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Abstract In this paper we discuss the global behaviour of some
connected sets of solutions (A, u) of a broad class of second order
quasilinear elliptic equations

N
— Z aop(z,u(z), Vu(z))0.0su(z) + b(z, u(z), Vu(z),A) =0 (1)
a,B=1

for z € RY where X is a real parameter and the function u is required
to satisfy the condition

lim u(z)=0. (2)

|z|—co

The basic tool is the degree for proper Fredholm maps of index zero
in the form due to Fitzpatrick, Pejsachowicz and Rabier. To use this
degree the problem must be expressed in the form F : J x X —» Y
where .J is an interval, X and Y are Banach spaces and F is a C'* map
which is Fredholm and proper on closed bounded subsets. We use the
usual spaces X = W2P(R") and Y = LP(RY). Then the main diffi-
culty involves finding general conditions on a,g and b which ensure
the properness of F. Our approach to this is based on some recent
work where, under the assumption that a,g and b are asymptotically
periodic in z as |z] — oo, we have obtained simple conditions which
are necessary and sufficient for F'(A,:) : X — Y to be Fredholm and
proper on closed bounded subsets of X. In particular, the nonexis-
tence of nonzero solutions in X of the asymptotic problem plays a
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crucial role in this issue. Our results establish the bifurcation of global
branches of solutions for the general problem. Various special cases
are also discussed. Even for semilinear equations of the form

—Au(z) + f(z, u(z)) = Au(z),

our results cover situations outside the scope of other methods in the
literature.

1 Introduction

In this paper we discuss the global behaviour of some connected sets
of solutions (A, u) of a second order quasilinear elliptic equation

N
— Z anp(z,u(z), Vu(z))0.0su(z) + b(z, u(z), Vu(z),A) =0 (3)
a,B=1

for z € RN, Here X is a real parameter and the function w is required
to satisfy the condition
lim u(z)=0.
|z|—co

In addition to the ellipticity of the matrix [a,g] of coefficients, we
suppose that b(z,0,A) = 0 for all (z,)) € RV Thus v = 0 is
a solution of the problem for every A € R and our results deal with
components of non-trivial solutions bifurcating from this line of trivial
solutions.

The programme for establishing results of this kind was laid down
in the fundamental work by Rabinowitz, [28] and [29]. It involves
writing the differential equation, together with the relevant bound-
ary conditions, as the set of zeros of the operator, FF : R x X = Y,
between function spaces X and Y and then using an appropriate
topological degree to obtain global properties of connected compo-
nents of non-trivial solutions. For very general elliptic equations on
bounded domains Sobolev or Hélder spaces can be chosen in such a
way that the classical degree of Leray and Schauder can be used to
obtain the desired results. However, even for the simplest semilinear
equations of the form

~Au(e) + f(z, u(z)) - Mu(x) = 0 (4)

on RV, this framework fails since the equation cannot be expressed
as a compact perturbation of the identity. This fact is intimately re-
lated to the presence of an essential spectrum for the linear operator
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—A 4+ V where V is a bounded potential. There are various ways
of circumventing this difficulty, including approximation by problems
on bounded domains and the use of weighted Sobolev spaces, [4],
[1], [12], [21], [36],[6] but we prefer to use an extension of the Leray-
Schauder degree since it seems to yield the most general results under
natural hypotheses. For ordinary differential equations on [0, co) this
approach was first adopted in [33], [34] and [35] using respectively the
degree for k—set contractions and Galerkin maps; and it was subse-
quently developed in various ways. Since these early contributions
there has been significant progress in constructing topological degree
theories, [18], [32],[21] and [36], which can be applied to problems on
unbounded domains. A particularly attractive and natural option is
offered by the degree for proper Fredholm maps of index zero which
has been built on the fundamental notion of parity, [10], [11] and [23],
and it is this tool which we shall exploit to deal with (3).

The degree for proper Fredholm maps of index zero was used in
[16] to deal with semilinear equations of the form (4) on RY in the
setting of standard Sobolev spaces. In that work it becomes clear
that the main effort must be devoted to finding conditions which
ensure the properness of the corresponding differential operator be-
tween appropriate function spaces. The maximum principle is used in
[16] to establish properness for equations of the form (4) for A lying
in an interval (—oo, §) below the essential spectrum of the lineariza-
tion at w = 0. The conclusions about global bifurcation which follow
from this are also confined to the interval (—oo, 3). More recently we
have used a different approach which, for a broad class of quasilinear
elliptic equations of the form (3), gives conditions which are both
necessary and sufficient for the corresponding differential operator to
be proper and Fredholm between the relevant function spaces at a
given value of A. It is this work which we shall now exploit to derive
global bifurcation results for equations the form (3). Even for semi-
linear equations like (4), our results go beyond the framework in [16]
since they are not confined to intervals below the essential spectrum
of the linearization of (4) at v = 0. When compared with previous
work on quasilinear equations on RY, we observe that we deal with
the general form of the equation and we do not require any decay
or integrability of the coefficients of the kind used in [6]. However,
in confining our attention to strictly elliptic equations, we exclude
some familiar examples of degenerate elliptic equations such as those
involving the p—Laplacian.

In [25] we consider the differential operator
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F(\u)(z) =

N
— Z anp(z,u(z), Vu(z))0,0su(z) + b(z, u(z), Vu(z),A)  (5)

a,p=1

and we formulate conditions which are necessary and sufficient for
F(A,") : X, = Y, to be a C! proper Fredholm map of index zero
(the relevant definitions are given in Section 3) between the spaces
X, = W3P(RV) and Y, = L?(R") where p € (N, 00). There are two
reasons for choosing these spaces :
(i) all elements of X, vanish as || — oo and
(ii) we can ensure that F(A,u) € Y, for all uw € X, without imposing
restrictions on the growth of the functions a,g(z,§) and b(z,&, A) as
€] = oc.
Furthermore, our results in Section 4, giving explicit conditions for
global bifurcation, do not depend upon the choice of p within the
range (N, 00).

Our criteria for properness involve an asymptotic limit operator

F* (], -) defined by
Fe (M u) =

N
— Z ags(z,u(z), Vu(z))0u0pu(z) 4+ 6% (z, u(z), Vu(z), ) (6)
a,B=1

where it is supposed that there are functions ags and 6% which are
N —periodic in z on RY such that 6>(z,0, ) = 0 and

i {aap(e,€) ~ (0.9} = Jim {0b(,€0) = 0647 (0,6} = 0
for 1 <o, <N and i=0,1,..,N. Roughly speaking (see Corollary
6.2 of [25] for a complete statement), if such an operator F(A,-) :
X, — Y, is C', then it is a proper (on closed bounded sets) Fredholm
map of index zero provided that

(C1) there is an element v € X such that the bounded linear
operator Dy, F'(A,v) : X, — Y, is Fredholm of index zero, and

(C2) if w € X, and F*°(A, u) =0, then u = 0.
This characterization of quasilinear elliptic operators on RY which
are proper on closed bounded sets and Fredholm of index zero is our
starting point for obtaining global bifurcation results. In deriving
such conclusions we should also formulate explicit conditions on the
functions a,g and b which imply that the above properties (C1) and



Global bifurcation for quasilinear elliptic equations on R 5

(C2) hold. These conditions should prove useful in other contexts
where the properness of the differential operator is relevant.

The first step in the programme we have just sketched is to ensure
that the operator ' : R x X, — Y, has enough smoothness for the
subsequent discussion. For fixed A, this is already dealt with in [25]
so here we need only study the smoothness of the Nemytskii operator
B:Rx X, =Y, defined by

B(X\ u)(z) = b(z,u(z), Vu(z), A).

This is undertaken in Section 2.

The general results about global bifurcation are formulated in Sec-
tion 3. Let X and Y be real Banach spaces. An open interval J is
called admissible for the map F : R X X — Y if the restriction of F to
J x X is a C'—proper Fredholm map of index zero in the sense of Def-
inition 2. For a point Ay € J across which the parity is equal to —1,
Theorem 2 contains global information which is available about the
branch of solutions bifurcation from the point (g, 0) in J X X. In the
context of the differential operator (5) and the Sobolev spaces X, and
Y,, the relationship between admissible intervals and the properties
(C1) and (C2) introduced above is spelt out in Theorem 4. Having
done this we can henceforth concentrate on the main problems which
have to be resolved in this paper, namely giving explicit conditions
which enable us to calculate the parity across Ag and to verify that
(C1) and (C2) are satisfied.

In studying the parity and checking the condition (C1) we are es-
sentially concerned with linear differential operators, or one-parameter
families of them. Our paper [26] contains some results about the
LP—spectral theory of Schrédinger operators which we use in Section
3 to resolve these issues. Thus Section 3 ends with two results about
global bifurcation for the equation (3) under the hypothesis that the
condition (C2) is satisfied.

The methods available for checking the condition (C2) depend
heavily on the form of the differential operator F°°. In Section 4
we have exploited three different techniques which seem appropriate
for meaningful situations. The first method hinges on the maximum
principle and is applicable provided that *°(z, s, 0, A) always has the
same sign as s. The second approach is based on variational identi-
ties of the type found by Pohozaev, and further developed in [8], [24],
[17] and [37]. To use this method we require the differential opera-
tor F'*°(A,-) to be autonomous and to have a variational structure.
Finally, if F°°(A,-) is a linear differential operator for each A € J,
spectral theory can again be used to check the condition (C2). Each
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method leads to a bifurcation theorem and they are formulated re-
spectively as Theorems 7, 8 and 9. Some special cases make it easier
to understand the different types of equation covered by these results.

Section 5 is devoted to examples illustrating the general results. In
Example 1 we compare the first and second methods in the context
of a family of problems which includes the cases where the principal
part of F' can be either the Laplacian or the mean curvature opera-
tor. The Example 2 deals with the case where F'*°(],-) is a periodic
Schrédinger operator. If the interval J lies in a spectral gap of this
operator the first two methods do not seem to be applicable.

Although our main concern has been to obtain global bifurca-
tion results for quasilinear operators, our approach covers situations
which appear to be completely untouched even for semilinear equa-
tions of the type (4). This can be illustrated in a very explicit way
by considering the nonlinear Schrédinger equation,

—Au(z) + V(z)u(z) 4+ r(z) [u(z)|” u(z) — Au(z) = 0. (7)

Referring to Case 1 of Example lin Section 5, we see that, when
im0 V(z) = V(o) € R,7 > 0 and limgor(z) > 0, the
result that we obtain concerning bifurcation for A in the interval
(—00, V(00)) coincides with what can be deduced from the work in
[16] in this situation. The approach in [16] fails when lim ;| r(z) <
0, whereas we can still deal with this case, for A in the interval
(—00,V(o0)), provided that lim, ., V(z) = V(o) € R and the ex-
ponent T is supercritical. In an other direction, Examples 2 and 3 seem
to be the first results about global bifurcation in spectral gaps for such
nonlinear Schrédinger equations when 7 > 0, lim ;. {V (z) — P(z)}
0 for some N —periodic function P and lim|g_,., r(z) = 0.

Our results describe the global behaviour of some connected sets
of solutions of equation (3) for values of X lying in what we call
an admissible interval for the operator (5). This restriction arises
because the degree theory which underlies our whole approach is only
available in such intervals. It is natural to ask whether these branches
of solutions in fact extend beyond an admissible interval and what
might be an appropriate tool for establishing this. However, in some
situations, one can show that the problem has no solutions outside
the admissible intervals. Example 3 in Section 5 demonstrates this in
a particularly simple setting.

The variational identities which are used in Section 4.2 are es-
tablished in our paper [27] where we also give conditions ensuring
that solutions of a second order quasilinear equation on RY decay
exponentially as |z| — oo. In Section 6 we use the results in [27] to
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establish the exponential decay of solutions of the equation (3) under
appropriate conditions.

Finally, we wish to point out that, to avoid overburdening the
exposition, we have not used the most general form of the results in
[25]. The hypothesis (A) in Section 3 requires the limit operator (6)
to be N —periodic in z. This restriction could be relaxed by using the
results of Section 7 in [25].

2 Notation and definitions

We use the standard notation for the Lebesgue and Sobolev spaces.
The usual norm on W*?(RY) is denoted by II|l., with WoP(RN) =

LP(RY) and [y, = |],-
For p € (N, 00), we set

X, = W*"(R") and Y, = LP(R"). (8)

Then X, ¢ C*(RY) and there exists a constant C' = C(N, p) such
that

lul o + [Vul, < Clull,, forall ue X,. (9)
Furthermore
lim u(z)=0and lim Vu(z)=0 (10)

for all u € X,,.
All of these results are proved in Chapter IX of [3].

This section deals with the smoothness of some one parameter
families of Nemytskii operators from X, into Y, for p € (N, 00). Let
[RVXRV*! s Rand g: RY xRY+2 5 R.Foru € X, and A € R,
we consider the maps

wi f(-ulc), Vu() and (A, u) = g(-, u(-), Vu(:), A).
Using the notation
f:RY x RN 5 R with (z,7) = (2, &, .&n) — f(z, &0, .£N)
and
g :RY x RN*2 5 R with (z,7) = (z,&, ..&n, A) — g(, &0, &N, A),

we see that the variables z and 5 play markedly different roles when
deriving the smoothness properties of the maps u — f(-,u(-), Vu(-))
and (A, u) — g(-,u(-),Vu(-),A) from those of the functions f and g.
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The terminology “bundle map” provides a convenient way of handling
this distinction where z is the “base” variable and 7 is the “fiber”
variable. Note that since we require smoothness with respect to u and
A it is natural to treat A as a fiber variable.

Definition 1 A function f:RY x RM — R is called an equicontinu-

ous C°— bundle map if f is continuous and the collection {f(x, Jix € RN}
is equicontinuous at & for every & € RM. For a positive integer k, we

say that f = f(z,n) is an equicontinuous C’f;—bundle map if the par-

tial derivatives Dy | exist and are equiconlinuous CY—bundle maps

for all multi-indices o with |a| < k.

Remark 2.1 If V € C(RY)N L= (RY) and g € C*(RM) then the
function f(z,n) = V(z)g(n) is an equicontinuous C'*—bundle map,
as are finite sums of such functions.

Remark 2.2 Equicontinuous C°—bundle maps are uniformly equicon-
tinuous on compact subsets of RM in the following sense. Let f :
RY x RM — R be an equicontinuous C°—bundle map. Given a com-
pact subset K of RM and ¢ > 0, there exists §(/&,g) > 0 such that
|f(z,€) = f(z,n)] < e forall z € RN and &, € K with |[¢ — 5| <
§(K,e). See Lemma 2.1 of [25].

We can now formulate the essential smoothness properties of the
family of quasilinear second order differential operators defined by (5)
where the functions a,p : RN x RM! 5 R and b : RV x RV*2 5 R
are bundle maps having the following properties.

(B) For o, 8 = 1,.., N, the function a,s = ag, : RY x RVt 5 R
is an equicontinuous C’gl—bundle map with

anp(+,0) and B¢, anp(-,0) € L°(RY) for i = 0,1,..,N. (11)

The function b : RV x RV*2 — R is continuous and its partial
derivatives Og;b, d\b, 0,0¢,b and 0¢,0,\b exist and are continuous on

RYxRM*2fori =0,1,..,N.For each A € R, b(-, A) : RN xRN+ 5 R
is an equicontinuous C’g—bundle map and 0)Jgb : RN x RN+2 5 R
is an equicontinuous C°—bundle map for ¢ = 0,1, .., N. Furthermore,
for all z € RN and X € R,

b(z,0,\)=0 (12)

and

9¢,b(+,0,\) and 9¢,0:b(-,0,)) € L°(RY) for i =0,..,N.  (13)
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Remark 2.3 The hypothesis (B) ensures that 0)\0¢,b = 0¢,0)\b for
1=0,1,.., N and that

O\b(z,0,)\) =0 for z € RY and X € R.

Furthermore, it is easy to deduce from (B) that, for each A € R,and
Ob(-, ) : RV x R¥*! — R is an equicontinuous C'gl—bundle map.

Lemma 1 Let b satisfy the conditions in (B) and let W be a bounded
subset of R x X, where p € (N, 00).
(i) There exists a constant M such that, for i =0,1,.., N,

|70, b(z, u(z), Vu(z),\)| < M for all 2 € RNand (X, u) € W.

(ii) Given ¢ > 0, there exists § = §(e,W) > 0 such that, for i =
0,1,..,N,

|020g,b(z, u(x), Vu(z), A) = 030¢,b(w, v(z), Vo(z), p)| < €
whenever (A, u), (1, v) € W and [A — p| + |lu —vf|, , < 4.

Proof There is a compact subset K of R x RV xR such that (u(z), Vu(z), \) €
K for all z € RNand (X, u) € W. The conclusions now follow from the

fact that 0,0¢,b : RN x RV+2 — R is an equicontinuous C%—bundle

map for i = 0,1, .., N, with 9,0¢,b(-,0,\) = 9¢;0:b(+, 0, \) € L= (RN).

(See Lemma 2.1 of [25].) O

Theorem 1 Fiz p € (N,0) and consider the operator F defined by
(5) under the hypothesis (B). Then F € C1(RxX,,Y,) and the partial
derivatives (in the sense of Fréchet) D, D\F and D\D,F ezist and
are continuous on R x X,. In particular,

[DuF(X,0)v](2) =

N N
= ) ap(e,0)0a050(x) + > Oe,b(x, 0, \)dw(x) + Dg,b(x, 0, \)v(x)
a,f=1 =1
(14)

and
[DAD,F(X,0)v](z) = [DyDyF(X, 0)v](2) (15)
N
= Z O\0e,b(x,0, X\ Do () + OrDe,b(x, 0, \v(z).

forallv e X,.
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Proof For (A, u) € R x X,, set
B(X, u)(z) = b(z, u(z), Vu(z), A)
and
C(M\ u)(z) = 0nb(z,u(z), Vu(z), A).
It follows from Theorem 2.3 of [25] that
B(},-) and C(), ") € CY(X,,Y,)

for all A € R, with

N
DyB(X, u)v = 0g,b(-, u, Vu, \)v+ Z Og;b(+, u, Vu, X))oy

=1

and

N
Dy C(A, u)v = 0g, Or\b(-, u, Vu, \)v+ Z Og, 0\b(-, u, Vu, N)Ov.

=1
Also, by Lemma 3.2 of [25]
F()\ ) € CHX,,Y,) forall A€ R

and (14) holds.

Next we show that
(a) B(+,u) and C(-,u) : R — Y}, are equicontinuous with respect to u
in bounded subsets of X,
and
(b) DyB(+, ) and D,C(-,u) : R — L(X,,Y,) are equicontinuous with
respect to u in bounded subsets of X,.

Let W be a bounded subset of R x X, and consider (A, u), (A+
i, u) € W. Without loss of generality we shall suppose that W = I xV
where [ is a compact interval and V' is convex subset of X, such that

0eV.



Global bifurcation for quasilinear elliptic equations on R 11

(a) Then

BA+ p,u)(z) — B(A u)(z) = /0 %b(x, w(z), Vu(z), A+ tp)dt

1
:,u/ hb(z,u(z), Vu(z), A+ tp)dt
01 1 d
:u/ / —O\b(z, su(z), sVu(z), A+ tp)dsdt
o Jo ds
11
= ,u[/ / O, Onb(z, su(z), sVu(z), A+ tp)dsdt]u(z)
o Jo

N o1
+ MZ[/O /0 0g,0\b(z, su(x), sVu(z), A+ tp)dsdt]o;u(z)

=1

and so, by Lemma 1, there is a constant M such that

N
[BO+ 1, 0)(@) = BOLw)(@)| < |l M {|u<x>| * Z|@u<x>|}

for all z € RN. Thus

N
|B(A+ p,u) = B(Au)|, < |M|MH|U| +Z|3¢UI}
=1 p

< [l M lully , < [ul ML

for some constant L and all (A, u), (A4 p,u) € W.
This proves the equicontinuity of the functions B(-.u).
Similarly,

CA+p,u)(z) = C(Au)(2)
= O\b(z,u(z), Vu(z), A\ + 1) — O\b(z, u(z), Vu(z), A)

= /0 d;i[@Ab(m, su(z), sVu(z), A+ p) — 0\b(z, su(z), sVu(z), A)]ds

= /0 [0e,0\b(z, su(z), sVu(z), A\ + 1) — g, Orb(z, su(z), sVu(z), A)]dsu(z)

N 1
+ z_:/o [06,00b(z, su(z), sVu(z), A\ + p) — 0, 0\b(z, su(z), sVu(z), A)]dsdu(z)

Given £ > 0, Lemma 1(ii) shows that there exists § = §(¢, W) > 0
such that
|0, 00b(z, su(x), sVu(z), A+ tu) — 0, 0xb(z, su(z), sVu(z),N)| < e
(16)
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foralli=0,1,.., N,z € RV, all 5, € [0,1] and all (\,u), (A4 pu,u) €
W =1xV with |p| <é.
Using (16) with ¢ = 1, we see that

N
[CA+pu)(z) = CAu)(2)| < e {|u(:c)| + Z I@U(w)l}

for all € RN and the equicontinuity of C(-,u) follows from this
estimate as for B(-, u).

(b) For v € X,

[DyB(A+ p,u)v — DyB(X u)v] (z)
= [aﬁob(xv u(z), Vu(), A+ p) — (?gob(.f, u(z), Vu(z), A)]v(z)

N
+ Z [3&()(% u(z), Vu(a), A+ p) — 8£¢b('rv u(z), Vu(z), A)] 9;v(z)
:/ %&gob(a@,u(x),Vu(ac),/\—}—tu)dtv(ac)
—}—Z/O %6&11(.70,u(x),Vu(x),/\—l—tu)dt(?iv(w)
= ,u/ol O\Og,b(z,u(z), Vu(z), A+ tp)dto(z)

N
—}—;LZ/ 0\0g,b(z, u(z), Vu(z), A+ tp)dto;v(z)
i=1 70
so, by Lemma 1,

N
DB+ gy e — DB, w)ol (2)] < |ul M {|v<:c>| +Z|@-v<x)|}

for all z € RN where M depends only on W. Thus
[DuBA+ py uw) = DuB(A, w)]wl, < [u] M{[olly, ,

showing that A — D, B(\, u) is equicontinuous with respect to (A, u) €
w.
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Finally,

[D,C(A+ p,u)v — D, C(A u)v](z) =
[0e,O0b(z, u(z), Vu(z), A\ + 1) — 0g,0rb(z, u(z), Vu(z), A)]v(z)

N
+ Z[(’?&(?Ab(x, u(z), Vu(z), A+ p) — ¢, 0\b(z, u(z), Vu(z), A)]0;v(z)

=1

and the equicontinuity of A — D, C'(X, u) follows from (16) by similar
arguments to those used above.

We now show that B is differentiable with respect to A and that
DyB = C. For this we fix (A, u) € R x X, and consider B(A 4, u) —
B(A,u) — pC'(X, u) where (A, u), (A+p,u) € W =1 x V. Then
|B(A + K, u) - B(A7 ’U,) - “C(/\7 u)

lp =

1
d
/ %b(-, w, Vu, A4 tp)dt — porb(-,u, Vu, A)
0

P

1
= lal| [ 100,V X+ ) = Drbw, Vi NI
0

1 1/p
< pl {/RN/O |0\b(z, u(z), Vu(z), A+ tu) — Onb(z, u(z), Vu(z), N[ dtdx}

by Hélder’s inequality.
But, since d\b(z,0, A+ tu) =0,

hb(z,u(z), Vu(z), A+ tp) — 0\b(z, u(z), Vu(z),A) =

/o %mu, su(z), sVu(e), A+ tp) = hd(z, su(z), sVu(), N)]ds =

/0 [0e,00\b(z, su(z), sVu(z), A+ tpu) — 0e,Orb(z, su(z), sVu(z), A)]u(z)

N
+ Z[a&@b(:ﬁ, su(z), sVu(z), \+ tp) — 0g,00\b(z, su(z), sVu(z), A)]ou(z)ds.

=1

Given ¢ > 0, it now follows from (16) that there exists § > 0 such
that

|Oxb(z, u(z), Vu(z), A+ tu) — Ozb(z, u(z), Vu(z), )|

N
< {|u<:c>| +_Z|aiu<m>|}
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for all z € RN all ¢ € [0,1] and all (A, u),(A+p,u) €W =1xV
with |u| < 6. Hence

|B(/\ + i, u) - B(Av u) - NC(/\v u) |p

1 N p 1/p
Sem{ [.] {|u<w>|+_2|@»u<x>|} dtdx} <ol Jull,

showing that 9\ B(A, u) exists and is equal to C'(A, u).
From the properties of B and C that have already been established
we deduce that

F ¢ CY(RxX,,Y,) and that D,D,F exists with
DyD\F = D,C € C(RxX,,Y,).

Finally we show that D, B is differentiable with respect to A and
that D\D,B = D,C". For A, p € R and u,v € X,

[DyB(A+ p,u)v — DyB(X, w)v — pD, C (A, u)v](z)
= u{/o O\Og bz, u(z), Vu(z), A+ tp)dto(z)
N
+ Z/o 0\0g,b(z, u(z), Vu(z), A+ tp)dto;v(z)
— O0ge O\b(z, u(z), Vu(z), Nv(z)
N
- Z[@sﬁxb(% u(z), Vu(z), \)]dv(2)}
= il [ 10006, u(a), Vule). A+ 1)
— O\Ogob(z, u(z), Vu(z), N)]dtv(z)

N 1
+ Z/o [000¢;b(z, u(z), Vu(z), A+ tp)

— 0)0¢,b(z, u(z), Vu(z), N)]dtow(z) }.

Given ¢ > 0, it now follows from (16) that there exists § > 0 such
that

‘ [DyB(A+ p,u)v — DyB(A, w)v — pD,C (A, u)v] (z)

N ©
<e {|U($)| + Z |azv($)|}
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for all z € RN and for all (A, u), (A + p,u) € W with |u| < 8. Thus
‘ [DyB(A+ p,u) — DyB(X,u) — pD,C(A u)]v

I

2
N
<e {lvlﬁZl@wlp} <elolly,
=1
and so
[DyB(A+ p,u) — DyB(X, u) — pDyC'(X, u)] <.
K L(Xp.Yy)

for all (A, u), (A+ p,u) € W with |u| < 6.
Hence D\D,B(A,u) = D,C(X,u). O

3 Properness and global bifurcation

In this section we formulate some general results about the bifurca-
tion of global branches of solutions for quasilinear equations on RY.
We begin with the abstract setting and then we use it to treat the
equation (3).

Definition 2 Let X and Y be real Banach spaces and consider a
Junction F € CY1(Jx X,Y) where J is an open interval. Let P(\, u) =
A be the projection of R x X onto R. We say that J is an admissible
interval for F provided that

(i) for all (A, u) € J x X, the bounded linear operator D, F(A, u) :
X =Y is a Fredholm operator of index zero

and

(ii) for any compact subset K of Y and any closed bounded subset W
of R x X such that

inf J < inf PW < sup PW < sup J,

F™YK)NW is a compact subset of R x X.

The conditions (i) and (ii) specify the appropriate versions of
Fredholm-ness and properness which underlie the topological degree
defined in [23]. That degree is based on the notion of the parity, de-
noted by 7 (A(X): X € [a,b]), of a continuous path, A — A(X), of
bounded linear Fredholm operators of index zero from X into Y. For
such a path, a parametrix is any continuous function B : [a,b] —
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GL(Y, X) such that B(A)A(X) : X — X is a compact perturbation
of the identity for each A € [a,b]. If A(a) and A(b) € GL(X,Y), the
parity of the path A on [a, b] is defined by

T (A(A) 1 A€ [a,b]) = drs(B(a)A(a))drs(B(b) A(b))

where dp, g denotes the Leray-Schauder degree. This definition is justi-

fied by showing that a parametrix always exists and that dzs(B(a)A(a))drs(B(b)A(b))
is independent of the choice of parametrix B. In some circumstances

the parity can be expressed in a form which is easier to check di-

rectly. In formulating our bifurcation theorems for (3) we shall only

use the following criterion. Let L(X,Y) denote the Banach space of

all bounded linear operators from X into Y and let the kernel and

range of a linear operator T" be denoted by kerT" and rge T, respec-

tively.

Proposition 1 Let A : [a,b] — L(X,Y) be a continuous path of
bounded linear operators having the following properties.

(i) A€ C ([0, 8], L(X,Y)).

(ii) A(X) : X = Y is a Fredholm operator of index zero for all
A€ [a,b].

(tit) There exists Ao € (a,b) such that

A'(Xo)[ker A(Xo)] & rge A(No) =Y

in the sense of a topological direct sum.
Then there exists € > 0 such that [Ag — e, Ao+ €] C [a, b],

A(AN) € GL(X,Y) for all X € [Ag — g, Ao) U (Ao, Ag + €]
and
T(AN): A€ [do—g,do+e]) = (-1)F
where k = dim ker A()g).
Proof See Proposition 2.1 of [9] and Theorem 6.18 of [10].

Note that for any continuous path A : [e,b] — L(X,Y) and any
Ao € (a,b) such that A(X) € GL(X,Y) for all A € [a,b]\ {Ao}, the
parity
T (A(X) : A € [Ag— e, Ao +¢]) is the same for all £ > 0 provided that
[Ao—¢, Ao+¢] C [a,b]. This quantity is called the parity of the path A
across Ag. The preceding proposition provides one way of calculating
the parity across Ag.

We can now state the main result about global bifurcation which
can be derived using the above notions.
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Theorem 2 Let X andY be real Banach spaces and consider a func-
tion F € CY(J x X,Y) where J is an open interval which is admis-
sible for F. Suppose that Ag € J and thal there exists € > 0 such that
[Ao—S,AO—}—{f] C J,

D, F(X0) e GL(X,Y) for A € [Ao — £, 0 + €]\ {Xo} and
T (DuF(X,0),[Ao—¢€, A0 +¢]) = —1.

Let Z = {(Au) e J x X :u#0 and F(A, u) =0} and let C' denote
the connected component of Z U {(Xg,0)} containing (Ao, 0). Then C
has at least one of the following properties.

(i) C' is unbounded.

(i) The closure of C' contains a point (A1,0) where Ay € J\[Ag —
g,Ao+¢] and D, F(A,0) ¢ GL(X,Y).

(iii) The closure of PC' intersects the boundary of J.

The above statements refer to Z and C with the metric inherited
from R X X. The basic procedure for proving a result like this is to
suppose that C' has none of the properties stated in the conclusion and
then to derive a contradiction using the properties of whatever degree
is available. Using the degree for proper Fredholm maps, variants of
this result appear as Theorem 6.1 of [23] and Theorem 7.2 of [11].
In those results J = R so the property (iii) in the conclusion can
be dropped. The form stated above can be proved using the degree
defined in [23]. Note that, if we assume that C' does not have the
property (iii), the open set {2 used in the proof of Theorem 6.1 of [23]
can be chosen so that

inf J < inf PC < sup PC < sup.J

and then the properties of the degree lead to a contradiction in the
usual way. See Theorem 7.2 of [11], for example.

Clearly the interest of this result hinges on the extent to which the
parity can be calculated and sharp explicit conditions found for ad-
missible intervals. The relationship between the parity and the spec-
tral/transversality properties of the linearization of F' has been thor-
oughly investigated [10] and, in the context of quasilinear equations,
Theorem 1 enables us to exploit these results in a straight forward
way. For a broad class of quasilinear elliptic operators on RY we have
characterized in [25] the Fredholm and properness properties which
determine admissible intervals.

For the rest of this section we fix p € (N, 00) and consider the
differential operator F' : R x X, — Y, defined by (5) under the
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assumption (B). By Theorem 1 this already ensures that F € C1(R x
X,,Y,). Our next results deal with a situation where the parity of
the path A — D, F(A,0) across a value Ag can be determined in a
relatively explicit way. They use the following assumption (L) which
ensures that D, F (), 0) has a particularly simple form. More general
behaviour at « = 0 can be handled provided that the asymptotic
behaviour required for the discussion of properness is assumed and
we shall return to this in due course.

(L) There is a (constant) positive definite matrix [A,g] such that
anp(z,0) = Ayg = Ap, for all z € RV
and
O, b(z,0,\)=0forall z ¢ RN and A€ R
forall a,6=1,.., N,
Under the hypotheses (B) and (L), it follows from Theorem 1 that

[DuF(A, 0)v](x)

N
== > AupOadsv(z) + e, b(z,0,\)v(x)

a,B=1

which can be reduced to the form
[DyF(X,0)v](z) = —Av(z) + Jg,b(z, 0, A)v(z) (17)

by a linear change of the variable z. In this case the parity can be cal-
culated from the spectral properties of the operator —A+0¢,b(z, 0, A)
using the results we obtained in [26]. Let us fix some notation and
terminology which will be used henceforth.

We refer to [7] for the notions of spectrum, discrete spectrum and
essential spectrum of an unbounded self-adjoint operator acting on a
Hilbert space. The discrete spectrum consists of the isolated points
in the spectrum which are eigenvalues of finite multiplicity. Those
points in the spectrum which do not belong to the discrete spectrum
form the essential spectrum.

In [26] we discussed the Fredholm properties of the operator —A+
V in LP(R™) for a class of potentials admitting singularities. To deal
with (17) it is sufficient to recall the following special case which
appears as Theorem 1 in [26].
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Theorem 3 LetV € L®(RY). Then —A+V : W23(RN) ¢ L*(RVN) —
L*(RN) is a self-adjoint operator whose spectrum and discrete spec-
trum are denoted by o and oy respectively. For p € (1,00), consider
also the operator L, : W?P(RN) — LP(RY) defined by

Lyu= (—A+V)u for u e WH(RY).

For every p € (1,00), the following conclusions are valid.

(i) L, — M : W2P(RN) — LP(RY) is an isomorphism if A ¢ o,
whereas, if A € o4, then

(ii) L, — A : W2P(RN) — LP(R™) is a Fredholm operator of index
zero,

(iii) ker (L, — X ) = ker (Ly — AI), and

(iv) LP(RN) = ker (L, — M )@ rge (L, — AI) where @ denotes a topo-
logical direct sum.

We now use this result to discuss the parity of the path A ——
D,F(X,0).

Lemma 2 Suppose that the conditions (B) and (L) are salisfied and
consider A\g € R such that 0 does not belong to the essential spectrum
of the self-adjoint operator —A + Og,b(x,0, Xg) : Xo C Yy — Ys. Let
p € (N, 00).

(i) Then D, F(Xg,0) : X, = Y, is a Fredholm operator of index zero.
(ii) Furthermore, if

either d\Dg,b(-,0,X0) > 0 but Z 0 on RY,
or 030, b(+, 0, Ag) < 0 but £ 0 on RV,

then there exists ¢ > 0 such that D,F(\,0) € GL(X,,Y,) for all
A€ [AO — &, AO + 8]\ {Ao} and

T(DyF (X, 0),[Mo— €, Xo+¢]) = (-1)*
where k = dim ker[—A 4 ¢, b(z, 0, Ag)].
Remark 3.1 By Theorem 3(iii), the kernel of the linear operator
— A+ 0¢b(z,0,X) : X, = Y, does not depend on the choice of p €
(1,00).

Proof The first statement follows immediately from Theorem 3 with
V' = 0¢,b(-,0, A). To show that the parity across Ag is well-defined and
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equal to (—1)* it suffices, by Proposition 1 with A(A\) = D,F(},0),
to prove that

Dy\D,F(Xg, 0)[ker D, F' (Ao, 0)] & rgeDy F'(Ag, 0) = Y.
Under the additional assumptions of part (ii), suppose first that

u € DyDyF(Xg,0)[ker D, F(Ag,0)] NrgeDy, F'(Ag, 0).
Then there exist v, w € X, such that

u = 0\Og,b(x,0, Ao)v = —Aw + ¢, b(z, 0, Ag)w
and — Av 4 0, b(z,0, Ag)v = 0.

By Theorem 3(iii), v € X, for all ¢ € (1,00) and so
0= / [—Av 4+ 0g,b(z, 0, Ag)v]wda
RN
= / v[—Aw 4 ¢, b(z, 0, Ao)w]da
BN
= / O\0¢,b(z, 0, Ao)v?dz
RN

from which it follows that 0)0¢,b(z,0, A)v? = 0 a.e. on RY. But,
since 0)0¢,b(, 0, Ag) is continuous and not identically zero, there is a
non-empty open set 2 C R¥ such that, for all 2 € £2,0,0¢,b(z, 0, Xo) #
0. Hence v = 0 on {2 and so, by the unique continuation principle
(see Theorem C.9.1 of [31], for example), v = 0 on R™. This shows
that
DD, F(Xo,0)[ker D, F (g, 0)]Nrge Dy, F'(Ao,0) = {0} .
Since we already know from part (i) that D, F'()Ag, 0) is a Fredholm
operator of index zero, it remains to show that dim Dy D, F(Ag, 0)[ker D, F'(Xg,0)] =
k.But D\D,F (g, 0)[ker D, F'(Ag, 0)] = {010¢,b(x,0, Ao)v : v € ker D, F'(Xg, 0) }is
a closed subspace of Y, whose dimension cannot exceed that of ker D, F'(Ag, 0).
Let {¢; € X, 1t =1,..,k} be a basis for ker D, F'(Ag,0) and suppose
that
Ele ci[0)0¢,b(-, 0, X0)¢i] = 0 on RN where ¢; € R for i = 1,.., k.
Then 0)\0¢, b(+, 0, Ao) Ele cio; = 0on RY and consequently, Zle Cip; =
0 on {2. Since Ele cip; € Xo by Theorem 3(iii), the unique contin-
uation principle now implies that Ele cip; = 0 on RY, from which
it follows that ¢; = 0 for ¢ = 1, .., k. Thus
dim {0)0¢,b(z,0, Ao)v : v € ker D, F'(Xo,0)} = k = dim ker D, F'(Ag, 0)
and the proof is complete. [
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The following condition characterizes a frequently occurring situ-
ation in which the interval J becomes a gap in the essential spectrum
of a Schrédinger operator.

(LL) The condition (L) is satisfied and there is a constant ¢ # 0
such that

OnOg,b(x,0,)) = ¢ for all z € RY and A € R.

When (B) and (LL) are satisfied we can and shall suppose (by
redefining \) that there exists a function V' € C(RY) N L>(RY) such
that

Dgb(x,0,\) =V (z) — A for all z € RY and X € R.
In this case
D, F(X\0v=(-A+V)v—Av (18)
where —A 4+ V : Xy C Yy — Y; is a self-adjoint operator.

Corollary 1 Let the conditions (B) and (LL) be satisfied and let p €
(N, 00). Consider an open interval J C R\o. where o, denotes the
essential spectrum of the self-adjoint operator —A+V : X9 C Yy —
Y;. Then DyF(A,0): X, =Y, is a Fredholm operator of index zero
Jorall X € J. If Ay € J is an eigenvalue of odd multiplicily of —A+V :
Xy C Yy = Y, there exists € > 0 such that D, F(X,0) € GL(X,,Y,)
forall X € [Ao—e, Xo+e]\ { o} and (D, F (A, 0), [Ao—¢, Ao+<]) = —1.

Proof This follows immediately from Lemma 2. [

We now turn to the more substantial problem of determining ad-
missible intervals for an operator of the form (5). For this we intro-
duce assumptions concerning its ellipticity and asymptotic behaviour
as || — oo. The asymptotic behaviour plays a crucial role in en-
suring the properness of F, but as we shall see it also implies that
D,F(X,0): X, — Y, is a Fredholm operator of index zero without
requiring the special structure assumed in condition (L).

(E) The operator F is strictly elliptic in the sense that there exists
a lower semicontinuous function, v : RV x RV*! — (0, 00), such that

N

> aas(@,Enans > v(z,€) nl’

a,p=1
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for all n € RY and (z,¢) € RY x RVFL

(A) There exist equicontinuous C°—bundle maps Uop = A, -
RN xRN*! 5 R for a, 3 =1, .., N and an equicontinuous C’%—bundle
map b : RN x RV*2 5 R such that 4°°(z,0,A) = 0 and

lim [aap(z,§) — agp(z,§)] = [0g,b(z, &5 A) = 0,67 (2,€,A)] = 0

|z|—=co
uniformly for (£, A) in bounded subsets of RV *2, where 1 < a, 3 < N
and ¢ = 0,1,.., N. Furthermore, azoﬁ(-,f) and b2°(-,&,N) : RY = R
are N —periodic on R" in the sense that, for some 7' = (Ty,..Ty)
with T; > 0 for all : =1, .., N,

lim
|z|—c0

agp(@1y ey @i+ Ty oy, §) = agp(®1, oy 2N, §)
and
b (z1, ey i+ Tiy ooy N, &, A) = 0 (21, .y 2N, €, A)
for all (z,&,2) e RV xRN*2and i =1, .., N.

Under the assumptions (B) and (A) we define a differential oper-
ator, F'*°, by (6).

Theorem 4 Let the conditions (B), (£) and (A) be satisfied. Choose
p € (N, 00) and consider the operator F' : Rx X,, — Y, defined by (5).
An open interval J is admissible for F provided that for all X € J,
(i) the linear differential operator D, F(A,0) : X, — Y, is Fredholm
of index zero

and

(i) {u € X, : F*(\,u) = 0} = {0} .

Remark 3.2 The assumptions (B) and (A) imply that F* (A, u) €
Y, for all (A, u) € R x X, and that F’*°(X,0) =0 for all A € R.

Proof By Theorem 1 we already know that F € C'(Rx X, Y,) so
we need only prove that the condition (ii) in Definition 2 is satisfied.
With this in mind, let K be a compact subset of ¥, and W a closed
bounded subset of R x X, such that

inf J < inf PW < sup PW < sup J.

Consider an arbitrary sequence {(A,, u,)} C F~1(K) N W. We only
have to prove that {(\,,u,)} contains a convergent subsequence.
Since {F (A, u,)} C K there exist A € J,v € K and a subsequence
such that

An; = A and vy, = F(Ay,, uy;) — v strongly in Y.



Global bifurcation for quasilinear elliptic equations on R 23

Now

F(A up;) = F(A up,) — F(An, tn,) + F(An,, ug,)
= B(A un,) — B(An;, tn,) + vn,

in the notation introduced at the beginning of the proof of Theorem
1. Since {uy, } is a bounded subset of X, part (a) of that proof shows
that

|B(A, un,) — B(An,, ug,)[, — 0 and hence we have that F'(A, u,,) — v
strongly in Y,. But by Theorem 6.1 of [25] the restriction of F/(A,-) :
X, =Y, to closed bounded subsets of X,, is proper. Since {u,,} is a
bounded subset of X, this implies that {u,, } has a subsequence con-
verging to an element » in X,. Hence {(A,,, u,;)} has a subsequence
converging to (A, u) as required. OJ

Lemma 2 and Corollary 1 furnish explicit assumptions on the
operator (5) ensuring that condition (i) of Theorem 4 is satisfied.
Assumptions implying condition (ii) can be derived in various ways
depending on the form of the equation F'*°(\, u) = 0. As explained in
the Introduction, we demonstrate three different approaches to doing
this. Before doing so we show how the condition (i) can be verified
by using properties of the asymptotic limit even when the operator
(5) does not have the property (L).

First of all we recall from Section 6 of [25] that, although the
assumption (A) does not guarantee the differentiability of the oper-
ator F° : R x X, — Y, it does imply that F*°(X,:) : X, = Y, is
differentiable (in the sense of Fréchet) at 0 with

D F® (X, 0)v
N
— ) als(-,0)0 aﬁu+zdgab°@ 0, \)Aov 4 g, 0% (-, 0, \)v
a,B=1 a=1

for all v € X, and A € R.

We note that D, F°°(),0) is a linear second order differential opera-
tor with continuous N —periodic coefficients. In [25], Lemma 6.6 and
Remark 6.2 describe some situations where it is a Fredholm oper-
ator of index zero. The following assumption isolates a particularly
agreeable situation.

(L°°) There is a (constant) positive definite matrix [Azoﬁ} such
that

ags(7,0) = Agp = Az, for all = € RN
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and
9,6 (2,0,A) =0 for all z € RN and A € R
for1<a,0 < N.

Remark 3.3 When this condition is satisfied we can assume that
AYy=0dapfor 1 <a, B < N (by making a linear change of variable)
and hence

Dy F (X, 0)v=—Av+ 00 (-,0, A)v
for ve X, and A € R.

Lemma 3 Suppose that the conditions (B), (A) and (L*°) are satis-
fied and consider A\g € R such that the self-adjoint operator, S()g) :
Xy C Yy = Yy, defined by

S(Ao)’v = -Av + 850[)00(" O, Ao)v fOT’ A X2

is an isomorphism. Let p € (N, 00).

(i) DyF(Xo,0) : X, =Y, is a Fredholm operator of index zero.

(it) Let {¢; € Xyt =1,..,k} and {¢p; € Y, : i =1,.., k} be bases for

ker Dy, F(Xg,0) and ker [D, F'(Ag, 0)]* respectively, with k = dim ker D, F'(Ag, 0)
and ]lo + % = 1. Then

det| [ 6ADADLF 0,006} do] #0 (19)
RN
if and only if
D\D,F(Xo,0) [ker D, F(Ao,0)] & rge Dy F'(Xg,0) =Y. (20)

When (19) is satisfied there exists € > 0 such that D,F(X,0) €
GL(X,,Y,) for all X € [Ag — g, X0 + €]\ {Xo} and

7 (DuF (M, 0), Mo — £, Ao +2]) = (—1)".

Remark 3.4 This result gives the same conclusions as Lemma
2 without requiring D, F'(A,0) to be a formally symmetric differen-
tial operator. Note that when the conditions (B), (E), (A) and (L)
are satisfied then so is (L*°) with A% = A,g. We also observe that,
since g b (-, 0, Ag) is an N — periodic function, S(Ag) is an isomor-
phism if and only if 0 does not belong to its essential spectrum.
(See Theorem 5.4 of Chapter 3 in [2].) Moreover when there exists
a continuous N — periodic function P such that 0g 0> (z,0, Ag) =
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P(z)—Xo, S(Ao) = —A+ P — Ag and it is an isomorphism if and only
if Ag does not belong to the spectrum of the N — periodic Schrédinger
operator —A + P. Thus a result analogous to Corollary 1 can easily
be formulated. In particular, when the condition (LL) is satisfied
with 0 b(z,0,A) = V(z) — A, the condition (L*°) is also satisfied and
0¢, b (2,0, Ag) = P(z) — X where P is a continuous N —periodic func-
tion. Since lim ;o {V(z) — P(z)} = 0, it follows that the essential
spectrum of the Schrédinger operator —A4+V @ Xy C Yy, — Yo is
equal to the whole spectrum of the N —periodic Schrédinger operator
A4+ P:X;CY, =Y,

Proof (i) It follows from Theorem 3(ii) and (iii), with V =
0, b (+, 0, Ag), that Dy, F'* (X, 0) € GL(X,,Y,).

There is a constant 7 > 0 such that

N
Z Agpalp 2 T €|* for all £ € RN
a,f=1

and so, by (A), there is a constant z > 0 such that

N

Z aaﬁ($70)£a€ﬁ > %El? for all f c RN
a,B=1

provided that |z| > z. Using (E), we see that there is a constant
7o > 0 such that

N

Z anp(z,0)€:83 > 1o €| for all z,& € RY.
a,B=1

It now follows from Lemma 6.5 in [25] that D, F (X, 0) : X, = Y} is
a Fredholm operator of index zero.

(ii) Since Dy F(Ao,0) : X, — Y, is a Fredholm operator of index
zero, rge D, F'(Ag,0) is a closed subspace of Y, and hence

rge Dy F(Xo,0) = {w €Y, : ¢(w) =0 for all ¢ € ker [D,F(X,0)]"}
where [D, F(Xo, 0)]" : [Y,]* — [X,]". Hence

rge Dy, F(Xo,0) = {wEY}, : mwdx:Ofori:l,..,k}

RN

when we make the usual identification of [Y,]" with Y.
Suppose first that

D\D,F(Xo,0) [ker D, F(Xo,0)] B rge Dy F (A, 0) =Y.
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This implies that dim Dy D, F'(Xo, 0) [ker D, F(Ag, 0)] =codim rge D, F()g,0) =
k and so DyD,F(Xg,0) must be one-to-one on ker D, F'(Ag,0). Fur-
thermore, if w € ker D, F'(Ag,0) and fRN i [DaDyF (Ao, 0)]wdz = 0
fori=1,..,k, then DyD,F(Ag,0)w = 0. Since Dy D, F()Ag,0) is one-
to-one on ker D, F'(Ag,0), this means that w = 0, and, expressing
w in the form Eﬁ\le a;p; using the basis {¢; € X, :j=1,..,k}, we
conclude that

N

ZMij@j =0fori=1,..,k

i=1

implies that o = (o, .., ) = 0 where

M;; = /N i [DADyF (Ao, 0)] p;da.
R

Thus det M # 0 where M denotes the (k X k)—matrix with elements
MZ‘]'.

Conversely, suppose that det M # 0. Then M« = 0 implies that o =
0 and so, if w € ker D, F'(Ag, 0) and fRN ;i [DaDyF (Ao, 0)]wdz = 0

for i =1, .., k, we can conclude that w = 0. This shows that
DD, F(Xo,0) [ker D, F(Xg,0)]Nrge Dy F (Ao, 0) = {0}.

But it also means that, if w € ker D, F'(Ag, 0) and [DyD, F (Ao, 0)]w =
0, then w = 0. Thus D)D,F(Xg,0) is one-to-one on ker D, F'(Ag, 0)
and so
dim Dy D, F (g, 0) [ker Dy, F'(Ag, 0)] = dim ker D, F'(Ag,0) = k =codim
rge D, F(Ag,0). This proves the equivalence of (19) and (20).

As in the proof of Lemma 2, the proof is completed by appealing
to Proposition 1. O

Combining the above results we obtain the following rather general
bifurcation theorem.

Theorem 5 Let the conditions (B),(E),(A) and (L*) be satisfied.
Choose p € (N,o00) and consider the operator F' : R x X, — Y,
defined by (5). Suppose that J is an open interval having the following
properties.

(a) For all A € J,{u € X, : F*° (X, u) =0} ={0}.

(b) For all X € J, the self-adjoint operator —A+ 0g,b>(-,0,A) : X3 C
Yy — Y, is an isomorphism.

(¢) There is a point Ao € J such that dim ker D, F'(Xg,0) is odd and
the condition (19) is satisfied.

Let C' denote the connected component of Z U {(Xg,0)} containing
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(X0, 0) where Z = {(Au) € J x X, :u# 0 and F(A\,u) =0} and ZU
{(X0,0)} has the metric inherited from R x X,,. Then C has at least
one of the following properties.

(i) C' is an unbounded subset of J x X,.

(ii) The closure of C in Jx X, contains a point (A1, 0) where Ay # Xo.
(iii) The closure of {\: (X, u) € C for some u € X,} intersects the
boundary of J.

Proof By the hypothesis (b) and Lemma 3(i), D, F(A,0) : X, = Y,
is a Fredholm operator of index zero for all A € J. Using this and
the hypothesis (a), it follows from Theorem 4 that the interval J is
admissible for F. Finally, the assumption (c¢) and Lemma 3(ii) show
that all of the hypotheses of Theorem 2 are satisfied by /' : R x X, —
Y, and the result follows.O]

Theorem 6 Let the conditions (B),(E),(A) and (LL) be satisfied with
O, b(z,0, ) =V (z) — A,

Choose p € (N,o00) and consider the operator F' : R x X, — Y,
defined by (5). Suppose that J is an open interval having the following
properties.

(a) For all X € J,{u € X, : F* (X, u) =0} = {0}.

(b) J C R\o., where o. denotes the essential spectrum of the self-
adjoint operator —A+V : Xy C Yy — Y5,

(c) Ao € J is an eigenvalue of odd multiplicity of —A+V : X3 C
Y: = Vs,

Let C' denote the connected component of Z U {(Xg,0)} containing
(Ao, 0).

The conclusion of Theorem 5 holds.

Remark 3.5 It follows from (LL) and (A) that (L*°) is also sat-
isfied with

O, 0 (2,0, A) = P(z) — A
where P is a continuous N —periodic function such that

Jim {V(2) = P()} =0,

As was pointed out in the Remark 3.4, J C R\o. <—= J C R\Y
where X denotes the spectrum of the self-adjoint operator — A+ P :
X, CYy, > Y.

Proof Using Corollary 1 and Theorem 4 this follows from Theorem
2.0
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4 Special cases

In this section we give more explicit assumptions on the functions a,g
and b which imply that the hypotheses of Theorem 5 are satisfied.

4.1 Using the mazimum principle

The maximum principle can be used to establish the condition (ii) of
Theorem 4 provided that the functions agj; and 6> have the following
properties.

(M) There exists a continuous function v : RV*! — (0, o) such
that

N
Z ags(7,8,0)namp > v(2, 5) In* for all p € RN
a7ﬁ:1

and for all (z,s) € RN*! and

b>°(z,5,0,\)s > 0 for all (z,s) € RVt with s # 0.

Remark 4.1 It follows from this that 0g 6> (z,0,A) > 0 for all
z € RV,

Theorem 7 Let the conditions (B),(F) and (A) be satisfied and let
p € (N,00).

Suppose that J is an open interval such that (M)) is satisfied for all
A€

(i) Suppose that the condition (L*°) is salisfied and that the operator
S(A) = —A40,0°(-,0,X) : X3 — Y5 is an isomorphism for all X € J.
Then J 1s an admissible interval for the operator F' : R x X, = Y,
defined by (5) and the conclusion of Theorem 5 is valid in this context
at any point Ao € J such that dim ker D, F'(Ao,0) is odd and the
condition (19) is satisfied with A = Ag.

(i) If the condition (LL) is satisfied with Og,b(x,0, ) = V (z)—A, then
J C (—oo,w) where w = liminf ;o V(2) and J is an admissible
interval for the operator F' : Rx X, — Y, defined by (5). Furthermore,
for every eigenvalue A\g € J of odd multiplicily of —A+V : X3 C
Yy — Yy the conclusion of Theorem 5 is valid in this context.

Remark 4.2 Under the hypotheses of part (ii), there exists a con-
tinuous N —periodic function P such that lim ;. {V(z) - P(z)} =
0 and
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0,0 (2,0,A) = P(z) — A. Thus w = inf { P(z) : z € RV} and so the
condition (M) implies that A < w for all A € J. But J is open so
in fact J C (—oo,w). Furthermore, the essential spectrum, o., of the
Schrédinger operator —A 4V @ Xy C Yo — Y; is equal to the whole
spectrum of the N —periodic Schrodinger operator —A + P : X5 C
Y2 = Y, and so J C R\o..

Proof Using Theorem 5 for part (i) and Theorem 6 for part (ii), we
need only prove that if (A, ) € J x X, and F* (A, u) = 0 then u = 0.
Suppose that (A, u) € J X X, and that

N
— Z agp(@,u(z), Vu(z))0adgu(z) + 0% (z, u(z), Vu(z), A) = 0
a,B=1

for almost all = € R™. Recalling (9) and (10), weset M = sup {u(z) : 2 € RV}
and 2 = {z € RN :u(z) = M}. The continuity of u implies that £2

is a closed subset of RN. Suppose that M > 0. Since u € C*(RY)

and lim; o u(z) = 0, £2 is non-empty and there exists z¢ € {2

such that Vu(zg) = 0.(In fact, Vu(z) = 0 for all z € §2.) Thus

b>(zg, M,0,A) > 0 by assumption (M,) and so the exists e,v > 0

such that b°° (2, u(z), Vu(z),A) > 0 and

N

Z agg(@,ul(z), Vu(z))nans > v In? for all n € RN
a,B=1

for all @ € B(wzg,c) = {z : |z — xo| < ¢} . Hence

N
Z cop(x)0s0gu(z) > 0 for all z € B(zg,¢)
a,B=1

where cop(z) = aZj(z, u(z), Vu(z)) and it follows from the maximum
principle, Theorem 9.6 of [13], that u(z) = M for all € B(zg,¢).
Hence if M > 0 we find that £2 is a non-empty subset of R" which is
both open and closed. But this implies that 2 = RY, contradicting
the fact that lim;|. u(z) = 0. Hence M = 0, and a similar argu-
ment shows that min {u(z) : 2 € RV} = 0. Thus v = 0 and the proof
is complete. [

4.2 Using variational identities

When the condition (M) is not satisfied an alternative is offered
under the following conditions which ensure that all solutions of the
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equation F*°(A,u) = 0, with v € X, for some p > N, satisfy an
integral identity of the type found by Pohozaev. Under appropriate
conditions this can be used to show that v = 0. We refer to Sections
5 and 6 of our paper [27] for these results.

(V) There exist two functions
Q=0Q(&) € C*(RVM) and g = g(&, A) € C'(R?)
such that

op(z,§) = 06, 0¢,Q () and
N
0% (,€,A) = 05, Q(€) = D alea 06,Q(E) + (€0, A)
a=1

for all # € RN, ¢ = (&, &1, ..&n) and A € R. Furthermore,

Q(&0,0) = 05, Q(£0,0) = 0 for all & € R, (21)
0:,Q(0)=0fora=1,..,N,

and there exists a continuous function v : RV*! — (0, 00) such that
N
Z 8'5(1855@(0)7704775 > I/(f) |77|2
a,B=1
for all n € RN and € € RN+,
Remark 4.3 The condition (V) means that the equation F*° (A, u) =
0 has the variational form
N
= 02{0:.Q (u(2), Vu(2)} + 05, Q (u(z), Vu()) + g(u(x), A) = 0
a=1
(22)

associated with the formal Euler-Lagrange equation of the functional

u(z)
/RN{Q(U(OE),VU(@"))—I-/O g(s,,/\)dg}dx‘

Under the assumption (V) and the condition (23) introduced below
we show in Theorem 5.2 of [27] that any solution, « € X, for some
p € (N, 00), of the equation (22) satisfies the following energy identity,

N
/ > 0:.Q (v, V) dou+ 05, Q (u, V) u+ g(u, A)da = 0,
RN a=1
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and Pohozaev identity,

/RN;QQQ (u, Vu) Oqudz = N /RN {Q (u(z), Vu(z)) —|—/0 g(s,, ,\)dg} dx.

Remark 4.4 As is shown in Section 5 of [27], the properties of Q)
required in (21) involve no real restriction. If they are not satisfied,
they can be recovered by replacing @ by

N
QE) = Q&) — Q&,0) = > 9:.Q(0)&,

and g by
5(507 A) - 9(507 A) + afoQ(€07 0)7

since @ and ¢ generate the same functions ags and b*as () and g.
Remark 4.5 If the conditions (B),(A) and (V) are satisfied then so
is (L) with A%} = ¢, 0¢,Q(0). Thus we can suppose that

DuF(X,0) = —A+ 8:,6°(-,0, \)

where 0g, 0% (+, 0, A) is equal to the constant dg,¢(0, A).

If, in addition, the condition (LL) is satisfied with 0¢ b(z
V(z) — A, then V(oco) = lim|ye V(7) exists and O, b>(-
V(oo) — A.

Theorem 8 Let the conditions (B), (E) and (A) be satisfied and let
p € (N,00). Consider an open interval J such that,

(a) g(0, ) =0 and 0¢,g(0,X) > 0 for all X € J, (23)

(b) there exists a € R such that

N
NQ(E€) > (a+1)) €a0,Q(€) + a&ode,Q(E) for all & € RN
a=1

(24)
and
N/ g(t,\)dt > ag(s,N)s for all (s,\) € R x J. (25)
0
(i) Then the operator S(A) = —A + 0¢,b>(-,0,A) : Xo — Y5 is an

tsomorphism for all A € J and J is an admissible interval for the op-
erator F' : Rx X, = Y), defined by (5). The conclusion of Theorem 5 is
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valid in this context at any point Ao € J such that dim ker D, F'()Ag, 0)
is odd and the condition (19) is satisfied with A = Aq.

(it) If the condition (LL) is satisfied with 0¢ b(z,0,X) = V(z) — A,
then the condition (23) is satlisfied if and only if A < V(o0) =
lim ;500 V(7). Thus J = (—00,V(00)) is an admissible interval for
the operator F' : R x X, =Y, defined by (5) provided that (24) and
(25) are satisfied. Then the conclusion of Theorem 5 is valid in this
context at any eigenvalue A\g € J of —A+V : X9 C Yy — Y,y which
has odd multiplicity.

Remark 4.6 The condition (V) restricts the applicability of this
result to cases where the differential operator F'°° has no explicit
dependence on the variable z. In particular, the condition (23) means
that Jg, b (2,0, A) = ¢, 9(0, ) > 0 for all 2 € R. Since the spectrum
of —A : Xy C Yy — Y, is the interval [0,00), it follows that —A +
e, b°(+,0,A) © Xy — Y, is an isomorphism whenever (23) holds.
When (LL) is satisfied the condition (23) becomes V(oo) — A > 0.
In this case, the essential spectrum, o, of the Schrédinger operator
—A4+V : X, CY;— Y, is the interval [V (00), 00) and so R\o, is an
admissible interval.

Proof The conditions (B),(E),(A) and (V) imply that the condition
(L*°) is also satisfied. Furthermore, by the above remark, —A +
e, b°(+,0,A) + Xg — Y5 is an isomorphism for all A € J. Thus,
using Theorem 5 for part (i) and Theorem 6 for part (ii), we need
only show that if (A, ) € J x X, and F'*°(X,u) = 0 then u = 0. This
follows from Corollary 6.1 in [27]. O

4.8 Using asymplotic linearity

In Theorems 7(ii) and 8(ii) the admissible interval lies below the
essential spectrum of the linearization about the trivial solution. We
now present a situation where there is global bifurcation in gaps of
the essential spectrum of this linearization.

Theorem 9 Let the conditions (B), (E), (A) and (LL) be satisfied
and let p € (N,00). Suppose that there is an N —periodic function
P ¢ C(RY) such that

lim {V(z) - P(z)} =0 (26)

|z|—c0

and that
azoﬁ(x,f) = 0ap and b (z,&,X) = {P(z) — A} & (27)
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for all (z,&,)) € RN x RN*2 with € = (&,&1,..£n). Consider an
open interval J C R\o. and an eigenvalue Ao € J of odd multiplicity
of —A+V : Xo C Yy = Yy, Then J is an admissible interval for
the operator F' : R x X, — Y, defined by (5) and the conclusion of
Theorem b is valid in this context.

Remark 4.7 Since lim, ., {V(2) — P(z)} = 0, the essential
spectrum, o., of the operator —A+V : Xy C Y; — Y3 is equal to the
entire spectrum, Y, of the periodic Schrodinger operator, —A + P :
Xy C Yy = Y3, See [2].

Proof Using Theorem 6 we need only show that if (X, u) € J x X,
and F°°(A,u) = 0 then u = 0.
Suppose that (A, u) € J X X, and that

—Au+{P—-A}lu=0.

It follows from Theorem 3 that v € Xs.

However, as is well-known ([2] Theorem 5.4 of Chapter 3), the
spectrum X’ of the periodic Schrédinger operator, —A + P : Xy C
Y2 — Y5, contains no eigenvalues and so v = 0. J

5 Examples

The following examples illustrate the use of the general results.
Example 1 For m > 1/2, consider the equation

_ div { (14 Vu(@)P)"™ Vu(:c)} +
a(@) {V (@) + (@) [u(@) [} {1+ [Vu@) P} - Au(z) =0
where 7 > 0,7 > 0 and V,r € C(RY) with
lim V(z)=V(co)and lim r(z)=r(co)

for some constants V(oo), r(co0) € R.
Setting

Gz, &) = [1+ g7 {% T o(m — 1) 2}
1+ [¢]

and

bz, &) = & {V (@) + (@) I} {1+ €} - A&
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for (z,&,0) € RN x RV*2 with & = (&, €) where & € R and £ € RY,
it is easy to see that the conditions (B), (E), (A) and (LL) are all
satisfied with

D, F(X0)v=—-Av+ [V = Ao

and
Fe (X u) = —div { <1 + |Vu|2)m_1 Vu} +
w{V (o) + r(o0) fu(@) "} {1+ [V} - A

for u,v € X,,.
The restriction m > 1/2 is required to ensure that the ellipticity
condition (E) is satisfied.

The essential spectrum, o, of the operator —A+V : X5 C Y; —
Y, is the interval [V (c0),00) and the interval J = R\o, contains an
eigenvalue of odd multiplicity if and only if A < V(o0) where

2
A =g d JenVal” + Vuide
fRNUQd.f

:uEXgandu#O}.

Indeed A is a simple eigenvalue in this case. (See Theorem 3.4 of [2],
for example.)
Since

12 (2, 5,0, \)s = [V(00) — A+ r(00) 3] ]s*
we see that the condition (M)) is satisfied provided that
A < V(o0) and r(oc0) > 0.

If r(c0) < 0, there are no values of A at which the condition (M)) is
satisfied.
However, when v = 0, the condition (V) is satisfied with

1 —2\™
Q© =5, {(1+[e)" -1}
and
9(&o, A) = [V/(00) — AJéo + 7 (o0) [§o]” &o-
It is easy to check that the inequality (24) is true for any constant

N .

S —-1if1/2<m<1
<{2 =M=
a_{ No_1ifm>1

2m
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whereas, 1f A < V(oo) and r(co) < 0, the inequality (25) holds for

any a € [ ] It follows that a constant a can be chosen so that

(24) and ( ) h Id simultaneously provided that

N >3 and =5 _5——1f1/2<m<1
i

N>2mand7+2_ﬁ——1fm>1

A < V(0),r(c0) < 0 and {

Also 0g,b*(z,0,) = V(co) — A and the condition (23) is satisfied if
and only if A < V(o0).
Having verified these properties of Example 1, we can now draw the
following conclusions.

Using Theorem 7(ii) we see that J = (—oo, V (00)) is an admissible
interval provided that

A < V(o0) and r(oc0) > 0.
If
v=0,A < V(oo) and r(o0) < 0,

Theorem 8(ii) shows that J = (—o0, V(00)) is an admissible interval
provided that

N>3and 45 <5 -xif1/2<m <1
N>2mand71?§21n—%ifm>l.

In either of these situations there is global bifurcation in the sense
of Theorem 2 from every eigenvalue of odd multiplicity of —A 4V :
Xy C Yy — Y, in the interval J = (—o0, V(0)).

Case 1 Setting m = 1 and v = 0 in the above example we obtain
the semilinear nonlinear Schrédinger equation

—Au(z) + V(z)u(z)+ r(z) ju(z)] u(z) — Au(z) =0

which can be treated by the discussion in [16]. The results in [16]
require that 8 > —oo where
= inf §(C) and G(C) = li Vv 1.
§= inf B(C) and B(C) = fim inl V(@) +r(a) '}
When r(oco) > 0,8 = V(oo) and we recover the same conclusion
as in [16]. When r(oc0) < 0,3 = —oo and the approach used in [16]
fails. However, the discussion in Example 1 using Theorem 8(ii) shows
that J = (—o0, V(00)) is still an admissible interval when r(co) < 0

provided that we are in the super-critical case where N > 3 and

T > ~—3-
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Case 2 Setting m = 1/2 in the above example we obtain a non-
linear perturbation of the mean curvature equation

Vu(z)

\/<1 + |Vu(x)|2)

u(@) {V (@) + (@) [u(@) "} {1+ [Vu@)P} - M) = 0.

— dw

As in Case 1, the interval J = (—oo,V(00)) is admissible interval
provided that

either r(co) > 0

orr(c0) < 0,y=0,N >3 and 7 >

AN_Q.

Example 2 Consider the equation
—Au(z) + [P(z) + q(z) — A u(z) + r(z) B(u(z), Vu(z),A) = 0
where P, ¢, € C(R") with P a N —periodic function and

lim ¢(z)= lim r(z)=0.

Also,
B € C*(RM*2) with B(0,A) = 0 and VB(0,)) =0

for all A € R.
The conditions (B), (E), (A) and (LL) are clearly satisfied with

D, F(X\,0)0v=—-Av+[P+q— A
and
Fe (XN u)=—-Au+ [P — Au.

Thus the conditions (26) and (27) are satisfied.

Let 3’ denote the spectrum of the periodic Schrodinger operator
—A+4+ P: Xy CYy; — Y, and consider an open interval J C R\Y. By
Theorem 9 there is global bifurcation in the sense of Theorem 2 from
every eigenvalue of odd multiplicity of —A+[P+¢]: Xo C Y, = Y5
in the interval J.

Remark 5.1 Criteria ensuring the existence of eigenvalues in
spectral gaps for perturbations of a periodic Schrodinger operator
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can be found in [19] and [14]. In the case N = 1, we can obtain much
more precise information about branches of solutions.
Example 3 Consider the differential equation

(@) + [P(@) + 4(2) = N u(2) + r(2)C (u(z), /(@) u(x) = 0
where P, ¢,r € C(R) and
C € C*(R? with C(0) = 0.
Furthermore, P is periodic, ¢ # 0 does not change sign,

lim ¢(z)= lim r(z)=0,

/ 2% |q(z)| dz < oo and / |zr(z)|dz < oco.

Except in some rare and completely determined cases, [30] page
175, the spectrum, X, of the operator —u” + Pu : Xy C Y3 — Y3
consists of a countable number of disjoint closed intervals and

R\ = (=00, bo) UZ; (ai; bi)
where the sequences, {a;};2; and {b;};2, are such that

—00 < by, lim b; = co and b; < a;41 < b;yq forall : =0, 1..
11— 00

By Theorem 2.2 of [38], there exists ig such that, for all ¢ > iy, the
operator —u” 4+ [P + ¢q]u : X5 C Y — Y5 has exactly one eigenvalue,
Ai, in the interval J; = (a;, b;). Furthermore A; is a simple eigenvalue
and, if ffooo lg(z)] (1 + x2) dz is small enough we even have ig = 1.

For any p € (1,00) and ¢ > g, it follows from Theorem 9 that
J; is an admissible interval for ' : R x X, — Y, and that there is
global bifurcation at A;. Furthermore the possibility (ii) in Theorem
2 cannot occur for the component, C;, of solutions bifurcating from
As.

Remark 5.2 In defining the components of solutions in Theorem
2 we restricted our attention to an admissible interval. This is because
the degree theory which underlies our whole approach is only avail-
able in such intervals. However Example 3 shows that, in general, we
should not expect to be able to continue branches of solutions beyond
the admissible intervals. Indeed in Example 3 there are no solutions

of the problem outside the admissible intervals. To see this we argue
as follows. If (A, u) € R x X, and F(X,u) = 0, we have

—u" +[P+U—-Au=0
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where

U(z) = q(x) + r(2)C(u(z), u'(z)).

Since P+ U € L*(R) it follows from Theorem 3 that u € X;. But
C(u(-),u(-)) € L*(R) and so zU(z) € L'(R). It now follows from
the results in [15] that u = 0 if A € X

If the condition [ |ar(z)|dz < oo is relaxed to r € L'(R), the
above discussion shows that U € L'(R). The results in [15] now show
that w = 0 if A belongs to the interior of /.

6 Exponential decay of solutions

In our paper [27] we have investigated the exponential decay of so-
lutions of rather general quasilinear second order equations. Using
the assumptions (A), (B) and (L°°) introduced in the present article
these conditions for exponential decay can be expressed rather sim-
ply and we see that they are particularly relevant for the situations
discussed in Theorems 7 and 8.

Theorem 10 Let the conditions (B), (A) and (L*°) be satisfied and
suppose that F'(A,u) = 0 where v € X, for some p € (N,00) and
F :R x X, = Y, is the operator defined by (5). Let p denote the

spectral radius of the positive definite matriz {Azoﬁ} appearing in (L>°)
and sel

§(A) =lim inf O b(z,0,A).

|z|—co
If 5(A) > 0, then

lim e*lu(z) =0
|z|—o0

Jor any p < @.

Remark 6.1 We always have p > 0 but, after D,F>(X,0) has
been reduced to the form —A 4 9¢ b(z,0,A) by a linear change of
variable, we obtain p = 1. Note also that

5(A) = inf 9 b (2,0, 3),

0, as one might expect, the estimate for the decay rate is determined
by the limit operator F'*°(), ).
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Proof This is a special case of Theorem 2.1 of [27]. Indeed, by (A)
and (L°°), the condition (2.5’) of [27] is satisfied. Referring to Remark
2.1 of [27], we set

1
ci(z,&N) = / O¢;b(x,t§, N)dt for j =0,1,.., N
0

and we observe that by (B),(A) and (L),

lim inf ¢o(z,0,X) = §(A)

|z|—=co
whereas

lim ¢;j(z,0,A)=0forj=1,..,N.

|z|—=co

Similarly, using p(z) to denote the spectral radius of the matrix
[anp(z,0)], we find that

lim p(z)=p.
In the notation of Section 2 of [27] we now have §* = §(A), p™ = p
and ¢® = 0. The result now follows immediately from Theorem 2.1

of [27].0

An essential requirement in the above result is that 6(A) > 0 and
this is satisfied by all the solutions on the components bifurcating
from Ag in some of the special cases discussed in Section 4.

Consider first the situation covered by Theorem 7. We see that
§(A) > 0 for all A € J. However, under the more stringent conditions
required for part (ii) we see that 6(A) = w — A and so §(A) > 0 for all
A € J = (—oo,w). Thus all solutions with A € .J decay exponentially.
(Recall that (LL) implies (L*).)

Suppose now that the hypotheses of Theorem 7(i) are satisfied.
Then, for all A € J, 0¢b%(z,0,A) = 0¢g(0,A) > 0 for all z €
RY and so §(A) = 9¢,g(0,A) > 0. Recalling that the hypotheses of
Theorem 8(i) ensure that (L) also holds we see that all solutions
with A € J decay exponentially.

The situation treated is Section 4.3 is completely different and we
may have §(A) < 0 for all solutions in the admissible interval .J for
the operator F’ under the hypotheses of Theorem 9. In fact the main
interest of that result is that it covers cases where inf.J > inf o, >
inf P and so §(A) =inf P — XA < 0 for A € J. However solutions with
A € J may still decay exponentially even in this case. To illustrate
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this, consider Example 2 in Section 5 with the additional requirement
that

where C € CH(RM*2) and C(0,A) = 0 for all A € R. Suppose that
(A, u)is asolution with v € X, forsome p € (N,00)and A € J C R\X
where inf J > inf ¥. Then §(A) < 0. Nonetheless, setting

Ulz) = q(2) + r(2)C(u(z), Vu(z), ),
we see that u satisfies the linear Schrodinger equation
—Au+[P+U—-Au=0

where | 1|im U(z) = 0. Thus the essential spectrum of the self-adjoint
xTr|— 00

operator —A + (P + U) is Y. It follows from Theorem 3(iii) with
V = P+ U that u € X3 and then from Theorem C.3.4 of [31] (see
also Proposition 6(3) in [26]) that u decays exponentially. So far we
do not know if exponential decay occurs for solutions with A € J in
the general context of Theorem 9.
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