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1. Introduction.

Properness is a crucial ingredient in many aspects of the existence theory for nonlinear
equations. For instance, it is the properness of the compact perturbations of identity that
makes it possible to define the Leray-Schauder degree, and indeed properness pervades the
topological degree literature from the origins to the latest developments of the subject.
Proper maps are closed, and the properness assumption is essentially the only known one
that guarantees that a mapping has closed range, a key feature in the approach to existence
via “normal solvability”. Properness also plays a role in uniqueness questions, as testified
by the famous “properness criterion” ensuring that a local homeomorphism is globally
invertible.
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In problems arising from nonlinear PDEs over bounded domains, the routine proce-
dure to prove properness is to rely upon the compactness of various embeddings. When
the domain is unbounded, e.g. R, the compactness property vanishes, and establishing
properness becomes a much more serious challenge. No clearly delineated strategy has
yet emerged to tackle this issue, although the maximum principle, when available, has
been shown to provide an adequate tool in recent work by Jeanjean, Lucia and Stuart [9]
devoted to second order semilinear elliptic equations.

In this paper, we consider second order quasilinear elliptic operators
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viewed as mappings from W2P(R¥) into LP(RY) for some N < p < oo, and we investigate
conditions for the properness of F on the closed bounded subsets of W2P(RY). Of course,
these conditions also ensure that F' does map into LP(RY), but they do not place any a
priori growth limitation with respect to u or Vu in (1.1). The idea behind our work is that
properness on closed bounded subsets ought to be related to the Fredholm properties of
the mapping F. Indeed, if X and Y are Banach spaces and &4 (X,Y) C £L(X,Y) denotes
the subset of operators with closed range and finite dimensional null-space, it is well-known
that L € ®(X,Y) if and only if L is proper on the closed bounded subsets of X (Yood’s
criterion). Thus, in the linear case, “proper on closed bounded subsets” is the same as
“semi-Fredholm with index v € ZU {—o0}”.

Another compelling reason to study the Fredholm and properness properties of F' simul-
taneously is that both are involved in recent (and less recent) degree theories for Fredholm
mappings. Such theories are now as complete as Leray-Schauder’s, at least in the index
0 case (see [5], [13] and the references therein). They are useful in the investigation of
various existence or bifurcation questions in problems over unbounded domains, where the
Leray-Schauder theory does not apply. Yet, we are not aware of any prior work exploring
the Fredholm or properness properties of the operator F' in (1.1) in a broad setting. In
Corollaries 6.2 and 7.1, we formulate sets of conditions which are necessary and sufficient
to ensure that (1.1) defines an operator satisfying all the requirements for the use of the

degree theory in [13].



Our contribution splits into four different but complementary main results, which for-
tunately are also very easy to describe. First, we show under general assumptions about
the coefficients aqg and b that F in (1.1) is semi-Fredholm of index v € Z U {—oc}, i.e.
that DF(u) € & (W2%P(RY), LP(RY)) for every u € W%P(RY), if and only if this is true
for one value u® (Theorem 3.1). The local constancy of the index then implies that the
index of DF(u) is independent of u. This essentially settles the Fredholm question for F
in the simplest possible way. The proof relies heavily upon the concept of a bounded linear
operator being compact modulo another bounded linear operator (Definition 3.1), which
differs markedly from other somewhat related ideas in the literature (relative compactness,
strictly singular operators, etc...).

Our second main result, which for its most part follows from the first one plus a subtle
feature of Nemytskii operators (Theorem 2.5; the subtlety is explained in the subsequent
Remark 2.4), reduces the properness property to a seemingly weaker one: Clearly, F is
proper on the closed bounded subsets of W%P?(R¥) if and only if every bounded sequence
(un) from W2P(RY) such that (F(u,)) converges in L?(RY) has a subsequence converging
in W2P(RY). We prove in Theorem 4.1 that it suffices to find a subsequence converging
in the weaker C'! sense, provided that DF(u%) € & (W2?(RY), L?(RY)) for some, and
hence every, u® € W2P(R¥). A convenient formulation based on the concept of “sequence
vanishing uniformly at infinity” in the C'! sense, introduced in Definition 4.1, is given in
Corollary 4.1.

The usefulness of the criteria in Theorem 4.1 or Corollary 4.1 is not self-evident: To
find a subsequence converging in the C'! sense is indeed weaker in principle, but since the
embedding W2P(RY) — CY(RY) is not compact, there is no obvious reason why such a
subsequence should exist. This is where our third result comes into play, showing that it is
far from being unusual for bounded sequences of W2?(R) to possess subsequences that
are convergent in C'! norm (for the purpose of this casual discussion, we deliberately ignore
the obvious fact that C*(RY) is not a normed space since this difficulty can be disposed of
in a straightforward way): In the “shifted subsequence lemma” (Theorem 4.3), we prove
that every sequence (u,) in W2P(RY)(N < p < oo) such that u, — 0 in W2%P(RY) has

the following property: Either it tends to 0 in C'' norm, or it contains a subsequence (uy, )



which, after suitable shifts of the variable (each shift depending upon k), produces a new
sequence (i, ) having a nonzero weak limit in W2?(R¥). Hence, u, — 0 in the C! sense
if and only if no such subsequence exists. Our statement of the shifted subsequence lemma
is different, but equivalent, to the formulation given here. One salient feature of the shifted
subsequence lemma that sets it apart from other results in a similar spirit (see e.g. Willem
[20] and the original work by P.L. Lions [12]) is that it shows that the shift can mostly be

controlled, i.e. chosen to leave invariant any given lattice in RY.

The properness criteria in Theorem 4.1 and Corollary 4.1 require the existence of u® €
W2P(RY) such that DF(u®) € & (W2P(RY), LP(RY)). In our fourth and last main result
(Corollary 5.1) we prove that this condition is necessary for the properness of F' on the
closed bounded subsets of W2?(R¥). The proof hinges upon the existence of a stronger
form of Yood’s criterion for linear elliptic differential operators (Theorem 5.1), which is of

independent interest and complements the results of Section 3.

As an application of all these results, we prove in Theorem 6.1 of Section 6 that sur-
prisingly simple necessary and sufficient criteria for the properness of F' on the closed
bounded subsets of W2?(RY) can be given when ans,1 < a,3 < N and b in (1.1) are
N-periodic in z (in particular, z-independent) and b(-,0) = 0: It is so if and only if
DF(u%) € &, (W2P(RY), LP(RY)) for some u® € W2P(RY) and the equation F(u) = 0
possesses no nonzero solution. Alternatively, F' is proper on the closed bounded subsets
of RY if and only if it is proper “at 0”: Every sequence (u,) from W?2P(R¥) such that
up, — 0 in W2P(RY) and F(u,) — F(0) in LP(RY) contains a convergent subsequence.
These results have generalizations when aq.3,1 < o, 8 < N, and b are “asymptotically”
N-periodic in z (in particular, asymptotically z-independent) and it is this more general
case that we actually investigate. It is interesting that in the setting of Section 6, “semi-
Fredholm of index v € Z U {—oc}” implies “Fredholm of index 0”7 (i.e. v = 0) under
additional assumptions frequently met in concrete problems (Theorem 6.2).

More general quasilinear operators are considered in Section 7, the coefficients of which
no longer have to satisfy any periodicity condition, even asymptotically. In Theorem 7.1, we
prove a natural variant of the properness criteria given in Theorem 6.1 by assuming only

that the coefficients are “well-behaved” at infinity in each direction through the origin.



When N > 2, this hypothesis is fulfilled by scores of coefficients that fail to have the
asymptotic N-periodicity property. This clarifies the connection between the behavior of
the coefficients at infinity and the properness properties of the corresponding quasilinear
elliptic operator. An even more general result that encompasses both Theorems 6.1 and
7.1 is discussed in Remark 7.1.

The arguments of this paper do not rely upon special features of scalar second order
operators, and they could be extended to higher order problems or systems modulo ap-
propriate but still general conditions. In fact, some ideas from Sections 3, 4 and 5 have
successfully been used in Galdi and Rabier [6] to study bifurcation phenomena in the
Navier-Stokes problem on planar exterior domains. To avoid further tedious technicalities,
we have not attempted to formulate the weakest possible assumptions about the functions
aqp and bin (1.1): Our hypotheses make it unnecessary to discuss measurability questions,
yet are general enough to be relevant in many concrete applications.

Due to space limitation, such applications are discussed elsewhere. The sufficiency of
the conditions given here is exploited in [16] to obtain new global bifurcation theorems, and
in [17] to resolve existence questions for the equation F(u) = f with general f € L?(R™Y).
The “necessity” part can be used in conjunction with abstract results in [14] to prove that
the lack of properness of the operator F on the closed bounded subsets of W2P(RY) results

in F~1(f) being either empty or noncompact for almost every f € LP(RY), (see [15]).

2. Continuity and differentiability of some Nemytskii operators.
Let f(= f(z,€)) : RY x (R x RY) — R be a function. Whenever we need to display the
components of x and &, we shall always write = (21,--- ,2n) and £ = (&0, -+ ,én). By

viewing RY x (R x RY) as a bundle over R, f can be identified with the bundle map
(z,6) € RY x (R x RY) — (z, f(z,€)) € RY x R.

The terminology “bundle map” is convenient to refer to properties of f in which the “base”

variable  and the “fiber” variable £ play markedly different roles, as in

Definition 2.1. We shall say that f is an equicontinuous C° bundle map if f is continuous

and the collection (f(z,)),crn is equicontinuous at every point of R x RY. If k > 0 is an



integer, we shall say that f is an equicontinuous C’g bundle map if the partial derivatives

Dgf, || < k, exist and are equicontinuous C° bundle maps.

Lemma 2.1. Let f be an equicontinuous C° bundle map. Then:

(i) The collection (f(z,-)),er~y Is uniformly equicontinuous on the compact subsets of
R x RY,

(ii) If w C R¥ is an open subset and f(-,0) € L>(w), the collection (f(z,"))recw is equi-

bounded on the compact subsets of R x RY.

Proof. The proof of part (i) follows by a straightforward modification of the classical proof
that continuous functions are uniformly continuous on compact subsets. For the proof of
part (ii), it suffices to show that the result is true when the compact subset K is the closed
ball with center 0 and radius R > 0. By part (i), there is 6 > 0 and a finite covering U of
K by open balls with radius § such that |f(z,&) — f(z,n)|] < 1 for every z € RY and every
€,n € B whenever B is a ball from the covering U.

Let p > 0 be a Lebesgue number for the covering ¢. Given ¢ € K, the subdivision of
the ray through 0 and ¢ into [R/p] + 1 intervals produces intervals with length less than p.
Therefore, |f(x,&) — f(z,0)] < [R/p]+ 1, so that |f(z,€)| < [R/p]+ 1+ |f(x,0)] for every
(z,€) € RY x K. The conclusion follows from the assumption that f(-,0) € L*®(w). O

Naturally, the condition f(-,0) € L>°(w) in Lemma 2.1 (ii) may be replaced by f(-,£%) €
L% (w) for any €% € R x RY. Also, it is obvious that the sum and product of two equicon-

tinuous Cg bundle maps are equicontinuous C’g bundle maps.

Remark 2.1: If f is of class C* and f(x,€) is N-periodic in z, with period T =
(Ty,--+ ,Tn), for every £ € R x RY, it follows from the uniform continuity of Dgf on
[0,T1] x -++ x [0,Tn] x K for every compact subset K of R x RY and |x| < k, that f is an
equicontinuous C’g bundle map. Other (nonperiodic) examples are easily found. O
Given an equicontinuous C’éf bundle map f : RY x (R x RY) — R,k = 0, or 1, we
shall be interested in various continuity and differentiablity properties of the Nemytskii

operator u — f(-,u, Vu). Let w C RY be an open subset (bounded or unbounded) and
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let C'(@) denote the subspace of C°(@) N C'(w) of those (real-valued) functions v such

that Vv extends as a continuous function on @. We introduce the space

(2.1) C(}(E) ={v € Cl(w) : | l|im lv(z)| = | l|im |Vo(z)| =0},
rew rEw

where “d” stands fro “decay”, so that

(2.2) Cj(@) = C*(w) if w is bounded.
The space C}(w) is a Banach space for the norm

(2.3) Ivlloy@) = maxjv()] + max|Vo(z)]

Of course, C'}(w) — W' °(w) and the norm (2.3) is just the norm induced by W (w).
Throughout the paper, D(w) denotes the space of smooth real-valued functions with

support in some compact subset of w.

Theorem 2.1. Let f : RY x (R x RY) — R be an equicontinuous C° bundle map, and
let w C RY be an open subset (bounded or unbounded). Suppose that f(-,0) € L>(w).
Then, the Nemytskii operator u — f(-,u, Vu) has the following properties.

(i) It is well defined and continuous from C}(w) into L*°(w) and maps bounded subsets
onto bounded subsets.

(ii) If Ow is Lipschitz continuous (possibly ()) and N < p < oo, it is well defined and
continuous from W?P?(w) into L°°(w) and maps bounded subsets onto bounded subsets.
(iii) If w is bounded with Ow Lipschitz continuous and N < p < oo, it is completely
continuous, i.e. transforms weakly convergent sequences into strongly convergent ones,
from W?P(w) into L*>(w) (hence also into L1(w),1 < g < o).

(iv) If Ow is Lipschitz continuous (possibly ) and N < p < oo, the “multiplication”
(u,v) € W?P(w) x LP(w) — f(-,u, Vu)v € LP(w) is well defined and weakly sequentially
continuous (i.e. sequentially continuous when W??P(w) and LP(w) are equipped with their

weak topologies).



Proof. (i) If u € C}(®), the function # € @ > f(z,u(x), Vu(z)) is continuous, hence
measurable. Also, there is a compact subset K C R x RY such that (u(z), Vu(z)) € K for
every ¢ € w. By Lemma 2.1 (ii) there is a constant Mg > 0 such that |f(z, u(z), Vu(z))| <
My for every x € w. This shows that f(-,u,Vu) € L*®(w) and hence the Nemytskii
operator is well defined. If now u,,u € C}(w) and u,, — u in C}(©), then there is
a compact subset K C R x RY containing (u(z), Vu(z)) and (un(z), Vun(z)) for every
¢ € W and every n € N. Since |(up(z), Vun(z)) — (u(z), Vu(x))| can be made arbitrarily
small uniformly in @ € © for n large enough, it follows from Lemma 2.1 (i) that given
€ > 0, we have |f(z,un(2), Vup(z)) — f(z,u(z), Vu(z))| < € for every x € &. This proves
the desired continuity property. Lastly, if B C C'}(©) is a bounded subset, then there is
a compact subset K C R x RY such that (u(z),Vu(z)) € K for every x € & and every
u € B, whence the boundedness of the set {f(-,u,Vu) : v € B} in L>®(w) follows once
again from Lemma 2.1 (ii).

(ii) This is due to (i) and the continuity of the embedding W?*?(w) — Cj(w). Since
this embedding is compact when w is bounded (see (2.2)), this also proves part (iii).

(iv) Let u, € W?P(w) and v, € LP(w) be sequences such that u, — u in W??(w)
and v, — v in LP(w). From part (ii), the sequence (f(-,un, Vuy)) is bounded in L*>®(w),
and hence the sequence (f(-, un, Vuy,)vy,) is bounded in LP(w). As a result, there is a
subsequence (f(, Un, , Vin, )vn, ) and there is w € LP(w) such that f(-,upn,, Vg, )vn, —
w in LP(w). Let ' C w be any open ball. By part (iii) we have f(-,un, V) —
fCou, V), , in L®(w'), whence [f(-,un, Vuy)va]| , — [f(-,u, Vu)v], , in LP(w’). This
implies w|_, = [f(-,u, Vu)v]|_,, hence w = f(-,u, Vu)v since the ball w’ is arbitrary. Thus,
every subsequence of the bounded sequence (f(-, upn, Vv, )u,) that is weakly convergent in
L?(w) has weak limit f(-,u, Vu)v. This yields f(-, un, Vuy)v, = f(-,u, Vu)v in LP(w) by

the usual argument. O

When w is bounded (and Ow is Lipschitz continuous) and N < p < oo, Theorem 2.1
(iii) implies that the Nemytskii operator v — f(-,u, Vu) is completely continuous from
W?2P(w) into LP(w), but the hypotheses made in Theorem 2.1 do not even ensure that
f(-,u,Vu) € LP(w) for u € W?P(w) when w is unbounded, even if f(-,0) = 0. This issue
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is clarified in our next theorem.

Theorem 2.2. Let f: RY x (R x RY) — R have the form

(2.4 Fle.6) = o)+ £ gl 08

with g;(-,0) € L>(R") and g; equicontinuous C° bundle map, 0 <i < N. Let N < p < ¢
and suppose that fo € LP(RY). In particular, it is so if f is a C’é equicontinuous bundle
map with f(-,0) € LP(RY) and 0, f(-,0) € L=°(R"™),0 < i < N. Then, the Nemytskii
operator u — f(-,u, Vu) has the following properties:

(i) It is well defined and continuous from WP (R¥) into L?(RY) and maps bounded subsets
onto bounded subsets.

(i) It is weakly sequentially continuous from W2P(RY) into LP(RY) (i.e. sequentially
continuous when W2P?(RY) and L?(RY) are equipped with their weak topologies).

Proof. To prove the “in particular” part, notice that for z € RY and ¢ € R x RY we
have f(z,¢) = f(z,0) + igogi(x,ﬁ)fi, where g;(z,&) = fol Og, f(z,t€)dt,0 < ¢ < N. It is
straightforward to check with Lemma 2.1 (i) that g; is an equicontinuous C° bundle map.
Furthermore, ¢;(-,0) = 9, f(-,0) € L>*(R¥Y),0 <: < N.

(i) From Theorem 2.1 (ii), the operators u € W2P?(RY) — g;(-,u, Vu) € L®(RY), 0<
1 < N, are continuous and map bounded subsets onto bounded subsets. As a result, the
operator

N
u € W27P(RN) — 90('7 u, Vu)u + <glgi('7 u, vu)alu € LP(RN)

(where of course O;u := 0y, u) is continuous and maps bounded subsets onto bounded
subsets. By (2.4) this operator is just u — f(-,u, Vu) — fo, and the conclusion follows
from the assumption fo € LP(RY).

(ii) Let u, € W2P(RY) be a sequence such that u, — wu in W2P(R¥Y). By part
(i), the sequence (f(-,un,Vuy,)) is bounded in LP(R?) and hence there is a subsequence
(f(-,tn,, Vuy,)) and there is w € LP(RY) such that f(-,un,, Vuy,,) — w in LP(RY). Let
w C RY be an open ball. Since w is bounded and f — fy is continuous and vanishes when

§ = 0, Theorem 2.1 (iii) applies. Accordingly, we have f(:,un, Vun), — f(-,u,Vu),

9



in LP(w). This implies w|, = f(-,u,Vu)|, , whence w = f(-,u, Vu) since the ball w is
arbitrary. Thus, the only weak cluster point of the sequence (f(-,un, Vu,)) in LP(RY) is
f(,u, Vu), so that f(-,un, Vu,) = f(-,u, Vu) in LP(RY). O

Remark 2.2: Theorem 2.2 remains valid, with the same proof, if RY is replaced by an
open subset w C RY with dw Lipschitz continuous. [

A more subtle continuity property will be proved in Theorem 2.4. Before that, we turn
to differentiability questions. The derivative of the Nemytskii operator f(-,u, Vu) must be
carefully distinguished from the derivative of the mapping f. For that reason, we shall use

the notation
(25) f(u) = f(? u, Vu)v

so that Df(u) will unambiguously refer to the derivative of the Nemytskii operator.

Theorem 2.3. Let f : RY x (R x RY) — R be an equicontinuous C’% bundle map. Let
N < p < oo and suppose that f(-,0) € L>®(RY) (resp. f(-,0) € LP(RY)) and that
O, f(-,0) € L®(RY),0 < i < N. Then, the Nemytskii operator f(u) := f(-,u,Vu) is of
class C1 from W2P(RY) into L>=°(RY) (resp. LP(RY)) with derivative given by

N
(2.6) Df(u)v := O, f(,u, Vu)v + ‘gla&f(-, u, Vu)div, Yv € WHP(RYN).

In particular, Df is bounded and f is uniformly continuous on the bounded subsets of

W2r(RN).

Proof. For breviety, we denote by T the operator T'v := 0, f(-, u, Vu)v—l—iglagi f u, Vu)o,v.
Note that T' € L(W2P(RYN), L>(RY)) and T € L(W?P(RY), LP(RY)). This follows from
Theorem 2.1 (ii) with O, f replacing f and, for the former relation, from the embedding
WhP(RN) — L°(RY). Next,

N
(2.7)  f(hu+v,V(utw)) — f(-,u,Vu) = Tv = kyo(-,v, Vo)v + ‘glku’i(.’ v, Vv)o;v

10



where, for 0 <¢ < N, k, ;(-,v, Vv) is the Nemytskii operator associated with

ky i(z, €)= /0 [0, flx,u(x) +t&o, Vu(a) + &) — O, f(-,u(x), Vu(z))]dt.

Since u € W2P(RY) — CI(RY), it is easily seen by Lemma 2.1 (i) that k, ; is an equicon-
tinuous C° bundle map. Since also k, ;(-,0) = 0 € L>(RY), it follows from Theorem 2.1
(ii) that v — Ky i(-,v, Vo) is continuous from W2P(RY) into L>°(RY). Thus, for every
e > 0, we have |kyi(-,v,Vv)|ocory < 6,0 < i < N, provided that [|v[|y , pv is small
enough. By (2.7), we obtain |f(u 4+ v) — f(u) — Tv|g oo gy < ce||v]|1 copy < Cellv||z, pr
and |f(u—+v) —f(u) —Tv|jo prv < cel|v|; prv < Cél|v]|2 pry, where ¢, C' > 0 are constants
independent of v € W%P(RY). Thus, if f(-,0) € L>®(RY) (resp. f(-,0) € LP(RY)) so
that f maps W2?(RY) into L*°(R®) by Theorem 2.1 (ii) (resp. into L?(R*Y) by Theorem
2.2 (i)) this shows that Df(u) = T. In both cases when f maps into L>(R”) or into
LP(RY), the continuity of Df follows from (2.6) and Theorem 2.1 (ii) with f replaced
by O¢ f,0 < ¢ < N. This also shows that Df is bounded on the bounded subsets of
W2P(RY), which in turn implies the uniform continuity of f on such subsets by the mean

value theorem. O

Remark 2.3: More generally, let & > 1 be an integer and let f in Theorem 2.3 be an
equicontinuous C’g bundle map such that f(-,0) € L=(RY) (resp. f(-,0) € L*(RY)) and
D'gf(-,()) € L(RY) for every & := (ko, - ,kn) € NV*! with 1 < |sk| < k. Then, the
Nemytskii operator f(u) := f(-,u, Vu) is of class C* from W2P(RY) into L>(RY) (resp.
LP(RM)) if N < p < oc. The most convenient way to see this is to use the so-called
“converse of Taylor’s theorem” (see e.g. [1, pp. 93 and 97-99]) and argue as in the proof of
the “omega lemma” ([1, p. 101]) with appropriate modifications. These modifications are
mostly suggested by the proof of Theorem 2.3 when k = 1, but the fact that W?(RY) is

a Banach algebra when p > N is also important when k£ > 2. O

Part of the argument needed in the proof of our next theorem is better couched in

abstract terms:
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Lemma 2.2. Let X,Y and Z be normed spaces with X — Y (continuous embedding)
and let £ : X — Z be uniformly continuous on the bounded subsets of X. Suppose that
there is a dense subset D C X such that whenever u € D and (u,) is a bounded sequence
from X with u, — u inY, we have f(u,) — f(u) in Z. Then, the restriction of f to the

bounded subsets of X remains continuous for the topology induced by Y.

Proof. It suffices to show that if B C X is any closed ball, then f|, is continuous for the
Y-topology. In what follows, we denote by B’ a fixed open ball in X with B C B’. Let

e > 0 be given. By the uniform continuity of f on B’, there is § > 0 such that
(2.8) {v,we B |lv—wl|lx <d} = [[f(v) - f(w)|[z < /3,

and it may be assumed with no loss of generality that § > 0 in (2.8) is such that B+3dB; C
B’ where B, is the unit ball of X.

Let u € B and let (u,) be a sequence from B such that v, — u in Y. Choose v € D
such that ||v — u||x < 4, so that v € B’ and v, := v — v + u,, € B’ for every n € N.
We have | [£(un) — £(u)]l7 < [[£(un) — F(vn)l]2 + F(en) — £l + [[£(0) — £(u)]] . Since
lln — vnllx = [|u —v||x < 4, it follows from (2.8) that ||f(u,) — f(v,)||z < €/3 for every
n € N and that ||f(u) — f(v)||z < €/3. Hence, ||f(un) — f(u)||z < ||f(vn) — f(v)||7 + 2¢/3.
Now, v, = v in Y and, since v € D, we know by hypothesis that f(v,) — f(v) in Z. Thus,
||1f(vn) — £(v)]|z < €/3, whence ||[f(u,) — f(u)||z < €, for n large enough. O

Theorem 2.4. Let f : RY x (R x RY) — R be an equicontinuous Cg bundle map. Let
N < p < oo and suppose that f(-,0) € LP(RY) and &, f(-,0) € LP(RY) N L=(RYM),0 <
i < N. Then, the restriction of the Nemytskii operator u — f(-,u,Vu) to the bounded
subsets of W2P(RY) is continuous into L?(R”) for the topology of C}(RY). (In other
words, if (uy,) is a bounded sequence from W2?(RY) and there is u € W2P(RY) such that
up, — u in CH(RYN), then f(-,un, Vun) = f(,u, Vu) in LP(RY).)

Proof. This will follow from Lemma 2.2 with X = W2P(RY),Y = C}(RY),Z = LP(RY)

and D = D(RY). Since we already know that f in (2.5) is uniformly continuous on the
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bounded subsets of W2?(RY) (Theorem 2.3), it suffices to show that if u € D(RY) and (u,,)
is a bounded sequence from W?P?(R™) such that u, — u in C}(RY), then f(u,) — f(u)
in LP(RY).

In the proof of Theorem 2.2, we have already established that f(v) = f(-,0) + go(v)v +
igl gi(v)d;v for every v € W2P(RY), where g;(v) := gi(-,v, Vv) and g; is given by g;(z, £) =
fol O, fx,t€)dt, 0 <1 < N. We also noticed that each mapping g; is an equicontinuous C°
bundle map. Hence, by Theorem 2.1 (i), g; : C}(RY) — L*°(R?Y) is continuous, 0 <7 < N.

Clearly, the problem reduces to showing that go(un)un, — go(u)u in LP(RY) and
gi(un)diu, — gi(u)d;u in LP(RN), 1 <i < N. To see this, write

(2.9) go(un)tun — o(u)u = (go(un) — go(u))un + go(u)(un — u).

The first term in the right-hand side of (2.9) tends to 0 in LP(RY) because go(u,) — go(u)
in L°°(RY) and (uy) is bounded in LP(RY). Since u,—u — 0in C}(RY), hence in L>(RY),
the second term in the right-hand side of (2.9) also tends to 0 in LP(R%) because go(u) €
LP(RY). This follows from the assumption u € D(RY). Indeed, let w C RY be a bounded
open subset such that Supp u C w. We have go(u) € L®(RY) C L*>®(w) C LP(w) since w
is bounded. On the other hand, go(u)(z) = go(z, u(z), Vu(z)) = go(z,0) = O¢, f(z,0) for
z € RM\w. Since ¢, f(+,0) € LP(RY), this implies go(u) € LP(R™ \w). Hence, altogether,
gofu) € IP(RY),

At this stage, we have shown that go(un)un, — go(u)u in LP(RY). Similar arguments

yield g;(un)diu, — gi(w)diu in LP(RY),1 < i < N, and the proof is complete. [

The following somewhat surprising property (see Remark 2.4 below) is obtained as a
simple corollary to Theorems 2.3 and 2.4. It is one of the keys to the proof of the properness

results in Section 4.

Theorem 2.5. Let f : RY x (R x RY) be an equicontinuous C’% bundle map. Let N <
p < oo and suppose that f(-,0) € LP(RYN), ¢, f(-,0) € L>=(RY),0 < i < N (so that the
Nemytskii operator f is of class C! from W2P(RY) into L?(RY) by Theorem 2.3). If (uy)

is a bounded sequence from W2?(RY) and u € W?P(RY) is such that u, — u in C}(RY)
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(hence, u, — u in W%P(RY)) we have

(2.10) f(un) — f(u) — Df(u)(up —u) — 0 in LP(]RN).

Proof. Set v, := u,—u, so that v, — 0in W2?(R") and v, — 0 in C;(RN). The left-hand
side of (2.10) is f(u+v, ) —f(u)— Df(u)v,, i.e. g(v,)—g(0) where g(v) := f(u+v)—Df(u)v
for v € W2P(RY). Note that g is the Nemytskii operator associated with (see (2.6))

g(z, &) = f(z,u(z) + &o, Vu(z) + &) — igoa&f(x,u(x),Vu(:s)){i.

Since O, f(-,u, Vu) € C°(RY) N L®(RY) by Theorem 2.1 (ii), it is straightforward to
check with Lemma 2.1 (i) that g is an equicontinuous C{ bundle map with ¢, g(z,§) =
B, f(z,u(z) + &0, Vu(z) + ') — ¢, flz, u(z), Vu(z)),0 < i < N. In particular, g(-,0) =
f(-,u, Vu) € LP(RY) by Theorem 2.2 (i). Also, d,g(-,0) = 0 € LP(RY) N L=®(R™M),0 <
i < N. It thus follows from Theorem 2.4 that g(v,) — g(0) — 0 in L?(RY), which is
exactly what is claimed in (2.10). O

Remark 2.4: Relation (2.10) is very much unexpected in light of the fact that the hy-
potheses of Theorem 2.5 do not even imply that f(u,) — f(u) — 0 in LP(R¥) (Theorem
2.4 does not apply because I, f(-,0) € L=(RY), not LP(R™) N L>°(R™Y)), nor do they
imply that Df(u)(u, —u) — 0 in LP(RY) (only Df(u)(u, —u) — 0 in LP(RY) and, by
(2.6), Df(u)(up — u) — 0 in L®(RY)). Strong convergence in L?(R*) holds only for the
difference of these two terms. Note also that (2.10) does not say that f is differentiable at

u when the source space W2%P(RY) is equipped with the Ci-norm. O

3. Fredhom properties of quasilinear elliptic operators.
Let anp : RV x (R xRY) - R,1 <, < N,and b: RY x (R x RY) — R be given
functions. We now begin the investigation of the Fredholm properties of the second order

differential operator

N
(3.1) Flu):=— X aaﬁ(-,u,Vu)aiﬁu—I—b(-,u,Vu).

af=1
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We shall make additional assumptions (listed below) ensuring that the operator F' is elliptic
and maps W2P(RY) into LP(R¥) for some N < p < occ. Naturally, the suitable hypotheses

for the latter will be derived from the results in Section 2.

As before, we shall use the notation © = (21, -+ ,2n) and £ = (&, ,én). The
assumptions about the “coefficients” ang,1 < o, < N, and b are as follows (recall
N < p<oo):

(3.2) aqp 1s an equicontinuous C’é bundle map, 1 < a,3 < N,

(3.3)  dap(-,0) € L®(RY),0¢ aa6(-,0) € LX(RY), 1 <a,f <N, 0<i <N,

N
Z Aag\T, o > Z, 27
(3.4) o 5 G (25 E)nans = (2, )l

vn=(m, - .nn) € RY, ¥(z,6) e RN x (R x RY),

where v : RY x (R x RY) — (0, 00) is bounded from below by a positive constant vz on

every compact subset & of RY x (R x RM) (e.g. v lower semicontinuous).

(3.5) b is an equicontinuous C’é bundle map.

(3. b(,0) € LP(RY), Ob(,0) € L=(RY), 0<i < N.
Our first task will be to establish the continuity and differentiability of the operator F
in (3.1).

Lemma 3.1. The operator F in (3.1) is both continuous and weakly sequentially contin-

uous from W2%P(RY) into LP(RY), and it maps bounded subsets onto bounded subsets.

Proof. By Theorem 2.1 (ii) with f = aqg, the Nemytskii operators u — aqg(-,u, Vu),1 <

a, 3 < N, are continuous from W2P?(R¥) into L>°(R*) and they map bounded subsets onto
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bounded subsets. By Theorem 2.2 (i) with f = b, the Nemytskii operator u — b(-, u, Vu)
is continuous from W2P(R¥) into LP(RY) and it maps bounded subsets onto bounded
subsets. This proves the continuity of the operator F' as well as its boundedness on
bounded subsets.

If (u,) is a sequence from W2P(R¥) such that u, — u in W2?(RY), we have aiﬂun —
aiﬁu in LP(RY). By Theorem 2.1 (iv) with f = aag, we find that aas(-, un, Vun)agﬂun —
ans(-,u, Vu)aiﬁu in LP(RY). Next, by Theorem 2.2 (ii) with f = b, we have b(-, u,,, Vu,) —
b(-,u, Vu) in LP(RY). The weak sequential continuity of F follows at once from these prop-

erties. [

Remark 3.1: The proof of Lemma 3.1 requires only the assumption that a,g is a C°
bundle map with a,s(-,0) € L®(RY),1 < o, < N and that b(z, ) = bo(x)—l—i]:ZVlci(:l:,f)fi
with by € LP(R™), ¢;(+,0) € L®(RY) and ¢; equicontinuous C° bundle maps. In addition,
by Remark 2.2, this generalization of Lemma 3.1 remains valid when RY is replaced by an
arbitrary open subset w C RY with Lipschitz-continuous boundary. This will be used in

Section 6. O

Lemma 3.2. The operator F in (3.1) is of class C* from W%P(RY) into LP?(RY), with

derivative (using the notation (2.5) for simplicity)

N N
(3.7) DF(u)v := — %]_laag(u)aiﬂv + Db(u)v — %]_I(Daaﬂ(u)v)aiﬁu,

where Db(u) and Da,g(u) are given by (2.6).

Proof. A routine application of Theorem 2.3. O

Remark 3.2: More generally, given an integer k > 1, there are simple conditions ensuring
that the operator F in (3.1) is of class C* from W2P?(RY) into L?(RY) (N < p < o). By
Remark 2.3 and straightforward arguments, it suffices that the coefficients a3 and b are
equicontinuous Cg bundle maps with Dfaag € L®RM), 1<a,3 <N, 0<|x| <k, and
b(-,0) € LP(RY), Dgb € L=(RYN), 1 < |k| < k. The C"*! regularity of Fredholm mappings
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of index v > 0 is needed e.g. to use the Sard-Smale theorem, and hence this remark may

be important when v > 1. However, we shall not make use of it in this paper. O

Our investigation of the Fredholm properties of the operator F' makes crucial use of the
concept of semi-Fredholm operator. Since the standard literature does not fully agree upon
a definition and since most texts provide only an incomplete description of their properties,
we now include a brief summary for the convenience of the reader. (A full treatment of
semi-Fredholm operators can however be found in Kato [10, pp. 229-244], but the setting
there is the more general one of unbounded operators, substantially more technical.)

Given real Banach spaces X and Y, an operator L € £(X,Y) is said to be semi-Fredholm
if rge L is closed in Y and at least one among dim ker L and codim rge L is finite. Some
authors, e.g., Schechter [19], consider only the case when dim ker L < oo, which indeed
will be the more relevant one here. A semi-Fredholm operator has a well defined index
v € ZU{+oo} given by the formula v := dim ker L— codim rge L. We shall denote by
®,(X,Y) the set of semi-Fredholm operators of index v and (as is customary) by ®(X,Y)
the set of semi-Fredholm operators of index v € ZU{—oc}. In other words, L € &, (X,Y")
if and only if rge L is closed in Y and dim ker L < oo. As recalled in the Introduction,
Yood’s criterion characterizes ®4(X,Y): L € ®4(X,Y) ifand only if L € £(X,Y) and L
is proper on the closed bounded subsets of X. For a proof, see e.g. Deimling [2, p. 78].

Semi-Fredholm operators enjoy two fundamental stability properties, well-known for
finite index (Fredholm case) but less familiar in general, although those results go back
to the work of Dieudonné [3]: For v € ZU {+o0},®,(X,Y) is stable under small enough
perturbations (hence ®,(X,Y) and &4 (X,Y) are open subsets of £(X,Y")) and stable
under compact perturbations of arbitrary magnitude (hence the same thing is true of
&, (X,Y)). A full proof of these properties can be found in Lindenstrauss and Tzafriri
[11, pp. 78-79]. Note that the openness of ®,(X,Y) for v € Z U {+oo} implies the
local constancy of the index of semi-Fredholm operators. Before proceeding, we need a

straightforward variant of Yood’s criterion when the space X is reflexive.

Lemma 3.3. Let X and Y be real Banach spaces with X reflexive and let L € L(X,Y).

Then, L € ®4(X,Y) if and only if the following property holds: If (uy) is a sequence from
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X such that u, — 0 in X and Lu,, —» 0 inY, then u, — 0 in X.

Proof. 1t is trivial to check that when X is reflexive the given condition is equivalent to
the properness of L on the closed bounded subsets of X, so that the conclusion follows

from Yood’s criterion. O

The variant of Yood’s criterion in Lemma 3.3 will be used together with the following

(apparently new) concept.

Definition 3.1. Let X and Y be real Banach spaces with X reflexive and let T, L €
L(X,Y). We shall say that T is compact modulo L if, for every sequence (u,) from X we
have

{uvp, =0in X,Lu, »0inY}=Tu, >0inY.

Compactness modulo L in Definition 3.1 should be carefully distinguished from Kato’s
“compactness relative L” [10], which coincides with compactness for bounded operators,
and from other properties, e.g. completely singular operators, also introduced in connection
with semi-Fredholm operators. ;From Definition 3.1 with L = 0, it follows that “T" compact
modulo 0”7 (or, more generally, modulo a compact L) is the same as “T" compact” because X
is reflexive (this is the only reason why the reflexivity of X was assumed in Definition 3.1).
In contrast, if L € ®4(X,Y), it follows from Lemma 3.3 that every operator T' € L(X,Y)
is compact modulo L. The importance of Definition 3.1 is due to the following simple

result:

Lemma 3.4. Let X and Y be real Banach spaces with X reflexive and let Lo,L, €
L(X,Y). Suppose that Ly — Lo is compact modulo both Lo and Ly. Then:
(i) If (uy) is a sequence from X such that u, — 0 in X, we have Lou, — 0 in Y if and
only if Lyu, - 0inY.
(ii) Lo € 4 (X,Y ) if and only if L; € &, (X,Y).

Fort € [0,1], set Ly :=tLy + (1 —t)Lo. If Ly — Lo is compact modulo Ly and Ly for
every t € [0,1], then
(iii) Ly € ®4(X,Y) for every t € [0, 1] if and only if this holds for one such tq € [0, 1], and

in that case index Ly is independent of t.
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Proof. (i) follows from Definition 3.1 and the remark that if 7' is compact modulo L and
U, = 0in X, Lu, — 0in Y, then (L £ T)u, — 0 in Y. (ii) holds because of (i) and
Lemma 3.3. For the proof of (iii), note that for every ¢ € [0,1],¢(L; — Lo) = L; — Lo
is compact modulo Ly and Lg. Hence, Ly — Lg is compact modulo L; and Lg, so that
(t —to)(L1 — Lo) = Ly — Ly, is compact modulo L; (and Lg). By exchanging the roles
of t and g in this statement, it follows that L; — L, is also compact modulo L;,. Thus,
L;— Ly, is compact modulo Ly and Ly, for every t € [0,1]. That L; € ®(X,Y) if and only
it Ly, € ®4(X,Y) now follows from (ii), and index L; = index L, by the local constancy
of the index and the connectedness of [0,1]. O

Part (iii) of Lemma 3.4 will be useful only later (Lemma 6.5).

Remark 3.3: In the proof of part (i) of Lemma 3.4, we used the fact that if T' is compact
modulo L and if T+ L € &, (X,Y), then L € &, (X,Y). Butif L € &, (X,Y), nothing
can be said about T'+ L (since every operator is compact modulo L when L € &4 (X,Y)).
Also, when T is compact modulo L and T+ L € ®,(X,Y), so that L € & (X.Y), it
cannot be ascertained that the indices of T'4+ L and L are the same. To see this, let
LM € ®4(X,Y) with index L # index M, and set T = M — L. If so, T is compact
modulo L (since L € ®(X,Y)) and T+ L = M and L have different indices. 0O

For N < p < coand u € W2P(RY), we define the operator L(u) € L(W?2P(RY), LP(RY))
by

N
(3.8) L(u)v:=— X aaﬁ(u)aiﬁ'v + Db(u)v € LP(RY), Yo € W2P(RY),

a,8=1

where the notation (2.5) was used. That L(u) is well defined follows from Theorem 2.1 (ii)
and Theorem 2.3.

Lemma 3.5. Suppose N < p < oo and let u € W*P(RY) and v € Z U {£oc} be given.
Then, DF(u) € ®,(W2?(RY), LP(RY)) if and only if L(u) € ®,(W*P(RY), L?(RY)). In
particular, DF(u) € ®(W2P?(RY), LP(RY)) ifand only if L(u) € & (W2%P(RY), L?(RY)).

N
Proof. From (3.7) and (3.8), we have DF(u)v — L(u)v = — %]_I(Daaﬁ(u)v)aiﬁu. From

e
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Theorem 2.3, this is just

Il =

(39) -

a,

=

(Depaap(- u, Vu)o2zu)v —

1 a,

=

O, aap(-,u, V)02 gu)d;v.
& %ap 8

1 =1

By Theorem 2.1 (ii), we have ¢, ans(-,u, Vu) € L=(RY), hence agiaaﬁ(-,u,Vu)aiﬁu €
LP(RM),1 < a,8 < N,0 < i < N. But since p > N, multiplication by a function
¢ € LP(RY) is a compact operator from W?(RY) into L?(RY) (if B C RY is an open
ball and supp ¢ C B, use the compactness of the embedding W1?(B) — C°(B); the
general case obtains by truncation and a limiting process because W1?(RY) — L>=(RY)).
It follows from this remark that (3.9) defines a compact operator from W2P?(RY) into
LP(RYN). Thus, DF(u) — L(u) is compact, and the conclusion follows from the stability of
®,(W2P(RYN), LP(RY)) by compact perturbations. [

Our next result is about linear elliptic differential operators on R,

Lemma 3.6. Let L := —ag:lAaﬂ(x)aiﬂ + anga(:c)aa + C(z) be an operator strictly
elliptic on the compact subsets of RY, with coefficients A,z € CO(RY) N L>®(RY) and
B,,C € L®(RM),1 < a,8 < N. Let 1 < q < oo and let (u,) be a sequence from
W24(RY) such that u, — 0 in W24(R") and Lu,, — 0 in LY(RY). Denote by Br C RY
the open ball with center 0 and radius R > 0. Then, u, — 0 in W?(Bg).

Proof. From elliptic regularity on bounded domains, e.g. Gilbarg and Trudinger [7, The-

orem 9.11], there is a constant C' > 0 such that
(3'10) ||u||27q7BR < C(|u|07q7BQR + |Lu|07q7B2R)7 Vu € W27q(RN)'
Since u, — 0 in Wz’q(RN), we have u,, — 0 in W?%(Byg) and hence u,, — 0 in LY(BsyR).

Also, Lu, — 0 in LY(RY) implies Lu, — 0 in LY(Byg). By letting u = u, in (3.10), we
thus get u, — 0 in W*4(Bg). O
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Lemma 3.7. Let N < p < co. The relation L(u) € &, (W?%?P(RYN), L?(RY)) holds for
every u € W P(RY) if and only if it holds for some u® € W*P(RY) (see (3.8) for the
definition of L(u)).

Proof. In what follows u is fixed once and for all. We shall prove that if (v,) is a sequence
from W2P(RY) such that v, — 0 in W2P(R?Y) and L(u)v, — 0 in LP(RY), then (L(u) —
L(u%))v, — 0in LP(RY). By exchanging the roles of v and u°, the same conclusion holds if
we assume L(u®)v, — 0in LP(RY) instead of L(u)v, — 0 in LP(RY). Thus, L(u) — L(u°)
is compact modulo both L(u) and L(u°) (Definition 3.1), and the lemma follows from
Lemma 3.4 (ii).

Our assumptions about the coefficients a, 3 and b ensure that the collections of mappings
(aap(z,))pery , (O b(2,-))ery are all equicontinuous at &€ = 0. As a result, given € > 0,
there is 0 > 0 such that |aag(z,§) — aap(z,0)| < €/2 and |0¢, b(z,€) — O¢;b(x,0)| < €/2 for
every x € RY and every ¢ € R x RY with |£| < §. Evidently, § can be chosen independent
of 1 <a,8<Nand0<i<N. On the other hand, owing to the embedding W2?(R") —
CI(RY), thereis R > 0 such that |(u(z), Vu(z))| < § and |(u®(z), Vu®(z))| < d for |z| > R,
i.e. for + € Bg where Bg is the complement of the open ball Bg € RY with center 0
and radius R. Therefore, we have |aqg(z,u(z), Vu(z)) — ang(z,u’(z), Vul(z))| < € and
|0, b(z, u(z), Vu(z)) — d¢,b(z,u’(x), Vul(z))| < € for z € Brand1<a,8<N, 0<:<

N. This implies at once that [L(u)vn, — L(uo)vnly , 5, < (N + 1)2_%||vn|| o and hence
w 7P7BR

that

(3.11) | L(u)on — L(u®)only , 5, < M(N +1)*77e, ¥ ne N,

where M > 0 is a constant such that ||v,|| , pv < M for every n € N.

iFrom Theorem 2.1 (ii) (and the expression for the derivative Db(u)v given in Theorem
2.3), the operator L = L(u) satisfies the conditions required in Lemma 3.6, and v,, — 0
in W%P(RY), Lv,, — 0 in LP(RY). By Lemma 3.6, we infer that v, — 0 in W2?(Bg),
which in turn implies that L(u®)v,, — 0 in L?(Bg) and L(u)v, — 0 in LP(Bg) (of course,

the latter also follows from the assumption L(u)v, — 0 in LP(RY)). As a result, we have
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L(u)v, — L(u®)v, — 0 in LP(Bg), so that
(312 L()om — Lol <

for n large enough. Altogether, (3.11) and (3.12) yield |L(u)vn, —L(u®)vn|o p gy < e(MP(N+
1)2r=2 4 1)1/1’ for n large enough. Since € > 0 is arbitrary, this is just the desired relation
(L(u) — L(u®))v, — 0 in LP(RY), and the proof is complete. O

We are now in a position to show that the question: “When is the operator F in (3.1)

semi-Fredholm of index v € Z U {—00}?” has the simplest possible answer.

Theorem 3.1. Let N < p < oo and suppose that the coefficients of the operator F in (3.1)
satisfy the conditions (3.2) to (3.6). Then, F' is semi-Fredholm of index v € Z U {—oc}
(iie. DF(u) € ®,(W%P(RN), LP(RN)) for every u € W*P(RY)) if and only if there is
u® € W2P(RY) such that DF(u®) € ®,(W%*P(RY), LP(RY)).

Proof. The necessity is obvious. Conversely, suppose DF(u®) € ®,(W?2%?(RY), LP(RY)),

so that DF(u®) € & (W??(R"),LP(RY)). By Lemma 3.5, this implies that L(u®) €

® (W2P(RY), LP(RY)), and hence L(u) € & (WP (RYN), LP(RY)) for every u € WP (RY)
by Lemma 3.7. Once again by Lemma 3.5, we find that DF(u) € ®(W?2?(RY), LP(RYN)).

By the local constancy of the index and the continuity of DF (Lemma 3.2), it follows that

the index of DF(u) is independent of u, hence equals the index v of DF(u®). O

Even in the case of finite index (Fredholm case) our proof of Theorem 3.1, based upon

Yood’s criterion, requires making use of the semi-Fredholm setting.

4. The properness of quasilinear elliptic operators on R": A new criterion.
The operator F in (3.1) is proper on the closed bounded subsets of W2?(RY) if and
only if every bounded sequence (u,) from W2?(R¥) such that F(u,) converges in LP(RY)
contains a subsequence converging in W2?(RY). We begin this section by showing in
Theorem 4.1 that when N < p < oo and DF(u°) € &, (W22?(RY), LP(RY)) for some
u® € W2P(RYN) a weaker property of the above sequence (u,,) suffices to obtain the desired
properness result. We shall see later (Theorem 5.1) that the existence of u® above is

necessary for properness and hence is not a restrictive assumption.
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Lemma 4.1. Let N < p < oc and let (u,) be a bounded sequence from W2P?(R™Y).
Suppose that there is u € W*P(RY) such that u, — u in C3(RY). Then, F(u,)— F(u) —
DF(u)(un —u) — 0 in LP(RY).

Proof. By (3.1) and (3.7), we have

(41) Flu) = Flu) = DF(@)(un — ) = = % (0a(un) = aap(u) B pun +
b(un) = blu) = Db(u)(un )+ S [Daaalu)ln — u))0

where the notation (2.5) was used. In the proof of Lemma 3.5, we already observed that
N
the linear operator v € W2P(RY) — mﬁ%]:l(Daaﬁ(u)v)agﬁu € LP(RY) is compact. Hence,

since our assumptions ensure that u, — u in W2?(RY), we have

(4.2) a§:1[Daag('u)('un — u)]aiﬂu — 0 in LP(RY).
Next,
(4.3) b(uy) — b(u) — Db(u)(u, —u) = 0 in LP(RN)

by Theorem 2.5. It thus follows from (4.1), (4.2) and (4.3) that F(u,)—F(u)—DF(u)(u,—
u) — 0 in LP(RY) if and only if

(4.4)

=

l(aaﬁ(un) — aaﬁ(u))ai/@un — 0 in LP(RN).

a,

That (4.4) holds follows at once from Theorem 2.1 (i), the hypothesis u, — u in C}(R?)
and the boundedness of the derivatives 8(21[611” in LP(RY). O

The comments made in Remark 2.4 may be repeated here: The hypotheses of Lemma
4.1 do not ensure that F(u,)—F(u) — 0in L?(RY) or that DF(u)(u, —u) — 0in LP(RY).
Yet, the difference of these two terms does tend strongly to 0 in L?(R™).
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Theorem 4.1. Let N < p < oo and suppose that the coefficients of the operator F in
(3.1) satisfy the conditions (3.2) to (3.6). Suppose also that there is u® € W%P(RY) such
that DF(u®) € & (W%P(RY), L?(RY)). The following properties are equivalent:

(i) The restriction of F to the closed bounded subsets of W2?(R¥) is proper.

(ii) Every bounded sequence (uy,) from W%P(RY) such that (F(u,)) converges in L?(RY)

contains a subsequence converging in C}(R™).

Proof. That (i) = (ii) is obvious. Conversely, let (u,) be a bounded sequence from
W2P(RY) such that (F(uy)) converges in LP(RY). With no loss of generality assume
that there is v € W2%P(RY) such that u, — u in W2?(RY). By Lemma 3.1, we have
F(up) = F(u) in LP(RY), hence F(u,) — F(u) in LP(RY) since the sequence (F(uy))
is strongly convergent by hypothesis. It follows from property (ii) that after replacing
(un) by a subsequence, we may assume that (u,) converges in C'J(RY). Evidently, the
limit of (u,) in C}(RY) must be u, i.e. u, — u in C}(RY). By Lemma 4.1, we thus
have F(uy,) — F(u) — DF(u)(un, — u) = 0 in LP(RY), and hence DF(u)(u, — u) — 0 in
LP(RY) from the above. From Theorem 3.1, we have DF(u) € ®(W?2?(RY), LP(RY)),
so that DF(u) is proper on the closed bounded subsets of W%P?(R¥) by Yood’s criterion.
Therefore, (u, — u) and hence (u,) contains a subsequence converging in W2?(RY), as

desired. O

Several of our previous results, and in particular Theorem 4.1 (ii), involve the conver-
gence in C'}(RY) of a sequence bounded in W2?(R”). We now give a convenient equivalent

formulation of this condition.

Definition 4.1. We shall say that the sequence (u,) from CIRY) vanishes uniformly at
infinity in the sense of C}(RY) if the following condition holds: For every € > 0, there are
R > 0 and ng € N such that |u,(2)| + |[Vun(z)| < € for every |z| > R and every n > ng.

Theorem 4.2. Let N < p < oo and let (u,) be a bounded sequence from W2P(RY). If
u € W2P(RYN), the following conditions are equivalent:

(i) up — u in C;(RN).
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(i) up — u in W3P(RY) and (u,,) vanishes uniformly at infinity in the sense of C}(R™).

Proof. (i) = (ii): That u, — uin W2P(R?¥) is clear. Next, let ¢ > 0 be given. Let R > 0 be
such that |u(z)|+|Vu(z)| < €/2 for |z| > R, and let ng € N be such that |[u, —ul|; oo py <
€/2 for n > ng. Then, for |z| > R and n > ng, we have |u,(z)| + |Vu,(z)| < e

(ii) = (i): Let € > 0 be given and let R > 0 and ng € N be such that |u,(z)]+|Vuy(z)| <
€/2 for |z| > R and n > ng. After increasing R if necessary, we may also assume that

lu(z)| + |Vu(z)| < €/2 for || > R. Hence,
(4.5) |un(2) — u(z)] + |[Vun(z) — Vu(z)| <€, V]jz| > R, Vn > ng.

;From the compactness of the embedding W2?(Bpg) — C'(Bgr) where Bg denotes the

open ball with radius R centered at the origin, there is ny € N such that
(4.6) lun(z) — u(z)| + |[Vun(z) — Vu(z)| <€, Vz € Br, Vn > ny.

By (4.5) and (4.6), we have ||u, — u||; v < € for n > max(ng,n;), which shows that

u, — u in CH(RY) since € > 0 is arbitrary. [

As a corollary to both Theorems 4.1 and 4.2, we obtain:

Corollary 4.1. Let N < p < oo and suppose that the coefficients of the operator F' in
(3.1) satisfy the conditions (3.2) to (3.6). Suppose also that there is u® € W%P(RY) such
that DF(u®) € & (W%P(RY), L?(RY)). The following properties are equivalent:

(i) F is proper on the closed bounded subsets of W%P(RY).

(ii) Every bounded sequence (u,) from W*P(RY) such that (F(u,)) converges in LP(RY)
contains a subsequence vanishing uniformly at infinity in the sense of CJ(RY).

(iii) Every bounded sequence (uy,) from W2P(R™) such that (F(u,)) converges in LP(RY)

vanishes uniformly at infinity in the sense of C}(RY).
Proof. Straightforward. O

Corollary 4.1 leaves us with the following question: Given that the embedding W2?(RY)
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— CI(RY) is not compact, what does it take for a bounded sequence from W?2?(RY) to
vanish uniformly at infinity in the sense of C;(RN)? We answer this question in the next
theorem, by showing that this property is part of an alternative satisfied by every bounded
sequence from W2P(RY).

Let 71 > 0,--- ,Tn > 0 be real numbers fixed once and for all. We shall set T :=
(Ty,--+,Tn) € RY, and, for every multi-index £ = ({,--- ,{y) € ZY,

(4.7) (T := (LT, INTy) € RY.

Theorem 4.3. (shifted subsequence lemma): Let T € R¥ be as above and let N < p < oo.
If (uy,) is a bounded sequence from W2P(RY), then either

(i) (u,) vanishes uniformly at infinity in the sense of C}(R™) (see Definition 4.1), or

(i) there are a sequence {} € ZY with kli)rrolo|€k| = oo and a subsequence (uy, ) such that
the sequence (i, ) defined by ti,, (¢) := un, (x + € T) is weakly convergent (in W2P(RY))
tou € WHP(RY),a # 0.

Proof. In this proof, we set Qo := (0,77) x --- x (0,Tn). Suppose that (i) does not hold,
so that there is € > 0 such that for every & € N, there is zx € RY with |z;] > &
and there is ny € Nyngp > ng_1(no := 0) such that |un,(2x)| + |Vun,(xx)| > €. Since
RN = fe%N(QO +4T) (see (4.7)), there is ¢ € Z such that yi := xj — {xT € Q. Clearly,

klim |0r] = oo. Let Gy, (2) := up,(x + €xT). Note that ||t,,]].
— 00

hence the sequence (iy, ) is bounded in W2 (R™Y).

pRY = ||tn,|]2,pry and

By passing to a subsequence, we may assume that there is @ € W2P(R") such that
U, — @ in W2P(RY). We now show that @ # 0 : By the compactness of the embed-
ding W2?(Qo) — C'(Qo), we have u,, — @ in C1(Qo). In particular, ||y, |

17007QO -

1]l 00,Q0s and since [[dn,[|1,00,Q0 2 [Gns(Yr)| + [Vitn, (yr)| = [tn, (2)] + |Vun, (2)] > €,

it follows that ||@||1,00,0, > €, whence ¢ # 0. O

Remark 4.1: Properties (i) and (ii) of Theorem 4.3 are mutually exclusive, for if (i) holds

and (&y,) is a subsequence as in (ii), then @,, tends uniformly to 0 on every compact
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subset of RY, whence ,, — 0 in L?(RY). Hence, (i, ) cannot tend weakly to @ # 0 in
w2r(RY). O
In conjunction with Theorem 4.3, we shall later need the following intuitively clear

technical result.

Lemma 4.2. Let 1 < ¢ < oc and let k > 0 be an integer. Given u € W54(RY) and
a sequence h, € RY such that lim |h,| = oo, set ti,(z) := u(z + h,). Then, i, — 0 in

Wk4(w) for every bounded open subset w C R¥. In particular, i, — 0 in Wk4(RY).

Proof. Suppose first that & = 0. Let ¢ > 0 be given. Choose ¢ € D(RY) such that
lu—@lg qry < € s0that |ty —Pnlo,ry = [u—@lo qry < €forevery n € N, where of course
Gn(2) := p(x+h,). Ifw C RY is any bounded open subset, we thus have |ty — Pnlo,guw < €
for every n € N. Now, |tn|0,g,w < |tn — @nlo,qw + |Pnlo,qw < €+ |Pnlo,q,w, and Supp ¢, =
(Supp @) — hy. Thus, (Supp ¢n) Nw = 0 for n large enough, and hence [ty |g 4.0 < €. Since
€ > 0 is arbitrary, this yields @, — 0in LY(w).

If now u € W*4(R¥), the above shows that D, — 0 in LY(w) for every x € NV || <
k, so that 4, — 0 in W¥4(w). The sequence (u,) is bounded in W*?(RY)( because
tin| |k gmy = |[ullk rmy). If @ € W2IRY) is a weak cluster point of (i, ), it follows from
the above that @, = 0 for every open bounded subset w C RY, so that & = 0. Thus,
@ = 0, i.e. 0 is the only cluster point of the sequence (&), and this implies @, — 0 in

WhkyRY). O

5. A strong form of Yood’s criterion for linear elliptic differential operators.
In this section, we prove that if the operator F in (3.1) is proper on the closed bounded
subsets of W2P?(RY)(N < p < o), then F is semi-Fredholm of index v € Z U {—oc}.
This result will be obtained as a corollary to a strong form of Lemma 3.3, valid for linear
elliptic differential operators (Theorem 5.1), which is also useful to establish the condition

DF(u%) € & (W%P(RY), LP(RY)) required in Theorem 4.1 or Corollary 4.1.

N N
Lemma 5.1. Let L := — %]_lAaﬁ(:ﬂ)aiﬁ + %]_lBa(x)aa + C(x) be an operator strictly
elliptic on the compact subsets of RY, with coefficients A,z € CO(RY) N L>®(RY) and
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B,,C € L®*RY),1 < a,8 < N. Let N < p < o and let (u,) be a sequence from
W2P(RYN) such that u,, — 0 in W%P(RY) and Lu,, — 0 in LP(RY). Let v € W%P(RY),0 <
e <1 and ng € N be given. Then, there isn € N,n > ng, such that

D) 101 g+ llnll2 g — € < llo il o < 1oll2 g+ tal 2 g +

(11) ||U + un”l,oo,RN < maX(HUHl,oo,RN ) ||un||1,oo,RN) + e

(iii) |Lunlo p gy < €.

Note: Parts (i) and (ii) of the lemma stress the fact that ||v + un||§p pv 18 nearly the
sum of ||’U||I2)7P7RN and ||un||]2),p,RN while ||v 4 tn]]1 oo pv remains bounded by any constant

bounding ||v|[; o py and |[un|]q copy -

Proof. Since Lu,, — 0 in L?(RY), we may assume with no loss of generality that (iii) holds
for every n > ng. Hence, it suffices to show that (i) and (ii) hold for some n > ng. Since

v € W2P(RY), there is R > 0 such that
(5.1) Il o <& flof] o <

7p7BR 17OO7BR

where Bg := RY \ Br and Br C R?Y is the open ball with center 0 and radius R. Also,
by Lemma 3.6, we have u,, — 0 in W??(Bpg) and hence u,, — 0 in C'(Bg). Thus,

(5'2) ||Un||2,p,BR <€ ||un||170013R <6
for n large enough. We shall need the (elementary) inequalities
(5.3) (a +b)P <a’ + pla+ b)p_lb, la —bP > daf — pla+ b)p_lb,

valid for ¢ > 0 and b > 0 and p > 1.

Since ||'U‘|‘un||12),p,RN = ||‘U‘|-Un||]237p,BR‘|‘||‘U‘|‘Un||12) s relations (5.1) and (5.2) together
yPyDR
with the triangle inequality yield |[v + u,|[} PRV S (lvllz,p.Br +€)7 + (|lun]l] o +€)P <
7’ 2,p,Br

([vllz pey + €)P 4 (|[unll2,p e + €)P. From the first inequality in (5.3), we obtain (using
e<1)

(5.4) o+ wal 2 o < NWlE o + il 2, oo +2p(M + 1),

28



where M > 0 is a constant such that ||v||y , v < M and ||ugl|s , pv < M for every n € N.

The other form of the triangle inequality along with (5.1) and (5.2) also yields ||v +

alt i 2 olag mallinlleg pal” + luall, o =loll, s 17 ol ppHluall?
) 1

2p(M + 1)~ 'e, where the second inequality in (5.3) and € < 1 were used. Since (5.1) and

(5.2) also yield ||’U||§7P’RN < |[ollf , 5, + € and ||un||§7p7RN < Junl|” . + € and since
27P7BR

el < e, it follows that

(55 ol o + el o — 2+ 1P+ 16 < o+ unl

;From (5.4) and (5.5), part (i) of the lemma holds with e replaced by 2[p(M + 1)P~1 +
l]e. Hence, it holds as stated after rescaling e (which merely amounts to increasing n if
necessary).

The proof of (i) is straightforward since ||v 4 un||1 0o pv = max(|[v 4+ un||1,00,Bx, ||V +
wall o ) S max(lollome + e lluall s ) = max(lellicem luall s ) e
max((foll oo o llnll o) +e. O o
Lemma 5.2. Let L be as in Lemma 5.1 and let N < p < oco. Suppose that there is a
sequence (uy) from W*P(RY) such that u,, — 0 in W%P(RY), Lu,, — 0 in LP(RY) and
(un) contains no subsequence converging to 0 in W2?(RY). Then, there is a sequence (w,,)
from W2P(RY) such that w, — 0 in W2P(RY), w, — 0 in C(}(RN),LUJ” — 0 in LP(RY)

and (w,,) contains no subsequence converging to 0 in W2P(RY).

Note: The whole point in this lemma is that the sequence (w,) has all the properties of
the sequence (u,) plus that of tending to 0 in C}(RY), which neither (u,) nor any of its

subsequences need have.

Proof. The hypothesis that (u,) contains no subsequence converging to 0 in W2P(RY)
implies that ||up||y , pv is bounded away from 0 in W2P(RY) for n large enough. As a

result, we may assume after rescaling (u,) if necessary that

(5.6) [unllzpry > 1, VneN
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(in particular, this does not affect the conditions u, — 0 in W2?(R") or Lu, — 0 in
LP(RM)).
Let (ex) be a sequence from (0, 1] such that

(5.7) 1}:11 er = 1.

In Lemma 5.1, let v = uy,€e = €; and ng = 1. This produces an integer ny; € N, and hence
an element u,, from the sequence (u,). With vy := uy, set vy 1= v1 + Up, = U1 + Up,.
More generally, with vy € W2P(RY) and ny € N already constructed, let v = vg, e = ¢,
and ng = ng in Lemma 5.1. This produces an integer ni4; > nj and a corresponding
element u,, , from the sequence (upn). We then set vg41 1= vg + Uy -

Property (i) of Lemma 5.1 yields ||'Uk||§7p7RN + ||unk+1||]237p7RN — € < ||‘Uk+1||§7p’RN <
||'Uk||§’p7RN + ||unk+1||§7P7RN + €, which, by induction, shows at once that with ng := 1, we
have (recall v1 = uy)

k+1 » k » k+1 » k
jgo ||un]‘||27p7RN - ]El €; < ||‘Uk+1||2’p7RN < ]EO ||unj||27p,RN —I_]gl €55

for every k > 0. By changing k into & — 1 and using (5.6) and (5.7), it follows that
(5.8) EYP < ogllzpmy < M(E+2)'V7, VE>1,

where M(> 1) is a constant such that ||un||s , pv < M for every n € N.
;From Lemma 5.1 (ii), we find [|vg41]|1 00,y < max(|[vi]l1,c0mv, ||Unpr|]1,00,m5 ) + €&
k
and hence, by induction, |[vg41||1 copy < max{||un;|[1 copy :0 <7 < E+ 1} + ‘21 €; for

]:
k > 0, where, once again, ng := 1. By (5.7), we get

(59) ||'Uk||1’oo7RN <CM+1, Vk>1,

with M as above and C' > 0 depending only upon the embedding W2?(RY) — C3(R™Y).
Next, by Lemma 5.1 (iii), we have [Lvg41o p v < |Lvg|o p pv +€x, whence, by induction,
k
|Lvksilopry < |Luilopry + ‘21 ¢; for every k > 0. By (5.7),
]:
(5.10) |L'Uk|07p7RN < |LU1|07P7RN + 1.
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Now, set wy, := 'Uk/kl/p. It follows from (5.8) that (wy) is bounded in W?2:?(R¥) and that
||wi||2,p rv > 1 for every k € N (so that (wy) contains no subsequence converging to 0 in
w2r(RM)). By (5.9), ||wk|]1,00 my < (CM+1)/kY? whence wy, — 0 in C}(RY). Together
with the boundedness of (wy) in W2P(RY), this also implies wy — 0 in W2P(RY). Lastly,
|Lwilo p ey < (|Luylo ppy + 1)/k'/? by (5.10), which shows that Lwy — 0 in LP(RY). O

Theorem 5.1. Let L := —a’]%]V:lAalg(;v)aiﬂ + anga(x)aa + C(x) be an operator strictly
elliptic on the compact subsets of RY, with coefficients A,z € CO(RY) N L>®(RY) and
B,,C € L®(RY). Given N < p < oo, we have L € &, (W2%P(RY), L?(RY)) if and
only if every bounded sequence (u,) from W*P(RY) such that u, — 0 in C}(R") and

Lu,, — 0 in LP(RY) contains a subsequence converging in W*P?(RY) (and hence tends to

0 in W2P(RN)).

Proof. The necessity is obvious. For the converse, we use Lemma 3.3: We must show that if
(un) is a sequence from W?2?(R¥) such that u,, — 0in W2?(R¥Y) and Lu,, — 0in LP(RY),
then u, — 0 in W2P?(RY). By contradiction, suppose that it is not so, and hence that (u,)
contains a subsequence (u,, ) which is bounded away from 0 in W%P?(R¥). For simplicity
of notation, replace (uy, ) by (u,). Then, (u,) satisfies the conditions required in Lemma
5.2, and hence after replacing (u,) by the sequence (wy) of that lemma, we may assume
that u, — 0 in C}(RY). But then, from the hypothesis made in the theorem, (u,) must
contain a subsequence converging to 0 in W2?(RY), which is the desired contradiction. [

Theorem 5.1 is a strengthening of Lemma 3.3, hence of Yood’s criterion, for elliptic dif-

ferential operators, showing that attention may be confined to bounded sequences tending

to 0 in C}(RY) (instead of considering all the sequences tending weakly to 0 in W2?(R™)).

Corollary 5.1. Let N < p < oo and suppose that the coefficients of the operator F' in
(3.1) satisty the conditions (3.2) to (3.6). Suppose also that every bounded sequence (uy)
from W2P?(RY) such that u, — 0 in C(}(RN) and F(u,) — F(0) in LP(RY) contains a con-
vergent subsequence(!) (In particular, it is so if F' is proper on the closed bounded subsets

() Hence u, — 0 in W22 (RN).
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of W2P(RY).) Then, there is v € Z U {—oc} such that DF(u) € ®,(W%*P(RY), LP(RY))
for every u € W2P(RY).

Proof. By Theorem 3.1, it suffices to show that DF(0) € &, (W2*?(RY), L?(RY)). Ac-
cording to Theorem 5.1 with L = DF(0), this amounts to proving that if (u,) is a se-
quence from W%P(RY) such that u, — 0 in C}(RY) and DF(0)u, — 0 in LP(RY), then
(un) contains a subsequence converging (to 0) in W2%P(RY). By Lemma 4.1, we have
F(u,) — F(0) — DF(0)u, — 0 in LP(RY). Since DF(0)u,, — 0 in L?(RY), this implies
F(uy,) — F(0) in L?(RY), and now the hypothesis about F made in the corollary requires

(un) to have a subsequence converging (to 0) in W2?(RY). O

We omit the (obvious) explicit statements of the necessary and sufficient criteria for the
properness of F on the closed bounded subsets of W2?(RY) that follow from Corollary
5.1 and either Theorem 4.1 or Corollary 4.1.

6. Operators with asymptotically N-periodic coefficients.

Let T = (T}, ,Tn) € RY with T; > 0,1 <7 < N. A mapping f defined on R¥
is said to be N-periodic with period T if f(xq,--- ,2; + Ti,--- ,an) = f(a1, -+ ,zn) for
every * € RY and every 1 <i < N. In this section, we shall assume that the coefficients
aap,l < a,8 < N and b are “asymptotically” N-periodic (in addition to the properties
required earlier and listed in Section 3). Precisely, this means that we consider continuous

mappings agy : RY x (R x RY) - R,1 < o,3 < N, all N-periodic in = with period

T =(Ty, - ,Tn), and assume that
(6.1) lim aap(z,) —agz(z,) =0, 1 <a,B <N,
|z|—o0

where the limits are taken uniformly over the compact subsets of R x RY. Recall that

b(x,¢) may be written as

(6.2) b(x,&) = b(x,0) + g ci(x, €)E&;

1=0

with ¢;(z,€) = fol O¢, bz, t€)dt, so that ¢;(+,0) = 9¢,b(+,0) € L=®°(RY)and ¢; is an equicon-

tinuous C° bundle map (see Theorem 2.2), 0 < i < N. We also assume the existence of
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continuous mappings ¢° : RY x (R x RY) — R, N-periodic in z with period T as above

such that

(6.3) lim ¢i(z,:) —c¢®(x,:) =0, 0<7 <N,

|z|—o0 !

where once again the limits are taken uniformly over the compact subsets of R x RY. We

shall set

(6.4) b (x,€) := g e (x, €&,

1=0

so that >(-,0) = 0.
Note that (6.3) and (6.4) hold e.g. when 5> : RY x (R x RY) = R is a C’% bundle map
with 6°°(-,0) = 0, which is N-periodic in & with period T and such that

(6.3") lim O¢b(x, ) — 00 (z,-) =0, 0<i<N,

|z| =00

uniformly over the compact subsets of R x RY. It suffices to define ¢?°(z, ) := fol
té)dt.

By continuity and N-periodicity, we have agoﬁ(-,()) € L®RY), 1< a,8 <N, and
c°(+,0) € L*=(RY), 0 <i < N. Also, by Remark 2.1, the coefficients agy and ¢i° are all

e, b (,

1

equicontinuous C° bundle maps. No ellipticity condition is required of the coefficients Ao
at this stage. We define the operator F*° in the obvious way, namely
il 2
(6.5) F>(u) =~ X ags(-,u, Vu)duu + b7 (-, u, Vu).
a,B=1
The assumptions made above ensure that when N < p < oo, F'*° is both continuous and
weakly sequentially continuous from W2P?(RY) into LP(RY), and maps bounded subsets
onto bounded subsets. This follows from Lemma 3.1 and Remark 3.1.

Under the assumptions listed above, we shall prove that two very simple necessary and

sufficient criteria for the properness of F on the closed bounded subsets of W22 (RY) exist

(Theorem 6.1).
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Lemma 6.1. For R > 0, denote by Br the complement of the open ball with center 0
and radius R in RY. Suppose N < p < oo and let B C W?P?(R¥) be a bounded subset.

For every € > 0, there is R > 0 such that |F(u) — F(0) — F*(u)|, ».Br < € forevery u € B.

Proof. Since B is bounded in W2?(RY), hence in C}(RY), there is a compact subset
K C R x RY such that (u(z), Vu(z)) € K for every x € RY and every u € B. It thus
follows from the limit in (6.1) being uniform in { € K that |aag(@,§) — agj(z,§)] < € for

every x € BR) and every £ € K if R > 0 is large enough. Hence
(6.6) laas(u) —ags(u)ly o, <6 YueB, 1<a,f <N,

where the notation (2.6) was used.

A similar argument, based on (6.3) instead of (6.1), yields
(6.7) lci(2,6) — ¢°(x,€)| <€, Vo€ Br, V€ K, 0<i<N,

after increasing R > 0 if necessary. Since K above is arbitrary, we may also assume that K
is convex and contains 0. By (6.2), (6.4) and (6.7), we find |b(z,£) — b(x,0) —b>=(z,£)| <
eigo|§i| for # € B and € € K. As a result, [b(u) =b(0)=b>(u)|y .5, < e(N+1)[|ully,r~
for every u € B. Since b(-,0) € L?(RY), we have |b(, 0)|0,p,BR < e for R > 0 large enough,
whence

b(u) - b(u)

|0,p,BR < e(N+ 1)||u||2,pRN, Yu € B.

Together with (6.6), this shows that |[F(u)—F(0)—F*(u)|, , 5, < e(N2+N+1)||ully p pr

for every u € B. Since B is bounded, the conclusion follows after a mere rescaling of . [

Given h € RY and f : RY — R any function, we denote by 7, (f) : RY — R the function

(6.8) m(f)(z) ;= f(z + h), Yo e RV,
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Lemma 6.2. Suppose N < p < oo and let B C W%P(RY) be a bounded subset. Let
w C RY be a bounded open subset. For every ¢ > 0, we have |r,(F(u) — F(0)) —

Th(F®(u))]o,pw < € for every u € B provided that |h| is large enough.

Proof. By translation invariance of the Lebesgue measure, |7, (F(u)—F(0))—74 (F>(u))|o,p,w
= |F(u) — F(0) — F*°(u)|o,p,wt+hr for every u € B. Let then R > 0 be as in Lemma 6.1.
For |h| large enough, we have w + h C Bg since w is bounded, so that |F(u) — F(0) —
F(u)lopwtn < |F(u) = F(0) = F*(u)ly , 5, < €foreveryue B. O

Lemma 6.3. Suppose that N < p < oo and
(i) there is u® € W2P(RY) such that DF(u°) € & (W2?(RY), LP(RY)),
(i) {u € W2P(RYN), F>°(u) = 0} & u = 0.
Then, the restriction of the operator F to the closed bounded subsets of W%P(RY) is

proper.

Proof. By Corollary 4.1, we must show that if (u,,) is a bounded sequence from W?%?(RY)
and if there is y € LP?(RY) such that F(u,) — y in LP(RY), then there is a subsequence
(un, ) vanishing uniformly at infinity in the sense of C}(RY). After replacing F by F—F(0)
and y by y — F(0), we may assume F(0) = 0.

Since the sequence (u,) is bounded, we may also assume that u, — u in W2P?(RY)
after replacing (u,) by a subsequence. The problem reduces to showing that (u,) vanishes
uniformly at infinity in the sense of C}(RY). To do this, it suffices to prove that the case
(ii) of Theorem 4.3 cannot occur, i.e. that there are no sequence ¢y € Z" with lim |¢}] = oo
and subsequence (uy, ) of (uy) such that @,, () := un, (x + (;T) has a nonzero weak limit
u in W2P(RY). See (4.7) for the notation ¢;,T. By contradiction, suppose that such
sequences exist. For simplicity of notation, we replace (uy,) by (u,), thereby assuming
that there is a sequence £,, € Z"~ with nh—>nolo|£"| = o such that @, — @ # 0 in W2?(RY),
where @,(2) := up(x 4+ €,T). The translation invariance of the Lebesgue measure implies
F(up)™ —gn — 0in LP(RY), where F(u,)~ (z) := F(uyn)(z+£,T) and §,(z) := y(z+£,T).

In particular, for every bounded subset w C RY we have

(6.9) F(un)” — gn — 0in LP(w).
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The definition of F(u,)” given above coincides with 74, 7(F(uy)) if the notation (6.8)
is used. Since |[¢,| — oo, hence |(,,T| — oo, it follows from (6.9) (with F(0) = 0) and
Lemma 6.2 that 7, 7(F*>(u,)) — yp — 0 in LP(w). But because the coeflicients of F*° are

N-periodic in x, this is just
(6.10) F(tn) — g — 0in LP(w).

Since the sequence (i, ) is bounded in WP (RY) (indeed, ||ty ||2 pjrv = ||unl|2,p v and (un)
is a bounded sequence by hypothesis) and F*° maps bounded subsets to bounded subsets,
as observed earlier, the sequence (F(i,) — §,) is bounded in LP(R%) and hence has
weakly convergent subsequences in L*(R”). By (6.10), every subsequence of (F°(t,,)— i)
converging weakly to some limit in L?(R%) converges to 0 in L?(w) for every bounded open
subset w C RY, and hence converges weakly to 0 in L?(RY). As a result, F*°(u,) — g, —
0 in LP(RY), and since §, — 0 in LP(R?Y) by Lemma 4.2, it follows that F>(u,) —
0 in LP(RY). Thus, F*°(u) = 0 by the weak sequential continuity of F*° (also observed

earlier). This contradicts condition (ii) of the lemma since u # 0. O

Our assumptions do not ensure that the operator F*° in (6.5) is differentiable, but
it is easily checked that they suffice for F*° to be differentiable at 0 € W2P(RY), with

derivative

N N
(611)  DF=(0)o = £ aZ(,0000+ (0000 + (-0,

for every v € W22(RY).

Lemma 6.4. Suppose N < p < oo and let (u,) be a bounded sequence from W2P(RY)
such that u, — 0 in W2P(w) for every bounded open subset w C RY. Then, we have

(i) F(uy,) — F(0) — F>®(u,) — 0 in W2P(RY).

(ii) (DF(0) — DF>(0))u, — 0 in W*P(RY).

Proof. (i) Let € > 0 be given. Since (uj,) is bounded, it follows from Lemma 6.1 that

for R > 0 large enough, we have |F(u,) — F(0) — Foo(un)|0p B, < € for every n € N,
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Next, since u, — 0 in W?P(Bg) by hypothesis, and since F' and F> are continuous
from W?P?(Bpg) into LP?(Bg) (see Remark 3.1), we have F(u,) — F(0) = 0 in L?(Bg) and
F*(up) — 0in LP(Bg). Hence, |F(uy) — F(0) — F*>(uy)|o,p,Bg < € for n large enough.
As aresult, [F(un) — F(0) = F*(un)|o pry < 21/P¢ for n large enough. This proves (i).

(i) follows from (i) after replacing F' and F*° by DF(0) and DF°(0), respectively.
Indeed, because smoothness in the variable ¢ alone is required in the definition of C’g
bundle maps (Definition 2.1), it is readily checked that DF(0) (resp. DF°(0)) satisfies
all the conditions required of F (resp. F*°). Furthermore, conditions (6.1) to (6.4) are
unaffected when replacing F (resp. F*°) by DF(0) (resp. DF>(0)) (see (3.7) and (6.11)
for the expression of DF(0) and DF*°(0)). O

Theorem 6.1. Suppose N < p < oo and that the coefficients of the operator F in (3.1)
satisfy the conditions (3.2) to (3.6) and (6.1) and (6.3). The following statements are
equivalent:

(i) The restriction of F to the closed bounded subsets of W2?(R¥) is proper.

(ii) Every sequence (uy,,) from W2P?(R¥) such that u, — 0 in W%P(RY) and F(u,) — F(0)
in LP(RY) contains a convergent subsequence (hence tends to 0 in W2P(RY)).

(iii) Thereisu® € W%P(RY) such that DF(u®) € & (W%P(RY), L?(RY)) and the equation
F*(u) = 0 (see (6.5)) has no nonzero solution u € W2P?(R™).

Proof. (i) = (ii) is obvious and (iii) = (i) is Lemma 6.3. Thus, it suffices to show that
(ii) = (iii). That DF(u) € ®4(W2P(RY), LP(RY)) for every u € W2P(RY) when (ii)
holds follows from Corollary 5.1 since u, — 0 in W2?(RY) whenever (u,) is bounded
in W2P(RY) and u,, — 0 in C}(R?Y). To show that F*°(u) # 0 if u # 0, assume by
contradiction that v € W2P(RY),u # 0 and F*®(u) = 0. For n € N, set t,(z) :=
u(xz 4+ nT), so that F*°(u,) = 0 by the N-periodicity in = of the coefficients of F*°, and
Up, — 0 in W2P(w) for every bounded open subset w C RY by Lemma 4.2. By Lemma
6.4 (i), we thus obtain F(i,) — F(0) — 0 in L*(RY), i.e. F(u,) — F(0) in LP(RY). Also,
Up, — 0in W2%P(RY) (e.g. by Lemma 4.2 once again). It now follows from part (ii) of the
theorem that (u, ) contains a convergent subsequence. Necessarily, this subsequence tends

to 0, which is impossible since ||tn||s , pv = [|u||2 ppv for every n € Nand u # 0. O
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Both the implications (ii) = (i) and (iii) = (i) in Theorem 6.1 are very simple criteria for
the properness of F'. Note that condition (ii) is much weaker than properness, and actually
a genuine (nonlinear) generalization of Lemma 3.3. The nonexistence of nonzero solutions
to the equation F*°(u) = 0 can often be checked, at least when F*° has z-independent

coefficients, via general Pohozaev identities (see [18]).

Remark 6.1: Due to the continuity and N-periodicity of the coefficients agoﬁ(-,O), the
ellipticity and strict ellipticity on RY are identical properties for these coefficients. Also
(assuming (3.4)) it follows easily from (6.1) that the (strict) ellipticity condition for the co-
efficients agj(-, 0) is equivalent to the strict ellipticity condition for the coefficients aqs(-, 0)

i.e. the constant v(z,0) in (3.4) can be chosen independent of z € RY). O
v

Our next task will be to show that under a mild additional assumption, DF(0) and
DF®(0) are in ® (W2?(RY), LP(RY)) simultaneously. This will lead to a sharpening of
Theorem 6.1 in Theorem 6.2.

Lemma 6.5. Suppose N < p < oo and suppose that the coefficients aqg(-,0) satisfy a
strict ellipticity condition on RY. Then, DF(0)— DF>(0) is compact modulo both DF(0)
and DF>(0) (see Definition 3.1). Furthermore, DF(0) € ®,(W%?(RY), LP(RY)) if and
only if DF>(0) € &,(W??(RN), L?(RN)).

Proof. We must show that if (v,) is a sequence from W?2?(R¥) such that v, — 0 in
W2P(RY) and either DF(0)v, — 0 in LP(RY) or DF*(0)v,, — 0 in LP(RY), then
(DF(0) — DF*>°(0))v, — 0 in L?(RY). By Lemma 6.4 (ii), it suffices to show that v,, — 0
in W2?(w) for every bounded open subset w C R¥. This follows from Lemma 3.6 with
either L = DF(0) or L = DF>(0). That this lemma does apply with both choices is due
to the strict ellipticity assumption and Remark 6.1. This shows that DF(0) — DF>(0) is
compact modulo both DF(0) and DF*°(0).

More generally, set Ly := tDF(0) + (1 — t)DF>(0) for ¢t € [0,1]. By Remark 6.1, the
second order coefficients of Ly, i.e. taag(-,0) + (1 —t)agj(-,0) satisfy a strict ellipticity
condition on R¥. As a result, we may repeat the above arguments with L; = DF(0)

replaced by L; to prove that Ly — Lg is compact modulo both L, and Lg for every ¢ € [0, 1].
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By Lemma 3.4 (iii), L, € ®4(W*P(RY), LP(RY)) if and only if this is true of either
Ly = DF(0) or Ly = DF*°(0), and if so the index of L; is independent of ¢ € [0, 1]. This

completes the proof. O

The following lemma complements Lemma 6.5 by showing that in some cases of practical

importance, the index v can only be 0.

Lemma 6.6. Let 1 < g < oo and let L € L(W*4(RY), L4(RY)) be a second order elliptic
differential operator with continuous N -periodic coefficients. We have

(i) dimker L = 0 or oo and dimker L* = 0 or oo.

(ii) If N = 1, then dim ker L = 0, and if in addition rge L is closed then L is an isomorphism
(hence Fredholm of index 0)(?).

(iii) If ¢ > 2, L has constant coefficients and L € ®(W%4(RY), L4(RY)), then L is an

isomorphism (hence Fredholm of index 0).

Proof. (1) Suppose that ker L # {0} and let u € ker L,u # 0. For n € N, set @, (x) := u(x+
nT') where T is the period of the coefficients of L. By N-periodicity, we have Li,, = 0 for
every n € N, and 4, — 0in W24(R") by Lemma 4.2. If ker L were finite dimensional, this
would imply @, — 0 in W2 ?(RY), which is impossible since ||t ||y , zv = [[u]|2 4 (# 0)
for every n € N. Thus, dimker L = oo. The proof that dimker L* = 0 or oo follows
the same lines after noticing that ker L* C LY (RV)(¢' = Hélder conjugate of ¢) is also
invariant by T-translation (i.e. u* € ker L* = 4* € ker L* where ¢*(z) := u*(x+T)). This
follows easily from the T-translation invariance of rge L and of the Lebesgue measure.

For the proof of (ii), note first that by the continuity and periodicity of its coeflicients, L
is strictly elliptic. The solutions u € W?4(R) of Lu = 0 are in C'(R) since ¢ > 1, hence in
C?(R) by an immediate bootstrapping argument. The theory of second order linear ODEs
with bounded continuous coefficients ensures that there are only two linearly independent
solutions of Lu = 0 in C?(R), whence dimker L < 2, and ker L = {0} by (i).

The same procedure does not directly apply to obtain ker L* = {0} because L* need

not be a differential operator. However, the above shows that when rge L is closed, then

(?)This result can be improved; see Remark 6.2.

39



L is semi-Fredholm. Since the index is unaffected by small enough perturbations of the
coefficients, we may assume that L has C'* (still periodic) coefficients. If so, L* remains
an elliptic second-order differential operator with C'*° periodic coefficients. Note that L*
acts from Lq’(R) into W_Z’ql(]R), but by (local) elliptic regularity, the members of ker L*
are in T/Vli’cql(R), hence in C'(R) since ¢’ > 1, and also in C?*(R) by boostrapping. Thus,
dimker L* < 2 by the arguments used above with L, whence ker L* = {0} by (i). This
shows that index L = 0. Since also ker L = {0}, L is an isomorphism.

(iii) Since ¢ > 2, we have ¢’ < 2. Since L, hence L*, has constant coefficients and
Fourier transform maps qu(RN) into L4(RY) (because ¢' < 2; see [4]), it follows that
ker L* = {0}. Also, dimker L < oo by hypothesis, so that ker L = {0} by (i). Thus, index
L =0 and L is one-to-one, hence an isomorphism. 0O

From Lemmas 6.5 and 6.6, we obtain the following sharpening of Theorem 3.1 (see also

Remark 6.2):

Theorem 6.2. Suppose N < p < oo and that the coefficients of the operator F in (3.1)
satisfy the conditions (3.2) to (3.6) and (6.1) and (6.3). Suppose also that the coefficients
aag(+,0) satisfy a strict ellipticity condition on RY. Then, if either N = 1 or N > 2 and
the coefficients agy(-,0) and ¢{°(-,0) are constant, F : W2P(RY) — LP(RY) is Fredholm of
index 0 if and only if there is u® € W2P(R¥) such that DF(u°) € & (W*?(RY), LP(RYN)).

Proof. The necessity is obvious. Conversely, suppose that DF(u°) € & (W?(RY), LP(RY)).
Then, by Theorem 3.1, we have DF(0) € & (W2?(RY), LP(RY)) and , by Lemma 6.5 with

L = DF>(0) and Remark 6.1, it follows that DF*°(0) € & (W?2?(RY), LP(R")) with in-
dex DF*°(0) = index DF(0). We now apply Lemma 6.6 with L = DF>(0), which is
possible once again by Remark 6.1. If N = 1, Lemma 6.6 (ii) with ¢ = p yields in-
dex DF*°(0) = 0. If N > 2, the condition p > N ensures that p > 2, so that index
DF®>(0) = 0 by Lemma 6.6 (iii) with ¢ = p. Thus, DF(0) € ®q(W?2?(RY), L*(RY)).
That F is Fredholm of index 0 follows from another application of Theorem 3.1. O

Now, we can use Theorem 6.2 to complement Theorem 6.1.
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Corollary 6.1. If, in addition to the assumptions of Theorem 6.1, the coefficients asg(-,0)
satisfy a strict ellipticity condition on RY, and if either N = 1, or N > 2 and the coefficients
ags(+,0) and ¢i°(+,0) are constant, then the statements (i), (ii) and (iii) of Theorem 6.1
are equivalent to:

(iv) there is u® € W2P(RY) such that DF(u®) € ®q(W?2P(RY), L?(RY)) and the equation
F>(u) = 0 (see (6.5)) has no nonzero solution in W2P?(RY).

Proof. Evidently, (iv) = (iii), and the converse is due to Theorem 6.2. O

Alternatively, we obtain simple necessary and sufficient conditions ensuring that the

degree theory in [13] is available for the operator F.

Corollary 6.2. Suppose N < p < oo and that the coefficients of the operator F in (3.1)
satisfy the conditions (3.2) to (3.6) and (6.1) and (6.3). Then, F : W%P(RY) — LP(RY) is
of class C', Fredholm of index 0 and proper on the closed bounded subsets of W%P(RY)
if and only if

(i) there is u® € W2P(RY) such that DF(u®) € ®&q(W??(RY), LP(RY))

and

(i) the equation F*°(u) = 0 (see (6.5)) has no nonzero solution u € W%?(R™Y).

If, in addition, the coefficients ang(+,0) satisfy a strict ellipticity condition on R, and
if either N = 1 or N > 2 and the coefficients ag(-,0) and ¢;°(-,0) are constant, then
condition (i) above may be replaced by
(i’) there is u® € W2P(RY) such that DF(u®) € &, (W?2?(RY), LP(RYN)).

Proof. The first part follows directly from Lemma 3.2, Theorem 3.1 and the equivalence
(i) < (iii) in Theorem 6.1. By Theorem 6.2, (i) may be replaced by (i’) under the stated

additional assumptions. O

In concrete problems, Remark 6.1 and Lemma 6.5 may be useful to check the strict
ellipticity condition and conditions such as DF(0) € ®,(W%*P(RYN), L?(RY)). For the

record, we observe that there are conditions other than those given in Lemma 6.6 ensuring
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that L € ®q(W?2P(RY), LP(RY)) if and only if L € & (W2P(RY), LP(RY)). For instance,

the assumption that L is formally self adjoint plays an important role in such questions.

Remark 6.2 Let L := —Q;XV]:lAaﬂaiﬂ + angaaa + C be an elliptic differential operator
with constant coefficients. It is mostly folklore, though an explicit statement is hard to
find, that given 1 < ¢ < oo, L : W24(RY) — LY(RY) is semi-Fredholm if and only if it is an
isomorphism, and that in turn this amounts to a condition about the coefficients of L. More
precisely, this condition is that C' > 0 if either N > 2or N =1 and B; =0. If N =1 and
By # 0 then C # 0 suffices. This result is stronger than Lemma 6.6 (iii). The sufficiency
follows by Fourier transform and Mikhlin’s multiplier theorem (see e.g. Grisvard [8, p.99]).
A proof of the necessity can be based upon the special properties of Gaussians and Fourier
transform. When the coefficients a3 (-, 0) and ¢f°(-,0) are constant, this can be used with
L = DF*(0), and hence A,3 = agoﬁ(O),Ba = ¢X(0) and C = ¢5°(0),1 < o, < N.
Together with Lemma 6.5 and Theorem 3.1, this gives a simple necessary and sufficient
condition for F' to be semi-Fredholm of index v € Z U {—oc} or, equivalently, Fredholm of
index 0. O

Remark 6.3 (case N = 1): When N = 1, there is only one function ay; := a, but it is
also possible to allow for different “limit” functions ¢® and ¢~ (and also b and b~°°)
with different periods Ty and 7_, respectively. This leads to two “limit” operators F'*°
and F~°°. In this case, condition (iii) of Theorem 6.1 must incorporate the assumptions
that F°(u) =0 < u =0 and F~*(u) = 0 & u = 0 for Theorem 6.1 to remain valid: (i)
= (ii) is still trivial, and (iii) = (i) by a straightforward variant of the proof of Lemma
6.3 (after extracting a subsequence, it may be assumed that (; tends to oo or to —oo).
The proof of (ii) = (iii) is a little more delicate. First, Lemma 6.1 can easily be modified
in the form: For every e > 0, there is B > 0 such that |[F(u) — F*®(u)lo p (—co,—r) < €
and |F(u) — F*™(u)|op (r,c0) < € for every u € B. With this result, the following special
case of Lemma 6.4 (i) can be proved: F(uy) — F(0) — F~*°(u,) — 0 in LP(R) whenever
Up(z) :=u(z+nT_),n € N, and F(u,)— F(0)— F>*(4,) — 0in LP(R) whenever @, (z) :=
u(z —nT4),n € N. This uses the remark that @,(z) := u(z + nT-) (resp. u(z —nTy))

satisfies the condition ||tn||2,p (—r,e0) = 0 (resp. |[Unll2,p,(—oo,r) — 0). This suffices to
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repeat the arguments of the proof of (ii) = (iii) in Theorem 6.1 with evident modifications.
In contrast, there is no obvious generalization of Lemma 6.5 and, accordingly, it can no
longer be ascertained that condition (iii) of Theorem 6.1 is equivalent to condition (iv) of

Corollary 6.1. O

7. More general quasilinear elliptic operators.

Simple examples show that when N > 2, the asymptotic N-periodicity in x of the coeffi-
cients ang and b is rather atypical, although relevant in some important physical problems.
What often happens is that these coefficients continue to have an orderly behavior at infin-
ity, but their limit depends upon the direction in which the z-variable tends to infinity. We
shall show in this section that if the directional behavior of the coefficients is sufficiently
“stable”, then a necessary and sufficient criterion for the properness of the operator F' on
the closed bounded subsets of W2?(R¥) can still be obtained. This criterion generalizes
Theorem 6.1 in an obvious way (Theorem 7.1) and it was originally motivated by Remark

6.3, dealing with the case N = 1. However, Theorem 7.1 extends the result of Remark 6.3

oo b:l:oo

to arbitrary N only when a and in that remark are z-independent.

We continue to assume that the coefficients a,g and b satisfy the conditions listed
in Section 3. We denote by SV~! the unit sphere of RY and we assume that for each
s € SN~1 there are continuous mappings azc/’g’s RxRY 5 Rand ¢**: RxRY - R
(hence all z-independent) such that for every sequence (\,,s,) from Ry x SN~! with

lim A, = oo, lims, =s € SV~ we have

(7.1) limagg(Ansn,€) = azoﬁ’s(f), 1<a,8<N,

(7.2) lim ¢;j(Ansn, &) =¢; (), 0<i<N,

where in (7.1) and (7.2) the limits are uniform over the compact subsets of R x RY and

the coefficients ¢; are as in (6.2). We shall set

(7.3) BN = B (6, Yae S

2

Examples of coefficients satisfying conditions (7.1) and (7.2) are easily obtained starting

with £-independent rational functions R(x) := P(x)/Q(z) where P and @ are polynomials
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in N variables with deg P = deg @ = m : If P,, and @), denote the homogeneous parts
of degree m of P and Q, respectively, and if Q (resp. Q.,) does not vanish on R¥ (resp.
SN=1) then lim R(An8,) = Pn(8)/Qm(s) for every sequence (A, s,) as in (7.1) and (7.2).
Note that it is the rule rather than the exception that the limit P, (s)/Qm(s) depends
upon s. Other (nonrational) examples are easily found.

Conditions (7.1) and (7.2) imply an apparently stronger property:

Lemma 7.1. Let (\,,s,) be a sequence from RT x S¥=1 such that lim )\, = oo and

lims, =s € SV~!. Then,

(7.4) limagg(z + Apsn, §) :azcgs(f),l <a,B<N,

(7.5) limci(x 4+ Apsn, &) =¢;7°(€), 0<i <N

and the limits are uniform over the compact subsets of RY x (R x RY),

Proof. Let 1 < a,3 < N be fixed. If (7.4) is not true for some pair (z,£) € RY x (R x RY),
or if the limit is not uniform over the compact subsets of RY x (R x RY), there are ¢ > 0
and a bounded sequence (z,,£,) from RN x (R x ]RN) such that |aag(zn + Ansn, n) —
azofés(fnﬂ > e for arbitrarily large n € N. But since (z,,) is bounded and lim A\, = oo, we
may write T, + A\pSp, = nsh, where s), = (2, + A\nsn)/|tn + Ansa| € S¥7! tends to s
and p, = |zn + Apsy| tends to co. Hence, |aag(tins),,&n) — azc/’g’s(fnﬂ > ¢ for arbitrarily
large n. On the other hand, since ({,,) is bounded and the limit in (7.1) is uniform over

the compact subsets of R x RY, it follows that |aas(insh,&n) — azcgs(fnﬂ < € for n large

enough, a contradiction. The proof of (7.5) is similar. O

For s € SV~! we introduce the quasilinear operators

N
(7.6) Fo%(u) == X azoés(u,Vu)aiﬁu + %% (u, Vu).

o,8=1

Since b>*(0) = 0 by (7.3) and aZOAS(O) and c;"*(0) are constant, it follows from Lemma 3.1

and Remark 3.1 that F°°® is well defined, continuous and weakly sequentially continuous
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from W?2?(w) into L?(w) where w C R¥ is an arbitrary open subset with Lipschitz con-
tinuous boundary. In what follows, we shall also need to extend the translation operator

7, in (6.8) to bundle maps. This extension is defined in the obvious way, i.e.

(.7) (F)(@,€) == flx +h,€).

We may then define the operator 7,(F') obtained by shifting all the coefficients of F' by h:

(7.8) h(F)(u) := — g Th(aaﬂ)(-,u,Vu)aiﬂu—I—Th(b)(-,u,Vu).

a,8=1

Note that with the definition (7.8), we have the relation

(7.9) Th(F(u)) = 7 (F)(7n(u))

since differentiation commutes with hA-translations. From (7.7) and (7.8) it is obvious that

i (F') enjoys the same properties as F.

Lemma 7.2. Let N < p < oo and let (u,) be a sequence from W%P(RY) such that
up — u in W%P(RY). On the other hand, let (\,,s,) be a sequence from R4 x SN =1 such

that lim \,, = oo and lim s, = s € SN~ Then, 7y, (F)(u,) — F>*(u) in LP(RY),

Proof. First, note that 7 . (F) = 7a,s,(F — F(0)) + 7,5, (F(0)) and 7,5, (F(0)) =
Ta, s, (0(+,0)) — 0 in LP(RY) by Lemma 4.2. Thus, it suffices to show that 7, (F —
F(0))(un) — F>*(u) in LP(RY). In other words, it is not restrictive to assume that
F(0) =b(-,0) =0 in the first place.

Next, it must be observed that if B is a bounded subset of W2P?(R¥), then the set
{mn(u) : v € B,h € R} is bounded. From (7.9), 74(F)(u) = 74(F(7—n(u))), whence
\Th(F)(u)]opry = |F(T—n(u))|o pry. By Lemma 3.1, this implies that the set {7, (F)(u) :
u € B,h € RY} is bounded in LP(RY). In particular, the sequence (7x,s, (F)(u,)) is
bounded in LP(RY), so that 7, (F)(u,) — F>*(u)in LP(RY) if and only if 7y, s, (F)(un)

— F*:3(y) in LP(w), where w C RY denotes an arbitrary open ball.
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,From the embedding W2P?(RY) — CL(RY), there is a compact subset K C R x RY
such that (u,(z), Vun(z)) € K for every x € RY and every n € N. It thus follows from

Lemma 7.1 that, given 1 < o, 3 < N and € > 0, we have

(7.10) laas(z + Ansn,un(z), Vuy(z)) — azcgs(un(:c),Vun(x)ﬂ <€/2, Vz € w,

for n € Nlarge enough. Since azoés(()) is constant, Theorem 2.1 (iii) ensures that azoﬁ’s(un, V)
— azoﬁ’s(u, Vu)in L>®(w), so that |azo[§8(un(x), Vg (x)) — azoés(u(x), Vu(z))| < €/2 for ev-
ery z € w if n islarge enough. Together with (7.10), we obtain |aag(z+Ansn, un(z), Vu,(z))—

00,8

0% (u(x), Vu(2))| < € for every @ € w and n large enough , i.c.

(7.11) Tansn (@ag) (s ttns Vitg) = a5 (u, Vu) in L®(w).
Likewise, we find

(7.12) s, (B) (s i, Vitg) — 6% (u, V) in L(w) — LP(w)

because b(-,0) = 0 (as assumed earlier in the proof) and in that case (7.3) and (7.5) imply at
once that imb(x 4+ A\, sy, &) = % (€), the limit being uniform over the compact subsets of
RY xR xRY. Since the hypothesis u,, — v in W%?(RY) implies Qiﬁ'un — 625'11 in LP(RY),
it is clear that (7.11) and (7.12) yield the desired result that 75, s, (F)(ty) = F*>*(u) in
LP(w). O

Lemma 7.3. Suppose that N < p < oo and that
(i) there is u® € W2P(RY) such that DF(u°) € & (W%P(RY), LP(RY)),
(i) for every s € SV 71, the equation F**(u) = 0 has no nonzero solution u € W*?(RY),

Then, the restriction of F to the closed bounded subsets of W%P?(RY) is proper.

Proof. To prove properness, we use the equivalence (i) < (iii) in Corollary 4.1, which
reduces the problem to showing that every bounded sequence (u,) from W2?(RY) such

that F(u,) — y in LP(RY) vanishes uniformly at infinity in the sense of C}(RY). To see
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this, we choose T' = (Ty,--- ,Tn) with T; > 0,1 < ¢ < N, and prove that case (ii) of
Theorem 4.3 cannot occur.

By contradiction, suppose that there are a sequence ¢, € Z" with lim|¢;| = co and
a subsequence (u,, ) such that the sequence (i, ) defined by ty, (z) := up, (x + £xT) is
weakly convergent (in W2P?(RY)) to u € W2P(RY), @ # 0.

Set A\ := |(xT| and s := £, T/|{T|, so that lim Ay = oo and s € SV~!. After ex-
tracting a subsequence, we may assume that lim sz = s € S¥~!. By Lemma 7.2, and since
Mesk = LT, we have 7, 7(F)(tin, ) — F>*(a) in LP(RY). But t,, = 74, 7(un, ), whence,
by (7.9), Te,7(F(up,)) — F°*(a). Since a # 0, it suffices to show that ¢, 7(F(up,)) = 0
in LP(RY), for then F°*(#) = 0 and a contradiction arises with condition (ii) of the the-
orem. That 7, 7(F(un,)) — 0 in LP(RY) follows from 7, 7(F(uyn,) —y) — 0 in LP(RY)
by translation invariance of the Lebesgue measure and from 7, 7(y) — 0 in LP(RY) by

Lemma 4.2. This completes the proof. O

Lemma 7.3 is the analog of Lemma 6.3, i.e. the analog of the implication (iii) = (i) in
Theorem 6.1 to prove the analog of the implication (ii) = (iii) of that theorem, we need
a variant of a special case of Lemma 6.4 (i), given in Lemma 7.8 below. First, we have to
go through some more technicalities.

For p > 0, let B, denote the open ball in RY with center 0 and radius p. Given
s € SN71 the set B, N st is the open ball with center 0 and radius p in s1. We denote

by C. , the cylinder with axis Rs:
(7.13) Cs,:=Rs@ (B,Nsh),
and by C, the half-cylinder

(7.14) cH =RYe(B,ns™).

Thus, for R € R, the set Rs £+ C:p is the half-cylinder C:p shifted by R in the direction

+s (hence along its axis).
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Lemma 7.4. Let p > 0ands € SV~! be given. Then, Rlim aag(z+Rs, &) = ag;°(€), 1 <
— o0
a,3 < N, and Rlim ci(z + Rs, &) = ¢.7%(€), 0 < i < N, and the limits are uniform over
— 00

C;’:p x K where K is any compact subset of R x RV,

Proof. Since © € C has the form = = ts 4+ 2’ with 2’ € B, N st (hence |2'| < p) and
t > 0, we have |z 4+ Rs| — oo uniformly in = € C’;’:p when R — oo, and the proof of Lemma

7.1 can be repeated with obvious modifications. O

Our next lemma is the appropriate substitute for Lemma 6.1.

Lemma 7.5. Suppose N < p < oo and let B C W%P(RY) be a bounded subset. Given
p >0 ands € SN~ thereis R > 0 such that |F(u) — F(0) — Foot(u)lg, rsycF, < € for

every u € B.

Proof. Since B is bounded in W2?(RY), hence in C}(RY), there is a compact subset
K C R x R¥ such that (u(z), Vu(z)) € K for every z € RY and every u € B. Lemma 7.4
implies that |aaﬁ($,§)—afés(f)| < eand|ci(z,§)—c;7(§)| < eforl <a, <N,0<i<N
and every (z,€) € (Rs + C’;’:p) x K. From this point on, the proof proceeds exactly as the
proof of Lemma 6.1. O

Lemma 7.6. Let 1 < ¢ < co,p > 0 and s € SV~ be given. With u € W?4(C; ,) and
6 > 0 being fixed, set ti,(z) := u(x —nbs),n € N. Then, for every R € R, we have t, — 0
in W%4(Rs — C;’:p)(z;).

Proof. By the translation invariance of the Lebesgue measure, we have ||u“||2,p,Rs—C§CP =

||u||27p7(R_n9)8_C:cp. As n — oo, the set (R — nf)s — C§ becomes contained in the

N : . —
complement of any fixed bounded subset of R™, whence nh_,nolo||u||2,p,(R—n9)s—C§’,p =0. O
Our last preliminary result (not needed in Section 6) is one in the spirit of equicontinuity.

(3)The choice § # 1 will be needed in Remark 7.1.
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Lemma 7.7. Suppose N < p < oo and let B C W%P(RY) be a bounded subset. Then, for
every € > 0, there is 6 > 0 such that u € B and ||ul|z,p . < ¢ implies |F(u) — F(0)]o p,w < €
for every open subset w C RY. Likewise, if s € SV~ is fixed, § > 0 can also be chosen so

that |F°>*(u)|o pw < € for every open subset w C R,

N
Proof. Write b(z,£) = b(z,0) + E]o ci(z, €)&; with ¢;(z,€) = fol Og; b(z,t€)dt. This shows

N N
that F(u) — F(0) = 62 ang(-,u, Vu)aiﬁu + Zlca(-, u, Vu)Oqu + o+, u, Vu)u. By Theo-
af=1 a=
rem 2.1 (ii), the terms aqg(-, u, Vu) and ¢;(-, u, Vu) are all bounded by a constant Cg > 0
in L*°(RY), hence in L*°(w) irrespective of w, for every u € B. Thus, |F(u) — F(0)

0,p,w <
Cs ||u||2,p,w for every u € B after modifying Cg in a way depending only upon N and p,
so that § = €¢/Cp works. By (7.3), the same argument gives the result with F' replaced by

Feess O

Lemma 7.8. Suppose N < p < co. Given u € W2P(RYN) and s € SN7L, set un(z) :=
u(z —ns),n € N. Then, F(i,) — F(0) — F>~*(i,) — 0 in LP(RY).

Proof. Let € > 0 be fixed, and let B C W%P?(RY) be the closed ball with center 0 and radius
||u||2,p mv . By Lemma 7.7, there is § > 0 such that, for every open subset w C RY we have
that v € B and [|v||2,p,w < 0 implies |[F(v) — F(0)|o,p,w < €/6 and |[F*>*(v)]o p,w < €/6.
Therefore,

(7.15) {veB,||v|lzpw <} = |F(v) — F(0) — F(v)|opw < €/3.

Choose p > 0 such that |[u|] o < &, where B, denotes the complement of the open
vava
ball B, C RY with center 0 and radius p. Obviously, B, C Cs , (see (7.13)) and hence

C,, = R¥\ C,, C B, Tt follows that [[u]] . < §. Since C,, is invariant by
2

7p7cs,p
translation along Rs, we have ||u,]| o = |lu|]| o < § for every n € N. Also,
27p7cs,p 27P1Cs,p
|tn||2 pry = ||u]|2,p v, whence 4, € B for every n € N. Since (7.15) holds for every open

o

subet w C RY, we may choose w = ésm and v = t,,n € N, in (7.15). This yields

(7.16) |F(iin) — F(0) — F(in)] o <¢/3, ¥neN.

Ovpvcs,p



Now, Lemma 7.5 provides R > 0 such that
(7.17) |F(t,)— F(0) — Fm’s(’ﬁn)|07p7Rs+Gip <€/3, Yn €N,

and, by Lemma 7.6 with § = 1 and Lemma 7.7 with w = Rs — C:p,

(7.18) |F(t,)— F(0) — Foo’s(ﬁn)|07p7Rs_Cip < €/3,

for n large enough. Since RY = C,, U (Rs + Cy,) U(Rs — C{,) to within a set of
measure 0, namely, dC; , U (Rs + (B, Ns1)), it follows from (7.16), (7.17) and (7.18) that
|F(tin) — F(0) = F**(tin)|o p rv < € for n large enough. 0O

Here is now the “generalization” of Theorem 6.1.

Theorem 7.1. Suppose N < p < oo and that the coefficients of the operator F in
(3.1) satisty the conditions (3.2) to (3.6) and (7.1) to (7.3). The following statements are
equivalent:

(i) The restriction of F to the closed bounded subsets of W2?(R¥) is proper.

(ii) Every sequence (u,) from Wz’p(RN) such that u,, — 0 in Wz’p(RN) and F(u,) — F(0)
in LP(RY) contains a convergent subsequence (hence tends to 0 in W2?(RY)).

(iii) Thereisu® € W%P(RY) such that DF(u®) € & (W%P(RY), L?(RY)) and the equation

F®:%(u) = 0 has no nonzero solution u € W*?(RY) for any s € SN¥~1.

Proof. Once again, (i) = (ii) is obvious. That (iii) = (i) is Lemma 7.3, and that condition
(ii) implies that DF(u) € ® (W2P(RYN), LP(RY)) for every u € W2P(RY) follows at once
from Corollary 5.1. To show that F>*(u) # 0 when u # 0 for every given s € SN~1
suppose by contradiction that it is not so and let v € W2?(RY),u # 0, be such that
F*%(u) = 0. Then, with @, (z) := u(x — ns), we have F°*(u,,) = 0 since the coeflicients
of F*°* are z-independent. Thus, Lemma 7.8 yields F(@,) — F(0) — 0 in LP(RY). Since
Up, — 0 in W2P(RY) by Lemma 4.2, condition (ii) of the theorem implies that @, — 0 in

W2P(RY), contradicting ||tn||s ppy = |||z ppv #0. O
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Since the equivalence (i) < (ii) in Theorem 7.1 does not make any explicit reference
to the behavior of the coefficients of F as |z| tends to oo, it is likely to remain true
in a more general setting. Yet, we have found no direct proof of the implication (ii)
= (i). However, when the coefficients a,g are independent of ¢ (semilinear case), then
(ii) = (i) (hence “&”) holds irrespective of the behavior of the coeflicients an,g and b
as |z| tends to oo. This follows from the remark that, in that case, the mapping v €
WP (RY) +— F(u +v) — F(v) € LP(RY) is compact for every fixed u € W%P(RY)
(the case Supp u compact is easy; in general, use truncation and a limiting process) and
from the weak sequential continuity of F. When the coefficients a,g depend upon ¢, the
mapping v — F(u +v) — F(v) is not compact and this argument fails.

i From Theorem 7.1, it is clear that Corollary 6.1 can be generalized as follows:

Corollary 7.1. Suppose N < p < oo and that the coefficients of the operator L in (3.1)
satisfy the conditions (3.2) to (3.6) and (7.1) to (7.3). Then, F : W2P(RY) — LP(RY) is
C', Fredholm of index 0 and proper on the closed bounded subsets of W2?(RY) if and
only if

(i) there is u® € W2P(RY) such that DF(u°) € ®,(W2?(RY), LP(RY))

and

(i) the equation F>*(u) = 0 (see (7.6)) has no nonzero solution u € W2?(RY) for any

s e SN-1,

Corollary 7.1 remains true if the index v = 0 is replaced by any index v € Z U {—oc}.
See also Remark 3.2 for conditions ensuring extra smoothness of F. Since DF**(0) has
constant coefficients, it follows from Remark 6.2 that, when defined, the index of DF>**(0)
is 0. But unlike in Section 6, it is no longer possible to ascertain that F' in Theorem 7.1

has index 0. Counterexamples exist even when N = 1 and F' is linear. The simplest one

is given by

(7.13) F(u) = —u" — b(z)u’' — u,

where b is a smooth function such that b(z) = 1 for # > 1 and b(z) = —1 for z < —1.
In this case, we have F>®(u) := F*!(u) = —u" — v/ — v and F~>(u) := F>~1(u) =
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—u" 4+ u' — u. By elementary ODE arguments, F : W%P(RY) — LP(R),1 < p < oo, has
a two-dimensional null-space (if F((u) = 0, then u(x) has exponential decay as |z| — o0)
and, with a little more work, F' is surjective. Hence, F' has index 2. The formal adjoint of
F in (7.13), i.e.

F*(u) = —u" + b(z)u’ + (b'(z) — 1)u,

gives an example with index —2. Yet, both (linear) operators F£* have index 0, e.g. by

Remark 6.2.

Remark 7.1: There is no conceptual difficulty, only some notational inconvenience, in
extending Theorem 7.1 to the case when F is replaced by F! + F where F? has asymp-
totically N-periodic coefficients, i.e. satisfies the conditions required in Section 6. In this
setting, the ellipticity condition (3.4) should be required only of the coefficients aiﬂ +aang,
where a self-explanatory notation was used. The technical modificiations needed to handle
this case are minor. First, instead of choosing T' = (T4, --- ,Tn) arbitrarily in the proof of
Lemma 7.3 with F replaced by F?+ F, T should be chosen as a period of the operator F%>
with N-periodic coefficients, and Lemma 6.3 should be used to handle the part depending
upon F?. This provides the implication (iii) = (i) for F* + F in Theorem 7.1, where of
course F>* should be replaced by F»> 4+ F>* That (i) = (ii) remains obvious. Lemmas
7.4 to 7.8 are needed only for the proof of (ii) = (iii). There is no need to change anything,
not even F into F' 4+ F, in Lemmas 7.4 to 7.6. To obtain Lemma 7.5 with F replaced by
F' + F, it necessary to confine attention to those s € SN =1 of the form s = ¢4, T/ (4, T|
for some ko € ZY \ {0} and to R = m|l;,T|s,m € N, and to use Lemma 6.1 to handle
the part depending upon F!. Lemma 7.7 can be repeated verbatim with F replaced by
F' + F, and Lemma 7.8 for F? + F follows under the same restriction about s as above,
provided that the sequence (1) is now defined by @, (z) := u(x — n|lx,T|s). The only
modifications to the proof consist in choosing R = m|ly,T|s for some large enough m € N
and in using Lemma 7.6 with 6 = |(; 7| instead of § = 1. These preliminaries give the
implication (ii) = (iii) in Theorem 7.1 with F replaced by F? + F and F>* replaced by
F5% 4 F>s for all s € SV of the form s = £, T/|l1, T for some ko € ZV \ {0}, hence

for a dense subset of SV ~!. To obtain the full implication, it seems necessary to assume
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some continuity of F°°° with respect to s, not needed in Theorem 7.1. The pointwise

condition that F°** (u) — F°*(u) in LP(RY) whenever s, € SV ! tends to s for every

fixed u € W2P(RY) suffices. The metrizability of the weak topology of W2?(R%) on

closed bounded subsets is also helpful to obtain a sequence (u,) tending weakly to 0. The

corresponding (routine) details are left to the reader. O
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