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Summary : We discuss a broad class of second order quasilinear elliptic
operators on IRV acting from the Sobolev space W??(IR") into L?(IR")
for p € (N,o0). Conditions are given which ensure that such operators
are C''—Fredholm maps of index zero. Then we give additional assump-
tions which imply that they are proper on the closed bounded subsets
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1 Introduction

In this paper we survey some of our recent work on second order quasilin-
ear elliptic operators defined on IRY. In particular, we discuss the global
behaviour of some connected sets of solutions (A, u) of a second order quasi-
linear elliptic equation

(L.1) = > anp(z,u(z), Vu(a))dadsu(z) + bz, u(z), Vu(z),A) = 0

a,f=1

for x € IRN. Here ) is a real parameter and the function u is required to
satisfy the condition

(1.2) lim wu(z)=0.

|z|—co
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In addition to the ellipticity of the matrix [a,g] of coefficients, we suppose
that b(x,0,A) = 0 for all (z,)) € IRN*L. Thus u = 0 is a solution of the
problem (1.1), (1.2) for every A € IR and our results deal with components
of non-trivial solutions bifurcating from this line of trivial solutions.

As is well known, [4, 5, 6, 7], topological degree theory is the primary
tool for establishing this kind of result and we have shown that the degree
for proper Fredholm maps in the form developed by Fitzpatrick, Pejsachowicz
and Rabier can be applied to the problem (1.1), (1.2) under very natural and
rather general assumptions concerning the coefficients.

The first step is to express the problem (1.1), (1.2) as the set of zeros of
a function F € C'(IR x X,Y) where X and Y are real Banach spaces. We
use the standard Sobolev spaces X, = W2P(IRV) and Y, = LP(IRY) where
p € (N,00). There are two reasons for choosing these spaces :

(i) all elements of X, vanish as |z| — oo, thus ensuring that (1.2) is satisfied,
and

(ii) we can ensure that F(A,u) € Y, for all v € X, without imposing restric-
tions on the growth of the functions ayg(x, £) and b(x, €, A) as |€] — oo.
Our results in Section 5, giving explicit conditions for global bifurcation, do
not depend on the choice of p within the range (N, c0).

In this setting we have derived conditions on the functions a,s(x, &) and
b(x,£,A) which imply that F : IR x X — Y is a C'—Fredholm operator
of index zero which is proper on closed bounded subsets of IR x X. We
summarize these criteria in Sections 2 and 3. The remainder of the paper
concerns the conclusions about the bifurcation of solutions of (1.1), (1.2)
which can be obtained within this framework. We recall in Section 4 the
abstract bifurcation theorems found in [10] and [9]. The Fredholm property
alone is sufficient to guarantee the bifurcation of a branch of solutions from a
point across which the parity is equal to —1, so we begin with a result of this
kind for (1.1),(1.2). The sense in which a branch can fail to be compact can
be made more precise if F': IR x X — Y is also proper on closed bounded
subsets of IR x X. This is a more delicate question and most of our work
has been devoted to resolving this issue. The main conclusions about global
bifurcation for (1.1),(1.2) are presented at the end of Sction 5.

2 C!'—Fredholm operators of index zero



Let X and Y be real Banach spaces. A function F' € C'(IR x X,Y) is said
to be a Fredholm map of index zero on an interval J if the partial derivative
D, F(Au): X =Y is a bounded linear Fredholm operator of index zero for
all points (A, u) € J x X.

In this section we consider the differential operator
2.1) PO\ u)(e) =

N
— > aas(,u(z), Vu(z))d.0su(z) + b(z, u(z), Vu(z), A)
a,f=1
as a mapping between the spaces X, = W*?P(IRY) and Y, = LP(IR") where
p € (N,00). Our aim is to formulate conditions which ensure that it is a
C!—Fredholm map of index zero on an interval .J. We must first deal with its
smoothness and in this connection we have found the following definition to
be convenient when discussing the assumptions on of the coefficients required
to ensure that F € C*(IR x X,,Y,).

Using the notation
f: RN x RN — IR with (z,¢) = (2, &, ..&n) — f(z, &, ..EN)
and
g: RY x RNT? = R with (z,7n) = (z, &, ..En, A) — g(z, &, €N, D),

we see that the variable x plays a markedly different role from the variables &
and 1 when deriving the smoothness properties of the associated Nemytskii
operators u — f(-,u(-), Vu(-)) and (A, u) — g(-,u(-), Vu(-), ). The termi-
nology “bundle map” provides a convenient way of handling this distinction
where z is the “base” variable and ¢ and 7 are “fiber” variables. Note that
since we require smoothness with respect to u and A it is natural to treat A
as a fiber variable.

Definition 2.1 A function f: RN x RM — IR is called an equicontinuous
C°— bundle map if f is continuous and the collection {f(;z:, Jra € IRN} is

equicontinuous at £ for every £ € IRM. For a positive integer k, we say that
f = f(x,&) is an equicontinuous Cgk—bundle map if the partial derivatives
D¢ f exist and are equiconlinuous C°—bundle maps for all multi-indices o
with |a| < k.



Remark 2.1 If V € C(RRN)n L>*(R") and g € C*(IRM) then the
function f(z,n) = V(x)g(n) is an equicontinuous Cf;—bundle map, as are
finite sums of such functions.

Remark 2.2 Equicontinuous C°—bundle maps are uniformly equicontin-
uous on compact subsets of IRM in the following sense. Let f : RN x IRM —
IR be an equicontinuous C°—bundle map. Given a compact subset K of IRM
and £ > 0, there exists (K, e) > 0 such that |f(z,€&) — f(z,n)| < e for all
z € RN and ¢, € K with |€ — 5| < §(K,¢). See Lemma 2.1 of [1].

We can now formulate the essential smoothness properties of the family
of quasilinear second order differential operators defined by (2.1) where the
functions a,p : RN x RN — IR and b : RN x IRN*? — IR are bundle maps
having the following properties.

(B) For a, 3 = 1,.., N, the function a,s = ag, : RY x RN — IR is an
equicontinuous Cg—bundle map with

(2.2) aop(+,0) and 9z, aqs(-,0) € L=(IRY) for i = 0,1,.., N.

The function b : RN x IRN*? — IR is continuous and its partial deriva-
tives Jg,b, 0\b, 0,0¢,b and O¢,;0)\b exist and are continuous on RN x IRN*2 for
i =0,1,..,N. For each A\ € IR, b(-,\) : RN x RN*! — IR is an equicontin-
uous C}—bundle map and 0,0¢b : RN x IRN*? — IR is an equicontinuous
C°—bundle map for 7 = 0,1, .., N. Furthermore, for all z € RN and ) € IR,

(2.3) b(z,0,)) =0

and

(2.4) De.b(-,0, ) and g, 0\b(-,0,)) € L= (IRY) for i = 0,.., N.

Remark 2.3 The hypothesis (B) ensures that 0,0¢,b = 0g,0\b for « =
0,1,.., N and that

(2.5) \b(z,0,)) = 0 for z € IRY and X € RR.

Furthermore, it is easy to deduce from (B) that, for each A € IR, 0,b(-, ) :
RN x IRN*!' — IR is an equicontinuous Cg—bundle map.

Using this terminology we can formulate the following results giving the
requisite smoothness of the differential operator (2.1). See Theorem 3 in [17].
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Theorem 2.2 Fiz p € (N,00) and consider the operator F' defined by (2.1)
under the hypothesis (B). Then

(i) F e C'IR x X,,Y,) and the partial derivatives (in the sense of Fréchet)
Dy DyF and DyD,F exist and are conlinuous on IR x X,.

(1)) F(-,u) : IR =Y, is equicontinuous with respect to u in bounded subsets
of X,.

(1ii) In particular, F(X,0) =0 with

[DuF(A, 0)0](2) =

N N
— aap(7,0)0,050(x) + > 0eb(x, 0, \)d;v(x) + Jg,b(z,0, N)v(z)
a,B=1 =1
and

[DADF(X,0)v](z) = [DuDyF (X 0)v](x) =

N
> 000e,b(x,0,M)9;v(x) + 0r0eb(w, 0, N ().
=1

forallve X,.

We now turn to a discussion of the bounded linear operator D, F'(A, u) :
X, = Y, with a view to ensuring that it is Fredholm of index zero. For this
we shall suppose that the differential operator defined by (2.1) is elliptic in
the following sense.

(E) The operator F' is strictly elliptic in the sense that there exists a
lower semicontinuous function, v : IRY x IRN*! — (0, 00), such that

N

(2.6) > as(@, Onanp = v(z, €) |n|”

a,p=1

for all n € IRY and (z,¢) € RN x RN+

From Theorem 3.1 of [1] we now obtain the following result.

Theorem 2.3 Consider the operator (2.1) under the hypotheses (B) and
(E). For any p € (N,00), F : IR x X, =Y, is a C'—Fredholm map of index
zero on an interval J if and only if for each A € J, there exists an element
uy € X, such that D ,F(X\uy) : X, = Y, is a Fredholm operator of index

ZETO.



Remark 2.4 We observe that the choice uy = 0 is particularly attractive
since D, F'(A,0) does not involve any derivatives of the functions a,g.

3 Properness

Let X and Y be real Banach spaces. A function G : X — Y is said
to be proper on closed bounded subsets of X provided that G™'(K) N W
is a compact subset of X for every compact subset K of Y and every
closed bounded subset W of X. Let L(X,Y’) denote the Banach space of
all bounded linear operators from X into Y and let the kernel and range
of a linear operator 7' be denoted by kerT and rge T respectively. In
the case of a bounded linear operator L : X — Y, it is known that L is
proper on closed bounded subsets of X if and only if L € ¢,(X,|Y) =
{L € L(X,Y) : rgeL is closed and dimkerl < oc}. This result is due to Yood
and appears as on page 78 of [18].

In this section we discuss the properness of the nonlinear differential op-
erator F'(A,-) : X, — Y, defined by (2.1) on closed bounded subsets of X,,.
For this we shall suppose that it is asymptotically periodic as = tends to
infinity in the following sense.

(A) There exist equicontinuous C°—bundle maps al = a3, : RN x
RN*Y — IR for o, = 1,.., N and an equicontinuous C%—bundle map b* :
RN x RN** — IR such that >°(z,0,\) = 0 and

|I1|i_r>noo[aozﬁ(x7 5) - azoﬁ(xv 5)] = |£|liﬂoo[agzb($, 57 )‘) - aféboo($7 57 )‘)] =0
uniformly for (£, A) in bounded subsets of IRN*? where 1 < o, < N and i =
0,1,.., N. Furthermore, aZ3(-,£) and (-, A) : RN — IR are N —periodic
on IRN in the sense that, for some T' = (T},..Ty) with T; > 0 for all i =
1,...,N

A Y

agp(t1y o xi + Thy oy oy, &) = aip(wr, .o 2N, €)
and
b (x1, ey i+ Ty ooy xn, E,X) = 0% (21, ..y xn, €, A)
for all (z,6,)) € RN x RN*? and i =1,.., N.

Under the assumptions (B) and (A) we define a differential operator, F'*°,
by



(3.1) F(\u) =
N
— agp(w,u(z), Vu(z))0.0zu(r) + b7 (z,u(x), Vu(z), A)
a,B=1
Remark 3.1 The assumptions (B) and (A) imply that F*(\ u) € Y,
for all (A, u) € IR x X, and that F*°(),0) =0 for all A € IR.

In this context Theorem 6.1 of [1] yields the following result.

Theorem 3.1 Consider the differential operator defined by (2.1) under the
hypotheses (B), (E) and (A) and let p € (N,00). Then F(X,-): X, = Y, is
proper on closed bounded subsets of X, if and only tf

{ (1) there is an element uy € X, such that D, F(A uy) € ®,.(X,,Y,),

(12) the equation F*° (A u) =0 has no non-trivial solution u in X,.

4 Abstract bifurcation results

Let X and Y be real Banach spaces. A topological degree for C''—Fredholm
maps of index zero from X to Y has been developed in [9, 10]. That degree is
based on the notion of the parity, denoted by 7 (A(X) : A € [a,b]), of a con-
tinuous path, A — A(}), of bounded linear Fredholm operators of index zero
from X into Y, which was introduced in [8]. For such a path, a parametrix is
any continuous function B : [a,b] — GL(Y, X) such that B(A)A(X) : X — X
is a compact perturbation of the identity for each A € [a,b]. If A(a) and
A(b) € GL(X,Y), the parity of the path A on [a,b] is defined by

(4.1) T (A(X) 1 X € [a,b]) = dps(B(a)A(a))drs(B(b)A(b))

where dps denotes the Leray-Schauder degree. This definition is justified by
showing that a parametrix always exists and that dys(B(a)A(a))drs(B(b)A(b))
is independent of the choice of parametrix B. (Note that in deriving the re-
quired properties of parity, the Leray - Schauder degree is only used in the
very special case of linear homeomorphisms of the form I — K where K is
compact. Thus the degree is given by (—1)™,m being the sum of the mul-
tiplicities of the eigenvalues of K which are real and greater than 1.) In
some circumstances the parity can be expressed in a form which is easier to
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evaluate directly. In formulating our bifurcation theorems for (1.1), (1.2) we
shall only use the following criterion.

Proposition 4.1 Let A : [a,b] — L(X,Y) be a continuous path of bounded
linear operators having the following properties.
(i) A e C([a,b], L(X,Y)).
(i1) A(X) : X = Y is a Fredholm operator of index zero for all X € [a,b].
(1ii) There exists Ao € (a,b) such that

(4.2) A'(Xg)[ker A(Xo)] @ rge A(Xo) =Y

in the sense of a topological direct sum.
Then there exists € > 0 such that [Ag — ¢, Ao + €] C [a, b],

(4.3) A(X) € GL(X,Y) for all A € [XAo — &, ) U (Ao, Ao + €]

and
(4.4) T (AN 1 X €[N —&, o +¢]) = (—1)*
where k = dimker A()o).

This result is a combination of Proposition 2.1 of [13] and Theorem 6.18
of [8].

Note that for any continuous path A : [a,b] — L(X,Y ) and any Ao € (a,b)
such that A(X) € GL(X,Y) for all XA € [a,b]\ {\o}, the parity
T (A(X): X € [Ag — e, Ao + ¢]) is the same for all ¢ > 0 provided that [Ag —
€, Ao + €] C [a,b]. This quantity is called the parity of the path A across Ag.
The preceding proposition provides one way of calculating the parity across
Ao-

We can now state the main result about global bifurcation which can be
derived using the above notions.

Theorem 4.2 Let X and Y be real Banach spaces and consider a function
F e CYJ x X,Y) where J is an open interval such that F'(X,0) =0 for all
A€ J and F is a Fredholm map of index zero on J. Suppose that Ay € J and
that there exists € > 0 such that [Ag — &, Ao + €] C J,

DuF()\,O) € GL(X,Y) fOT’ A € [)\0 — 5,)\0 + 5]\{)\0}
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and

7 (D F(X,0), [N — &, Ao +2]) = —1.

Let Z ={(\u) € J x X :u#0 and F(X\ u) =0} and let C denote the con-
nected component of ZU{(Xo,0)} containing (Ao,0). Then C has at least one
of the following properties.

(1) C is not a compact subset of J x X.

(i) The closure of C contains a point (A1,0) where Ay € J\[Xo — &, Ao + €]
and D, F(X,0) ¢ GL(X,Y).

The above statements refer to Z and C' with the metric inherited from
IR x X. The basic procedure for proving a result like this is to suppose that
C' has neither of the properties stated in the conclusion and then to derive a
contradiction using the properties of the degree for C'* —Fredholm maps. For
the special case J = IR, this result appears as Theorem 6.1 of [10], but the
same arguments yield the version we have stated.

The ways in which €' can fail to be compact can be made more precise
provided that F'is proper on closed bounded subsets of X.

Theorem 4.3 Let X and Y be real Banach spaces and let J be an open
interval. Consider a function F € C'(J x X,Y) such that the maps F(-,u) :
J — Y are equicontinuous for u in bounded subsets of X. Suppose that
F(X0) =0 for all X € J and that F is a Fredholm map of index zero on J,
with the property that F(A,-) : X — Y is proper on closed bounded subsets
of X for all X\ € J. Suppose also that \g € J and that there exists ¢ > 0 such
that [Ao — e, Ao + €] C J,

DuF()\,O) € GL(X,Y) fO?“ A € [)\0 — 5,)\0 + E]\{)\()}
and
7 (DuF (X, 0),[ho — £, Ao +£]) = 1.

Let Z ={(M\u) € J x X :u#0 and F(X u) =0} and let C denote the con-
nected component of ZU{(Xo,0)} containing (Xo,0). Then C has at least one
of the following properties.

(i) C is an unbounded subset of J x X.
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(1) The closure of PC ={X € IR: (X u) € C} intersects the boundary of J.
(11i) The closure of C' contains a point (A,0) where Ay € J\[Ao — &, Ao + €]
and D, F(A,0) ¢ GL(X,Y).

Proof Suppose that C has none of the properties (i), (ii), (iii). We shall
show that this implies that C' is a compact subset of J x X, contradicting
the previous theorem.

Let {(An,un)} C C. For the compactness of C, it is enough to show that
this sequence contains a subsequence converging to a point (A, u) in J x X.
Since C' is a bounded subset of IR x X there is a closed bounded subset
W of X such that {u,} C W. Passing to a subsequence we can suppose
immediately that A\, — XA and XA € J since A, € J and C does not have the
property (ii). Furthermore since the functions F(-, u,) are equicontinuous at
Ay F(An,un) — F(A u,) = 0 as n — oo. Since F/(A,, u,) = 0, it follows that
F(Au,) — 0and so K = {F(\ u,)} U{0} is a compact subset of Y. Hence
[F(X\,-)"'K]NW is a compact subset of X. This implies that {u,} contains
a convergent subsequence in X which in turn establishes the compactness of

C.

5 Bifurcation for quasilinear elliptic equations
on IRV

Throughout this section we fix p € (N,o0) and consider the differential
operator F': IR x X, — Y, defined by (2.1) under the assumption (B). By
Theorem 2.2 this already ensures that

F e CY (R % X,,Y,) with F(X,0) =0

and

N
aag(', 0)8a85v + Z 6&.6(-, 0, )\)@U + 8&)6(-, 0, )\)U

1 =1

D, F(X,0)v = —

o}

7=

for all A € IR.

Our next results deal with a situation where the parity of the path
A= D, F(X0) across a value Ay can be determined in a relatively explicit
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way. This approach uses the following assumption (L) which ensures that
D, F(X,0) has a particularly simple form. More general behaviour at u = 0
can be handled provided that the asymptotic behaviour required for the dis-
cussion of properness is assumed and we shall return to this in due course.

L) There is a (constant) positive definite matrix [A,g| such that
( p 8
aap(2,0) = Agp = Ap, for all z € RN

and

De,b(x,0,X) =0 for all z € RY and X € IR
forall o, =1,..,N,

Under the hypotheses (B) and (L), it follows from Theorem 2.2 that

[DLF(X,0)0](2) = — > Aupdadsv(a) + g, b(x, 0, Nv(z)

a,f=1

which can be reduced to the form
(5.1) [DF (O, 0)0](x) = —Ao(z) + de,b(e, 0, Ao ()

by a linear change of the variable x.

By Theorem 2.3, F': IR x X, — Y, is a C'—Fredholm map of index zero
on an interval J if and only if D, F'(X,0) : X, — Y, linear Fredholm operator
of index zero for all A € J. Using the hypothesis (L) the latter property can
be expressed in terms of the linear Schrodinger operator —A + 0 b(x,0, )
on L*(IRM).

We refer to [12] for the notions of spectrum, discrete spectrum and es-
sential spectrum of an unbounded self-adjoint operator acting on a Hilbert
space. The discrete spectrum consists of the isolated points in the spectrum
which are eigenvalues of finite multiplicity. Those points in the spectrum
which do not belong to the discrete spectrum form the essential spectrum.

In [15] we discussed the Fredholm properties of the operator —A + V' in
LP(IRN) for a class of potentials admitting singularities. To deal with (5.1)
it is sufficient to recall the following special case which appears as Theorem

1 in [15].
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Theorem 5.1 Let V € L¥(IRN). Then —A+V : W*2(IRN) C L*(IRY) —
L*(IRN) is a self-adjoint operator whose spectrum and discrete spectrum are
denoted by o and o, respectively. For p € (1,00), consider also the operator

S, W2P(IRN) — LP(IRN) defined by
Spu = (=A+V)u for u e WP(IRN).

For every p € (1,00), the following conclusions are valid.

(i) S, — A : W2P(IRN) — LP(IRN) is an isomorphism if A ¢ o,

whereas, if A € o4, then

(i) S, — M : W2P(IRN) — LP(IRN) is a Fredholm operator of index zero,
(1ii) ker (S, — Al ) = ker (S2 — A1), and

(iv) LP(IRN) = ker (S, — M)® rge (S, — M) where & denotes a topological

direct sum.

We now use this result in conjunction with Proposition 4 to discuss the
parity of the path A — D, F'(),0).

Lemma 5.2 Suppose that the conditions (B) and (L) are satisfied and con-
stder a point Ao € IR such that 0 does not belong to the essential spectrum of
the self-adjoint operator —A + 0g,b(x,0, Xg) : Xo C Yy — Yo, Let p € (N, 00).
(i) Then Dy F(Xo,0): X, = Y, is a Fredholm operator of index zero.

(1i) Furthermore, if either

OO, b(+,0,X0) > 0 but # 0 on IRY,

or

O\De,b(-,0,X0) <0 but £ 0 on IR",

then there exists € > 0 such that D, F(X,0) € GL(X,,Y,) for all X € [Ag —
g, Ao+ e\ {Xo} and

7(DyuF(X,0),[Ao — &, A0 +¢]) = (—1)*

where k = dim ker[—A 4 0g,b(x, 0, X)].
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Remark 5.1 By Theorem 5.1(iii), the kernel of the linear operator —A +
Og,b(2,0,A) : X, = Y, does not depend on the choice of p € (1, 0).

We can now formulate our first bifurcation theorem for the problem (1.1),

(1.2).

Theorem 5.3 Let the conditions (B), (E) and (L) be satisfied and let p €
(N, 0). Consider the operator F' : IR x X, — Y, defined by (2.1) and suppose
that J ts an open interval having the following properties.

(a) For N € J, the essential spectrum of the self-adjoint operator —A +
Og,b(2,0, ) : Xy C Yy — Y, does not contain 0.

(b) There is a point A\g € J such that dim ker|[—A + 0¢,b(x,0, Xo)] is odd and
either

O\Deb(+,0,X0) > 0 but £ 0 on IR",

or

0\0e,b(+,0,A0) < 0 but Z0 on RN .

Let 7 ={(Au) € J x X, :u#0 and F(A u) =0} and let C denote the con-
nected component of ZU{(Xo,0)} containing (Xo,0). Then C has at least one
of the following properties.

(1) C is a non-compact subset of J x X,,.

(ii) The closure of C in J x X, contains a point (A;,0) where A\; # Ao.

Proof Using Lemma 5.2(i) and Theorem 2.3, we see that F': IR x X, —
Y, is a Fredholm map of index zero on the interval J. By Lemma 8(ii) its
parity across Ag is equal to —1. The conclusion follows from Theorem 4.2.

To resolve the non-compactness property into a global one we suppose
that F' is asymptotically periodic in the sense of condition (A) and then
we discuss the equation F*°(A,u) = 0 with a view to showing that v = 0
is the only solution in X,. We can also ensure that the operator (2.1) is a
C!'—Fredholm map on an interval by imposing conditions on the linearization
of F*°.

First of all we recall from Section 6 of [1] that, although the assumption
(A) does not guarantee the differentiability of the operator F*° : IR x X, —
Y,, it does imply that F'*°(A,-) : X, — Y, is differentiable (in the sense of
Fréchet) at 0 with

Dy F(X0)v =

13



N N
- > agy(+50)0a05v + D 0e,b(+,0, M) 0qv + D, b7(+, 0, M)

o,f=1 a=1
for all v € X, and X € IR.
We note that D, F*°(A,0) is a linear second order differential operator with
continuous N —periodic coefficients. In [1], Lemma 6.6 and Remark 6.2 de-
scribe some situations where it is a Fredholm operator of index zero. The
following assumption isolates a particularly agreeable situation.

(L*°) There is a (constant) positive definite matrix {Azoﬁ} such that
agy(x,0) = AZ, = AR, for all 2 € RY
and

06, b°°(2,0,\) = 0 for all z € IRY and )\ € IR
forl <ea,8 < N.

Remark 5.2 When this condition is satisfied we can assume that A% =
dop for 1 < a, 8 < N (by making a linear change of variable) and hence that

Dy F(X,0)v = —Av 4 0g,b™(+,0, \)v
for v € X, and A € IR.

In this context we have the following result which appears as Lemma 11

of [17].

Lemma 5.4 Suppose that the conditions (B), (A) and (L>) are satisfied and
consider A\g € IR such that the self-adjoint operator, S(XAg) : Xo C Y2 — Y3,
defined by

S(Ao)v = —Av + 0¢,b7(+,0, Xo)v for v € X5
is an isomorphism. Let p € (N, 00).
(i) Then D, F(Xo,0): X, = Y, is a Fredholm operator of index zero.
(1)) Let {p; € Xp:i=1,..,k} and {¢p; € Y, 11 =1,..,k} be bases for
ker D, F'(Xo,0) and ker [D, F' (Ao, 0)]" respectively, with k = dim ker D, F/(\g,0)
and ]lg—l— 5 =1. Then

(5.2) (kﬂﬁw¢ﬂDﬂLFQmm%}m £
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if and only if
(5.3) DD, F(Xo,0) [ker Dy F'(X,0)] & rge D, F(Xo,0) =Y.

When (5.2) is satisfied there exists ¢ > 0 such that D, F(X,0) € GL(X,,Y,)
forall X € [Ao — e, A0 + ]\ { Ao} and

7 (DuF(M,0),[ho — &, o +2]) = (—1)~.

Remark 5.3 This result gives the same conclusions as Lemma 5.2 with-
out requiring D, F(A,0) to be a formally symmetric differential operator.
Note that when the conditions (B), (E), (A) and (L) are satisfied then so
is (L) with A3 = A,p. We also observe that, since ¢, b°(-,0, o) is an
N— periodic function, S(Xg) is an isomorphism if and only if 0 does not
belong to its essential spectrum. (See Theorem 5.4 of Chapter 3 in [3].)
Moreover when there exists a continuous N — periodic function P such that
0, 0° (2,0, X0) = P(x) — X, S(Xo) = —A 4+ P — )¢ and it is an isomor-
phism if and only if Ag does not belong to the spectrum of the N— periodic
Schrodinger operator —A + P.

Combining the above results we obtain the following rather general global
bifurcation theorem for (1.1), (1.2). See Theorem 12 in [17].

Theorem 5.5 Let the conditions (B),(E),(A) and (L*°) be satisfied. Choose
p € (N,00) and consider the operator F' : IR x X, — Y, defined by (2.1).
Suppose that J is an open interval having the following properties.

(a) For all X\ € J,{u e X, : F*(A\u)=0} ={0}.

(b) For all X € J, the self-adjoint operator —A+0g,b(-,0,A) : Xo C Yy = Y,
is an isomorphism.

(¢) There is a point \g € J such that dimker D, F(Xg,0) is odd and the
condition (5.2) is satisfied.

Let C denote the connected component of Z U {(Xo,0)} containing (Ao, 0)
where Z = {(\u) € J x X, :u#0 and F(A\u) =0} and Z U {(Xo,0)} has
the metric inherited from IR x X,. Then C has at least one of the following
properties.

(i) C is an unbounded subset of J x X,,.

(ii) The closure of {\ : (A u) € C for some u € X,} intersects the boundary
of J.

(iii) The closure of C in J x X, contains a point (A, 0) where A; # Ao.

15



There are several approaches which can be used to check the condition (a)
in this result and we shall present three of them. In order to give relatively
explicit hypotheses on the operator F' we shall strengthen the hypothesis (L).

(LL) The condition (L) is satisfied and there is a constant ¢ # 0 such
that

O\, b(,0,)) = c for all z € RN and X € IR.

When (B) and (LL) are satisfied we can and shall suppose (by redefining
A) that there exists a function V € C(IRN) N L*(IRY) such that

De,b(2,0,)) = V(z) — A for all € RN and ) € IR.

In this case
(5.4) D, F(X\0)v=(-A4+V)v— v
where —A+V : X3 C Y; — Y5 is a self-adjoint operator. When the condition
(LL) is satisfied with 0gb(x,0,A) = V(z) — A, the condition (L*) is also
satisfied and 0g,b™(x,0, Ag) = P(x) — X where P is a continuous N —periodic
function. Since limjg|eo {V(z) — P(2)} = 0, it follows that the essential
spectrum of the Schrodinger operator —A +V : Xy, C Y, — V) is equal to
the whole spectrum of the N —periodic Schrodinger operator —A+ P : Xy C
Y, — Y5

Henceforth we use o and o, to denote its spectrum and essential spectrum,
respectively.

5.1 Using the maximum principle

The maximum principle can be used to establish the condition (a) of Theorem
5.5 provided that the functions agj and 6° have the following properties.

(M,) There exists a continuous function v : IRN*! — (0, 00) such that

N
025, 0mams > v, )l for all g € R
a,B=1
and for all (z,s) € RN*! and

)
b>°(z,5,0,\)s > 0 for all (z,s) € RNT! with s # 0.
Remark 5.4 It follows from this that 9,6 (z,0,) > 0 for all z € IRV,
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Theorem 5.6 Let the conditions (B),(E) and (A) be satisfied and let p €
(N, 0). Suppose that J is an open interval such that (M) is satisfied for all
AeJ

(1) Suppose that the condition (L) is satisfied and that the operator S(\) =
—A + 0g,b™(+,0,A) : Xo — Y3 is an isomorphism for all A € J. Then the
conclusion of Theorem 5.5 is valid for the operator F': IR x X, — Y, defined
by (2.1) at any point N\g € J such that dimker D, F(Xo,0) is odd and the
condition (5.2) is satisfied with A = Ao.

(ii) If the condition (LL) is satisfied with Og,b(x,0,)\) = V(x) — A, then
J C (—o0,w) where w = liminf ;o V(). Furthermore, for every eigenvalue
Xo € J of odd multiplicity of —A +V : Xy C Yy, = Y,, the conclusion of
Theorem 5.5 is valid for the operator F : IR x X, =Y, defined by (2.1).

This result appears as Theorem 14 of [17].

Remark 5.5 Under the hypotheses of part (ii), there exists a continuous
N —periodic function P such that lim; . {V(z) — P(z)} =0 and
0, 0°(2,0,A) = P(z) — A. Thus w = inf{P(x) tx € IRN} and so the con-
dition (M,) implies that A < w for all A € J. But J is open so in fact
J C (—oo,w). Furthermore, the essential spectrum, o., of the Schrédinger
operator — A+ V : Xy C Y, — Y, is equal to the whole spectrum of the
N —periodic Schrodinger operator —A+P : X, C Y, = Yy and so J C R\o..

5.2 Using variational identities

When the condition (M, ) is not satisfied an alternative is offered under the
following conditions which ensure that all solutions of the equation F*°(A, u) =
0, with v € X, for some p > N, satisfy an integral identity of the type found
by Pohozaev, [2, 14]. Under appropriate conditions this can be used to show
that u = 0. We refer to Sections 5 and 6 of our paper [16] for these results.

(V) There exist two functions
Q=Q(¢ € CS(IRNH) and g = g(&, \) € C'(IR?)

such that
a’zoﬁ(:ﬁ7 5) = afaaEﬁQ(f)
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and

N
boo($7 67 )‘) = afoQ(f) - Z gaaﬁaafoQ(g) + 9(507 )‘)
for all z € RN, ¢ = (&, &1, ..En) and A € IR. Furthermore,

(55) Q(fg,()) = 85062(50,0) = 0 for all 50 € R,
0, Q(0) =0 fora =1,..., N,

and there exists a continuous function v : IRN*! — (0, 00) such that

N
> 96, 0:,Q(0)nans > v(€) [n|”

a7ﬁ:1

for all n € IRYN and ¢ € RN+
Remark 5.6 The condition (V) means that the equation F*(A u) =0
has the variational form

56) =3 0,0.Q ule). Vule)} + 0 ul2), Vulo)
N +g(u(z),\) = 0
associated with the formal Fuler-Lagrange equation of the functional
(5.7) /. {Q (u(), Vu(z)) + /OW) als, A)ds} de.
Under the assumption (V) and the condition (5.9) introduced below, we show

in Theorem 5.2 of [16] that any solution, u € X, for some p € (N, o), of the
equation (5.6) satisfies the following energy identity,

N
/BN > 96.Q (u, Vu) Oau + 95, Q (u, Vu) u + g(u, N)dz = 0,
a=1

and Pohozaev identity,
N
/BN Z afaQ (u, VU) aaudx —
a=1
u(x)
N/BN {Q('u(af),vu(x)) —I—/O g(s,)\)ds} dz.
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Remark 5.7 As is shown in Section 5 of [16], the properties of @) required
in (5.5) involve no real restriction. If they are not satisfied, they can be
recovered by replacing () by

Q(¢) = Q&) — Q(&,0) — 2_: ¢, Q(0)Ea

and g by
§(fo, )\) = 9(607 )‘) + afoQ(fov 0)7
since Q and § generate the same functions a7} and 6*as @) and g.

Remark 5.8 If the conditions (B),(A) and (V) are satisfied then so is (L>)
with A%y = 0¢,0¢,(Q(0). Thus we can suppose that

(5.8) Dy F(X0) = —A 4 0g,b>(+,0, )
where 0, b>(-,0, A) is equal to the constant Jdg,g(0, A).

If, in addition, the condition (LL) is satisfied with 0gb(z,0,A) = V(z) — A,
then V(oo) = limjz o0 V() exists and 0 b>(+,0,A) = V(oo) — A.

Theorem 5.7 Let the conditions (B), (E) and (A) be satisfied and let p €
(N,0). Consider an open interval J such that,

(5.9) (a) g(0,X) = 0 and Jg,g(0,X) > 0 for all X € J,
(b) there exists a € IR such that

N
(5.10) NQ(€) > (a+1) z_j €00:, Q(E) + abo0s, Q(€) for all € € RNT

and

(5.11) N/S g(t, \)dt > ag(s,\)s for all (s,\) € IR x J.
0

(i) Then the operator S(A) = —A + 0g,b%°(+,0,A) : Xy — Yy is an isomor-
phism for all X\ € J. Furthermore, the conclusion of Theorem 5.5 is valid for
the operator F : IR x X, — Y, defined by (2.1) at any point Ao € J such that
dimker D, F'(Xo,0) is odd and the condition (5.2) is satisfied with A = X.
(11) If the condition (LL) is satisfied with Og,b(x,0,X) = V() — A, then the
condition (5.9) is satisfied if and only if A < V(oo) = limpy|ne V(). The
conclusion of Theorem 5.5 is also valid for the operator F': IR x X, — Y,
defined by (2.1) at any eigenvalue Ao € J of —A+V : Xy C Yy — Y,y which
has odd multiplicity, provided that (5.10) and (5.11) are satisfied.
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This result appears as Theorem 15 of [17].

Remark 5.9 The condition (V) restricts the applicability of this result
to cases where the differential operator F*° has no explicit dependence on
the variable z. In particular, the condition (5.9) means that 9 b>(z,0, ) =
0, 9(0,A) > 0 for all € IR. Since the spectrum of —A : X3, C Y, — Y,
is the interval [0,00), it follows that —A + 0g,b>(-,0,A) : X3 — Y5 is an
isomorphism whenever (5.9) holds. When (LL) is satisfied the condition
(5.9) becomes V(oo) — A > 0. In this case, 0. = [V(o0), ).

5.3 Using asymptotic linearity

In Theorems 5.6(ii) and 5.7(ii) the admissible interval lies below the essential
spectrum of the linearization about the trivial solution. We now present a
situation where there is global bifurcation in gaps of the essential spectrum
of this linearization.

Theorem 5.8 Let the conditions (B), (E), (A) and (LL) be satisfied and let
p € (N, 00). Suppose that there is an N—periodic function P € C(IRY) such
that
|l|i_r>n {V(z)— P(z)}=0
and that
agoﬁ(xag) = 50é5 and boo(xaga )‘) = {P(I) - )‘} £o

forall (z,&,\) € RN x IRN*? with £ = (&, &1, ..En). Consider an open interval
J C IR\o. and an eigenvalue Ag € J of odd multiplicity of —A+V : Xy C
Y, — Y. Then the conclusion of Theorem 5.5 is valid for the operator F :
R x X, =Y, defined by (2.1).

This result appears as Theorem 16 of [17].

Remark 5.10 Since limy;| {V(z) — P(z)} = 0, the essential spectrum,
0., of the operator —A +V : X, C Y; — Y is equal to the entire spectrum,
3, of the periodic Schrodinger operator, —A + P : Xy C Y; — Y;. Typically,
it is a finite union of closed intervals. See [3].
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