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ABSTRACT
This paper presents a novel rate allocation scheme to compute the
3D structure of the scene from compressed stereo images, captured
by the distributed vision sensor networks. The images captured at
different view points are encoded independently with a balanced
rate allocation. The central decoder jointly decodes the information
from the encoders, and computes the 3D geometry of the scene in
terms of depth map. We first consider the scenario of estimating the
3D geometry from the views, compressed using standard encoders,
e.g., SPIHT. Unfortunately, we noticed that the depth value is not
precisely reconstructed in the low contrast regions or region around
weak edges. It is mainly due to the rate allocation scheme, that allo-
cates the bits based on the variance of the coefficients. We therefore
propose a rate allocation scheme, where each encoder first identifies
the low contrast regions and then distributes the bits such that the
visual information in the low contrast regions is preserved. At the
same time, the approximation quality in the rest of the image should
not be penalized significantly. We adapt the SPIHT coding scheme
to implement the proposed rate allocation methodology. Experimen-
tal results show that for a given bit budget, the proposed encoding
scheme reconstructs the 3D geometry with more accuracy compar-
ing to SPIHT, JPEG 2000 and JPEG coding schemes.

1. INTRODUCTION

Vision sensor network usually consists of several cameras distributed
in the 3D scene and are widely used in several applications that
rely on the efficient 3D representation of the scene, e.g., 3DTV.
These imaging systems pose several problems like multi-view cod-
ing, computing 3D structure or distribution of cameras in 3D space
etc. In this paper, we consider the problem of reconstructing the
3D geometry of the scene in terms of depth map, from the multi-
view images. The computed depth map of the scene could be further
exploited for various applications like rendering, multi-view coding
etc. In common practice these imaging systems are operated with
limited bandwidth resources, and hence we restrict ourselves in en-
coding the visual information at low or medium rates. Also since
the communication among the cameras consume power, we rely on
the distributed processing, where each sensor encodes the informa-
tion independently without the knowledge from the other sensor, and
communicate only with the central point for joint decoding.

Fig. 1 shows a distributed vision network with two camera sen-
sors C1 and C2, that encode the images I1 and I2 independently.
In this setting, we are interested to compute the depth map at the
joint decoder from the compressed stereo views, especially encoded
at medium (or even low) bit rates. Several algorithms have been
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Fig. 1. Distributed vision sensor network with two cameras. The captured
images I1 and I2 are encoded independently, and are transmitted to the joint
decoder. The joint decoder computes the depth map dc from the approxi-
mated views.

proposed in the literature to compute the depth map from the stereo
images (see [3] for details), but these algorithms compute the depth
map from the original images by assuming that the vision sensor en-
codes the information without any loss. In other words, the depth
is computed at the joint decoder, by neglecting the distortion due
to compression. In practice the images are often compressed to save
bandwidth resources and the transmission costs. Unfortunately, stan-
dard encoding strategies (SPIHT, JPEG 2000 etc.) are not efficient
in handling the images, when depth has to be computed from com-
pressed images. In particular, when the images are approximated at
low or medium bit rates, such schemes yield incorrect depth value,
especially when the depth discontinuity occurs in the low contrast
region (or region with comparable luminance value) of the image.
We therefore propose a rate allocation scheme that gives importance
to the reconstruction of the visual information in the low contrast
regions, and at the same time does not penalize significantly recon-
struction in the other regions (background). In particular, we adapt
the SPIHT coding scheme to allocate enough bits in the low con-
trast regions, so that it preserves the weak edges in the approximated
view, which facilitates the depth estimation algorithm to yield cor-
rect depth value in the low contrast regions. Such a rate allocation
scheme is shown to lead to a more accurate depth map comparing the
traditional coding schemes based on JPEG 2000, SPIHT and JPEG.

2. DEPTH ESTIMATION FROM COMPRESSED IMAGES

We consider the scenario shown in the Fig. 1, where the cameras C1

and C2 project the 3D visual information on the 2D plane I1 and
I2 respectively, in different view points. The captured images I1

and I2 are encoded independently using b bits per image. Balanced
rate allocation allows us to share the transmission and computational
cost equally among the sensors and thus advantageously avoids the
hierarchical relation among the sensors. At the joint decoder, the
stereo image pair is first reconstructed independently, and is repre-
sented by Î1, Î2 respectively. Then the approximated images Î1 and
Î2 are used to compute the dense depth map dc, by assuming Î1 as
the reference.
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(a) DE = 9.52 (b) DE = 7.52

Fig. 2. The images are encoded using SPIHT coding scheme and the depth
map is computed at bit rates 0.4 bpp and 0.6 bpp per view. The corresponding
disparity error is shown in (a) and (b) for the bit rates 0.4 and 0.6 bpp per view
respectively. The white pixels correspond to disparity error > 1.

We first study the impact of the standard encoding procedures,
on the performance of stereo matching algorithm. As an example,
we select SPIHT coding scheme to encode the images, and Fig. 2
shows the disparity error w.r.t to the ground truth dt on the Tsukuba
test image [3] at medium bit rates 0.4 and 0.6 bpp per view. The
disparity error (DE) is computed using

DE =
1

N1 ×N2

∑
x,y

(|dc(x, y)− dt(x, y)| > 1), (1)

where N1 × N2 represents the dimension of the image [3]. For
the sake of simplicity, compression is applied only on the luminance
component of the image. As expected the overall quality in the depth
map is better at higher bit rate (DE reduces from 9.4 to 7.52 respec-
tively). However, it is quite important to observe that the quality of
the depth map is improved only in the regions close to the strong
edges (e.g., structure of the lamp, head), but the depth value remains
unchanged in regions close to the weak edges or in low contrast re-
gions (e.g., between the table leg and the background at the bottom
most right corner). This behavior is observed because the SPIHT
codec [4] minimizes the MSE in the reconstructed image, which ob-
viously allocates more bits to the strong edges (high contrast regions)
comparing weak edges (low contrast regions). Due to this rate allo-
cation scheme, DE is significantly reduced in the high contrast re-
gions, while the depth value remain unchanged in the low contrast
regions. Similar observation is made with other standard encoding
schemes like JPEG 2000, JPEG which also minimize the average
MSE for a given target bit rate.

3. RATE ALLOCATION FOR IMPROVED DEPTH
ESTIMATION

In the previous section, we discussed that the 3D structure of the
scene is not reconstructed precisely near the weak edges or in the
low contrast regions, when the stereo image pair is encoded using
a traditional coding scheme. In order to improve the quality of the
depth map at the joint decoder, we therefore propose a rate allocation
scheme that preserves the weak edges (low contrast regions) in the
reconstructed views Î1 and Î2, at the cost of a marginal penalization
in the quality of the background. In the rest of the section, we discuss
in detail about the proposed rate allocation scheme.

3.1. General Principle

Without loss of generality, we assume that the image I ∈ {I1, I2}
can be segmented into a low contrast region Ir and background Ib,
such that I = Ib ⋃

Ir . Furthermore, the low contrast region Ir can

be partitioned into k regions based on the strength of the edge, i.e.,
Ir =

⋃
i=1:k Ir

i . Once the image I is partitioned into Ir and Ib, we
distribute the bit budget b to the regions Ir and Ib based on principles
of the ROI coding scheme [5], as described below.

1. Apply the desired transform on the image (e.g., Wavelets),
and denote the transform coefficients by C.

2. Identify the set of transform coefficients Cr
k ⊂ C from the

region Ir
k .

3. Calculate the maximum value among the transform coeffi-
cients and then compute M = dlog2(max(C))e. Also rep-
resent each transform coefficient using M bits with the bit
value at position M as the most significant bit.

4. Compute Mk = dlog2(max(Cr
k))e < M , and then calculate

the scale fk = 2dk where dk = M −Mk.

5. Multiply the coefficients Cr
k by fk. As a result Mk is shifted

to the bit plane M .

The steps explained above are illustrated in the Fig. 3 for k = 2.
As shown in the Fig. 3(a), the transform coefficients C is partitioned
into three regions, in which the left shaded region corresponds to
the background coefficients Cb and the rest of them correspond to
the low contrast regions Cr

1 and Cr
2 . The bits in the top row repre-

sent the sign of the coefficients. The shift parameter is found to be
d1 = 2 and d2 = 4 respectively, and the corresponding coefficients
are scaled as shown in the Fig. 3(b). After scaling, the coefficients
are progressively encoded starting from most significant bit plane
M to the least significant bit plane along with the sign bit s. Also,
the parameter dk is transmitted to the decoder. While decoding, the
coefficients are appropriately down scaled by fk and the image is re-
constructed by inverting the transform. The visual information in the
low contrast region Ir is now preserved in the reconstructed image
due to the scaling of corresponding coefficients Cr before encoding.

The shift parameter fk proposed in our scheme for each region
is certainly optimal. Suppose that fk = 2dk+1, then after scaling
the coefficients Cr

k are shifted to bit plane M + 1. In such cases
the region Ir

k or in general Ir is decoded at higher quality, while
penalizing the reconstruction in the background, since more bits are
now spent in encoding the low contrast region than the background.
This can be easily understood from the Fig. 3(b), by setting d1 = 3
and d2 = 5.

The steps outlined above illustrate the proposed rate allocation
methodology. However, it is costly to implement such rate alloca-
tion methodology especially in sensor networks, due to the following
reasons. Mask generation Ir involves a segmentation step that ob-
viously increases the computational complexity and the power con-
sumption at the sensor node. Also, the decoder needs a priori knowl-
edge about the shape information Ir to start the decoding process,
and thus requests the encoder to transmit the mask Ir which ob-
viously increases the transmission cost. In order to alleviate these
problems we propose to integrate the principles outlined above into
a zero tree coder (e.g., SPIHT). It leads to a more practical solution
that does not require any preprocessing nor segmentation step.

3.2. SPIHT - based rate allocation algorithm

In this section, we describe the proposed encoding scheme con-
structed using SPIHT coding principles. We denote Cl

i as the set
of all coefficients in the ith entry of the LIS (refer [4] for details).
Due to the compact support of the Wavelet filter, the coefficients Cl

i

represent a particular spatial region in the image. Also the magni-
tude of the coefficients Cl

i depend on the strength of the edge in
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Fig. 3. Illustration of the proposed rate allocation scheme with k = 2. (a)
Bit plane representation of original transform coefficients C with M = 8,
and are partitioned into three regions. The bits in the top row represent the
sign of the coefficients. (b) The coefficients Cr

1 and Cr
2 are shifted by d1 = 2

and d2 = 4 respectively.

the corresponding spatial region of the image, because the Wavelet
coefficients are magnitude ordered according to the strength of the
edge. i.e., for strong edges Mi ≈ M , and for weak edges Mi < M ,
where Mi = dlog2(max(Cl

i))e. Thus the spatial location of the
low contrast regions can be identified directly from the magnitude of
the Wavelet coefficients Cl

i . We then calculate the scale fi for each
ith entry in LIS using fi = 2di where di = M − Mi. It can be
seen that the scaling parameter fi is close to one for the entries in
LIS which represent the strong edges, and it is close to 2M for the
weak edges. Thus the scaling parameter fi is varied (between one to
2M ) inherently based on the strength of the edge in the image, more
importantly without any preprocessing stage. Once the scale fi is
computed, the corresponding coefficients Cl

i are scaled, which obvi-
ously places Mi at the most significant bit plane M . As a result of
this, the visual information in the low contrast regions are preserved
in the reconstructed image, as explained in the section 3.1. Further-
more, as the number of coefficients in each entry of LIS is the same,
the bit budget could be distributed equally among the entries of LIS.

It is well known that only the edges and the texture informa-
tion are important to estimate the depth, and not the smooth regions.
So the coefficients corresponding to the smooth regions are not en-
coded, and we propose to identify them in the transform domain
based on thresholding. In more detail, we calculate the mean of
the coefficients Cl

i in each ith entry of the LIS and then compare it
against a threshold T . If the mean value is smaller than T , then most
probably the coefficients Cl

i are close to zero due to the smooth be-
havior, and it is not considered for rate allocation. So the bit rate is
equally distributed among the remaining entries in LIS after thresh-
olding. Also for correct decoding, the index i of the LIS that is
not selected for rate allocation (whose mean value is less than the
threshold) is signaled to the decoder, so that the decoder simply sets
the coefficients Cl

i in the corresponding ith LIS entry to zero.
Let us now discuss in more details about the rate allocation be-

tween the coefficients in the LL band and the descendant bands (en-
tries in LIS). Let us denote bp and bd be the bits allocated to encode
the coefficients in the LL band and its descendant bands respectively,
such that the total bit rate b = bp + bd. As most of the signal energy
is compacted in the highest level of the pyramid (LL band) enough
bits must be spent to encode the coefficients in LL band, otherwise
it degrades the image quality 1. Based on experiments, we heuristi-
cally selected bp = 0.2b to encode the coefficients in the LL band.
As the number of the coefficients in the LL band is 22L times (L de-

1We will show that besides accurate depth map, it is important to attain
good image quality in order to reduce the prediction error in view synthesis.

(a) (b) DE = 5.58

Fig. 4. Tsukuba Image set: (a) Computed depth map dc at rate 0.6 bpp per
view using the proposed encoding scheme. (b) Disparity error w.r.t to the
ground truth. The disparity error for the SPIHT scheme for the same bit rate
is shown in Fig. 2 (b).

Table 1. Venus Image set: Comparison of disparity error between the pro-
posed scheme, SPIHT, JPEG 2000 and JPEG. Results are tabulated using five
wavelet decomposition levels, and Threshold (T) = 3.54.

Bit rate per view Disparity Error (DE)
Proposed JPEG 2000 SPIHT JPEG

0.4 6.56 8.92 11.99 9.61
0.5 5.67 7.54 10.91 9.24
0.6 4.89 7.64 9.06 8.37
0.7 4.14 7.22 8.1 6.91
0.8 3.91 6.93 7.7 5.91

notes the wavelet decomposition levels) smaller than the size of the
image, allocating bp = 0.2b bits may cause an overflow, especially
at high rates. To avoid this we truncate bp to N1

2L × N2
2L × (M + 1)

at high rates, so that finally bp = min(0.2b, N1
2L × N2

2L × (M + 1)).
The one extra bit plane M +1 is accounted to encode the sign of the
coefficients.

4. EXPERIMENTAL RESULTS

4.1. Setup

We run experiments on two stereo image sets (Tsukuba and Venus
[3]) and on the Flower garden sequence. A Wavelet transform is
applied on the luminance component of the image using a Daub 9/7
filter. We compute the dense depth or disparity map (dc) using α
expansion algorithm in Graph cuts [2]. The pixel similarity between
the two views is measured using Birchfield Tomasi cost function [1],
which presents a great advantage in reducing the image sampling
errors. We evaluate the penalty for assigning different labels between
the neighbors in terms of intensity gradient (called the prior or the
smoothness cost), and this choice is made mainly to improve the
performance of the graph cut algorithm [3].

4.2. Performance analysis

Table 1 tabulates the disparity error for the Venus image set com-
puted from the compressed images, at various target bit rates. In our
proposed scheme, we heuristically selected the T = 3.54 (for Venus
image set), and the effect of thresholding is not studied in detail due
to limited space. Clearly, we could see that the proposed scheme
performs better than the standard encoding schemes. Similar obser-
vation is made for the Flower garden sequence and for the Tsukuba
image set. Fig. 4 (a) shows the disparity result for the Tsukuba im-
age set computed at b = 0.6 bpp per view using the proposed coding
scheme, and the corresponding disparity error is shown in Fig. 4



Table 2. Tsukuba Image I1: Comparison of PSNR between the proposed
and SPIHT coding schemes, using four wavelet decomposition levels.

Bit rate (bpp) 0.4 0.5 0.6 0.7 0.8
Proposed (dB) 28.14 29.02 29.7 30.34 30.9
SPIHT (dB) 30.31 31.16 31.95 32.8 33.25

Table 3. Comparison of the prediction error in the two novel views between
the proposed and SPIHT based coding schemes. The view points are rendered
by warping the approximated reference image Î1 encoded at 0.5 bpp, and the
quality of Î1 is 28.4 dB (proposed) and 30.2 dB (SPIHT).

Novel View Proposed SPIHT
PSNR % Holes PSNR % Holes

1 27.7 3.85 28.8 3.6
2 25.97 5.56 26.07 5.2

(b). Comparing the Figs. 2 (b) and 4 (b) it clear that the proposed
encoding scheme computes more accurate depth map, comparing
to the SPIHT scheme for the same target bit rate. Especially, the
depth value is recovered with high fidelity in the regions close to
the weak edges (see the bottom most right portion) without penaliz-
ing significantly the depth in the background region. Furthermore,
we compare the quality of the independently reconstructed views Î1

and Î2 in terms of PSNR, between the proposed and the SPIHT based
schemes. Table 2, compares the reconstruction quality of the image
Î1 in the Tsukuba image set between the proposed and SPIHT based
schemes. We observe that our coding scheme penalizes the PSNR
by 2 - 2.5 dB on the Tsukuba image (similar findings on other test
images), mainly due to the encoding of weak edges in the image.
However, the proposed scheme computes accurate depth map than
SPIHT based scheme, which is significantly more important than
the reference image quality in several applications, e.g., view syn-
thesis (demonstrated in the next subsection). These results allow us
to conclude that estimating the geometry of the 3D scene using high
quality images (measured in terms of PSNR) does not guarantee to
minimize the disparity error. A comprise has to be made between
the image quality and depth accuracy.

4.3. View Synthesis

We synthesis novel views by warping (forward) the approximated
reference view Î1 using the associated depth map dc. Table 3 and
Fig. 5 shows the prediction error for the novel views measured in
terms of PSNR for the Venus image set and the Flower garden se-
quence, respectively. Here, the position of the synthesized view
point is numbered w.r.t to the distance from the reference image with
the view point 1 is closer to the reference image. In computing the
prediction error, we ignore the missing pixels due to occlusion, and
we tabulate the percentage of the such missing pixels separately. We
observe that in spite of accurate depth map in our scheme, the qual-
ity of the rendered view is degraded comparing to the SPIHT based
scheme, for the view points close to the reference image. The degra-
dation is mainly due to the poor reconstruction quality of the refer-
ence view Î1 comparing to the SPIHT based scheme, as explained
in the previous section. But, when the distance between reference
and synthesized view increases, we could see that the gap decreases,
and even that the proposed scheme outperforms the SPIHT based
scheme (see Fig. 5) due to the accurate 3D geometry when views are
far apart. Interestingly, we see that the prediction error in the synthe-

2 4 6 8 10 12

15

16

17

18

19

20

21

Position of the Novel view

P
S

N
R

 

 
Proposed
SPIHT

Fig. 5. Flower Garden sequence: Prediction error in the synthesized views
for various novel view position. The novel view 1 is closer to the reference
image and the view 12 is the farthest. The quality of the reference view Î1 at
0.5 bpp is 20.6 dB and 23 dB for the proposed and SPIHT based schemes.

sized view depends on the quality of 3D structure and the reference
image. In particular, the prediction error for the views closer to the
reference camera is significantly determined by the quality of the
reference image used for warping, and on the 3D structure when the
distance from the reference camera increases. Thus we conclude that
the information in the 3D geometry and the reference view (used for
warping) should be blended together with appropriate weights while
predicting the appearance of the views at various distances from the
reference camera, and such a methodology would bring further im-
provement in the quality of the synthesized views.

5. CONCLUSIONS

In this paper, we study the problem of 3D scene reconstruction in
a distributed camera network, where the joint decoder computes the
depth map from the approximated stereo images, encoded using med-
ium (or low) bit rates. The proposed rate allocation scheme preserves
low contrast regions in the image and is demonstrated with SPIHT
coding principles. We show that comparing to the standard encod-
ing schemes, the proposed scheme brings better 3D scene recon-
struction at the cost of slightly penalizing the quality of the indepen-
dently decoded image. However, we demonstrated that the quality
of the reference view is less important than the 3D geometry of the
scene while synthesizing novel views, in particular at a larger dis-
tance from the reference camera. Finally for optimal view synthesis,
the information in the 3D geometry and the reference view should
be blended with appropriate weights, and such a methodology would
bring better quality in the synthesized views, that is of central impor-
tance in 3DTV and Distributed source coding applications.
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