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SECOND-ORDER LINEAR HYPERBOLIC SPDES DRIVEN BY
ISOTROPIC GAUSSIAN NOISE ON A SPHERE

BY ROBERT C. DALANG1 AND OLIVIER LÉVÊQUE2

Ecole Polytechnique Fédérale de Lausanne

We study a class of linear hyperbolic stochastic partial differential
equations in bounded domains, which includes the wave equation and the
telegraph equation, driven by Gaussian noise that is white in time but not in
space. We give necessary and sufficient conditions on the spatial correlation
of the noise for the existence (and uniqueness) of square-integrable solutions.
In the particular case where the domain is a ball and the noise is concentrated
on a sphere, we characterize the isotropic Gaussian noises with this property.
We also give explicit necessary and sufficient conditions when the domain is
a hypercube and the Gaussian noise is concentrated on a hyperplane.

1. Introduction. The study of stochastic partial differential equations
(SPDEs) has become an active area of research following the seminal articles
of [12] and [31]. The most studied equations are the heat and wave equations,
and parabolic and hyperbolic generalizations of these, driven by space–time white
noise. For linear equations driven by such noise, there are generally solutions in
the space of real-valued stochastic processes when the spatial dimension is 1, but
only distribution-valued solutions in dimensions greater than 1. The study of non-
linear forms of these equations has been therefore mostly limited to dimension 1,
though there are some attempts toward notions of solutions in higher dimensions
(see [22]).

A different approach to the study of SPDEs in dimensions greater than 1
is to consider noise that is somewhat smoother than space–time white noise.
While “white in time” is a property that is motivated by physical considerations,
introducing spatial correlations is also natural in many physical applications
(see [18]). With this type of Gaussian noise, it is possible to establish existence
and regularity properties of solutions to many SPDEs in higher dimensions.
This has mostly been done under the additional assumption that the noise is
spatially homogeneous, which is a natural hypothesis that makes it possible to use
techniques from Fourier analysis. Indeed, the covariance function of the noise must
be nonnegative definite, and the Bochner–Schwartz theorem (see [28], Chapter 7,
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Theorem 17) states that this function is the Fourier transform of a nonnegative
tempered measure, termed the spectral measure of the process. Existence and
regularity properties can then be established under a condition on this spectral
measure (see [5], [7], [14], [19], [24] and [25]).

In this paper, we shall study a class of linear hyperbolic SPDEs in bounded
domains, driven by Gaussian noise that is not spatially homogeneous: typically, it
will be concentrated on a lower-dimensional set, such as the boundary of a ball.
Stochastic partial differential equations driven by such noises can be viewed (see
Remark 3.5) as a generalization of the class of SPDEs with random boundary
conditions, as have been considered, mainly in the parabolic case, in [3], [10],
[11], Chapter 13, [16], [17] and [30].

An interesting class of noises is that with isotropic covariances (see Section 3.2).
This class of noises is natural in contexts where spherical symmetry is present and
appears not to have been previously considered in the literature. Our main objective
will be to give necessary and sufficient conditions on the isotropic covariance for
existence of a square-integrable solution to the SPDE.

More precisely, let d ≥ 1 and let D be a bounded domain in Rd whose boundary
∂D is a C∞ manifold and such that D is locally on one side of ∂D. For a, b ∈ R,
we consider the following class of linear hyperbolic SPDEs:

∂2u

∂t2
(t, x) + 2a

∂u

∂t
(t, x) + bu(t, x) − �u(t, x) = Ḟ D(t, x),

(t, x) ∈ R+ × D,
(1.1)

∂u

∂ν
(t, x) = 0, (t, x) ∈ R+ × ∂D,

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x), x ∈ D,

where ∂u
∂ν

is the normal derivative of u on ∂D, u0, v0 are two given functions
on D and Ḟ D = {Ḟ D(t, x), (t, x) ∈ R+ × D} is a generalized centered Gaussian
process whose covariance is formally given by

E
(
Ḟ D(t, x)Ḟ D(s, y)

) = δ0(t − s)�D(x, y),

where δ0 is the usual Dirac measure on R and �D is a nonnegative definite
distribution on D×D, in a sense that will be made precise in Section 2.2. The case
a = b = 0 is the wave equation. When a �= 0, a can be interpreted as a damping
coefficient. When b = 0, this is the telegraph equation, and when a = 0 and b �= 0,
this is the Klein–Gordon equation.

In order for the noise to be white in both time and space, one should have
�D(x, y) = δ0(x − y); that is, the covariance function would have a singularity
at the origin. In the case of spatially homogeneous noise on Rd , the covariance
function is of the form �D(x, y) = f (x − y) for some function f : Rd → R.
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The regularity or irregularity of the noise is then related to the nature of the
singularity of f at the origin, and the answer to the question of the existence of
a square-integrable solution can be given in terms of the nature of this singularity;
see [5], [14] and [25].

In Section 2, for a general class of bounded domains D and covariances �D ,
we give a formal definition of the Gaussian noise process and of a notion of
the solution to the equation (which uses little more than stochastic integrals with
respect to Brownian motion), and we establish the existence and uniqueness of
the solution to (1.1) under a necessary and sufficient condition on the covariance
function (Assumption B of Section 2.5). This condition is expressed in terms
of the eigenvalues and eigenfunctions of the Laplacian in the domain D. It is
therefore natural to particularize the problem to specific bounded domains where
this condition can be made more explicit (the case of unbounded domains is rather
different and is considered in [8]).

In Section 3, we consider the case where the domain is a ball and the
Gaussian noise is isotropic and concentrated on the sphere which bounds the
ball. Continuous functions which are isotropic and nonnegative definite are
characterized by Schönberg’s theorem (see [27] and Theorem 3.1). From this
result, a wide class of isotropic covariances with a singularity at the origin can
be exhibited [see (3.8)]. In this context, Assumption B furnishes, in principle,
a necessary and sufficient condition for the existence of a process solution to
the equation [see (3.20)], but this condition is expressed in terms of spherical
harmonics and is not easy to verify. Using relatively recent estimates [4] on the
zeros of Bessel functions and a classical trace theorem for Sobolev spaces, we
obtain equivalent explicit conditions that are easy to check (see Theorem 3.10 and,
in the case d = 2, Proposition 3.14). The case where the noise is concentrated on
a sphere with smaller radius than the ball is considered in Section 3.4.

Finally, in Section 4, we examine the analogous problem in the case where
the domain D is a hypercube instead of a ball. A related problem for the wave
equation on the torus, with spatially homogeneous noise, was considered in [14].
Here, we consider noise concentrated on a hyperplane inside the cube and obtain
in Theorem 4.1 the same types of results as those of Section 3.

2. Linear equation in a bounded domain driven by Gaussian noise.
General existence and uniqueness results can be obtained without additional effort
for a wide class of domains and Gaussian noises, and we proceed to do so. The key
ingredient in the resolution of (1.1) is the spectral theorem, which we now recall.

2.1. Spectral theorem. Let S(D) be the set of ϕ ∈ C∞(D) such that
∂ϕ
∂ν

|∂D = 0. We shall denote by L2(D) the space of measurable and square-
integrable functions on D, equipped with the inner product

〈u, v〉0 =
∫
D

dx u(x)v(x),
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and the corresponding norm ‖ · ‖0; H 1(D) will denote the Sobolev space of
functions in L2(D) whose first partial derivatives also belong to L2(D), equipped
with the inner product 〈u, v〉1 = 〈u, v〉0 +〈∇u,∇v〉0, and the corresponding norm
‖ · ‖1 [note that S(D) ⊂ H 1(D)]; H−1(D) will be the dual of H 1(D), equipped
with the norm

|‖u|‖−1 = sup
ϕ∈H 1(D),ϕ �=0

|〈u,ϕ〉−1,1|
‖ϕ‖1

,

where 〈·, ·〉−1,1 denotes the duality product between H−1(D) and H 1(D). Note
that if u ∈ L2(D), then 〈u,ϕ〉−1,1 = 〈u,ϕ〉0 for all ϕ ∈ H 1(D).

We shall use the following spectral theorem from classical analysis for the
Laplacian operator on D with Neumann boundary conditions (see, for instance,
[31], Example 3, page 336).

THEOREM 2.1. There exists an orthonormal basis {en, n ∈ N} ⊂ S(D) of
L2(D) and {λn,n ∈ N} ⊂ R+ such that �en + λnen = 0 for all n ∈ N, λn ↑ +∞
and, for all p > d/2, ∑

n∈N

(1 + λn)
−p < ∞.(2.1)

The fact that en ∈ S(D) for all n ∈ N is verified in [29], Theorem 2.1. Note,
moreover, that λ0 = 0 and e0(x) ≡ |D|−1/2, since we consider Neumann boundary
conditions.

A direct consequence of the above theorem is that {(1 +λn)
−1/2en, n ∈ N} is an

orthonormal basis of H 1(D). Moreover,

‖u‖2
0 = ∑

n∈N

|〈u, en〉0|2, ‖u‖2
1 = ∑

n∈N

(1 + λn)|〈u, en〉0|2,

and the norm |‖ · |‖−1 on H−1(D) is equivalent to

‖u‖2−1 = ∑
n∈N

(1 + λn)
−1|〈u, en〉−1,1|2,

since

〈u,ϕ〉−1,1 = ∑
n∈N

〈u, en〉−1,1〈en,ϕ〉0 for all ϕ ∈ H 1(D).

More generally, for r ∈ R and ϕ ∈ L2(D), we set

‖ϕ‖2
r = ∑

n∈N

(1 + λn)
r |〈ϕ, en〉0|2,

and we let Hr(D) be the completion of {ϕ ∈ L2(D) :‖ϕ‖r < ∞} in ‖ · ‖r .
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2.2. Gaussian noise. We shall define a process FD = {FD
t (ϕ), t ∈ R+,

ϕ ∈ S(D)}, which is informally related to Ḟ D(t, x) in (1.1) by

FD
t (ϕ) =

∫ t

0
ds

∫
D

dx ḞD(s, x)ϕ(x), t ∈ R+, ϕ ∈ S(D).(2.2)

In order to define FD rigorously, we assume that the covariance �D is a semi-inner
product on S(D); that is, �D is bilinear, symmetric and

�D(ϕ,ϕ) ≥ 0 for all ϕ ∈ S(D).

By the Kolmogorov extension theorem (see [21], Proposition 3.4), there exist
a probability space (�,G,P) and a centered Gaussian process FD = {FD

t (ϕ),

t ∈ R+, ϕ ∈ S(D)} defined on this space, whose covariance is given by

E
(
FD

t (ϕ)FD
s (ψ)

) = (t ∧ s)�D(ϕ,ψ).

ASSUMPTION A. There exist r ≥ 0 and K > 0 such that, for all ϕ ∈ S(D),
�D(ϕ,ϕ) ≤ K‖ϕ‖2

r .

By the Cauchy–Schwarz inequality for �D(·, ·), this implies that �D is
separately continuous with respect to the Hr -norm, that is, for all ϕ,ψ ∈ S(D),
�D(ϕ,ψ) ≤ K‖ϕ‖r‖ψ‖r . Moreover, under Assumption A, Theorem 4.1, page 332
of [31] implies (see Example 3, page 336, of [31]) that FD

t (·) has a modification
with values in H−(r+1)−d/2(D). Clearly,

E
((

FD
t (ϕ) − FD

s (ϕ)
)2) ≤ K(t − s)‖ϕ‖2

r ,

so, by [9], Proposition 3.15, the process {FD
t , t ∈ R+} has a continuous modifica-

tion {F̃ D
t , t ∈ R+} with values in H−(r+1)−d/2(D). In particular, for all ϕ ∈ S(D),

the map t �→ F̃ D
t (ϕ) is continuous and is therefore a continuous Brownian mo-

tion with speed �D(ϕ,ϕ). In the following, we assume that {FD
t , t ∈ R+} is this

modification.

2.3. Weak formulation of the equation. We now give a rigorous meaning
to (1.1). First, setting formally v(t, x) = ∂u

∂t
(t, x), we obtain the following two

formal equations, after integration in t of (1.1):

u(t, x) = u0(x) +
∫ t

0
ds v(s, x),

v(t, x) = v0(x) +
∫ t

0
ds

(−2av(s, x) − bu(s, x) + �u(s, x) + Ḟ D(s, x)
)
.

We now multiply both sides of these two equations by a test function ϕ ∈ S(D)

and integrate them over x ∈ D. We then formally apply Green’s theorem to the
term with the Laplacian, taking into account the Neumann boundary conditions
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for u and ϕ. Assuming that (u0, v0) ∈ L2(D) ⊕ H−1(D), considering that (u, v)

takes its values in L2(D) ⊕ H−1(D) and using the informal relationship (2.2),
we get the following rigorous formulation: a weak solution of (1.1) is a process
(u, v) = {(u(t), v(t)), t ∈ R+} with values in L2(D) ⊕ H−1(D) such that there
exists a P-null set N such that, for all ω /∈ N and ϕ ∈ S(D), the map t �→
(〈u(t,ω),ϕ〉0, 〈v(t,ω),ϕ〉−1,1) is continuous on R+ and satisfies

〈u(t), ϕ〉0 = 〈u0, ϕ〉0 +
∫ t

0
ds〈v(s), ϕ〉−1,1,

〈v(t), ϕ〉−1,1 = 〈v0, ϕ〉−1,1 +
∫ t

0
ds

(−2a〈v(s), ϕ〉−1,1

(2.3)
− b〈u(s), ϕ〉0 + 〈u(s),�ϕ〉0

)
+ FD

t (ϕ).

We will often refer to u, instead of (u, v), as the solution of (2.3).

REMARK 2.2. A solution u of (2.3) is termed a “weak” solution of (1.1),
because it takes its values in L2(D), and therefore neither �u nor ∂u

∂ν
|∂D is defined.

We will see in Remark 3.11 that when the noise is concentrated on a sphere, there
never exists a regular solution of (2.3), that is, with values in H 1(D) ⊕ L2(D).

2.4. Properties of the Green kernel. The solution of the deterministic linear
equation corresponding to (2.3) can be expressed in terms of the Green kernel
of the equation, which in turn can be decomposed into the eigenmodes of the
Laplacian given in Theorem 2.1. We define here these components of the Green
kernel and establish some basic inequalities in Lemma 2.3.

Let n ∈ N and let Gn : R → R be the solution of the differential equation

G′′
n(t) + 2aG′

n(t) + (b + λn)Gn(t) = 0, Gn(0) = 0, G′
n(0) = 1.(2.4)

One easily checks that Gn is given by

Gn(t) =




e−at
sin(t

√
λn + b − a2 )√

λn + b − a2
, if λn > a2 − b,

e−at t, if a2 − b ≥ 0 and λn = a2 − b,

e−at
sinh(t

√
a2 − b − λn )√

a2 − b − λn

, if a2 − b > 0 and λn < a2 − b.

(2.5)

Note that the first of these three expressions actually contains the other two, since
we have limu→0 sin(u)/u = 1 and sin(iu) = i sinh(u).

LEMMA 2.3. (a) For t > 0, there exist C(t) > 0 and n0(t) ∈ N such that, for
all s ∈ [0, t] and n ≥ n0(t),

|Gn(s)| ≤ C(t)√
1 + λn

and |G′
n(s)| ≤ C(t).(2.6)
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(b) For t > 0, there exist C+(t) ≥ C−(t) > 0 and n0(t) ∈ N such that

C−(t)

1 + λn

≤
∫ t

0
ds Gn(s)

2 ≤ C+(t)

1 + λn

for all n ≥ n0(t).

PROOF. (a) For n sufficiently large, there is C > 0 such that, for s ≤ t ,

|Gn(s)| ≤ (λn + b − a2)−1/2e2a−t ≤ C(1 + λn)
−1/2e2a−t ,

where a− = max(0,−a). The second estimate is obtained in a similar manner.
(b) The upper bound is an immediate consequence of (a). In order to prove the

lower bound, set a+ = max(0, a). Then
∫ t

0
ds Gn(s)

2 =
∫ t

0
ds e−2a s sin2(s

√
λn + b − a2 )

λn + b − a2

≥ e−2a+t

λn + b − a2

t

2

(
1 − sin(2t

√
λn + b − a2 )

2t
√

λn + b − a2

)
.

For large n, the factor in parentheses is greater than or equal to 1/2 and (1 + λn)/

(λn + b − a2) ≥ 1/2, so

∫ t

0
ds Gn(s)

2 ≥ te−2a+t

8(1 ∨ (b − a2))(1 + λn)
.

This completes the proof. �

The solution of the (2.3) will make use of the following functions. For n ∈ N

and t ∈ R, set Hn(t) = G′
n(t) + 2aGn(t). From (2.4), Hn satisfies

H ′′
n (t) + 2aH ′

n(t) + (b + λn)Hn(t) = 0, Hn(0) = 1, H ′
n(0) = 0.(2.7)

Explicit formulas for Hn(t) and H ′
n(t) are

Hn(t) = e−at cos
(
t
√

λn + b − a2 ) + ae−at sin(t
√

λn + b − a2 )√
λn + b − a2

(2.8)

and

H ′
n(t) = −e−at

√
λn + b − a2 sin

(
t
√

λn + b − a2 )
− a2e−at sin(t

√
λn + b − a2 )√

λn + b − a2
.

Clearly, for t > 0, there exist C(t) > 0 and n0(t) ∈ N such that, for all s ∈ [0, t]
and n ≥ n0(t),

|Hn(s)| ≤ C(t) and |H ′
n(s)| ≤ C(t)

√
1 + λn.(2.9)
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2.5. Existence and uniqueness of the solution. We will show that there exists
a unique weak solution to (1.1) under the following assumption. Let en be the
elements of the orthonormal basis described in Theorem 2.1 and set

γn,m = �D(en, em), γn = γn,n, n,m ∈ N.

ASSUMPTION B. The following condition is satisfied:∑
n∈N

γn

1 + λn

< ∞.

For ease of reference, we recall the following special case of the stochastic
Fubini theorem (see, for instance, [26], Chapter 4, Theorem 46).

THEOREM 2.4. If W = {Ws, s ∈ R+} is a standard Brownian motion,
g ∈ L2

loc(R+ × R+) and t ∈ R+, then, P-a.s.,∫ t

0
ds

∫ s

0
dWr g(r, s) =

∫ t

0
dWr

∫ t

r
ds g(r, s).

Let us now state the two main results of this section.

THEOREM 2.5. Let (u0, v0) ∈ L2(D) ⊕ H−1(D). Under Assumptions A
and B, the process (u, v) = {(u(t), v(t)), t ∈ R+} with values in L2(D)⊕H−1(D)

defined by

u(t) = u0(t) + p(t) and v(t) = v0(t) + q(t),(2.10)

where

u0(t) = ∑
n∈N

u0
n(t)en, p(t) = ∑

n∈N

pn(t)en,

v0(t) = ∑
n∈N

v0
n(t)en, q(t) = ∑

n∈N

qn(t)en

and

u0
n(t) = Hn(t)〈u0, en〉0 + Gn(t)〈v0, en〉−1,1, pn(t) =

∫ t

0
dFD

s (en)Gn(t − s),

v0
n(t) = H ′

n(t)〈u0, en〉0 + G′
n(t)〈v0, en〉−1,1, qn(t) =

∫ t

0
dFD

s (en)G′
n(t − s),

admits a modification (ũ, ṽ) which is the unique weak solution of (1.1). Moreover,
E(‖ũ(t)‖2

0) < ∞ and E(‖ṽ(t)‖2−1) < ∞ for all t ∈ R+.

THEOREM 2.6. Let (u0, v0) ∈ L2(D) ⊕ H−1(D). If there exists a weak
solution (u, v) to (1.1) such that E(‖u(t0)‖2

0) < ∞ for some t0 > 0, then
Assumption B is satisfied.
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REMARK 2.7. Note that Theorem 2.5 is, in principle, part of the general
theory developed in [9] and [11]. Indeed, the wave equation (though not with
Neumann boundary conditions) is mentioned in [9], Example 5.8, and some
boundary noises are treated in [11], Chapter 13. Assumption B is formally
equivalent to (5.14) in [9]. However, Theorem 2.6 shows that Assumption B is
necessary for the existence of a solution. Moreover, Theorem 2.5 covers a wider
class of Gaussian noises, including boundary noises, which will be considered in
Section 3.

PROOF OF THEOREM 2.5. We first show existence. By (2.6) and (2.9),

‖u0(s)‖2
0 = ∑

n∈N

|u0
n(s)|2 < ∞ and ‖v0(s)‖2−1 = ∑

n∈N

|v0
n(s)|2

1 + λn

< ∞,

so the deterministic process (u0, v0) takes its values in L2(D) ⊕ H−1(D), and, in
fact, the supremum over 0 ≤ s ≤ t of ‖u0(s)‖0 and ‖v0(s)‖−1 is finite. By a direct
calculation using (2.4) and (2.7), we see that, for each n ∈ N,

u0
n(t) = 〈u0, en〉0 +

∫ t

0
ds v0

n(s),

v0
n(t) = 〈v0, en〉−1,1 −

∫ t

0
ds

(
2av0

n(s) + (b + λn)u
0
n(s)

)
.

Multiplying the first equation by 〈ϕ, en〉0 and summing over n ∈ N leads to the
following equation for (u0, v0):

〈u0(t), ϕ〉0 = 〈u0, ϕ〉0 +
∫ t

0
ds 〈v0(s), ϕ〉−1,1,

〈v0(t), ϕ〉−1,1 = 〈v0, ϕ〉−1,1 +
∫ t

0
ds

(−2a〈v0(s), ϕ〉−1,1(2.11)

− b〈u0(s), ϕ〉0 + 〈u0(s),�ϕ〉0
)

for all t ∈ R+ and ϕ ∈ S(D). On the other hand, by the fundamental theorem of
calculus, ∫ t

0
dFD

s (en)Gn(t − s) =
∫ t

0
dFD

s (en)

∫ t

s
dr G′

n(r − s),

while integrating (2.4) with respect to t , then with respect to the Brownian
motion FD· (en), gives∫ t

0
dFD

s (en)G′
n(t − s)

= FD
t (en) −

∫ t

0
dFD

s (en)

∫ t

s
dr

(
2aG′

n(r − s) + (b + λn)Gn(r − s)
)
.
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Apply the stochastic Fubini theorem (Theorem 2.4) to the integral terms, to see
that the process (pn, qn) satisfies

pn(t) =
∫ t

0
dr qn(r),

(2.12)

qn(t) = FD
t (en) −

∫ t

0
dr

(
2aqn(r) + (b + λn)pn(r)

)
.

We now check that p(t) ∈ L2(D) and q(t) ∈ H−1(D) for all t ∈ R+. Indeed,

E
(‖p(t)‖2

0
) = ∑

n∈N

E
(
pn(t)

2) = ∑
n∈N

γn

∫ t

0
ds Gn(t − s)2 < ∞

by the upper bound in Lemma 2.3(b) and Assumption B. Furthermore,

E
(‖q(t)‖2−1

) = ∑
n∈N

E(qn(t)
2)

1 + λn

= ∑
n∈N

γn

1 + λn

∫ t

0
ds G′

n(t − s)2 < ∞

by (2.6) and Assumption B.
We now verify that (p(t), q(t)) solves (2.3) with u0 = v0 ≡ 0. Using the fact

that the Laplacian is symmetric on S(D), we have, for ϕ ∈ S(D),

〈p(t),�ϕ〉0 = ∑
n∈N

pn(t)〈en,�ϕ〉0 = ∑
n∈N

pn(t)〈�en,ϕ〉0,

= − ∑
n∈N

λnpn(t)〈en,ϕ〉0, a.s.

by Theorem 2.1. Therefore, multiplying the two equations in (2.12) by 〈en,ϕ〉0 and
summing over n ∈ N leads, for all t ∈ R

+, to the following equation for (p, q):

〈p(t), ϕ〉0 =
∫ t

0
ds 〈q(s), ϕ〉−1,1, a.s.,

〈q(t), ϕ〉−1,1 = FD
t (ϕ) +

∫ t

0
ds

(−2a〈q(s), ϕ〉−1,1(2.13)

− b〈p(s), ϕ〉0 + 〈p(s),�ϕ〉0
)
, a.s.,

where we have used the fact that∑
n∈N

FD
t (en)〈en,ϕ〉0 = FD

t (ϕ), a.s.

by Assumption A and the fact that ϕ ∈ Hr(D) for all r > 0. Note that the P-null
set involved in (2.13) can depend on t and ϕ. Therefore, we still have to check that
the process (p, q) = {(p(t), q(t)), t ∈ R+} admits a modification (p̃, q̃) which is
continuous on R+ with values in H−1(D)⊕H−2(D). To this end, we will use the
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Kolmogorov test for Gaussian processes with values in a Hilbert space (see [9],
Proposition 3.15). Let us therefore compute, for fixed T > 0 and 0 ≤ t ≤ t +h ≤ T ,

E
(‖p(t + h) − p(t)‖2−1

)
= ∑

n∈N

E((pn(t + h) − pn(t))
2)

1 + λn

= ∑
n∈N

γn

1 + λn

(∫ t

0
ds

(
Gn(t + h − s) − Gn(t − s)

)2

+
∫ t+h

t
ds Gn(t + h − s)2

)

= ∑
n∈N

γn

1 + λn

(∫ t

0
ds

(∫ t+h−s

t−s
dr G′

n(r)

)2

+
∫ h

0
dr Gn(r)

2
)

≤ ∑
n∈N

γn

1 + λn

(
T h2C(T )2 + hC(T )2)

≤ CT h

by (2.6) and Assumption B. In a similar manner, we conclude that

E
(‖q(t + h) − q(t)‖2−2

) ≤ CT h for all 0 ≤ t ≤ t + h ≤ T,

so there exists a continuous modification (p̃, q̃) of the process (p, q) by [9], Propo-
sition 3.15. Combining (2.11) and (2.13) and setting (ũ, ṽ) = (u0 + p̃, v0 + q̃),
we conclude that there exists a P-null set N such that, for all ω /∈ N and ϕ ∈ S(D),
the map t �→ (〈ũ(t,ω),ϕ〉0, 〈ṽ(t,ω),ϕ〉−1,1) is continuous on R+ and solves (2.3).

In order to prove uniqueness, let (u(1), v(1)) and (u(2), v(2)) be two solutions
of (2.3) and define (ū, v̄) = (u(1) − u(2), v(1) − v(2)). Then there exists a P-null set
such that, outside this set, for all ϕ ∈ S(D) and t ∈ R+,

〈ū(t), ϕ〉0 =
∫ t

0
ds 〈v̄(s), ϕ〉−1,1,

〈v̄(t), ϕ〉−1,1 =
∫ t

0
ds

(−2a〈v̄(s), ϕ〉−1,1 − b〈ū(s), ϕ〉0 + 〈ū(s),�ϕ〉0
)
.

Fix n ∈ N and, for t ∈ R+, define ūn(t) = 〈ū(t), en〉0 and v̄n(t) = 〈v̄(t), en〉−1,1.
Replacing ϕ by en in the preceding equation and using the symmetry of the
Laplacian on S(D), we obtain, for all n ∈ N and t ∈ R+,

ūn(t) =
∫ t

0
ds v̄n(s),

v̄n(t) = −
∫ t

0
ds

(
2av̄n(s) + (b + λn)ūn(s)

)
.
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Therefore, for all n ∈ N and t ∈ R+, ūn(t) = v̄n(t) = 0. The conclusion follows.
�

PROOF OF THEOREM 2.6. Let (u, v) be a solution of (2.3) and let t0 > 0 be
such that E(‖u(t0)‖2

0) < ∞. By Theorem 2.5, u(t) = u0(t) + p(t), so

E
(‖p(t0)‖2

0
) ≤ 2

(
E

(‖u(t0)‖2
0
) + ‖u0(t0)‖2

0
)
.

The right-hand side is finite by assumption and because ‖u0(t0)‖2
0 < ∞. On the

other hand, a direct calculation shows that

E
(‖p(t0)‖2

0
) = ∑

n∈N

γn

∫ t0

0
ds Gn(t − s)2 ≥ C−(t0)

∑
n≥n0(t0)

γn

1 + λn

by the lower bound in Lemma 2.3(b), so Assumption B must be satisfied. This
completes the proof. �

REMARK 2.8. Performing the same kind of analysis as above, one sees that
if there exists a solution (u, v) to (2.3) with values in H 1(D) ⊕ L2(D), then the
following condition (stronger than Assumption B) must be satisfied:∑

n∈N

γn < ∞.(2.14)

2.6. The heat equation. If, instead of the hyperbolic equation considered
above, we consider the following heat equation:

∂u

∂t
(t, x) − 1

2
�u(t, x) = Ḟ D(t, x), (t, x) ∈ R+ × D,

∂u

∂ν
(t, x) = 0, (t, x) ∈ R+ × ∂D,(2.15)

u(0, x) = u0(x), x ∈ D,

then we can reproduce the analysis of the preceding paragraphs. The only
difference will consist of the fact that the weak formulation is simpler to write
[there is only one process u taking its values in L2(D)] and the Gn are now
solutions of G′

n(t) + λn

2 Gn(t) = 0, with Gn(0) = 1. They are therefore given
by Gn(t) = exp(−λnt/2). The analysis is similar to that of the hyperbolic case
because these Gn also satisfy the conclusions of Lemma 2.3, so the methods and
conclusions of Theorems 2.5 and 2.6 remain valid in the case of the heat equation.

3. Linear equation in a ball, driven by isotropic noise on a sphere. Let
d > 1. In this section, we shall study the existence of a weak solution to the
hyperbolic equation (1.1) [in the sense defined in (2.3)], in the specific case
where the domain is D = B(0,1), the centered unit ball in R

d , and the noise is
concentrated on the sphere Sd−1 = ∂B(0,1). Our objective is to obtain explicit and
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easily verifiable conditions under which the conclusions of Theorems 2.5 and 2.6
are valid. For this, we need rather detailed information about the orthonormal basis
described in Theorem 2.1, which we now recall.

3.1. Eigenvalues and eigenfunctions of the Laplacian in B(0,1). In this sec-
tion, we recall the classical explicit formulas for the eigenvalues and eigenfunc-
tions of the Laplacian in B(0,1). These will be used to reformulate Assumption B
into an easily verifiable condition. Recall the definition of the Bessel functions
Jl(d, ·) for l ∈ N and d ≥ 2 (see [20], formula (§27.2)):

Jl(d, r) = �

(
d

2

)(
r

2

)(2−d)/2

Jl+(d−2)/2(r), r > 0,(3.1)

where � is the Euler Gamma function defined by

�(ν) =
∫ ∞

0
dt tν−1e−t , ν > 0,(3.2)

and Jν is the regular Bessel function of the first kind and of order ν (see [1],
formula 9.1.10, or [20], formula (§27.3), or [13]) defined by

Jν(r) =
(

r

2

)ν ∑
n∈N

(−r2/4)n

n!�(ν + n + 1)
, r ∈ R+.

Clearly, the derivative of Jl(d, ·) in r is given by

J ′
l (d, r) = �

(
d

2

)(
r

2

)(2−d)/2(
J′

l+(d−2)/2(r) − d − 2

2r
Jl+(d−2)/2(r)

)
.(3.3)

In addition to using the abstract result of Theorem 2.1, we now describe explicitly
the solutions of the eigenvalue problem

�ϕ + λϕ = 0 in B(0,1) and
∂ϕ

∂ν

∣∣∣∣
∂B(0,1)

= 0.(3.4)

It is well known (see [20], (§22)) that they are of the form ϕ(x) = f (r)Y (θ), where
r = |x| and θ ∈ Sd−1 represents the angular part of x. The function Y is a solution
of the eigenvalue problem �θY (θ) + 
Y(θ) = 0, where �θ denotes the Laplace–
Beltrami operator on Sd−1 (see [29], page 255). The solutions of this problem
are given (see [20], (§15), Lemma 1) by {
l,Y

m
l , l ∈ N,1 ≤ m ≤ N(d, l)}, where


l = l(l + d − 2), {Ym
l ,1 ≤ m ≤ N(d, l)} is the list of generalized complex-

valued spherical harmonics of order l on Sd−1 and N(d, l) is the number of these
harmonics. This set forms an orthonormal basis of L2(Sd−1). Moreover, note that,
when d = 2, N(2, l) = 2 and Y±

l (θ) = exp(±ilθ); when d = 3, N(3, l) = 2l + 1
and the Ym

l are the standard spherical harmonics on S2. More generally, N(d, l) ∼
ld−2 as l → ∞, where we write al ∼ bl when there exists C ∈]0,∞[ such that
liml→∞ al/bl = C.
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For a fixed l ∈ N, f is a solution of the eigenvalue problem

f ′′(r) + d − 1

r
f ′(r) +

(
λ − l(l + d − 2)

r2

)
f (r) = 0, f ′(1) = 0.

The solutions of this problem are given (see [20], (§22)) by {λkl, fkl, k ∈ N}, where
λkl = µ2

kl , and, for a fixed l ∈ N, {µkl, k ∈ N} is the ascending list of zeros of the
derivative of the Bessel function Jl(d, ·) defined by (3.1) and fkl is the function
defined for fixed k, l ∈ N by

fkl(r) = Jl(d,µkl r)√∫ 1
0 dq qd−1Jl(d,µkl q)2

.(3.5)

This leads to the following solutions of (3.4):{
λkl, eklm = fkl ⊗ Ym

l , k, l ∈ N,1 ≤ m ≤ N(d, l)
}
,

the above “tensor product” meaning eklm(x) = fkl(r)Y
m
l (θ). Note that these

eigenfunctions are normalized in L2(B(0,1)), that is,∫
B(0,1)

dx|eklm(x)|2 = 1 for all k, l ∈ N,1 ≤ m ≤ N(d, l).

3.2. Covariance of the noise and Schönberg’s theorem. We now define a class
of isotropic Gaussian noises on the sphere Sd−1. In order to obtain a general
form for the covariance of such noises, we consider first the case of a continuous
covariance. Let f :Sd−1 ×Sd−1 → R be a continuous, symmetric and nonnegative
definite function, that is,

m∑
i,j=1

cicjf
(
x(i), x(j)) ≥ 0,(3.6)

for all m ≥ 1, c1, . . . , cm ∈ R, x(1), . . . , x(m) ∈ Sd−1. This function f is the
covariance of a centered Gaussian process indexed by the elements of Sd−1.
If there exists a continuous function g : [−1,+1] → R such that f (x, y) = g(x ·y)

for all x, y ∈ Sd−1, where x · y is the Euclidean inner product, then we say that the
Gaussian process is isotropic. In particular, condition (3.6) becomes

m∑
i,j=1

cicjg
(
x(i) · x(j)

) ≥ 0(3.7)

for all m ≥ 1, c1, . . . , cm ∈ R, x(1), . . . , x(m) ∈ Sd−1.
In order to characterize the functions g that satisfy (3.7), consider the

generalized Legendre polynomials (see [20], (§2), Lemma 4) defined for d ≥ 2 by

Pl(d, t) =
(
−1

2

)l �(d−1
2 )

�(l + d−1
2 )

(1 − t2)(3−d)/2
(

d

dt

)l

(1 − t2)l+(d−3)/2,

l ∈ N, t ∈ [−1,+1],
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where � is the Euler Gamma function. Notice that these are simply the Chebyshev
polynomials when d = 2 and the standard Legendre polynomials when d = 3.

Schönberg’s theorem (see [27], Theorem 1), similar to Bochner’s theorem
concerning nonnegative definite functions on R

d , states the following.

THEOREM 3.1. Let g : [−1,+1] → R be a continuous function. Then g is
nonnegative definite on Sd−1 [in the sense of (3.7)] if and only if there exists
a sequence {al, l ∈ N} of nonnegative numbers such that

g(t) = ∑
l∈N

alPl(d, t), t ∈ [−1,+1], and
∑
l∈N

al < ∞.

In order to be able to consider generalized processes, indexed by test functions
on Sd−1, rather than by Sd−1 itself, we need a wider class of (not necessarily
continuous) covariances. Observe that, under assumption (3.7), the functional
�S :C∞(Sd−1) × C∞(Sd−1) → R, defined by

�S(ϕ,ψ) =
∫
Sd−1

dσ (x)

∫
Sd−1

dσ (y)ϕ(x)g(x · y)ψ(y), ϕ,ψ ∈ C∞(Sd−1),

where σ is the uniform surface measure on the unit sphere Sd−1, is a semi-inner
product on C∞(Sd−1). Moreover, �S is isotropic, that is,

�S(Rϕ,Rψ) = �S(ϕ,ψ) for all ϕ,ψ ∈ C∞(Sd−1),

for any rotation R on the sphere Sd−1 [where, by definition, Rϕ(x) = ϕ(R−1x)].
In view of Theorem 3.1, it is natural to consider functionals �S of the form

�S(ϕ,ψ) = ∑
l∈N

al�l(ϕ,ψ), ϕ,ψ ∈ C∞(Sd−1),(3.8)

where

�l(ϕ,ψ) =
∫
Sd−1

dσ (x)

∫
Sd−1

dσ (y)ϕ(x)Pl(d, x · y)ψ(y),

and al ≥ 0, but the condition
∑

l∈N al < ∞ is replaced by∑
l∈N

al

(1 + l)r0
< ∞ for some r0 > 0.(3.9)

Condition (3.9) is analogous to the growth condition required of tempered
measures. The following lemma shows that the series in (3.8) converges.

LEMMA 3.2. If (3.9) holds, then �S(ϕ,ψ) < ∞ for all ϕ,ψ ∈ C∞(Sd−1).

PROOF. By the Cauchy–Schwarz inequality, it is sufficient to check that
�S(ϕ,ϕ) < ∞ for each ϕ ∈ C∞(Sd−1). Consider the following Sobolev spaces
on Sd−1. For r ≥ 0, let Hr(Sd−1) be the domain of the operator (I − �θ)

r/2 in
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L2(Sd−1), where �θ is the Laplace–Beltrami operator on the sphere Sd−1. By the
spectral decomposition of L2(Sd−1) in spherical harmonics,

Hr(Sd−1) =
{
v = ∑

l∈N

N(d,l)∑
m=1

clmYm
l

∣∣∣∣∣
∑
l∈N

N(d,l)∑
m=1

(1 + 
l)
r |clm|2 < ∞

}
.

Since 
l = l(l + d − 2), we can equip this space with the equivalent norm

‖v‖2
r = ∑

l∈N

N(d,l)∑
m=1

(1 + l)2r |clm|2.(3.10)

Using the fact that C∞(Sd−1) ⊂ ⋂
r≥0 Hr(Sd−1), a function ϕ ∈ C∞(Sd−1) can

be written as

ϕ = ∑
l∈N

N(d,l)∑
m=1

clmYm
l , with

∑
l∈N

(1+ l)2r
N(d,l)∑
m=1

|clm|2 < ∞ ∀ r > 0.(3.11)

Using the following additivity property (see [20], (§2), Theorem 2):

Pl(d, x · y) = |Sd−1|
N(d, l)

N(d,l)∑
m=1

Ym
l (x)Ym

l (y),(3.12)

and the orthonormality of the spherical harmonics, we see that

�l(ϕ,ϕ) = |Sd−1|
N(d, l)

N(d,l)∑
m=1

∣∣∣∣
∫
Sd−1

dσ (x)ϕ(x)Ym
l (x)

∣∣∣∣
2

(3.13)

= |Sd−1|
N(d, l)

N(d,l)∑
m=1

|clm|2,

and therefore, using (3.8), we obtain

�S(ϕ,ϕ) = ∑
l∈N

al

|Sd−1|
N(d, l)

N(d,l)∑
m=1

|clm|2
(3.14)

= |Sd−1|∑
l∈N

al

(1 + l)r0

[
(1 + l)r0

N(d, l)

N(d,l)∑
m=1

|clm|2
]
.

Because N(d, l) ≥ 1 and (3.11) holds, the expression in brackets is bounded, so
the series converges by (3.9). �

REMARK 3.3. (a) In the representation (3.8), white noise on the sphere is
obtained by setting al = N(d, l)/|Sd−1| ∼ ld−2. Indeed, for white noise,

�S(ϕ,ψ) =
∫
Sd−1

dσ (x)ϕ(x)ψ(x) for all ϕ,ψ ∈ C∞(Sd−1),
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and therefore �S(Ym
l , Ym

l ) = 1. From (3.8) and (3.12), �S(Ym
l , Ym

l ) = al ×
|Sd−1|/N(d, l), which proves the claim.

(b) It is natural to ask whether the analog in this context of the Bochner–
Schwartz theorem holds, that is, whether every isotropic semi-inner product �

on C∞(Sd−1), with some additional continuity property, is of the form �S given
above. To our knowledge, this is an open problem.

In order to relate the particular covariance �S on Sd−1 defined above to the
general covariance �D which was considered in Section 2 and defined on the entire
domain D [here, D = B(0,1)], we define �D by

�D(ϕ,ψ) = �S

(
ϕ

∣∣
Sd−1,ψ

∣∣
Sd−1

)
, ϕ,ψ ∈ C∞(B(0,1)).(3.15)

LEMMA 3.4. The class of covariances defined in (3.15) satisfies Assump-
tion A.

PROOF. We will use here the following fact (see [2], Theorem 7.53): for all
r > 0 the trace operator γ0, defined for ϕ ∈ C∞(B(0,1)) by γ0(ϕ) = ϕ|Sd−1 , can
be extended continuously from Hr+1/2(B(0,1)) to Hr(Sd−1). That is, there exists
C > 0 such that

‖γ0(u)‖2
r ≤ C‖u‖2

r+1/2 for all u ∈ Hr+1/2(B(0,1)).(3.16)

(Note that the definition of Hr(Sd−1) in [2] coincides with the definition we have
given above; see, for instance, [29], page 255.) It suffices therefore to check that,
for some r > 0, there exists C > 0 such that

|�S(v, v)| ≤ C‖v‖2
r for all v ∈ C∞(Sd−1),(3.17)

since this will imply, by (3.16), that, for all ϕ ∈ C∞(B(0,1)),

|�D(ϕ,ϕ)| = ∣∣�S

(
γ0(ϕ), γ0(ϕ)

)∣∣ ≤ C‖γ0(ϕ)‖2
r ≤ C̃‖ϕ‖2

r+1/2.

We therefore check (3.17). By (3.9), there exists C > 0 such that al ≤ C(1 + l)r0

for all l ∈ N. Let ϕ ∈ C∞(Sd−1). As in (3.11), ϕ can be written as ϕ =∑
l∈N

∑N(d,l)
m=1 clmYm

l . Therefore, by (3.14),

�S(ϕ,ϕ) = ∑
l∈N

al

|Sd−1|
N(d, l)

N(d,l)∑
m=1

|clm|2

≤ C|Sd−1|∑
l∈N

(1 + l)r0

N(d,l)∑
m=1

|clm|2

= C|Sd−1|‖ϕ‖2
r0/2.

This completes the proof. �
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REMARK 3.5. As mentioned in Section 1, (2.3) can also be interpreted as the
homogeneous p.d.e. with stochastic boundary condition

∂2u

∂t2 (t, x) + 2a
∂u

∂t
(t, x) + bu(t, x) − �u(t, x) = 0,

(t, x) ∈ R+ × D,
(3.18)

∂u

∂ν
(t, x) = Ḟ S(t, x), (t, x) ∈ R+ × ∂D,

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x), x ∈ D.

Indeed, the noise term FD
t (ϕ) can be formally rewritten here as

FD
t (ϕ) =

∫ t

0
ds

∫
∂B(0,1)

dσ (x) Ḟ S(s, x)ϕ(x), ϕ ∈ C∞(B(0,1)),

where Ḟ S is a generalized centered Gaussian process concentrated on the sphere
∂B(0,1) = Sd−1 with covariance

E
(
Ḟ S(t, x)Ḟ S(s, y)

) = δ0(t − s)�S(x, y).(3.19)

Stochastic partial differential equations with this type of boundary term have been
considered in [3], [10], [11] and [30].

3.3. Explicit conditions. In the following, we give a necessary and sufficient
condition on the coefficients al which guarantees the existence of a weak solution
to (3.18) or, equivalently, (1.1) driven by noise with spatial covariance �D defined
in (3.8) and (3.15).

In the present setting, Assumption B of the preceding section becomes

∑
k,l∈N

N(d,l)∑
m=1

γklm

1 + λkl

< ∞,(3.20)

where γklm = �D(eklm, eklm). Our objective is now to translate this condition into
an explicit condition on the al in (3.8). We rewrite it first in a different manner.

LEMMA 3.6. The expression in (3.20) is equal to
∑

l∈N albl , where

bl = |Sd−1| ∑
k∈N

fkl(1)2

1 + λkl

.

PROOF. Clearly,

γklm = �D(eklm, eklm) = �S

(
fkl(1)Ym

l , fkl(1)Ym
l

)
= fkl(1)2

∑
n∈N

an�n(Y
m
l , Ym

l ).
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By (3.13) and the orthonormality of the Ym
l , �n(Y

m
l , Ym

l ) = |Sd−1|δnl/N(d,n).
Therefore,

γklm = fkl(1)2al

|Sd−1|
N(d, l)

,(3.21)

and the conclusion follows. �

We now estimate the behavior of bl as l → ∞. For this, we need to relate fkl(1)

to the eigenvalue λkl and to estimate µkl = √
λkl , which we do in the following

two lemmas.

LEMMA 3.7. For all k, l ∈ N,

fkl(1)2 = 2λkl

λkl − l2 − l(d − 2)
.

PROOF. By (3.5),

fkl(1)2 = Jl(d,µkl)
2∫ 1

0 dq qd−1Jl(d,µkl q)2
.(3.22)

By (3.3), the µkl are the positive solutions of the equation

Jl+(d−2)/2(x) + 2x

d − 2
J′

l+(d−2)/2(x) = 0.

Therefore, by the definition of Jl(d, ·) and [1], formula 11.4.5,∫ 1

0
dq qd−1Jl(d,µkl q)2

= �

(
d

2

)2(
µkl

2

)2−d ∫ 1

0
dq qJl+(d−2)/2(µkl q)2

= 1

2
�

(
d

2

)2(
µkl

2

)2−d λkl − l2 − l(d − 2)

λkl

Jl+(d−2)/2(µkl)
2

= 1

2

λkl − l2 − l(d − 2)

λkl

Jl(d,µkl)
2.

Together with (3.22) above, this proves the lemma. �

LEMMA 3.8. For all k, l ∈ N,

l + d − 2

2
+ π(k − 2) ≤ µkl ≤ π

2

(
l + d − 2

2

)
+ π(k + 2).(3.23)
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PROOF. Denote by {µ0
kν, k ∈ N} the ascending list of zeros of the standard

Bessel function Jν . For ν = l + d−2
2 , by (3.1), these are also the zeros of Jl(d, ·).

By [4], Theorem 1 and Lemma 2,

ν + π(k − 1) ≤ µ0
kν ≤ π

2
ν + π(k + 1).(3.24)

Since Jl(d, ·) is proportional to Jl+(d−2)/2(·), the interlacing property of the zeros
of Bessel functions and their derivatives (i.e., if νkl are the zeros of Jl(d, ·), then
νk−1,l < µkl < νk+1,l , see [1], formula 9.5.2) implies that

µ0
k−1,l+(d−2)/2 ≤ µkl ≤ µ0

k+1,l+(d−2)/2,

so (3.23) follows from (3.24). �

With these two lemmas, we obtain the following estimate.

LEMMA 3.9. There exist C1,C2 > 0 such that, for sufficiently large l, the
coefficients bl defined in Lemma 3.6 satisfy

C1

1 + l
≤ bl ≤ C2

1 + l
.

PROOF. By Lemmas 3.6 and 3.7,

bl = 2|Sd−1| ∑
k∈N

λkl

1 + λkl

1

λkl − l2 − l(d − 2)
.(3.25)

We first prove the lower bound. Since λkl/(1 + λkl) ∈ [1/2,1] when λkl ≥ 1,
bl is bounded below by

|Sd−1| ∑
k∈N

1

λkl − l2 − l(d − 2)
≥ |Sd−1| ∑

k∈N

1

λkl

.

By Lemma 3.8, this is in turn bounded below by

|Sd−1| ∑
k∈N

(
π

2

(
l + d − 2

2

)
+ π(k + 2)

)−2

≥ |Sd−1|
π2

∫ ∞
2

dx

(
l

2
+ d − 2

4
+ x

)−2

= |Sd−1|
π2

(
l

2
+ d − 2

4
+ 2

)−1

≥ C

1 + l
.

In order to prove the upper bound, we check first that bl < ∞ for each l ∈ N.
By (3.25) and the lower bound in Lemma 3.8,

bl ≤ |Sd−1|
( ∑

k≤2

fkl(1)2

1 + λkl

+ 2
∑
k>2

1

(l + (d − 2)/2 + π(k − 2))2 − l2 − l(d − 2)

)
,
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which is clearly finite. Fix now l0 and m0 and consider the function u on B(0,1)

whose Fourier components in the orthonormal basis (eklm) are given by

uklm = fkl(1)

1 + λkl

δll0δmm0 .

This function belongs to H 1(B(0,1)), since

‖u‖2
1 = ∑

klm

(1 + λkl)|uklm|2 = ∑
k∈N

fkl0(1)2

1 + λkl0

= bl0

|Sd−1| < ∞,

as was shown above. Using (3.10) and (3.16) with r = 1/2, we obtain

∑
l∈N

N(d,l)∑
m=1

(1 + l)

∣∣∣∣∣
∑
k∈N

uklmfkl(1)

∣∣∣∣∣
2

≤ C
∑
klm

(1 + λkl)|uklm|2,

that is,

(1 + l0)

( ∑
k∈N

fkl0(1)2

1 + λkl0

)2

≤ C
∑
k∈N

fkl0(1)2

1 + λkl0

.

Since the sums are finite, we obtain by cancellation that

∑
k∈N

fkl0(1)2

1 + λkl0

≤ C

1 + l0
,

which completes the proof. �

We can now state the following theorem, which is a reformulation of
Theorems 2.5 and 2.6 in the present setting.

THEOREM 3.10. Let (u0, v0) ∈ L2(B(0,1))⊕ H−1(B(0,1)). Consider (1.1),
where the covariance of Ḟ D(t, x) is given by (3.15) and (3.8) [or, equiva-
lently, (3.18), where the covariance of Ḟ S(t, x) is given by (3.19) and (3.8)]. If∑

l∈N

al

1 + l
< ∞,(3.26)

then the equation has a unique weak solution u = {u(t), t ∈ R+},
and E(‖u(t)‖2

0) < ∞ for all t ∈ R+. On the other hand, if there exists a weak
solution u to the equation such that E(‖u(t0)‖2

0) < ∞ for some t0 > 0, then condi-
tion (3.26) is satisfied.

PROOF. Let us first prove the sufficiency of (3.26). By Theorem 2.5, we
simply have to check that this condition implies Assumptions A and B of Section 2.
Assumption A has already been checked in Lemma 3.4, and Assumption B is
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a direct consequence of condition (3.26), Lemma 3.6 and the upper bound in
Lemma 3.9.

To show that condition (3.26) is necessary, we use Theorem 2.6. Indeed, by
Lemma 3.6 and the lower bound in Lemma 3.9, Assumption B implies (3.26), so
the theorem is proven. �

REMARK 3.11. (a) By Remark 3.3(a), (3.26) is not satisfied for white noise
on the sphere.

(b) Following Remark 2.8 of the preceding section, we see that if the solution
u of (2.3) took its values in H 1(B(0,1)), then condition (2.14) would be satisfied.
In the present case, (2.14) can be rewritten as

∑
k,l∈N

N(d,l)∑
m=1

γklm < ∞.

By (3.21),

∑
k,l∈N

N(d,l)∑
m=1

γklm = |Sd−1|∑
l∈N

al

( ∑
k∈N

fkl(1)2

)
= ∞,

since the term in parentheses is infinite by Lemma 3.7. Therefore, (2.14) is never
satisfied, so there never exists a solution with values in H 1(B(0,1)), when the
noise under consideration is a (nonvanishing) boundary noise.

3.4. Noise on a sphere of smaller radius. We assume in this section that the
noise is concentrated on a sphere of lower radius r0 ∈]0,1[, therefore interior to
the domain B(0,1). The preceding analysis generally carries over to this case, with
the following changes. The general form for the covariance of the noise is

�S(ϕ,ψ) = ∑
l∈N

al�l(ϕ,ψ),

where

�l(ϕ,ψ) =
∫
S(r0)

dσ (x)

∫
S(r0)

dσ (y)ϕ(x)Pl

(
d,

x · y
r2

0

)
ψ(y),

and the al and Pl are as before and S(r0) is the sphere of radius r0. The covariance
�D is related to �S by

�D(ϕ,ψ) = �S

(
ϕ

∣∣
S(r0)

,ψ
∣∣
S(r0)

)
, ϕ,ψ ∈ S(D).(3.27)

Note that the noise can no longer be interpreted as a stochastic boundary condition,
as in (3.18). However, we have the following theorem.
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THEOREM 3.12. Let (u0, v0) ∈ L2(B(0,1))⊕ H−1(B(0,1)). Consider (1.1),
where the covariance of Ḟ D(t, x) is given by (3.27). If condition (3.26) is
satisfied, then there exists a unique weak solution u = {u(t), t ∈ R+} of (1.1),
and E(‖u(t)‖2

0) < ∞ for all t ∈ R+.

PROOF. By Theorem 2.5, it suffices to check that Assumptions A and B are
satisfied. Using the trace operator γr0 on S(r0), instead of γ0, we easily prove
as in the proof of Lemma 3.4 that Assumption A is satisfied. In order to check
Assumption B, notice that, as in (3.21),

γklm = �D(eklm, eklm) = fkl(r0)
2al

|Sd−1|
N(d, l)

.

We need therefore to check that

∑
l∈N

al

( ∑
k∈N

fkl(r0)
2

1 + λkl

)
< ∞.

We first prove that, for each l ∈ N, the term in parentheses is finite: by a calculation
similar to that of Lemma 3.7, we have

fkl(r0)
2 = 2λkl

λkl − l2 − l(d − 2)

(
Jl(d,µkl r0)

Jl(d,µkl)

)2

.

Moreover, for fixed l ∈ N,

Jl(d, r) = Cdr(1−d)/2 cos
(
r −

(
l + d − 2

2

)
π

2
− π

4

)
+ O(r−d/2)(3.28)

(see [1], formula 9.2.1), so one expects

Jl(d,µkl)
2 ∼ µ1−d

kl as k → ∞.(3.29)

We assume this for the moment. Then, for all ε > 0, there exists k0 ∈ N such that(
Jl(d,µkl r0)

Jl(d,µkl)

)2

≤ r1−d
0 + ε for all k ≥ k0.

Therefore,

∑
k∈N

fkl(r0)
2

1 + λkl

≤ ∑
k≤k0

fkl(r0)
2

1 + λkl

+ ∑
k>k0

2

λkl − l2 − l(d − 2)
(r1−d

0 + ε),

which is finite by Lemma 3.8. We now proceed as in the last part of the proof of
Lemma 3.9, replacing again the operator γ0 by γr0 . This leads to the conclusion
that there exists C(r0) > 0 such that

∑
k∈N

fkl(r0)
2

1 + λkl

≤ C(r0)

1 + l
,(3.30)
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which proves Assumption B.
We now check (3.29). Set ν = l − 1 + d/2. By (3.3), µkl solves

J′
ν(r) = d − 2

2r
Jν(r).(3.31)

By [1], 9.2.11, 9.2.15 and 9.2.16,

J′
ν(r) =

√
2

πr

(−R(ν, r) sin(χr) − S(ν, r) cos(χr)
)
,

where χr = r − πr/2 − π/4, and R(ν, r) and S(ν, r) satisfy limr→∞ R(ν, r) = 1
and limr→∞ S(ν, r) = 0. Further, by [1], 9.2.1,

Jν(r) =
√

2

πr

(
cos(χr) + O(r−1)

)
.

Equation (3.31) can be rewritten as

−R(ν, r) sin(χr) − S(ν, r) cos(χr) = d − 2

2r

(
cos(χr) + O(r−1)

)
,

so (µkl) verifies limk→∞ sin(χµkl
) = 0, and, therefore, limk→∞ cos(χµkl

) = 1.
Together with (3.28), this proves (3.29). �

REMARK 3.13. The question of whether condition (3.26) is not only sufficient
for the conclusion of Theorem 3.12, but also necessary, remains an open problem.
Indeed, when 0 < r0 < 1, it is not clear whether the inequality in (3.30) can be
reversed [with C(r0) replaced by a different constant].

3.5. An integral test (d = 2). We consider here the case d = 2, that is, the
linear hyperbolic equation in two space dimensions driven by noise concentrated
on the unit circle S1. Our aim is to reformulate condition (3.26) as an integral
test. For this, we shall make the additional assumption that the covariance �S is
given by a nonnegative measure on the unit circle. To make this precise, recall that
Pl(2, cosθ) = cos(lθ) and therefore the covariance �S from (3.8) is given by

�S(ϕ,ψ) = ∑
l∈N

al

∫ π

−π
dθx

∫ π

−π
dθy ϕ(θx) cos

(
l(θx − θy)

)
ψ(θy)

= ∑
l∈N

al

∫ π

−π
dθ cos(lθ)

∫ π

−π
dθx ϕ(θx)ψ(θx − θ),

by the change of variable θ = θx − θy (the addition/subtraction operations are
identified with the group operations on S1, which we identify with [−π,π ]). This
can be rewritten as

�S(ϕ,ψ) = ∑
l∈N

al

∫ π

−π
dθ cos(lθ)(ϕ ∗ ψ̃)(θ),
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where

(ϕ ∗ ψ)(θ) =
∫ π

−π
dϑ ϕ(ϑ)ψ(θ − ϑ)

is the convolution product on S1 and ψ̃(θ) = ψ(−θ). The map

ϕ �→ ∑
l∈N

al

∫ π

−π
dθ cos(lθ)ϕ(θ), ϕ ∈ C∞(S1),

defines a distribution on S1 (see [28], Chapter 7, Section I). Let us now assume
that this distribution is nonnegative. By the fundamental theorem of Radon–Riesz
(see, e.g., [15], Chapter 2, Theorem 2.2), there exists therefore a nonnegative Borel
measure � on S1 such that∫ π

−π
�(dθ)ϕ(θ) = ∑

l∈N

al

∫ π

−π
dθ cos(lθ)ϕ(θ) for all ϕ ∈ C∞(S1).(3.32)

We now have the following reformulation of condition (3.26) as a condition on the
measure �.

PROPOSITION 3.14. Set

K(ϑ) =
∫ π

−π
�(dθ) ln

(
2π

|ϑ − θ |
)
, ϑ ∈ [−π,π ].

Then (3.26) holds if and only if

sup
ϑ∈[−π,π ]

K(ϑ) < ∞.(3.33)

REMARK 3.15. Condition (3.33) is slightly stronger than the condition
K(0) < ∞, that is, ∫ π

−π
�(dθ) ln

(
2π

|θ |
)

< ∞.

However, (3.33) is implied by the condition “K is continuous at 0,” since K is
nonnegative definite. Condition (3.33) should be compared with the conditions in
the spatially homogeneous setting; compare [5]–[7], [23] and [25].

PROOF OF PROPOSITION 3.14. Set

h(θ) = ln
(

2π

|θ |
)

= c0

2
+ ∑

l∈N∗
cl cos(lθ), θ ∈ [−π,π ] \ {0},

and h(0) = +∞. Note that since h belongs to L2([−π,π ]), the above Fourier
series also converges in L2([−π,π ]). Moreover, computing the Fourier coeffi-
cients cl gives, for l ∈ N∗,

cl = 2

π

∫ π

0
dθ ln

(
2π

θ

)
cos(lθ) = 2

πl

∫ lπ

0
du

sin(u)

u



SPDES WITH ISOTROPIC GAUSSIAN NOISE 1093

by integration by parts and change of variable u = lθ . Since the integral converges
to π/2 as l → ∞, (3.26) is equivalent to∑

l∈N

alcl < ∞.(3.34)

Suppose now that (3.26) or, equivalently, (3.34) holds. Since θ �→ ln(2π/θ)

does not belong to C∞(S1), we cannot simply set ϕ(θ) = ln(2π/θ) in (3.32): some
smoothing is required. For t > 0, set

ψt(θ) = 1

π
+ 2

π

∑
l∈N∗

e−lt cos(lθ) = 1

π
+ 2

π
Re

∑
l∈N∗

el(−t+iθ)

= 1

π

sinh(t)

cosh(t) − cos(θ)
, θ ∈ [−π,π ],

by summing the geometric series. Then ψt is a probability density on [−π,π ],
and if we set ht(θ) = (h ∗ ψt)(θ) for θ ∈ [−π,π ], then ht ≥ 0 and limt↓0 ht (θ) =
h(θ) for all θ ∈ [−π,π ] (the ψt play the role of approximations to the Dirac
δ0 distribution). By Parseval’s identity,

ht(θ) = c0 + 2
∑
l∈N∗

cle
−lt cos(lθ), θ ∈ [−π,π ],

and ht ∈ C∞(S1) for all t > 0, since the coefficients cle
−lt are rapidly decreasing

in l. Therefore,∫ π

−π
�(dθ)ht(ϑ − θ) = ∑

l∈N

al

∫ π

−π
dθ cos(lθ)ht (ϑ − θ)

(3.35)
= π

∑
l∈N

alcle
−lt cos(lϑ),

and, by Fatou’s lemma,

K(ϑ) ≤ lim inf
t↓0

∫ π

−π
�(dθ)ht(ϑ − θ) ≤ π

∑
l∈N

alcl < ∞

by (3.34). It follows that (3.33) is satisfied.
Suppose now that (3.33) holds. By Fubini’s theorem,∫ π

−π
dϑ ψt(ϑ)K(ϑ) =

∫ π

−π
�(dθ)(h ∗ ψt)(θ) = π

∑
l∈N

alcle
−lt ,

and, by assumption, the left-hand side is bounded by supϑ∈[−π,π ] K(ϑ). Applying
the monotone convergence theorem to the right-hand side, we conclude that (3.34),
and therefore (3.26), holds. �
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4. Linear equation in a hypercube driven by homogeneous noise on
a hyperplane. In this section, we carry out an analysis similar to that of
Section 3, in the case where D = [0, π ]d (d > 1) and the noise is concentrated
on K = [0, π ]d−1 × {α}, where α ∈ [0, π ]. We identify K with [0, π ]d−1.

4.1. Noise on K . Let us first define a class of covariances on K . As in Sec-
tion 3.2, we begin with a continuous and symmetric function f : [−π,π ]d−1 → R,
which is nonnegative definite on K , that is,

m∑
i,j=1

cicjf
(
x(i) − x(j)) ≥ 0

for all m ≥ 1, c1, . . . , cm ∈ C, x(1), . . . , x(m) ∈ K.

This function is the covariance of a Gaussian process indexed by the elements
of K , which is spatially homogeneous. Examples of such functions are

f (x1, . . . , xd−1) = ∑
n1,...,nd−1∈N

an1,...,nd−1 cos(n1x1) · · · cos(nd−1xd−1),

where (x1, . . . , xd−1) ∈ [−π,π ]d−1, an1,...,nd−1 ≥ 0 and∑
n1,...,nd−1∈N

an1,...,nd−1 < ∞.(4.1)

Using the addition identity for cos(m(x − y)), one easily checks that such
an f satisfies the required properties. Note that we cannot apply the classical
Bochner theorem to conclude that any covariance f has the preceding form,
because K is not a group.

As in Section 3.2, we consider a covariance functional given by

�K(ϕ,ψ) = ∑
n1,...,nd−1∈N

an1,...,nd−1�n1,...,nd−1(ϕ,ψ), ϕ,ψ ∈ C∞(K),

where an1,...,nd−1 ≥ 0 and

�n1,...,nd−1(ϕ,ψ)

=
∫
K

dx1 · · ·dxd−1

∫
K

dy1 · · ·dyd−1ϕ(x1, . . . , xd−1) cos
(
n1(x1 − y1)

) · · ·
× cos

(
nd−1(xd−1 − yd−1)

)
ψ(y1, . . . , yd−1),

with condition (4.1) replaced by another one [see (4.2)], under which we can easily
check that �K(ϕ,ψ) is well defined for each ϕ,ψ ∈ C∞(K).

Let us finally define the covariance �D by

�D(ϕ,ψ) = �K(ϕ|K,ψ|K), ϕ,ψ ∈ S(D).

where S(D) is defined in Section 2.
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4.2. Conditions for existence. Consider the condition∑
n1,...,nd−1∈N

an1,...,nd−1√
1 + n2

1 + · · · + n2
d−1

< ∞.(4.2)

The main result of this section is the following (note that for the heat equation
similar results were already obtained in [10] and [11], Theorem 13.3.1).

THEOREM 4.1. Let (u0, v0) ∈ L2(D) ⊕ H−1(D). There exists a unique weak
solution u of (1.1) such that E(‖u(t)‖2

0) < ∞ for all t ∈ R+ if and only if
condition (4.2) is satisfied.

PROOF. The solutions of the eigenvalue problem

�ϕ + λϕ = 0 in D and
∂ϕ

∂ν

∣∣∣∣
∂D

= 0

have the following simple expressions:

en(x) =
(

2

π

)d/2

cos(n1x1) · · · cos(ndxd), λn = n2
1 + · · · + n2

d,

where n = (n1, . . . , nd) ∈ Nd . Notice that the en are C∞, even though ∂D is not.
Let us now compute the coefficients γn = �D(en, en):

γn = ∑
m1,...,md−1∈N

am1,...,md−1�m1,...,md−1

(
en|K, en|K )

.

Since

en|K(x1, . . . , xd−1) =
(

2

π

)d/2

cos(n1x1) · · · cos(nd−1xd−1) cos(ndα),

and, using the addition identity for cos(m(x − y)), we obtain

γn = 2

π
an1,...,nd−1 cos2(ndα).

In order to check that condition (4.2) is sufficient, we simply need to check
that it implies Assumptions A and B of Section 2, which in turn imply the desired
existence and uniqueness result by Theorem 2.5. To see that Assumption A is
satisfied, we follow the proof of Lemma 3.4 with r = 1

2 ; that is, we check that
there exists K > 0 such that, for all ϕ ∈ H 1/2(K),

�K(ϕ,ϕ) ≤ K‖ϕ‖2
1/2,(4.3)

where ‖ · ‖1/2 is the H 1/2-norm on K defined by

‖ϕ‖2
1/2 = ∑

n1,...,nd−1∈N

√
1 + n2

1 + · · · + n2
d−1

∣∣cn1,...,nd−1

∣∣2
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for

ϕ(x1, . . . , xd−1) = ∑
n1,...,nd−1∈N

cn1,...,nd−1 cos(n1x1) · · · cos(nd−1xd−1).

We then compute

�K(ϕ,ϕ) =
(

2

π

)d−1 ∑
m1,...,md−1∈N

am1,...,md−1

∣∣cm1,...,md−1

∣∣2.
Under condition (4.2), there exists C > 0 such that

am1,...,md−1 ≤ C

√
1 + m2

1 + · · · + m2
d−1;

therefore, (4.3) holds as in the proof of Lemma 3.4.
Let us now verify Assumption B. We compute

∑
n∈Nd

γn

1 + λn

= 2

π

∑
n1,...,nd∈N

an1,...,nd−1 cos2(ndα)

1 + n2
1 + · · · + n2

d

(4.4)

= 2

π

∑
n1,...,nd−1∈N

an1,...,nd−1

( ∑
nd∈N

cos2(ndα)

1 + n2
1 + · · · + n2

d

)
.

Since ∑
nd∈N

cos2(ndα)

a2 + n2
d

≤ 1

a2
+

∫ ∞
0

dx
1

a2 + x2
= 1

a2
+ π

2a
≤ C

a
, a ≥ 1,

we see that (4.2) implies Assumption B.
To see that (4.2) is necessary, if there exists a weak solution of (1.1) such that

E(‖u(t)‖2
0) < ∞ for all t ∈ R, then, by Theorem 2.6, Assumption B is satisfied.

By (4.4), it suffices therefore to check that there exists C > 0 such that

∑
n∈N

cos2(nα)

a2 + n2 ≥ C

a
,(4.5)

since this will prove the necessity of condition (4.2). Because cos2(nα) =
cos2(n(π − α)), we may as well assume that α ∈ [0, π/2]. In this case, noting that
{x ∈ [−π,π ] : cos(x) ≥ √

2/2} = [−π/4, π/4], and this interval has length π/2,
set N0 = 1, Nα = [2π/α] + 1 if α > 0, and observe that the set {n ∈ N : cos(nα) ≥√

2/2} contains an increasing sequence (mi, i ∈ N) such that 0 < mi+1 −mi ≤ Nα .
Since x �→ (a2 + x2)−1 is a decreasing function of x ∈ R+, we conclude that

∑
n∈N

cos2(nα)

a2 + n2
≥ ∑

i∈N

cos2(nα)

a2 + m2
i

≥
√

2

2

∑
n∈N

1

a2 + (Nαn)2

≥
√

2

2

∫ ∞
0

dx
1

a2 + (Nαx)2 = π
√

2

4Nα

1

a
,

which proves (4.5) and concludes the proof. �
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4.3. An integral test (d = 2). As in Section 3.5, in the case where d = 2, we
shall reformulate condition (4.2) as an integral test, when the functional �K is
given by a nonnegative measure on the segment K = [0,2π ] × {α}. With d = 2,
if ϕ and ψ are 2π -periodic, then

�K(ϕ,ψ) = ∑
n∈N

an

∫ π

−π
dx

∫ π

−π
dy ϕ(x) cos

(
n(x − y)

)
ψ(y)

= ∑
n∈N

an

∫ π

−π
dx cos(nx) (ϕ ∗ ψ̃)(x).

As in Section 3.5, the map

ϕ �→ ∑
n∈N

an

∫ π

−π
dθ cos(nθ)ϕ(θ), ϕ ∈ C∞(S1),

defines a distribution on S1, which we assume to be nonnegative, so there exists
a Borel measure � on S1 such that∫ π

−π
�(dθ)ϕ(θ) = ∑

n∈N

an

∫ π

−π
dθ cos(nθ)ϕ(θ)

for all ϕ ∈ C∞(S1).

Condition (4.2) can now be reformulated as a condition on this measure �. The
proposition below shows that the critical singularity at the origin of this measure
is the same for noise on a segment as for noise on a circle.

PROPOSITION 4.2. Let K(ϑ) be as in Proposition 3.14. Then

∑
n∈N

an√
1 + n2

< ∞

if and only if (3.33) holds.

The proof is identical to that of Proposition 3.14 and is therefore omitted.
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