifier function.

Table 1 shows an overview of the algorithm using
pseudo-code, whereas Fig. 2 gives graphical overview of
the algorithm.

Templates
We found that templates with high echo quality, in

Table 1. Pseudo code of the algorithm.

BEGIN
NormalizeGrayscale;
CreatePyramid(Sample0);
CreatePyramid(Model);
FOR all templates DO

Sample: � Sample0;
CreatePyramid(Template);
FOR level: � coarse TO fine DO

WHILE Difference(Sample, Template) � threshold DO
Gradient: � FindGradient(Sample,Template);
Model: � UpdateModel(Model, Gradient);
Sample: � WarpImage(Sample0, Model);

END;
END;
Parameters[template]: � CalcParameters(Difference, Model)

END;
View: � LinearDiscriminantAnalysis(Parameters);

END;
particular, with highly visible ventricular walls, per-
formed best during classification because this increases
the probability for two correlating image areas to over-
lap. Templates were defined by expert designation of
“prototypical” images.

Image Preprocessing
To achieve optimal classification of the clinical

image set, where acquisition parameters are typically
chosen by the subjective preferences of the echocardiog-
rapher, preprocessing of the images to achieve a similar
magnification and intensity distribution was important.
We utilized the information on physical dimensions and
size stored in digital US images to adjust the templates to
match the size calibration of each given sample image
before starting registration. Then, image intensities were
normalized both locally and globally. Local normaliza-
tion was done by equalization of local mean and variance
within an image (eqn (8)) using a sliding window tech-
nique (window size 20% and 40% of the image width)

n�i� �
f�i� � �f �i�

�f �i� . (8)

Global normalization was achieved by equalizing the
cumulated histogram of the locally normalized image to
the error function (erf) as described in Bosch et al.
(2002).

Masks were created for the template and the test
image and were combined by logical AND to build a
single mask that removes all but the area containing
image data in both images. Electrocardiographic signal
curves sometimes overlaid on nonmasked image parts
were removed by interpolation.

Patients
The 90 echocardiographs used to test and validate

the algorithm were consecutive nonselected image ac-
quisitions recorded by different sonographers during
daily clinical work in a cardiology outpatient clinic using
a Hewlett-Packard Sonos 5500 US device. None of the
patients had congenital heart defects. The mean age was
48 � 12 years. The sole quality-criterion for the images
to be included was the fact that an experienced cardiol-
ogist was able to classify the image into one of the four
classes used

RESULTS

Elastic Registration
Our algorithm uses a progressively finer displace-

ment map to adapt the template to the sample image
(multiscale approach) compared with other algorithms
that start with a fine displacement map in the first place
(single scale approach). In spite of similar result-images,

multiscale registration prevents trapping in local minima
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and therefore results in a coherent displacement map,
whereas single scale registration results in a chaotic
deformation map (Fig. 3).

Optimization by increasing the resolution in the
deformation map during the early iteration steps before
the image resolution was increased was found to improve
both the accuracy and the resulting image quality.

Figure 4 shows that the most significant part of the
displacement vectors can be calculated on very low res-
olutions. A later increase in image resolution will lead to
a relatively small but significant improvement in the
quality of the final image.

Classification
Classification results of the 90 echocardiographic

Fig. 3. Elastic registration using a single vs. a multiresolution
approach. The image to be classified (a) and the template image
(b) are registered. When multiscale registration is used, a good
fit (a2) and a coherent motion map (b2) are achieved. Single-
scale registration on the contrary leads to a chaotic, incoherent
motion map (b1) and a bad fit (a1). The vectors in (b1) were

multiplied by 10 to improve visualization.
images to four standard echocardiographic view tem-
plates (parasternal short-axis, parasternal long-axis, api-
cal four-chamber and apical two-chamber views) are
given in Table 2. Using MAD, the largest displacement
of u, the largest strain and its standard deviation, we were
able to classify 90.0% of the images to one of four
classes (�2 � 205.4, p � 0.0001).

To verify this result, we used a “leave-one-out”
strategy and classified each of the 90 images using a
system trained by the remaining 89 samples only. This
cross-validation yielded an 82.2% correct classification
(�2 � 165.9, p � 0.0001), indicating robust classification
capabilities to new samples not in the training set.

When the two of the classes that are visually very
similar (four-chamber and two-chamber views) where
combined into one class, this yielded a 93% correct
classification for both the original (�2 � 123.8, p �
0.0001) and the cross-validated (�2 � 131.1, p � 0.0001)
classification strategies. These results are presented in
Table 3.

Using MAD only as a classification criterion led to
only 74.4% correctly classified images, and “leave-one-
out” cross-validation then yielded 72.2% (�2 � 48.8, p �
0.0001) correct classification.

Speed
The time needed to register an image elastically

varies as a function of the initial similarity of the images.
On an Intel Pentium 4 2.8-GHz standard personal com-
puter with 1 GB RAM running on Microsoft Windows
XP, median classification duration was 3.4 s (interquar-
tile width 2.4 s to 4.5 s) for an image size of 720 � 512
pixels.

DISCUSSION

US images with their high speckle-noise content,
nonconstant intensities and discontinuous boundaries
pose particular difficulties for image processing algo-
rithms. Multiscale elastic registration using continuous
spline models of the image and the deformation is here
shown to achieve fast and accurate unsupervised classi-
fication of unselected echocardiographic images ac-
quired during routine clinical examinations.

Several aspects of the presented algorithm deserve to
be mentioned. We chose a multiresolution approach for
both the images and the displacement maps. This approach
has several advantages (Sühling et al. 2004): multiresolu-
tion in the deformation map improves robustness because it
reduces sensitivity of the algorithm to be trapped in local
minima. In addition to this, the smoothness implicit in a
multiresolution model enforces coherent deformation in
adjacent image areas that are required by the biophysics of
tissue; thus, the severe noise problem inherent in US images

might be overcome. In a typical classification, image size
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was reduced by (�28:1) and the displacement map by
(�200:1) for the initial step.

Because optical flow is mathematically underdeter-
mined by a factor of two, we used a displacement map of
one-quarter of the image size, thereby reducing the sys-
tem by four degrees of freedom and constraining the
algorithm to a smooth solution.

Fig. 4. Improvement of fit during optimization The graph
arrows denote a step on the deformation map pyramid (
the image pyramid (+) resulting in a higher image resolu

each of the optimization steps, as mark

Table 2. Classification results using four template classes.
Bold numbers of the diagonal denote the correctly classified

samples, 90% for the upper part entitled “Original” and
82.2% for the bottom part entitled “Cross validated”

Predicted image type

Class A4 A2 LAX SAX Total

Original A4 21 0 2 1 24
A2 3 21 0 1 25
LAX 0 0 24 0 24
SAX 2 0 0 15 17

Cross-validated A4 20 1 2 1 24
A2 6 17 0 2 25
LAX 0 0 24 0 24
SAX 4 0 0 13 17
(Abbreviations: A4: apical four chamber view; A2: apical two cham-
ber view; LAX: long axis view; SAX: short axis view).
Figure 3 shows the result of a single scale (image
a1, map b1) and multiscale (image a2, map b2) registra-
tion. Although a single scale approach leads to rather
incoherent rearrangement of pixels, a multiscale ap-
proach overcomes the problems caused by the nature of
US images and leads to an excellent match.

Going down the resolution pyramid to the finest
level yielded near-perfect matching at the expense of
very complex deformation maps. However, for image
classification purposes, fewer scales can be used when

s a typical course of the MAD during optimization. The
sulting in a higher deformation resolution and a step in
he images (a) to (e) denote the intermediate images after
heir respective positions on the graph.

Table 3. Classification results using three template classes

Predicted image type

Class A LAX SAX Total

Original A 45 2 2 49
LAX 0 24 0 24
SAX 2 0 15 17

Cross-validated A 44 2 3 49
LAX 0 24 0 24
SAX 4 0 13 17

Bold numbers of the diagonal denote the correctly classified samples
show
2) re
tion. T
(93% in both cases). (Abbreviations: A: apical view (includes four- and
two-chamber views); LAX: long axis view; SAX: short axis view).
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overall shape is deemed to be more important than per-
fect fitting of minute texture details in nonidentical
hearts. The high-resolution fitting approach renders the
classification algorithm more dependent on the deforma-
tion information, whereas in a coarser-scale approach,
the classification algorithm relies more on the final fitting
information. We found that stopping the algorithm at a
(linear) resolution of 1:8 for the image data yields clas-
sification results that were not inferior to an approach
going down to the ultimate resolution, but reduced the
number of iterations from 100 to 200 in the fine resolu-
tion case to 10 to 25.

As to speed, the current version, although not using
optimized libraries, allows reliable classification of more
than 1000 images per hour on a standard desktop com-
puter and appears thus to be suitable for practical use in
a hospital environment, even in the absence of high-
speed computing facilities. Based on experiments with
some optimized libraries, we expect the potential of a
five- to 10-fold speed-up of the algorithm on the same
hardware.

In spite of the complex nature of US images and the
low image quality of the unselected images, we were
able to classify 90% of the images. “Leave-one-out”
cross-validation yielded an 82.2% correct classification.

Fig. 5. Classification of one sample into one of four t
displacement maps resulting from the algorithm; (d) te
difference-images of the warped templates and the sam
registers four templates with a sample image resulting i
sample image into an image that is a similar as possible
to match a sample to a nonfitting template. The differe
template images yields four error images. The MAD of

the displacement map (see text) are then used in li
This result improved significantly (93% for both) when
the two visually very similar classes (apical four-cham-
ber and apical two-chamber views) were combined into
one class (“apical views”). Figure 1 demonstrates clearly
that large image parts of these two classes look very
similar. In some cases, their discrimination is difficult
even for specialists. Ongoing work shows promising
results when images classified as being ”apical view”
were separated in a second step by using only the lower
part of the image in a second classification step.

Limitations
A limitation of our algorithm is the need for tem-

plates that are specific for each of the echocardiographic
views to classify. Although these views are clearly stan-
dardized, they still vary significantly, depending on the
anatomy of the patient and the skill of the operator. This
problem of “missing gold standard” could be overcome
by using several templates for each of the views to
classify or a system that dynamically adds new template
classes if a sample does not fit. Our ongoing work studies
the use of classification results for building better class-
templates in a “bootstrap” fashion.

We used gradient descent for an optimization
method, although more complex algorithms are available
for multidimensional optimization. Because the classifi-

es (a) Four templates; (b) the sample image; (c) four
images warped using the displacement maps; and (e)

age. * denotes correctly identified class. The algorithm
displacement maps. The maps can be used to warp the
of the templates. Note the large deformation necessary
AD) between the four warped sample images and the

fference images as well as the parameters derived from
iscriminant analysis to find the class membership.
emplat
mplate
ple im
n four
to each
nce (M
the di
cation results shown could be achieved by using approx-
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imately 10 to 25 iterations per sample and template, the
speed trade-off per iteration caused by more complex
multidimensional optimization algorithms for registra-
tion could cost as much computation time as is gained by
the reduction of necessary iterations. Interestingly, this
trade-off has been shown for the Marquard-Levenberg
algorithm in an approach studying affine registration of
multidimensional datasets in Kybic and Unser (2003),
where the authors confirmed that the strength of a refined
optimizer lies predominantly in the final high-resolution
steps in such multiresolution approaches.

Related Work
Lehmann et al. (2003) propose an algorithm to

classify chest radiographs into their respective views.
They reduce these images to 32 � 32 pixels, independent
of the original size, and tangent distance was then used
for their classification. This algorithm is not well suited
for echocardiographic images, mainly because some
echocardiographic views look similar in terms of bright-
ness distribution because echo images often do not have
large areas of similar brightness (as the lung-in-chest
images) and because in echocardiograms the bright but
variable lung tissue at the image borders would tend to
dominate such an algorithm.

In some face-recognition algorithms (Blanz and
Vetter 2003; Zhao et al. 2003), a well-studied field where
image classification is the goal as well, optimal position-
ing of a face before the actual classification task takes
place is an important preprocessing step. Elastic regis-
tration similar to the one we used can be used for this
purpose, although there are differences in the practical
problems posed in face recognition compared with US.
However, the success of algorithms based on multireso-
lution (Raducanu et al. 2001), elastic matching (Blanz
and Vetter 2003) and template libraries (Blanz and Vet-
ter 2003; Hallinan 1991) in face recognition certainly
underscore the usefulness of these ingredients in classi-

fication approaches in fields such as medical imaging.
CONCLUSION

We present a multiscale elastic registration algo-
rithm based on a continuous model of both images and
deformation maps and used it successfully in unsuper-
vised classification of non selected cardiac ultrasound
images acquired during daily clinical practice by means
of a template library. Figure 5

REFERENCES

Ahlberg JH, Nilson NE, Walsh JL. The theory of splines and their
applications. New York: Academic Press, 1967. pp. xi, 284.

Blanz V, Vetter T. Face recognition based on fitting a 3D morphable
model. IEEE Trans Pattern Anal Machine Intel 2003;25:1063–
1074.

Bosch JG, Mitchell SC, Lelieveldt BPF, Nijland F, Sonka M, Reiber
JHC. Automatic segmentation of echocardiographic sequences by
active appearance motion models. IEEE Trans Med Imag 2002;21:
1374–1383.

Glatard T, Montagnat J, Magnin I. Texture based medical image
indexing and retrieval: Application to cardiac imaging. Proceedings
of the 6th ACM SIGMM international workshop on Multimedia
information retrieval 2004;135–142.

Hallinan PW. Recognizing human eyes. G 1991; SPIE Proceedings
1570;214–226.

Kybic J, Unser M. Fast parametric elastic image registration. IEEE
Transactions on Image Processing 2003;12:1427–1442.

Lehmann TM, Güld O, Keysers D, Henning S, Kohnen M, Wein B.
Determining the view of chest radiographs. J Digital Imag 2003;
16:280–291.

Mattes D, Haynor D, Vesselle H, Lewellen T, Eubank W. PET-CT
image registration in the chest using free-form deformations. IEEE
Trans Med Imag 2003;22:120–128.

Musse O, Heitz F, Armspach JP. Fast deformable matching of 3D
images over multiscale nested subspaces. Application to atlas-
based MRI segmentation. Pattern Recogn 2004;36:1881–1899.

Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP. Minimiza-
tion or maximization of functions in numerical recipes in C. Cam-
bidge, MA: University Press, 2002.

Raducanu B, Grana M, Albizuri FX, d’Anjou A. Face localization
based on the morphological multiscale fingerprints. Pattern Recogn
Lett 2001;22:359–371.

Sühling M, Jansen C, Arigovindan M, et al. Multiscale motion map-
ping—A novel computer vision technique for quantitative, objec-
tive echocardiographic motion measurement independent of Dopp-
ler: First clinical description and validation. Circulation 2004;110:
3093–3099.
Zhao W, Chellappa R, Phillips J, Rosenfeld A. Face recognition: A
literature survey. ACM Comput Surv 2003;35:399–458.


	UNSUPERVISED IMAGE CLASSIFICATION OF MEDICAL ULTRASOUND DATA BY MULTIRESOLUTION ELASTIC REGISTRATION
	INTRODUCTION
	Motivation
	Approach

	METHODS
	Registration Algorithm
	Multiresolution Pyramids
	Image Warping
	Classification
	Templates
	Image Preprocessing
	Patients

	RESULTS
	Elastic Registration
	Classification
	Speed

	DISCUSSION
	Limitations
	Related Work

	CONCLUSION
	REFERENCES


