The right time to sell a stock

whose price is driven by Markovian noise

Robert C. Dalang! and M.-O. Hongler?

Ecole Polytechnique Fédérale de Lausanne

Abstract

We consider the problem of seeking the optimal time to sell a stock, subject to a
fixed sale cost and an exponential discounting rate p. We assume that the price of
the stock fluctuates according to the equation dY; = Y; (u dt+o &(t) dt), where (£(1))
is an alternating Markov renewal process with values in {£1}, with an exponential
renewal time. We determine the critical value of p under which the value function
is finite. We examine the validity of the “principle of smooth fit,” and use this to
give a complete and essentially explicit solution to the problem, which exhibits a
surprisingly rich structure. The corresponding result when the stock price evolves
according to the Black and Scholes model is obtained as a limit case.
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1 Introduction

There are many examples of optimal stopping and optimal control problems in continuous
time, involving diffusion processes, that have an explicit solution (see for instance [1, 15,
20, 21], but it is rare that the discrete form of the problem, in which the diffusion is
replaced by a random walk, can also be solved explicitely (an exception is [2], see also [3,
Chap. 10]). One reason is that in the continuous case, it is possible to use the so-called
“principle of smooth fit,” first studied in detail in [8]; see also [22] and [13, Chap. 1 & 6],
as well as [21, p.636] for a discussion of this principle and its history. In the discrete case,
the problem is much more combinatorial and no such principle is available.

In this paper, we consider a particular optimal stopping problem in an intermediate
situation, in which time is continuous but the driving noise is discrete. We shall show that
the principle of smooth fit holds in some situations but not in others, and the difference
between the situations sheds some light on why this principle should hold in the first
place. This semi-discrete problem will admit an essentially explicit solution.

The specific problem we consider is “when to sell a stock, subject to a fixed sale cost a
and an exponential discounting at rate p.” In the classical Black and Scholes model, the
stock price Y; would be a solution of the stochastic differential equation

dY, =Y, (udt + 0dB,), Yy=y, (1.1)

where (B;) is a standard Brownian motion, 1 and o are constants. The problem is to find
a stopping time 7 which maximizes the expected reward E(e~”"(Y;—a)). This continuous-
time problem can be elegantly solved explicitly (see [17], which was the starting point for
this paper).

Here, we consider a semi-discretized form of this problem: the driving noise dB; is
replaced by an alternating renewal process (£(t), ¢ > 0) with values in {£1}, with an
exponential renewal time with mean 1/A. Equation (1.1) is replaced by

dY; =Y, (udt + o £(t) dt), Yo =1y,

which is a (random) ordinary differential equation. The problem is again to find a stopping
time 7 which maximizes the expected reward E(e ?"(Y; — a)), and even to find the value
function §(t,y, s), which represents the maximal expected reward if we are at time ¢, the
current stock price is y, £(t) = s, and we proceed optimally from time ¢ on.

The Markovian noise process £(t) dt is sometimes called “telegrapher’s noise” [10], and
the process (Y;) is known as a piecewise deterministic Markov process [4] or a random
evolution process [19]. This semi-discrete problem is in a sense “simpler” than the previous
one, since it does not appeal to Brownian motion and stochastic differential equations,
so the statement of the problem is elementary. The process £(¢) can be thought of as an
“up” or “down” trend, which may be appropriate on certain time scales and in certain
applications. Further, there is a non-trivial covariance betwen £(¢) and £(¢ + h), namely

e~ which is not the case for white noise dB;. Finally, taking an appropriate limit as



AT 400 and o T 400, we should recover the solution from the Black and Scholes model
(though (1.1) will have to be interpreted in the Stratonovitch sense: see Remark 12).

It turns out that the structure of the solution to our problem depends heavily on the
relationships between the four parameters p, p, o and A. If p is too small, then it is never
optimal to stop and sup, E(e™?"(Y; — a)) = +oo. Therefore the problem is of interest
only for sufficiently large values of p: the critical value is determined in Theorem 1.

It is well known [6] that the optimal stopping rule can be described via a “continua-
tion region” and a “stopping region,” and for continuous-time problems, the principle of
smooth fit states that the value function ¢ should be smooth at the boundary between
these two regions. Here, we can establish that the principle of smooth fit does indeed
hold at certain such boundary points (see Proposition 7), but not necessarily at others.
Therefore, the principle of smooth fit at these points yields necessary conditions on the
value function, rather than guesses that need to be confirmed, as is generally the case.

In developing our solution, we essentially had two choices. The first was to “guess” the
solution, and then establish that the proposed solution is correct. This is the approach
used for instance in [15, 21]. The second was to use the general theory of optimal stopping,
as developped in [6], to establish existence and basic properties of optimal stopping times.
While the first approach is more elementary, it requires heavy algebraic calculations.
Therefore, we have preferred the second approach: the knowledge that an optimal stopping
time exists can be used advantageously to derive conditions that are necessarily satisfied by
the value function and this simplifies the calculations (even though they remain intricate).

In the solution to our problem, the possible sign of p — 4t — ¢ plays an important role.
Intuitively, there are two competing features in the problem: the discounting tends to
decrease the effect of the fixed sale cost a, which encourages one to wait and sell later,
versus the discounting of the sale price, which encourages to sell immediately. For large
values of the sale price, the fixed cost a becomes negligible. When p < p+ o, during an
“up” trend, the stock price increases at a faster rate than p and so no matter the stock
price, it should always be optimal not to stop as long as the trend is “up.” On the other
hand, when p > p + o, the discounting is stronger than the increase in stock price, even
during an “up” trend, and so for large stock prices, the continuation effect from the fixed
sale cost loses out and it becomes optimal to stop, even during an “up” trend. These
observations will be confirmed by our analysis.

It turns out that when p — u — o is negative, we obtain an explicit solution given by
algebraic formulas (Theorem 10 for the case where y — o < 0 and Theorem 14 when
p—o >0). When p— pu— o > 0, the solution is essentially explicit, up to solving one
transcendental equation (see Theorem 13 for the case where ;1 — 0 < 0 and Theorem 16
if p — o > 0). Finally, in Remark 12, we show how to recover the solution to the problem
where the stock price is given by (1.1) as the limit, when A 1 oo, o 1 oo and o /v A — o,
of the solution to our semi-discrete problem.



2 Stating the problem

Consider a two-state continuous-time Markov chain (£(¢), ¢ > 0) with state space S =
{=1,41}, defined on a complete probability space (€2, F,P). Processes such as this
are discussed in most textbooks on stochastic processes [9, 19]. We assume that the
infinitesimal parameters of this Markov chain are given by the matrix

G:<—§ _i) (2.1)

where A > 0. For r,;s € S, let p,s(t) = P(&(t) = s | £(0) = r) and set P(t) = (p,s(1)).

Then
1+ 672/\t 1 — 672)\t

P(t):§<1_62,\t 1+62At>'

Fix positive real numbers p and o, let
V(s) =p+so,
and consider the process (Y3, ¢ > 0) which is a solution of the equation

dY;
—L=VEm)Y  t20 (2.2)

Equivalently,
¢
Y; = Yoexp (ut + O'/ &(u) du) . (2.3)
0

Let (F;, t > 0) be the natural filtration of (£{(¢)). Clearly, (F;) is also the natural
filtration of (Y;). We complete this filtration and then it is also right-continuous. The
process (Y;) is not a Markov process with respect to this filtration, whereas the couple
(Y3, &(t)) is a Markov process, with state space Ry x.S. We let P, 5, denote the conditional
probability given that Yy = yo and £(0) = s, and E,, 5, denote expectation under P, .

As mentioned in the introduction, we assume that Y; denotes the price of an asset
at time ¢, and we wish to sell this asset at the highest possible price, subject to a fixed
transaction cost @ > 0 and a discounting rate p > 0. That is, the benefit of a sale at time
t is given by the reward process (X;) defined by

X;=e "(Y; —a). (2.4)
Problem A. Find a stopping time 7° relative to the filtration (F;) such that

Eyo,so (XT") = Sup Eyo,so (XT) ’ (25)

where the supremum is over all (F;)-stopping times.



3 Conditions under which the value function is finite
The wvalue function for Problem A is
g(yOa SU) = sup Eyo,so (XT) .

Of course, Problem A will only be interesting if this function is finite. The first theorem
identifies the conditions on the parameters of the problem that ensure that this is indeed
the case.

Theorem 1. Given yo > 0 and sg € S, g(yo, o) < 00 if
p>p—A+Vo?+ A2 (3.1)

In fact, condition (3.1) holds if and only if Eyy s (Sup;sq | Xi|) < oo, while p < pp— A+
Vo2 + A2 if and only if sup,sq By, s0(X:) = +o00.

Proof. According to [7, II1.4], the infinitesimal generator of (Z;), where Z;, = (Y3,£(1)), is
the operator A, defined for f : R, xS — R such that f(-, s) is continuously differentiable
for each s € S, by

af

Af(y,s) = V(S)ya—y(y, s) +Gf(y,s),

where Gf(y,s) = Gs—1f(y,—1) + G541 f(y,+1), and the G;, are the infinitesimal pa-
rameters of (£(¢)) from (2.1).

It is not difficult to check that the law of Y; under P, ,, is absolutely continuous, with
compact support, and we let p(yo, so;t,y, s) denote its density on {£(t) = s}, that is, for
all Borel sets A,

Py solYi € A, &(t) = s} = / (Yo, s0: t, y, s) dy.
A

We shall use this to give a formula for E,, ,(Y;). Though we could appeal to [12], we
prefer, for convenience of the reader, to give the derivation. The Kolmogorov forward
equation [11, Chap. 5.1, p.282] states that for (yo,so) € Ry x S fixed, and all ¢ > 0,

(y,8) € Ry x S,

Ip

0
o (Yo, S0; t, v, 8) = —=—(V(8)yp(vo, $0; t, ¥, 8)) + Gp(yo, So0; t, Y, S). (3.2)

dy

Set N

f(yo, so;t, s) ZEyo,so(Ytl{g(t):s})z/ yp(Yo, s05t,y.s) dy.
0

Multiply both sides of (3.2) by ¥, then integrate over [0, o[ with respect to y to find, after
an integration by parts and because #¥ p(yo, So; t,y, s) has compact support, that

of

E(yo, so;t,s) = V(s) f(yo, 03 t. 5) + G f(yo. s0:t, ).



Substitute s = +1 and suppress (yo, So) from the notation to get the two equations

{ %(t, —1) = (u—0)f(t,=1) = Af(t,—=1) + Af(t,+1),
(b, 4+1) = (n+0) f(t, +1) + Af(t,—1) = Af(t, +1).

This is a linear system of two differential equations in the unknowns t — f(t,£1), gov-
erned by a matrix with constant coefficients. The eigenvalues of this matrix are

Ki=p— A+ Vo2 + X2 and ko= p—A— Vo2 + A2,
Therefore,
Eyos0(Y) = f(y0, 5031, —1) + f(yo, 505, +1) ~ exp(rk1?) as t — oo,
and
Eyoso(€771Y}) ~ exp((k1 — p)t) as t — oo.

If p<p—A++Vo2+ A2 then k1 — p > 0, S0 sup,~q Ey, s,(Xi) = +00 if and only if this
inequality holds. -

Suppose now that (3.1) holds. In order to show that E, 5, (sup,sq|X:|) < oo, it clearly
suffices to show that B, . (sup;sq M;) < oc, where M; = e~ ?'Y,. We distinguish two
cases. -

Case 1. If p > p+ o, then dM; = (u— p+ 0&(t)) My < 0, so the sample paths of (M;)
are non-increasing and sup, M; < yo Py, s,-a.s. Therefore E, ; (sup,sq M;) < yo < 00.

Case 2. If p < p+o, then we proceed as follows (note first that p—A++v/0? + A2 < p+o,
so the condition p < pu+ o is compatible with (3.1)). The infinitesimal generator A of the
Markov process Z; = (M, £(t)), which applies to functions f : Ry x S — R, is given by

Af(y8) = (- p+ sa)y%(y, 9+ Gfly.s).

Therefore, the process (f(My,&(t)), t > 0) is a martingale if
of
(= pts0)yy (y,5) + Gfly.5) =0, (y,5) € Ry x 5. (3-3)
Let h(z,s) = f(e*,s), so that h(-,-) satisfies the linear equation
oh
(u—p+sa)a—z(z,s)+Gh(z,s) =0, (z,5) e R x S.

Substitute s = +1 into this equation to get

( %EZ,;B ) B ( —/\/GI(LM_—pp_JrUg) _/\/\//(/(LM—_per_Ua)) ) | ( ZE;J_FB ) |



This is a linear system of two differential equations in the unknowns z +— h(z, £1),
governed by a matrix with constant coefficients, whose eigenvalues are 0 and €2, where

Q=2p—p) [o® = (n—p)°] "

Note that because p > p by (3.1) and since we are in Case 2, it follows that Q> 0. The
corresponding eigenvectors are

( 1 ) and ( —(p—=p)+o )
1 u—p+o
Therefore, there are constants C'; and C5 such that

h(z.5) = C1 + Cao(s(pn — p) + )€™,

and so 5
f(y,s) = C1+ Cols(p — p) + o)y

Let us choose C; = 0 and C; = 1. Given 0 < a < y < b < o0, define T =
inf{t > 0: M, ¢ [a,b]}. The process (f(Zirr,E(t AT), t > 0) is a bounded martingale.
By (3.1), p > i, so by (2.3) and the law of large numbers,

lim M; =0, P, s-as., (3.4)
t—00

and therefore T' < oo, P, s-a.s. By the Optional Stopping Theorem [5, Chap.4.7, (7.4)],
we see that

fy,s) = Eys [f (Mr,&(T))].

Aspu—p—o <0and u—p+o >0, M; cannot reach b for the first time when £(t) = —1,
nor a for the first time when £(¢) = +1, so £(T') = +1 when T'= b and &(T) = —1 when
T =a. Let T, = inf{t > 0: M; = z}. It follows that

fy,s) = fla, _1)Py,s {1, < T} + f(0, +1)Py,s {1y < T.},

which implies that
[y, s) — fla, —1)
f(b: +1) - f(a: _1) .

P, AT, < Ty} =
Let a | 0 to find that

P, {sup My > b} = P, {1}, < o0} = /(y,s) _ f(y,s) b_ﬁ,
t

f,+1)  (n=p+o)

and therefore E, ,(sup, M;) < oo if and only if Q > 1, that is, 2X\(p — p) > 0 — (4 — p)?,
which is equivalent to inequality (3.1) (to see this, isolate the square root in (3.1), square
both sides of the inequality and simplify). Theorem 1 is proved. &



4 Existence of an optimal stopping time

In view of Theorem 1, we shall restrict our study to the situation where condition (3.1)
holds, that is, for the remainder of the paper, we make the following assumption.

Assumption A. The parameters of the problem satisfy

p>u— A+ Vo?+ A2

In order to apply results from the general theory of optimal stopping in continuous
time, we set X, = 0.

Theorem 2. Under Assumption A, there exists an optimal stopping time 7°, in other
words, T° satisfies (2.5).

Proof. We shall apply Theorem 2.41 of [6]. Notice first that ¢t — X, is continuous from
[0,00] to R. Indeed, the only issue is continuity at +oo, which follows from (3.4) if
p < p+ o, and from (2.4) and (2.3) if p > p+ o, since in this last case,

0 < e Y, <Yyexp((—p+ pu+0o)t), for all ¢ > 0.

Further, (X;) is bounded below by —a, adapted, and “of class D” (that is, the family
(X,, 7 a stopping time), is uniformly integrable), by Assumption A and Theorem 1.
Therefore, the hypotheses of [6, Théoreme 2.41] are satisfied and the existence of an
optimal stopping time is established. )

5 First properties of the value function

From the general theory of optimal stopping in continuous time [6], we know that the
solution to problem A uses Snell’s enveloppe of the reward process (X;, ¢ > 0), that is, a
supermartingale (Z;, t > 0) such that for all (y, s), P, s-a.s,

Zy = esssup By, (X, |F,),

where the essential supremum is over all stopping times 7 > ¢t. Because the reward process
has the special form X; = e ? fo (Y}, £(t)), where

foly,s) = foly) =y —a (no dependence on s), (5.1)
it follows from [6, Théoreme 2.75] that in fact,
Zy = e "g(Yy,£(1),

where ¢(y, s) is the value function, and there is an optimal stopping time of the form
70 = inf{t > 0 : g(¥3,&(t)) = fo(Y2)} [6, Théoreme 2.76]. We shall therefore examine
properties of the function g(y, s) and of {y : g(y,s) =y — a}.

8



Proposition 3. (a) For s € S, y — g(y,s) is convez (therefore continuous) and non-
decreasing. Further, g(y, s) > max(fo(y),0).

(b) For s € S, the set {y € Ry : g(y,s) =y — a} is an interval [us, +00) (which may
be empty, or, in other words, us; = +0c may occur).

Proof. (a) We note from (2.3) that the law of ¥; under P, is the same as the law of yY;

under P; ,, and therefore
9(y, s) = sup By 4(e™"" (yY; — a)).

For a given stopping time 7 and s € S,
B (e 7 (yYr —a)) = yEis(e77Y;) — aBys(e”7) (5.2)

is a non-decreasing and affine function of y. Therefore, y — ¢(y, s), as the supremum of
such functions, is non-decreasing and convex.
Observe that for any ¢ > 0,

9(y,s) > B, 4(X;) = Ey’s(e’ptY} —e "a) > —e "a.

Let t — +o0o to see that g(y,s) > 0. It is also clear that g(y,s) > E, (Xo) = fo(y), so
we conclude that g(y, s) > max(fy(y),0).
(b) Let Ss ={y € Ry : g(y,s) =y —a}, s € {—1,+1}. Then for any yy € S; and any
stopping time T,
Ey (e fo(yoY7)) < 9(vo, 5) = yo — a.

Using (5.1), this is equivalent to
Yo(Ers(e?"Y:) — 1) +a(l — Ey4(e*7)) < 0.

The second term is non-negative, so this inequality implies that E; ;(e7”"Y;) —1 < 0, and
therefore it remains satisfied for any y > yo:

Y(Ers(e™Y7) — 1) +a(l — Ers(e™7)) < 0.
But this inequality translates back to
Ei (e fo(yYr)) <y—a.

Take the supremum over stopping times 7 to conclude that g(y,s) < y—a and so y € S;.
We conclude that if yy € S, and y > 1, then y € S, which shows that either S, = ()
or §, is a semi-infinite interval, as claimed. s



6 The value function in the continuation region

For s € S, let ug; be defined as in Proposition 3. We write uq instead of uyq;. By
Proposition 3(b) and [6, Théoremes 2.18 & 2.45], it will be optimal not to stop when
(Y3, £(t)) belongs to the continuation region

C = ([0, u-[x{=1} U ([0, uy [ x{+1}),

while the smallest optimal stopping time is 7° = inf{t > 0 : (Y},£(¢)) € (Ry x S)\ C}.
Set
g(t.y.s) =e"g(y, ).

Then the process (§(t,Y;,&(t)), t > 0) is a supermartingale, while (g(t A 7°, Yipnro, E(E A
7)), t > 0) is a martingale [6, Théoreme 2.75 and (2.12.2)]. This has the following
consequence.
Proposition 4. (a) u_ < u,.

(b) The set {y € Ry : g(y,—1) =y — a} is non-empty, or, in other words, u_ < +oo.

Proof. (a) We distinguish two cases, according as y — o < 0 or not.

Case 1. p— o < 0. We shall show that in fact, g(-,—1) < g(-,+1), which clearly implies
u_ < uy. Let 7 be the first jump time of (£(¢)). Then for any stopping time 7,

Ei (e " foyYr)) = Ei-i(e” foyY:)lir<ny + Br—1(Xo|Fr) 1 <ry)
< El’,l(eil’Tg(yYT’ + 1)1{7571} + eprlg(yY;_N +1)1{T1<T})'

Because p1 — o0 < 0, t — yY; is non-increasing on [0, 1], P;._j-a.s., so this is no greater
than
By (1 g(y, +1)1{T§n} +1-9(y, +1)1{71<T}) = g(y, +1).
Therefore, g(y,—1) < g(y, +1).
Case 2. 1 — o > 0. We note that in this case, ¢t — Y; is monotone and increasing, and it

suffices to consider the case where u, < co. Suppose by contradiction that u, < u_. Fix
y € [uy,u_[, so that g(y,+1) = y — a, and, in particular, for any ¢ > 0,

E1,+1(€_p(ﬁ/\t)(yyn/\t —a)) <y-—a.

Lett = (u—o0) 'In(u_/y),sothatt >0and on {r; >t },yY,_ =u_, P,_j-as.
Set 01 = 1 At_. Because of the form of the continuation region, given above, o, = 7°,
P, _i-a.s., and therefore

9(y,—1) = Bi_1(e "M (Yo, - — a). (6.1)

Since
Yo =exp((pto)(m Atl)), P4 —a.s.,

10



and the law of 7y is exponential with mean 1/, both under P, _; and under P; 11, we see
that the right-hand side of (6.1) is bounded above by

By (e PMN) (yYo o —a) < gly, +1) =y —a,

because y > uy. It follows that g(y, —1) < y — a, and by Proposition 3(a), this inequality
must be an equality. But then (y, —1) belongs to C, which contradicts our assumption
that y < u_. This proves that u_ < u, as claimed.

(b) If u_ = 400, then uy = +oo by (a), so the continuation region would be C = Ry xS,
and therefore 7° = 400 would be the smallest optimal stopping time by [6, Théoreme
2.45]. However, the reward associated with this stopping time is 0, which is clearly not
optimal. &

The supermartingale and martingale properties mentioned just before Proposition 4
translate into

~

Ag(t,y,s) <0, forall (t,y,5) € R, xRy xS, (6.2)
and X
Ajlt,y,5) =0, for (t,y,5) € [0,7°[ xC. (6.3
where A is the infinitesimal generator of Z, = (¢, Yy, £(t)). By [7, II1.4],

. B 0
Aj(t,y,s) = e " (—pg(y, s) + V<s>y£<y, s) + Gy(y, 9)),
SO

g, 9) A V()3 5) + Colys) =0, (y5) €C. (6.4)

9y
This equality will provide us with a specific form for g|c.

Proposition 5. (a) Define

A+ p)p+ /N2 + 02(p* + 2)p)

QO = s , (6.5)
and f
There are constants C_ and C such that for 0 <y <wu_,
gy, =1) = Cow_y® +Crwyy™, (6.7)
gy, +1) = C_y" +Cpy™. (6.8)
(b) Let
b= A+p—p—0)"and Q= A+ p)(p+0o)~". (6.9)
There is a constant C such that for u_ <y < u,,
(y,+1) = b Aoy (6.10)
= — Qa . .
9\y; Y A+ p Y

11



Proof. (a) Equation (6.4), written for (y,s) € [0,u_[ xS, gives the two equations
0
y(u—a)i(y,—l) — (A +p)g(y, —1) + Mgy, +1) = 0, (6.11)
0
y(u+0)£(y,+1) + gy, —1) = (A + pg(y, +1) = 0. (6.12)

The same change of variables that was used to solve (3.3) transforms these equations into
a linear system of differential equations governed by a matrix with constant coefficients,
whose characteristic polynomial is (u? — 0?)~! multiplied by

p(w) = (1 — o*)w® = 2u(A + p)w + (p* + 2pA). (6.13)

The roots of this polynomial are easily seen to be Q_ and €, given in (6.5), and the

associated eigenvectors are
w_ W

where wy are given in (6.6). This leads to the formulas in (6.7) and (6.8).
(b) Equation (6.4), written for y € [u_,u,] and s = +1, yields the equation

Y+ a>§—j<y, 11) = (4 )9y, 1)+ Aly —a) = 0, (6.14)

because g(y, —1) = y — a for these y. The solution of this first order linear differential
equation is easily seen to be given by (6.10). )

Remark 6. (a) By isolating the square root in (3.1) and squaring, one sees that Assump-
tion A is equivalent to the condition p(1) > 0, where p(-) is the polynomial in (6.13).
(b) Assumption A clearly implies A+ p — pp— o > 0, and therefore 0 > 1.

7 The principle of smooth fit

Proposition 5 gives the form of the value function in the continuation region, but the num-
bers of uy, Cy and C remain to be determined. In many control problems for diffusions
[1, 8, 20, 21], this is done using the “principle of smooth fit”. In the presence of piecewise
deterministic processes, it is not a priori clear whether or not this principle should apply,
and we will see that this need not be the case. In this problem, the principle of smooth
fit would state that 5
. g
f gt =1,

9fo —
as 8y_l.

12



Proposition 7. (a) If p — o > 0, then the principle of smooth fit is satisfied by g(-, —1)
at u_.
(b) If uy < 400, then the principle of smooth fit is satisfied by g(-,+1) at u..

PROOF OF PROPOSITION 7. (a) We let y T u_ in (6.11). Because g(-, 1) is continuous
and g(u_, —1) = fo(u_), we find that

u_(u—o) g}g}} g—z(y, —1) — (A4 p) folu_) + Ag(u_,+1) = 0. (7.1)

For Y Z u—, Ag(t7y7 _1) S 0 and f](t,y, _1) = e_pth(y)a SO

dfy

& (y) — (A +p)foly) + Ag(y, +1) < 0.

y(p— o)

Because g—;(y) =1, we let y | u_ to find that

u— (p—0) = (A+p)fo(u-) + Ag(u, +1) < 0.

Since we have assumed that g — o > 0, together with (7.1), this implies

9y
lim —=(y,—1) > 1. 7.2
lin £, -1) > (72)
By Proposition 3(a), g(-,—1) is convex, therefore y — g—z(y, —1) is non-decreasing. As

g(y,—1) = fo(y) for y > u_ and g—;(y) = 1, we conclude that the inequality (7.2) is in
fact an equality, and (a) is proved.
(b) We let y T uy in (6.14) to see, similar to the above, that

uy (p+ o) g}gﬁ g—Z(y; +1) = (A +p) fo(us) + Afo(us) = 0. (7.3)

For y > u,, use the inequality Ag(t,y, +1) < 0 to get

dfo

y(p+ U)d—y(y) — (A +p) foly) + Afoly) <O0.

As g—;(y) =1, we let y | uy to find that

uy (p+0) = (A +p) fous) + Afo(uy) = 0.
Because 1+ o > 0, together with (7.3), this implies
dg
lim =—=(y,+1) > 1,
Jim 3, (y,+1) >
and equality follows, as in (a). &
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Remark 8. The formulas in Theorems 10 and 13 below can be used to check that when
pu— o < 0, the principle of smooth fit is not satisfied by g(-, —1) at u_.

The statements in Proposition 7 can be related to the sample path properties of the
process (Y, £(t)). Indeed, when p— o > 0, t — Y; is non-decreasing, so the process
(Y, £(t)) can enter the stopping region [u_,+o0o[ x{—1} through the boundary point
(u_,—1): the principle of smooth fit is satisfied at (u_, —1) in this case. When p—o < 0,
then ¢ — Y} is decreasing on the event {£(t) = —1}, so the only way to enter the region
[u_,+oo[ x{—1} is if Y; > u_ and &(¢) changes from +1 to —1: in this case, (Y}, £(¢))
has not encountered the boundary point (u_,—1) and the principle of smooth fit is not
satisfied there. The same considerations apply at (u,,+1): the only way for the process
(Y3,£(t)) to enter the stopping region [u,,+oco[ x{+1} is through the boundary point
(uy,+1), and the principle of smooth fit holds at this point.

These observations parallel those in the paper [18, p.304], which A.N. Shiryaev pointed
out to the authors shortly before the completion of this paper. A nice feature in the proof
of Proposition 7 is that the validity of the principle of smooth fit at the boundary points
of the stopping region is a fairly direct consequence of the basic relationships (6.2) and
(6.3).

8 Explicit computation of the value function

We shall distinguish four cases, presented below as Theorems 10, 13, 14 and 16, according
to the possible relationships between the various parameters. Let u4 be as in Proposition
3 and

Qi, W+, Q, b, Ci and C

be as defined in Proposition 5. Only the five numbers uy, Cy and C remain to be
determined, since the other six numbers are given explicitely in Proposition 5. We begin
with the following relationships.

Lemma 9. (a) The growth of the function y+— g(y,+1) as y — oo is linear.
(b) Suppose p < p+ 0. Then uy = +oo and C = 0.
(¢) Suppose p > p+o. Thenb <1, C >0 and u, < oc.
(d) Suppose jp— o < 0. Then Qy <0< Q_ and Cy = 0.
(e) Suppose p— o >0. Then0 < Q< Qy andw, <0< w-_.

Proof. (a) In the region [u_, +oo[ x {—1}, Ag <0 by (6.2), or, equivalently,

—ply —a) +y(p— o)+ Ag(y, +1) = Ay — a) < 0.
This inequality can be written

Apt+o—p A p

1) < _
g(y, +1) < 3 y—a—

Therefore, g(y,+1) grows at most linearly when y — +oc.

14



(b) Set f(t,y,s) = e ? fo(y) (no dependence on s). Observe that for large ¥,
Af(ty,+1) = e (=pfo(y) + (n+0)y)
= e "((=p+p+o)y+ap)
> 0,

because we have assumed that p < pu+ 0. Assume that u, < oc. Then for y > u, > u_,
f(t,y,£1) = §(t, y, £1), so Af(t,y,+1) = Ag(t,y,+1) < 0 by (6.2). This contradiction
shows that u, = +oc.

On the other hand, © > 1 by Remark 6(b). Therefore, (6.10) and (a) imply that
C=0.

(c) Note that in this case, C' = 0 is not possible, because p > p + o implies that b in
(6.9) satisfies b < 1, so it is not possible to have by — aA(A + p)~' >y — a for all y > 0.
Therefore, C' > 0. Because 2 > 1 by Remark 6(b), we conclude from part (a) and (6.10)
that v, < oo.

(d) Recall that Q4 are the roots of the polynomial p(-) in (6.13). When pu—o < 0, the
product of the roots is negative, and Q, < Q_ by (6.5), so 2, < 0 < Q_. From the fact
that g(-, s) is continuous and ¢(0,s) = 0, (6.7) and (6.8) imply that C = 0.

(e) Because y1 — o > 0, the sum and product of the roots of p(-) in (6.13) are positive,
and Q< Q4 by (6.5), s0 0 < Q. < Q. From (6.6), this immediately implies that
wy —w— < 0. To get the more precise result in the statement of the lemma, use (6.6) to
check that w; < 0 < w_ is equivalent to Q_ < (A + p)/(p + o) < 4, and this follows
from the fact that p((A + p)/(p+ 0)) = —=A? (< 0), as is easily checked. &

Theorem 10. Under Assumption A, assume that
p<puto and w—o <0.

Then the value function g(-,+1) (see sketch in Figure 1), expressed by the formulas in
Proposition 5, is characterized by C, = C =0, uy = 400 and

U_ —a l—ﬁw_
C.=——F5— _=a|—"2— . 8.1
wou’’ B a[l—bw_ (8.1)

Proof. By Lemma 9(b), uy = +oc and C' = 0. By Lemma 9(d), C, = 0. The two remain-
ing unknowns, namely C_ and u_, are determined by matching the value of g(u_,—1),
as expressed in (6.7), with u_ — a, and g(u_,+1), as expressed in (6.8), with g(u_, +1)
as expressed in (6.10). This yields respectively the two relations

Q-
C.w_u_~=u_—a,

15



gy, +1)

g(y,—1)

1

Figure 1: The functions g(-, £1) under the hypotheses of Theorem 10. The box indicates
the absence of smooth fit.

and
C_u’ =bu_—a A : (8.2)
A+p
Solving the above set of equations for C and u_ gives the expressions in the statement
of the theorem. &

Remark 11. The number wi can be written

2

(A+p)i\/()\+p)2+)\2 (%—1)] (8.3)

and this clearly implies that w_ > 0, because pp — o < 0. Therefore, (8.1) implies u_ > a
and C_ > 0, as was to be expected.

o

A — o)

Wy = —

Remark 12. The white noise limit. Fix oy > 0 and set o = 0yV/\, so that the process
(Y;) satisfies
dY, =Y, (udt + ooVAE(t) dt), Yo =1y, (8.4)

Observe that the covariance of v/ AE(t) and VAE(t4h) is Ae=?* | and one easily checks that
the noise source VA¢(t) converges to Gaussian white noise when A — +o0. In addition,
the solution (Y;) of (8.4) converges weakly [23] to the diffusion process that satisfies

dZt = Zt(,u dt + o9 th), ZO = Yo, (85)

16



where the stochastic differential equation (s.d.e.) has to be interpreted in the Stratonovich
sense. When the stock price is governed by this diffusion equation, the solution to the
optimal stopping problem is well-known. If we rewrite the s.d.e. (8.5) as the It6 s.d.e.

dZ, = Zy ((p+ 05 /2) dt + o dW,) ,

then we can use the formulas from [17, Example 10.16] to get the continuation region
[0, u] and the value function g(y):

Y _J (u—a) [Q]QO for y < u,
u_aﬂg—l’ g(y)_{u—a for y > u, (86)

with

_ R+ VI + 2p0f
Qy = " .
The quantities Q4 () and w4 (A) related to (8.4) are obtained by replacing o in (6.5) and
(6.6) by cov/A, which gives

A+ p)p £ /N2 + Aad (0* + 2Mp)

p 4 ooV
FET20V20.,
(= Aog

s wi()\):1+—

Q1(A) = O ().

Therefore,
lim Q_(\) =Q and lim wi(N) =1.

A——+00 A—+00

Further, u_ in (8.1) can be written in the form

aA+p—M—aoﬁ [QQ_(A) }

u-(N) = A+p ~(A) -1

which converges, as A\ — +o0, to u as given in (8.6). The general theory of [14, 16]
predicts that limy_,; g(y, £1) = g(y), but one can also easily check this from (8.1) and
the formulas of Proposition 5.

Theorem 13. Assume that
p>pu+o and w—o <0.

(Note that Assumption A is necessarily satisfied in this case.) Then the value function
g(-, £1) (see the sketch in Figure 2), expressed by the formulas in Proposition 5, is char-

acterized by
u_—a

Q>
W_U_

Cy=0 and  C_ (8.7)

where u_ s the smallest solution of the transcendent equation

Cw_

B 1—bw_u7:a’

U_

17



gy, +1)

U— U4 Y

F

Figure 2: The functions ¢(-, £1) under the hypotheses of Theorem 13. The box (resp. ar-
row) indicates the absence (resp. presence) of smooth fit.

b and 2 are given in (6.9), a denotes the expression on the second right-hand side of (8.1),

1—-9b
C = and u+:a#.
p—p—o

= —a7 (8.8)
Quﬂz !

Proof. By Lemma 9(d), Cy = 0. By Lemma 9(c), uy < co. The continuity of g(-,—1) at
u_ and of g(-,+1) at u_ and u, give respectively the three equations

C_w_u’™ =u_—a, (8.9)
C_u =bu_ — Ay p + Cu®, (8.10)

and
bu+—aA+p+Cu§Z:u+—a. (8.11)

By Proposition 7(b), there is a smooth fit of g(-,+1) at uy. Accordingly,
b+ CQui™" = 1. (8.12)

The last equation furnishes the formula for C, which, when plugged into (8.11), gives
after some simplification the formula for wu, .

18



From equation (8.9), we obtain directly the expression for C_ given in (8.7). Plugging
the formulas for C_ and C' into (8.10) yields

Cw_
Tl

U(u_) =a > a, where U(u) =u (8.13)

with a as in the statement of the theorem.
We shall check that the equation 1(u) = a has in fact two solutions, and u_ is the
smaller of the two. Observe that

Cw_Q(2-1) 402
1—bw_ '

U (u) = (8.14)
From Remark 6(b), Q@ > 1, and u; > 0 by (8.8) and the hypothesis p > u + 0. Since
b < 1 by Lemma 9(c), we observe from (8.8) that C' > 0. By (8.3), w— > 0. Therefore,
the numerator in (8.14) is positive. A direct calculation using the formula for w_ in (6.6)

shows that
_pto

A
Because p(1) > 0 by Remark 6(a) and €2, < 0 < Q_ by Lemma 9(d), it follows that in
fact, Q@ > 1, and therefore, the denominator in (8.14) is positive.

The above shows that ¥"(u) < 0, so U is strictly concave. From (8.13) and the fact
that Q > 1, it follows that U(0) = 0, ¥(u) < u for all u > 0, and lim,_, ;o ¥(u) = —o0.
This implies that the equation ¥(u) = a has zero, one or two solutions. Since u_ is a
solution, one of the last two occurs. No solution can be less than a, since a > a.

In order to check that there are exactly two solutions of the equation ¥(u) = a and
u_ is the smaller of the two, we observe from (8.13) that

1—buw. b(Q_ —1).

W

By (8.11),
Cufl = (1—b)u+—a)\f_p.

Replace Cuf in (8.15) by the right-hand side above, to find, after simplification, that

1 P

Therefore, W(uy) > a, since this inequality is now equivalent to uy (1 —w_) > a (1 —w_),
which holds since uy > a by (8.8), and w_ < 1 as we now show. Indeed, by (6.6), w_ < 1
is equivalent to p — (u + o) < 0, which, by (6.5), is in turn equivalent to

1
_ 2,,2 2( 52
P<M_U(M()\+P) VA2 + 02 (p +2)\p))-
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Multiply both sides by u — o, changing the direction of the inequality since y — o < 0,
isolate the square root, then square both sides and simplify, to see that this inequality
reduces to o2 > 2, which is satisfied by hypothesis.

The inequality W(uy) > a and the properties of ¥ mentioned above imply that one of
the solutions of the equation W(u) = a is larger than u,, and the other, which is smaller

than wu, is therefore u_. &
g9(y, +1)
gy, —1)
|
|
|
]
|
I
|
a - Y
i

Figure 3: The functions g(-, £1) under the hypotheses of Theorem 14. The arrow indicates
the presence of smooth fit.

Theorem 14. Under Assumption A, assume that
p<p+o and uw—o > 0.

Then the value function g(-,+1) (see the sketch in Figure 3), expressed by the formulas
in Proposition b, is characterized by C =0, u, = 400,

_o, u— (- —1) — a2 g u_(Qy —1)—aQy

C, = C_ = 8.16
) @ —ay o B9
N
= g—= 1
u- =ap (8.17)
where 3
CL)+CL),
N = Q. —w Q. — Q. —Q 8.18
Widey —W At p (€2 ) ( )
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and
Awyw-

DZW+(Q+—1)—Q},(Q, —1) — m

Qs — Q). (8.19)

Proof. By Lemma 9(b), u, = 400 and C = 0. The continuity of ¢g(-, —1) and g(-,+1) at
u_ give respectively the two equations

C_w_u’™ +Chuwpu™ =u_—a, (8.20)
A
a b
A+p
where b is defined in (6.9), and smooth fit of g(-, —1) at u_, which occurs by Proposition
7(a), gives the third equation

C_u + 0t =bu —

(8.21)

C w QO 'y CyLwy Q2 u =1, (8.22)

Multiply (8.22) by u_, then use (8.20) and (8.22) to express C' and C. in terms of
u_, which yields the formulas in (8.16). Plug these into (8.21), which becomes a linear
equation in u_ and gives (8.17)-(8.19). &

Remark 15. We note that u_ defined in (8.17) is such that u_ > a. Indeed, (8.17) can

be written .
N X+ wy —w_ + o
U_ = aﬁ =a 7 ,
X+ Atp—p—o

with
X=wi(Qy —1)—w (Q-—1) and n=Aw,w (Q_ —Q).

We first check that D < 0. This equivalent to verifying

X<-n/(A+p—p—o).
Substitute in the definition of y, 7 and, on the right-hand side, wy from (6.6), to see that
this is equivalent to
)\2(U_ Wy (Q+ — Q_)

At+p=(p+o)2 ) 1) = (A+p—(p+0)Q ) —1) < i ——

With a few algebraic manipulations, 2, — Q_, which is positive by Lemma 9(e), can be
factored out on the right-hand side, leading to

2
AMw_wy

Atptp+o—(u+o)(Qp+0 )< ———F
p+p+o—(p+o)(y ) i ———

Now plug into the right-hand side the formulas (6.6) for w., and simplify, to get

140+ Q< Q_Q,.
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Use the fact that {21 are the roots of p(-) in (6.13) to see that this is equivalent to
p— 4+ A>VA2+ 02

which holds by Assumption A. Hence, D < 0 is established.

We now check that N < 0. By Lemma 9(e), w; —w_ < 0. Therefore, the facts that
D<Oand A+p—pu—o0)t>(A+p) ! immediately imply N < 0.

It follows that the inequality u_ > a is equivalent to N < D, which becomes

wi—w_<n[A+p—p—0) = (A+p ]
(notice that the factor in brackets is > 0), and, using (6.6),

n+o
A

Q- =) S M w (2 = Q) [A+p—p—0a) = (A+p) ']

As Q. — Q) < 0 and wyw_ < 0 by Lemma 9(e), this inequality does indeed hold, so
u_ > a as claimed.

gy, +1)——~

g(y,—1)

1

Figure 4: The functions g(-, £1) under the hypotheses of Theorem 16. The arrows indicate
the presence of smooth fit.

Theorem 16. Assume that

p>pu+o and w—o>0.
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(Note that Assumption A is necessarily satisfied in this case.) Then the value function
g(-,£1) (see the sketch in Figure /), expressed by the formulas in Proposition 5, is char-
acterized by

—opu— (22 —1) —afd_ O (Qp —1) — a2y
- wy (o —Qy) 7 - wo (Qp —Q) 7

C+:U

1—0b p
= < a-1° Uy =0—,
Q ug_l i pP—H—0
where b and Q0 are given in (6.9) and u_ is the smallest solution of the transcendent
equation

C (8.23)

N

O(u) = ag (8.24)
with N and D defined in (8.18) and (8.19), and ®(u) is defined by
Q-0
o(u) Ly oY (D+ ) o, (8.25)

Proof. By Lemma 9(c), uy < oo. The continuity of g(-,—1) and g(-,+1) at u_ give
respectively the two equations

C_w_u’™ +Chuwpu™ =u_—a, (8.26)
C_u +C,u =bu_—a + Cu®, (8.27)
A+p
continuity of g(-,+1) at u, gives the equation
bu+—a)\+p+(]u$:u+—a, (8.28)

and Proposition 7 implies two additional equations, one for the smooth fit of g(-,—1) at
u_:
C w QO 'y CyLwy Q2 u =1, (8.29)

and one for the smooth fit of g(-, +1) at u:
b+ Cuf =1 (8.30)

Observe that equations (8.26) and (8.29) are respectively identical to (8.20) and (8.22),
which gives the formulas for C; and C_ as in (8.16). Equations (8.28) and (8.30) are
respectively identical to (8.11) and (8.12), which gives the formulas for C' and u, as in
(8.8). Plug the formulas for Cy and C' into (8.27), to see that u_ solves the equation



where N and D are as in (8.18) and (8.19), and ®(u) is as in (8.25).

We shall show that equation (8.24) has two solutions, the smaller of which is u_. Since
b < 1 by Lemma 9(c), we observe from (8.23) that C' > 0. Since O, — Q_ > 0 and
wiw_ < 0 by Lemma 9(e), D < 0 as was observed in Remark 15, and 2 > 1 by Remark
6(b), we see that ®(0) = 0, lim,_,; o ®(u) = —o0, and ®"(u) < 0, for all u > 0, so P(-) is
strictly concave. Therefore, (8.24) has zero, one or two solutions. Since u_ is a solution,
one of the last two cases occurs.

In order to show that the equations ®(u) = aN/D has exactly two solutions, we
proceed as in the last part of the proof of Theorem 13: we show that ®(u,) > aN/D, as
this will complete the proof.

From (8.25),
B(uy) = uy — 224= (% — Q) Cufl. (8.31)
By (8.28),
Cufl = (1—b)u+—a)\f_p.
Replace Cuf in (8.31) by the right-hand side above to see that
B(uy) = 5 (D= wrw (2 = Q)1 - 8) + o (@ = 0) T

Therefore the inequality ®(uy) > aN/D is equivalent, after using (8.18) and (8.19) and
simplifying, to

(uy —a)(wy Qp —w_ Q- —wiw_(2y — Q) + (w- —wy)uy <O, (8.32)
Use (6.6) to see that

Q. —Q_
Wiy —w Qo= p = (u+0)(Q + Q) ———
and f
wo—w =2 (@ - ),

so (8.32) is equivalent to
(uy —a)A+p—(p+0) (2 + Q) —Awyw )+ (p+0o)uy <O0.

Plug in the formula for u, in (8.23), and use the fact that Q4 are the roots of p(w) in
(6.13) to see that this becomes

2p(A
(/L+a)()\+p—M—)\w+w_)+(u+a)p<0. (8.33)
Using (6.6) and (6.5), one checks that
u+o
Wy w— = — s
w—0o
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so (8.33) is equivalent to

(A+p)(p—0) =2u(A+p) + Ap+0)+ p(p—0) <0,

which reduces to —2po < 0. This proves that ®(u,) > aN/D, and the properties of ®
mentioned above imply that one of the solutions of the equation ®(u) = aN/D is larger

than u,, and the other, which is smaller than u, is therefore u_. &
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