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Abstract: At first order phase transition the free energy does not have an
analytic continuation in the thermodynamical variable, which is conjugate to
an order parameter for the transition. This result is proved at low temperature
for lattice models with finite range interaction and two periodic ground-states,
under the only condition that they satisfy Peierls condition.

1. Introduction

We study a lattice model with finite state space on Z%, d > 2. The Hamiltonian
H* = Ho + pHy is the sum of two Hamiltonians, which have finite-range and
periodic interactions. We assume that H, has two periodic ground-states ¢, and
19, and so that Peierls condition is satisfied, and that H; splits the degeneracy
of the ground-states of Hy: if u < 0, then H* has a unique ground-state 15, and
if g > 0, then H* has a unique ground-state ;. The free energy of the model,
at inverse temperature 3, is denoted by f(u,3). Our main result is

Theorem 1.1. Under the above setting, there exist an open interval Uy > 0,
B* € RY and, for all B > B*, u*(3) € Uy with the following properties.

1. There is a first-order phase transition at pu*(3).

2. The free energy f(u,B) is real-analytic in p in {u € Uy : p < p*(B)}; it has
a C* continuation in {p € Uy : u < p*(8)}.

3. The free energy f(u, B) is real-analytic in p in {p € Uy : p > p*(B)}; it has
a C* continuation in {u € Uy : u > p*(B)}.

4. There is no analytic continuation of f along a real path from p < p*(B) to
w> p*(B) crossing p*(05), or vice-versa.

* Supported by Fonds National Suisse de la Recherche Scientifique.
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This theorem answers a fundamental theoretical question: does the free en-
ergy, which is analytic in the region of a single phase, have an analytic contin-
uation beyond a first-order phase transition point? The answer is yes for the
theory of a simple fluid of van der Waals or for mean-field theories. The analytic
continuation of the free energy beyond the transition point was interpreted as
the free energy of a metastable phase. The answer is no for models with finite
range interaction, under very general conditions, as Theorem 1.1 shows. This
contrasted behavior has its origin in the fact that for models with finite range
interaction there is spatial phase separation at first order phase transition, con-
trary to what happens in a mean-field model. Theorem 1.1 and its proof confirm
the prediction of the droplet model [1].

Theorem 1.1 generalizes the works of Isakov [2] for the Ising model and [3],
where a similar theorem is proven under additional assumptions, which are not
easy to verify in a concrete model. Our version of Theorem 1.1, which relies
uniquely on Peierls condition, is therefore a genuine improvement of [3]. The
first result of this kind was proven by Kunz and Souillard [4]; it concerns the
non-analytic behavior of the generating function of the cluster size distribution
in percolation, which plays the role of a free energy in that model. The first
statement of Theorem 1.1 is a particular case of the theory of Pirogov and Sinai
(see [6]). We give a proof of this result, as far as it concerns the free energy, since
we need detailed informations about the phase diagram in the complex plane of
the parameter pu.

The obstruction to an analytic continuation of the free energy in the variable
w is due to the stability of the droplets of both phases in a neighborhood of p*.
Our proof follows for the essential that of Isakov in [2]. We give a detailed proof
of Theorem 1.1, and do not assume any familiarity with [2] or [3]. On the other
hand we assume that the reader is familiar with the cluster expansion technique.

The results presented here are true for a much larger class of systems, but for
the sake of simplicity we restrict our discussion in that paper to the above setting,
which is already quite general. For example, Theorem 1.1 is true for Potts model
with high number ¢ of components at the first order phase transition point 3.,
where the g ordered phases coexist with the disordered phase. Here u = 3, the
inverse temperature, and the statement is that the free energy, which is analytic
for B > f., or for B < (., does not have an analytic continuation across fj..
Theorem 1.1 is also true when the model has more than two ground-states. For
example, for the Blume-Capel model, whose Hamiltonian is

Z(si—sj)2—thi—)\Zs? with s; € {-1,0,1},

.3

the free energy is an analytic function of A and A in the single phase regions.
At low temperature, at the triple point occurring at h = 0 and A = A*(3) there
is no analytic continuation of the free energy in A, along the path h = 0, or in
the variable h, along the path A = A*. The case of coexistence of more than two
phases will be treated in a separate paper.

In the rest of the section we fix the main notations following chapter two of
Sinai’s book [6], so that the reader may easily find more information if necessary.
We also state Lemma 1.1 which contains all estimates on partition functions or
free energies.
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The model is defined on the lattice Z?, d > 2. The spin variables o(z), = € Z,
take values in a finite state space. If (, 1 are two spin configurations, then ¢ = 9
(a.s.) means that ¢(x) # 1(x) holds only on a finite subset of Z<. The restriction
of ¢ to a subset A C Z? is denoted by (A). The cardinality of a subset S is
denoted by |S|. If 7,y € Z%, then |z — y| := max?_ | |z; — y;|; if W C Z¢ and
x € Z% then d(z,W) := minyew |z — y| and if W, W’ are subsets of Z¢, then
d(W,W') = mingew d(x, W’). We define for W C 74

oW :={x cW: d(z,Z"\W) = 1}.

A subset W C Z% is connected if any two points 2,y € W are connected by a path
{zo,21,...,2n} C W, withzg =2, 2, =yand |z;—2,41| =1,i=0,1,...,n—1.
A component is a maximally connected subset.

Let ‘H be a Hamiltonian with finite-range and periodic bounded interaction.
By introducing an equivalent model on a sublattice, with a larger state space,
we can assume that the model is translation invariant with interaction between
neighboring spins ¢(z) and ¢(y), | —y| = 1, only. Therefore, without restricting
the generality, we assume that this is the case and that the interaction is Z%-
invariant. The Hamiltonian is written

H" =Ho+pH1, peR.

Ho has two Z%invariant ground-states 11 and 1, and the perturbation H; splits
the degeneracy of the ground-states of Hy. We assume that the energy (per unit
spin) of the ground-states of Hg is 0. U () = Uy, + plh 5 is the interaction
energy of the spin located at x for the configuration ¢, so that by definition

H: (p) = Z U (p) (formal sum).
z€Z4

U, 5 is an order parameter for the phase transition. If ¢ and v are two configu-
rations and ¢ =1 (a.s.), then

HA(pl) == Y (U () — UL (W) -
=y

This last sum is finite since only finitely many terms are non-zero. The main
condition, which we impose on H, is Peierls condition for the ground-states 1;
and . Let z € Z¢ and

Wi(z):={yez®: |y—z| <1}.
The boundary d¢ of the configuration ¢ is the subset of Z¢ defined by
op = {J {Mi(@): o(Wi()) # (Wi (2)), m=1,2}.
zeZd

Peierls condition means that there exists a positive constant p such that for
m=1,2
Ho(@|tm) > pldp| V¥ ¢ such that = by, (a.s.).

We shall not write usually the p-dependence of some quantity; we write for
example H or U, instead of H* or UL
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Definition 1.1. Let M denote a finite connected subset of Z%, and let ¢ be a
configuration. Then a couple I' = (M, p(M)) is called a contour of ¢ if M is
a component of the boundary Op of . A couple I' = (M, p(M)) of this type
is called a contour if there exists at least one configuration ¢ such that I is a
contour of .

IfI' = (M,p(M)) is a contour, then M is the support of I"; which we also de-
note by supp I". Suppose that I = (M, ¢(M)) is a contour and consider the com-
ponents A, of Z¥\ M. Then for each component A, there exists a unique ground-
state 1,(q), such that for each x € A, one has (W1i(z)) = Yga)(Wi(x)). The
index ¢g(«) is the label of the component A,. For any contour I" there exists a
unique infinite component of Z4\supp I', Ext I', called the exterior of I'; all other
components are called internal components of I'. The ground-state correspond-
ing to the label of Ext I' is the boundary condition of I'; the superscript ¢ in 17
indicates that I" is a contour with boundary condition 1. Int,, I" is the union
of all internal components of I' with label m; Int I" := Um:1,2 Int,, I' is the
interior of I'. We use the abbreviations |I'| := |supp I'| and V,,(I") := |Int,, I'|.
We define!

V() =V (') m+#q. (1.1)

For z € Z%, let
c(x) = {y eR": mjaflmi — i <1/2}

be the unit cube of center z in R If A C Z%, then |A]| is equal to the d-volume

of
U c(z) C RY. (1.2)
zeA

The (d — 1)-volume of the boundary of the set (1.2) is denoted by 9|A|. We have

2d | AT < 9|A]. (1.3)

The equality in (1.3) is true for cubes only. When A = Int,, I'?, m # ¢, V(I'?) =
|A] and OV (I'?7) = 0| A|; there exists a positive constant Cy such that

oV (I'Y) <Co|lI' ¢q=1,2. (1.4)

For each contour I = (M, ¢(M)) there corresponds a unique configuration ¢
with the properties: ¢ = 1, on Ext I", where ¢ is the label of Ext I", op (M) =
©(M), ¢r =y, on Int,, I', m = 1,2. I is the only contour of ¢r. Let A C Z%;
the notation I" C A means that supp " C A, Int I' C A and d(supp I, A¢) > 1.
A contour I' of a configuration ¢ is an external contour of ¢ if and only if
supp I C Ext I'” for any contour I of (.

Definition 1.2. Let £2(I'?) be the set of configurations ¢ = g (a.s.) such that
I'? is the only external contour of p. Then

o) = Y exp[— BH(¢lw,)] -

pe2(I7)

! Here our convention differs from [6].
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Let A C 7% be a finite subset; let £2,(A) be the set of configurations ¢ = 1, (a.s.)
such that I' C A whenever I' is a contour of . Then

O(A) = > exp[— BH(ply)] .

PENG(A)

Two fundamental identities relate the partition functions ©(I'?) and ©4(A).

=Y [eun, (L5)

where the sum is over the set of all families {I'},..., )7} of external contours in
A, and

2
O(I'") = exp [ — BH(¢raltsy)] [] Om(Inty, 1) (1.6)
m=1
We define (limit in the sense of van Hove)

= lim — 1
gq AlTréld 6|A| Og@ ( )

The energy (per unit volume) of 1, for the Hamiltonian H; is
h(tm) = Un o (Pm) -

By definition of Hy, h(w2) — h(1)1) # 0, and we assume that
= h(tp2) = h(¢1) > 0

The free energy in the thermodynamical limit is

f=A1iTr;d—mA|log@(/1) + lim \A|Z“ ($g) = gg +ph(tg) . (L7)

It is independent of the boundary condition 1);.

Definition 1.3. Let I'? be a contour with boundary condition 1,. The weight
w(I'?) of I'? is

m (Int,, ')

w(I') :=exp [ — fH(p Fq|¢q)}m

(m #q).
The (bare) surface energy of a contour I'? is

11%]] == Ho(praltg) -
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For a contour I'Y we set
a(pra) == > Ura(ord) — U o(d,) .
xEsupp 'Y
Since the interaction is bounded, there exists a constant C7 so that
la(ra)] < C1T). (1)
Using these notations we have

H(‘PF‘IW)q) = Z (UI(SOF‘I) - uz@/’q)) + Z (ux(QOF‘I) *ur(d’q))

xesupp ['9 z€Int 'Y
= Ho(praltq) + palera) + p(h(Pm) — h(1g))V (1)
= [T + palpra) + p(h(m) = h(Yg))V () (m #q).  (1.9)

The surface energy ||I'?|| is always strictly positive since Peierls condition holds,
and there exists a constant C, independent of ¢ = 1, 2, such that

I < |11 < G|, (1.10)
Definition 1.4. The weight w(I'?) is T-stable for I'? if

|w(I')| < exp(—7|I]).

For a finite subset A C Z%, using (1.5) and (1.6), one obtains easily the
following identity for the partition function ©4(4),

O,(A) =1 +Zf[w(rf), (1.11)

where the sum is over all families of compatible contours {I{,..., 7} with
boundary condition ¢, that is, I C A and d(supp I}, suppI’}) > 1 for all
i#7,1,5=1,...,n,n>1. We also introduce restricted partition functions and

free energies. For each n = 0,1,..., we define new weights w,, (I'?)

wn(I19) = w(r) if V(Ir) <n, (1.12)
" o otherwise. '

For ¢ = 1,2, we define O by equation (1.11), using w,, (I"?) instead of w(I'7). It
is essential later on to replace the real parameter p by a complex parameter z;
we set (provided that O (A)(z) # 0 for all A)

1
"(z):=— lim ——
9q (2) A S

fq is the restricted free energy of order n and boundary condition 1. Let

logO;(A)(2) and f(2):=g,(2) +2h(¢g). (1.13)

I(n) :=Cyt {an%] n>1. (1.14)

Notice that O (A) = O4(A) if [A] < n, and that V(I'?) > n implies that
|I" > I(n) since (1.3) and (1.4) hold. Lemma 1.1 gives basic, but essential,
estimates for the rest of the paper. The only hypothesis for this lemma is that
the weights of the contours are 7-stable.
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Lemma 1.1. Let w(I'?) be any complex weights, and define w,(I'?) by (1.12).
Suppose that the weights w,(I'?) are T-stable for all I'Y. Then there exists Ko <
oo and 7§ < 0o independent of n, so that for all T > 1§,

Blgy| < Koe™ . (1.15)
For all finite subsets A C Z¢,
| log O] (A) + By |A]| < Koe™7 0|4 (1.16)
If w,(I'?) =0 for all I'? such that || < k, then

Blgp| < (Koe )" (1.17)
Forn>kand k>1
Blgy — g~ < (Koe™)"™. (1.18)
Furthermore, if w,(I'?) depends on a parameter t and
‘iw (rv|<p e ™I and ’d—zw (r <p e T (1.19)
e " =1 ez " = ’ '

then there exists K;j < oo and 7/ < oo independent ofn, 7 =1,2, so that for all
J

T>T], wgq exists and
4ol < Dikwe ™ and L Dy, D3} Kqe™ ™ 1.20
ﬁ‘%gq‘_ 1K e an ﬁ’ﬁgq’_max{ 2, DT} K2e7 7. (1.20)
For all finite subsets A C 7%,
d d .
|5 10803 (4) + B g7 || < D1Kre™" 0] 4] (1.21)
and
d? d? 9
|ﬁ log O7(A) + ﬁﬁg;’ |Al| < max{D,, DI}Kze™" 0|A]|. (1.22)

If the weights w,(I'?) are T-stable for all ' and all n > 1, then all these esti-
mates hold for g, and Oy instead of gy and O . Moreover, g; and its first two
derivatives converge to g, and its first two derivatives.

Proof. Let w(I'?) be an arbitrary weight, satisfying the only condition that it is
T-stable for any I'?. The partition function ©,(A) is defined in (1.11) by

O (A) =1+ Hw(r;) ,

where the sum is over all families of compatible contours {I{,..., "7} with
boundary condition t,, that is, I}' C A and d(supp I'{,suppI}/) > 1 for all

K3
i#7j,4,5=1,...,n,n>1. We set, following reference [5] section 3 2,

T9:={zecz’: d(x,supp?) < 1}. (1.23)

2 In [5] T'9 is denoted by (I"?), which has another meaning here (see subsection 2.3).
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There exists a constant Cj such that |7 < C5| '], and
(17 and I'{ not compatible) = (supp I/ N I} # 0).
We introduce

0 if I} and I} compatible
—1 if I}! and I'{’ not compatible.

902(1—‘;17 qu) = {

If the weights of all contours with boundary condition v, are T-stable and if 7
is large enough, then one can express the logarithm of ©4(A) as

log O, (A Z IR NPT 02 rQ)Hw(rf) (1.24)

m>1 FqCA rjca

XY Xy A e,

m. su

m>1 zeA IfcA rjca [supp =1
xEsuppqu

In (1.24) T (I}, ..., %) is a purely combinatorial factor (see [5], formulas (3.20)
and (3.42)). This is the basic identity which is used for controlling ©,(A). An
important property of ¢l (I'f,..., %) is that o (I'{,...,I'%) = 0 if the follow-
ing graph is not connected (Lemma 3.3 in [5]): to each I'}! we associate a vertex
v;, and to each pair {v;,v;} we associate an edge if and only if @ (I}, qu) #0.

Lemma 1.2. Assume that

C = Z lw(I'?)| exp(|T]) < oo

I'd:supp I'750

Then

=1

Yoo e T e < (m =10,
. rj rh

OEsupp Fq

If, furthermore C < 1, then (1.24) is true, and the right-hand side of (1.24) is
an absolutely convergent sum.

Lemma 1.2 is Lemma 3.5 in [5], where a proof is given. There exists a constant,
Kp, called Peierls constant, such that

[{I'?: suppI'? > 0and |supp 'Y = n}| < Kp
If w(I'9) is T-stable, then there exist Ky < 0o and 7¢ < 0o so that Kge™™ < 1,

and for all 7 > 73,

C= > |w)|exp(IT9)) <Y Kpe "7 < Kge™.  (1.25)

I'?:supp I'130 j>1
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If this is true, (1.24) implies ® that

m
—B9q = Zm' Z Z|Supp[‘q ‘Pm(Ffa-- Fq)HW(Fiq)-
m>1 =1

Oesuppfq

Therefore, there exists Ky < oo so that for all 7 > 73,

C Ko

7< _

e = KO e .

We have for all finite subsets A C Z¢

|log Oy (A) + Bgq [A]] < > Z Z lom (IY, - ,FT%)IH\w(Tf)I

z€OAN m>1 A

m

Hquaz
< Koe T 9|4

If w(I'") = 0 for all I'? such that || < m, then C' < K" e~ ™™ and

Blgql < (K(JG_T)m
If n >k and k > 1, then

i
Blog — 95| _Z Yo lef (e IO leon ()]
i=1

J>1 F"ao ry,..rf
3zV(F“)>k

J
<> S SRED SR TR} § (PN
J>1 i=11730,I,....I"} i=1
VIi) 2 k

< (Koe ™)'™.

The last inequality is proved by a straightforward generalization of the proof of
Lemma 3.5 in [5]. The last statements of Lemma 1.1 are proven in the same way,
by deriving (1.24) term by term. O

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is given in the next five subsections. In subsection
2.1 we construct the phase diagram and in subsection 2.2 we study the analytic
continuation of the weights of contours in a neighborhood of the point of phase
coexistence p*. These results about the analytic continuation are crucial for the
rest of the analysis and cannot be found in the literature. We need stronger
|71

3 The corresponding formula (3.58) in [5] is incorrect; a factor |y; N Z2 is missing.
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results than those of Isakov [3] in order to prove Theorem 1.1 under the only
assumption that Peierls condition is true. For the construction of the phase dia-
gram in the complex plane we follow Isakov [3] and Zahradnik [7]. In subsection
2.3 we derive an expression of the derivatives of the free energy at finite volume.
We prove a lower bound for a restricted class of terms of this expression. This
is an improved version of a similar analysis of Isakov [2]. From these results we
obtain a lower bound for the derivatives of the free energy f, in a finite box A.
We show in subsection 2.4 that for large 3, there exists an increasing diverging
sequence {k,}, so that the k!*-derivative of f, with respect to u, evaluated at

w*, behaves like kn!d%l (provided that A is large enough). In the last subsection
we end the proof of the impossibility of an analytic continuation of the free en-
ergy across ¥, by showing that the results of subsection 2.4 remain true in the
thermodynamical limit.

2.1. Construction of the phase diagram in the complex plane. We construct the
phase diagram for complex values of the parameter u, by constructing iteratively
the phase diagram for the restricted free energies f;' (see (1.13)). We set 2z :=
 + iv. The method consists in finding a sequence of intervals for each v € R,

Un(v3 B) = (i (v3 B) — by g1y, (vi B) +b7,)
with the properties

(b (v B) = by, s (V3 B) +02) C (i (i 8) = by p (V3 B) + 02 _y)  (2.1)

and lim, b2 = 0, ¢ = 1,2. By construction of the intervals U,_1(v;3) the re-
stricted free energies f;_l of order n — 1, ¢ = 1,2, are well-defined and analytic
on

U,—1:={2€C: Rez € U,_1(Imz; 8)} .

The point p (v; 8), n > 1, is solution of the equation

Re(f3 ™" (ki (3 B) + iv) — f7 7 (un (v; B) + iv)) = 0.

wr(0; 8) is the point of phase coexistence for the restricted free energies of order
n — 1, and the point of phase coexistence of the model is given by u*(0;3) =
lim,, p% (0; 8). This iterative construction is as important as the statement of
Proposition 2.1, which is the main result of subsection 2.1.

Proposition 2.1. Let 0 <e < p and 0 < 6 < 1 so that A —2§ > 0. Set
Up:=(—Ci'e,C'e) and Uy:={2€C: Rezec Uy}
and
T(8) == B(p—e) —3CHo .
There exists Sy € RT such that for all 3 > By the following holds.

1. There exists a continuous real-valued function on R, v — p*(v;8) € Uy, so
that p*(v; B8) + iv € Uy.

2. If u+iv € Uy and p < p*(v;B), then the weight w(I'?) is 7(3)-stable for
all contours I'? with boundary condition 1o, and analytic in z = p + iv if
< (v; B).
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3. If p+iv € Uy and p > p*(v;B), then the weight w(I'') is 7(B)-stable for
all contours I'* with boundary condition 1, and analytic in z = p + iv if

w> pt(v; B).

It is useful to put into evidence here some points of the proof of Proposition
2.1, before giving it in detail.

Remark 2.1. The iterative method depends on a free parameter 6', 0 < 6’ < 1,
which is fixed at the end of the proof of Theorem 1.1. Let 0 < 6 < 1 be
given, as well as € and ¢ as in the proposition. We list here all major constants
which appear in the proof, since these constants are used at different places in
the paper. We use the isoperimetric constant x, which is defined as the best
constant in (2.2),

V(Fq) <MY vIre,q=1,2. (2.2)
Existence of x in (2.2) follows from (1.3), (1.4) and (1.10).

71(8;0) = ﬁ(p(l -0 — s) —26C); (2.3)
(B 0) 1= (B 0) — 0 (2.4)
Cs 1= Cy + 20Cy + (A +20)(x " Co) 77 . (2.5)

We choose 3 so that, for all 3 > By, 72(8) > max{7}, 7,75}, (2.18) holds *
Kem® <§ and C3Ke ™ <. (2.6)

K is a constant, which is greater than max{Ky, K1}, and Ky, K; are the con-
stants of Lemma 1.1; p is the constant of Peierls condition and A = h(ty) —
h(t1) > 0. We also require for Proposition 2.3 that

d
7(8) —max {-—=.p} > 72(8;6') VB> G
Here p € N is fixed in the proof of Proposition 2.2.

Remark 2.2. In the above formulas we may choose § in such a way that § = §(3)
and limg_.. §(8) = 0. Indeed, the only condition which we need to satisty is
(2.6). So, whenever we need it, we consider § as function of 3, so that by taking
[ large enough, we have § as small as we wish.

Remark 2.3. The main technical part of the proof of Proposition 2.1 is the proof
of point D below. If we want to prove only the first statement of Theorem 1.1,
then it is sufficient to prove points A, B and C below. This gives a constructive
definition of the point of phase coexistence p*(3), as well as the main estimates
necessary to construct the different phases at this point, since we get that all
contours are 71 (5)-stable at p*(5). For example, existence of two phases follows
from a straightforward Peierls argument.

4 T, k=10,1,2, are defined in Lemma 1.1. Condition 72 (B) > 75 is needed only in Lemma

2.1. We have stated Lemma 2.1 separately in order to simplify the proof of Proposition 2.1.
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Remark 2.4. We emphasize here a key step of the iterative proof of Propostion
2.1. Assume that § > [y, and for ¢ = 1,2, that the weights w,_1(I'?) are
71(; 0)-stable and

d g
|£wn71(1—‘)| < BCze PO,

From (1.20) and (1.16),

d
(BT =) - ) <2, 2.7)

and (m # q)
|log O] (Inty, I') + By~ V(I')|| < 6 Co| I
|log €77 (Inty, I'7) + Bgp ' V(I')]|| < 8 Col ']
Let I'? be a contour with V(I'?) = n. Then

Onlitn LD | (2 g) 28)

O, (Int,, I'7)
< exp [ = I + (B2 + 2C00)| 7| — BRe(f3 = V()]

w(I'1)] = exp [ — BReH(pralty)] |

since all contours inside Int,, I'? have a volume smaller than n — 1, and (see

(1.8))
[Reza(ere)| <e VzeUp.

To prove the stability of w(I'?) we must control the volume term in the right-
hand side of inequality (2.8). If

—Re(f ™ = VI < 0|12, (2.9)
—Re(f; ' = 1)Vt <o, (2.10)
then w(I'?) and w(I'!) are 71(B;0')-stable. Indeed, these inequalities imply
()| < exp | = B~ )| 1| + (B + 2Co6) | T
< exp |~ (B(1—0)p — B2 — 2Co0) 1] .
Verification of the inequalities (2.9) and (2.10) is possible because (2.7) provides
a sharp estimate of the derivative of f;fl — f}’fl. We also use the isoperimetric
inequality (2.2).
Proof. Let 6, 0 < @ < 1. On the interval Uy(v; B) := (—bo, by) with by = C]*,

fg(u + iv) is defined and we set pg(v;3) := 0. The two decreasing sequences
{2}, ¢ =1,2 and n > 1, are defined by

=2 n>1. (2.11)
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then it is immediate to verify, when ( is large enough or § small enough, that

bd — b >L(n) vn > 1 (2.12)

On Uy all contours I" with empty interior are 3(p — ¢)-stable, and
‘diw([‘)’ < BCy|T|ePP=9NTT < 30~ 1Br=a=1IIT| < goye=mAITI
z

We prove iteratively the following statements.

A. There exists continuous solution v +— u (v; 3) of the equation

Re(f3 ™" (un (v3 B) + iv) — f77 (up (3 B) + iv)) =0,

so that (2.1) holds.

B. w,(I'?) is well-defined and analytic on U, for any contour I'?, ¢ = 1,2, and
wn(I'?) is 71(B)-stable. Moreover, O} (A) # 0 for any finite A, and f'(2; 8) is
analytic on U,.

On U, diwn(FQ)\ < BCse AN,
z

D. If z = p+iv € Uy and pu < pf(v; 8) — bL, then w(I'?) is 7(3)-stable for any
I'? with boundary condition 9. If 2 = p +iv € Uy and pu > i (v; 8) + b2,
then w(I'') is 7(B)-stable for any I'* with boundary condition ;.

a

From these results the proposition follows with
p (v B) = lim pp(v;B).
n—oo
We assume that the construction has been done for all £ <n — 1.

A. We prove the existence of p (v; 8) € U,,—1. ) (v; B) is solution of the equation
Re(fs ™" (uyy (v B) + iv) — f17 (usy (v B) +iv)) = 0.
Let F¥(2) := f§(2) — fF(2). Then, for y' +iv € U,,_q,
F = 4-iv) = F* YW +iv) — F"2(ul_y +iv) (2.13)
= F" (4 iv) = F* gy + i) + F* gy +iv)
Py + i)
#/ d n—1 - n—1 n—2 * .
= | PN ptav)dp+ (957" =95 7) (g +iv)
sy dp

*
n—1

n—1 n—2

- (91 -9 )(H:L—l +iv).
If V(I') =n — 1, then |I'] > I(n — 1). Therefore, (1.18) gives

(95" = 9472 (ny +iv)| < p71at D (2.14)
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If 2/ =y 4 iv € U,_1, then (2.13), (2.7) and (2.14) imply

AW — 1) + 28| — g,y | +28716" 7D > ReF™ ()
> Al = iy 3) = 200 = gy — 26710,
Since (2.12) holds,
bl > bl —bpd > M
=1 = U1 = 00 AT o8y

so that ReF" !(uf_; —bl_; +iv) < 0 and ReF" Y (u;_ +b2_, +iv) > 0.
This proves the existence of ¥ and its uniqueness, since y +— ReF" 1 (u+iv) is
strictly increasing (see (2.7)). Moreover, by putting p/ = p* (v; 3) in (2.13), we
get
25l(n—1)
<2
B(A—29)

Therefore U,, C U,,_1. The implicit function theorem implies that v — p (v; 5)
is continuous (even C*°).

i (v B) =t 1 (v; B)

B. By the induction hypothesis the weights w,, (I'?) are analytic in U, _;. We
prove that on U,, w,(I'?) is 7y-stable for all contours I'Y, ¢ = 1,2. This implies
that f; is analytic on U,. The proof of the stability of the contours is the
content of Remark 2.4. Let I'? be a contour with V(I'?) = n. We verify (2.9) if
< k402, and (2.10) if g > pf —bL. The choice of {b%} and the isoperimetric
inequality (2.2) imply

- V() Hod _ - V(1)
R ne1 _ gn—1 —|r Y -1 pn—1 du|——~=~
[Re(f5™! = i) Sy = / R N T
. V) _ o
— (A4 20 0.
< p— py [(A + 26) 14| =

C. We prove that on U,
d —T
|£Wn(F)| < BCse 2O

Let V(I'?) = n; from (1.9)
(1) = wn (T ( = Baprs) = B(om) — b)) V()
d
+
(1.20), (1.21), (1.4), (1.8), (2.2) and (1.10) imply

log ©,, (Int,, I'?) — log O, (Int,, I’q))) .

| LI < Blan (L] (117](C +25C0) + V(I)(A + 26))

< BClw, (I)|| 79|75
< ﬁCSG—TZ(ﬂ)lfql )
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D. We prove that w(I'?)(z) is 7(83)-stable for any contour I'? with boundary
condition v, if p < pf (v; 3) — bL. Using the induction hypothesis it is sufficient
to prove this statement for z = u +iv € U,_1 and p < pf(v; ) — bl.

The next observation, leading to (2.15) and (2.17), is the key point of the
proof of D. If z = y+ v € U,_1, then all contours with volume V(I") <n —1
are 71(f)-stable; (2.7) and pu < p imply that g — Re(fI ' — fo= 1) (u + iv) is
strictly decreasing. If p < i (v;8) — b, then (see (2.11) and (2.12))

TRe(fy i) = = [ el = 7 i)
> —p " L Re(fp=t = ) (u+ iv) d
g, b AH
> Bbl (A —26) > 261 (2.15)

First suppose that V(I"?) < n. From (2.15) and (2.8) it follows that w(I"?) is
B(p — e — 2B71Cy6)-stable, in particular 7(/3)-stable. Moreover, if |A| < n, then

O1(4) 350]4]

< . 2.16
0,(4) ‘ ¢ (2.16)
Indeed, all contours inside A are 71 (()-stable. By (1.16) and (2.15),

‘ exp [ - ﬁz(h(wl) - h(1/12))‘/1|]

| e-ethon-ncvapia 918; | < emhn b o s 20014
2

— o PRe(f] T (=)~ 371 (2))14] 42001 A|

< o20014]
To prove point D, we prove by induction on |A| that (2.16) holds for any A.
Indeed, if (2.16) is true and if we set A := Int; "2, then it follows easily from
the definition of w(I"?) and from (1.9) that w(I"?) is 7(3)-stable.

The argument to prove (2.16) is due to Zahradnik [7]. The statement is true
for |A| < m. Suppose that it is true for |[A] < k, k > n, and let |A] = k + 1.
The induction hypothesis implies that w(I'?)(z) is 7(83)-stable if V(I'?) < k.
Therefore (1.16) gives

=Bk —h(w2)) 4] O1(4) | < [eratenton=sntva)-sblalg, ()]l
O2(4)

From (1.5) '

where the sum is over all families {I'},..., "'} of compatible external contours
in A. We say that an external contour I’ jl is large if V(I jl) > n. Suppose that

the contours I,... I} are large and all other contours I, ,,... I} not large.
We set

p
Ext}(A) := () Extl}) N A.
j=1
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Summing over all contours which are not large, we get from (1.6) and (1.9)
O1(A) =) o7 (Exth (4 Hexp — BH(pr1[1)] 61 (Int1 I} Os(Into T}

:Z@’fil(EXtP H —BIIT; | —-Bza( ¢p1)+/32(( 1)—h(2))[Inta I} |

O1(Int; I D)
—————— O(Int Oy (Int Fl
" 0,(Int, I7) 2(Int1 I7)@2(Inta 1)
the sums are over all families {I7},..., T, pl} of compatible external large contours

in A. All contours which are not large are 71(3)-stable, and we use Lemma 1.1
to control OF ! (Ext}(4)), O(Int, I'}) and O(IntyI7}). We have

P
O|Ext (A) < 94|+ ColI}].
j=1
Hence, (1.16), IntI’} = Int; I’} UInte I and the induction hypothesis imply that
(Rez = 1)

P
| @1(/1)| < e014] Z o~ BRegy ™ Ext} (A)] H e~ (B(p—e)=Cod)| I} |
j=1
6, (Int1

.eﬁ#(h(’l’l)*h(wﬂ)(\lntpf|*\Int1F (D) Pl
@Q(Int1F1

’ |92 Int1 )@Q(IHtQFI)’
< 20014] Ze—ﬁReg;*HExt’;(An H e—(ﬁ(p—a)—4coa)|rj1|
j=1
.eﬁ#(h(zpl)fh(qu))\lntl“ﬂ |@2(Int1pjl)@2(1nt2]}1)|
P
< 90141 Zefﬁch?’llEXt‘f(/\)l H ef(ﬁpfﬁsfa'»coc?)\l“,-‘l
j=1

. B (1) —ph(w2)—gh)[Iner}|

We have , .
Al = [Ext}(A)] + >[I+ [IntI}].
j=1 =1

Writing zh(1p2) = fo ' — g5~ ', and adding and subtracting > gt [T} ], we get

e—@z(hwl)—h(wznmww‘ < OIS BReS = T g ()
O2(A) 1
p
. H o~ (Br—=Be—6C08)| I} | o= BRe(f' ' = f3 " +g5 ~ —g5)II}|

Jj=1
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We define
#(8) = Bp—€) — 6Cod.
From (2.15) and (1.18) we have

BRe(f1 ™ = f37" — g5 +g57") = 8.

Hence,

17

(2.17)

eﬁz(h(wl)h(¢2))|/1|91§ﬁ§’§(3258/1265l(")Ext” H 42|

Oy -

We define (Cyd is introduced for controlling boundary terms later on)

—(F(B)—=Cod)|I"|  ; > .
o(I) = e if |I| = I(n);
0 otherwise.

Let ©(A) be defined by (1.11), replacing w(I'?) by &(I"), and let

g := lim — log &
0= lim, 5 )

Our definition of 3y is such that for all 5 > [y,
Ke 76 <94.

Since 8|g| < 6", putting into evidence a factor e?9!4l we get

o= B=(h(w)—=h(w2) 4] O1A) | _ 250141451 3 ﬁ o—F(A)II} o= Ballnt I}
O2(A)1

j=1

(2.18)

P
< 2001A1+5914] Z H e~ (F(B)=Cod)IT} 1§ (Int rh.

j=1

We have interpreted e#4mt I"| a5 a partition function (up to a boundary term),

since by (1.16)
e=Balmt I < é(Int Fl)ec"‘slpl‘ )

We sum over external contours and get

_ _ O1(A)
Bz(h(¥1)—h(y2))|A| 1) 260|A|+B4|A| A 039014]
e <e oA

It is not difficult to prove more regularity for the curve v — p*(v;3). We

need below only the following result.
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Lemma 2.1. Let 0 < § < 1. If B s sufficiently large, then for all n > 1

d .
Eun(o,ﬁ) =0, and

%;“i(”;ﬂ)' = A2—526((A2—526)2 + A2—526 + 1) :

Proof. Let § be as in the proof of Proposition 2.1. Because the free energies fl"_1

and fy~! are real on the real axis, it follows that they satisfy fol(z) = 2 (2),

d
and therefore v — pu (v; §) is even, and d—y,u;(();ﬂ) = 0. By definition u(v; 5)

is solution of

Re(fy ™ (i (v; B) +iv) = 17 (ui(v; B) +iv)) = 0,
which implies that

d:u‘:z _ i _ . n—1 % i n—1_ n—1
A dv duRe( 92 ) dv + dVRe(gl 92 )
and
P, d ne1 e @uy | & ne1 ety (b2
A2 = @Re(gl ' ~ 92 1) A2 + ﬁRe(gl = 2 1)( dv )
d2 n— n— d:u:(z d2 n—
 quar R BT gl -

From the proof of Proposition 2.1, step C, we have on Uy
d
—72(6)|I"
|£‘W<¢(F)‘ < BCse 2(8)| |_

Let 75(8) := m1(08) — 2%. A similar proof shows for § sufficiently large, that
there exists Cy with the property

| | 520 eI

Assume that 3 is large enough so that
ﬁmax{Cﬁ;,Cg}ng_”(m‘Fl <94.

Let Gn1: Re( — ggfl); by Lemma 1.1
|%G"‘1| <25, %G”ﬂ <24,
d2 n—1 d2 n—1 d2
\EG | <20, [5G" 1 <20 diudo
Hence
duy, d?u 20 \2 20
=3 dzﬂ’_ ((A—?d) g tl)
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Proposition 2.2. Under the conditions of Proposition 2.1, there exist By € RT
and p € N so that the following holds for all 8 > (y. Let

7'(B) = 7(8) —max{di 1,p}.

1. If u+iv € Uy and p < p*(v; B), then
L o(I?)(2)] < e PN,
dz -

2. If u+iv € Uy and p > p*(v; B), then
’iw(lﬂ)(z” < /603677’(6)|F1"
dz -

Proof. Let U, and b? be as in Proposition 2.1. Suppose that z = p + iv €
U,,—1\Up and p < p*(v; 8). We distinguish two cases, V(I'?) < n and V(I'?) >
n. If V(I'?) < n, then step C of the iteration method of Proposition 2.1 implies
that

\@w(ﬂ)\ < Blw(I?)|(|T?(Cy + 26Co) + V(I?)(A + 26))

< BCs| T 7T |w(I'?)] .

Since by Proposition 2.1 w(I'?) is 7(8)-stable, we get for all I'? such that
V(I?) <mn,

d _d_ _r 2 ! 2
’@w(]ﬂ)’ < BCs|I?|7T1e BT < gCge= BN

Suppose that V(I'?) > n + 1. We estimate the derivative at z of w(I"?) using
Cauchy’s formula with a circle of center z contained in {u +iv : u < pu*(v;5)}.
We estimate from below |Rez — p*(v; 8)| when z € U,_1\U,,, uniformly in v.

[Rez — p*| > [Rez — puy| = [py, — | = 03, — |as, — 1] -
We estimate |p) — p*| by first estimating |puj — | Let & > n; then, since
py € Un,
0=Re(fy (i) = 1 (ui)) — Re( S5 (uy) — /17 (1)
= Re(fy (k) = f57 () = Re(fr (i) — 17 (1)
+Re(f3 7 p) — £27 () — Re(F 7 (k) — f17 (1)) -
From (2.14) we get

264n)
‘MZ(Wﬁ) _M:L(V;ﬂ)| < m Vk>n,

so that
25"
W (v3 B) — pn (vs B)| < BA—2) (2.19)
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If V(I'?) > n+1, then [I'?| > I(n + 1). Choose p € N so that for all n > 1

1 << 1 )p X0’ B 25t(n)
(2P = Nogn*“7* /= (A+20)na  B(A—20)

< b, — | = py| < |Rez — p*].
We use Cauchy’s formula, with a circle of center z and radius |I"?| =7, to estimate
d 2
zw™)
dz ’

|%M(F2)| < |P2PeTBN] < o= (B)IF*).

2.2. Analytic continuation of the weights of contours at p*. In this subsection
we consider how the weight w(I'?) for a contour with boundary condition
behaves as function of z = p + iv in the vicinity of z* := p*(v;8) + iv. We
obtain new domains of analyticity of the weights of contours, by introducing
the isoperimetric constant x2(n) (see (2.20)), which differs from that used in
[3]. This is one very important point of our analysis. The main result of this
subsection is Proposition 2.3. At z* the (complex) free energies f,, ¢ = 1,2, are
well-defined and can be computed by the cluster expansion method. Moreover,

Refa(z") = Refi(z7).
Therefore
Regi (27) + 1" (v; B)h(v1) = Rega(27) + p* (v; B)h(¢2) .
With § as in the proof of Proposition 2.1, we get

20
* . < =
|l (v; 8)] < GA’
and
« 2C16
(T (") < exp [ B + 20279+ 6Co| ], v T,
We set
w = p*(0;8),

and adopt the following convention: if a quantity, say H or fg, is evaluated at
the transition point u*, we simply write H* or f.
The analyticity properties of w(I'?) near u* are controlled by isoperimetric
inequalities
V()T <xan) T2 VI V) 20 (2.20)
The difference with (2.2) is that only contours with boundary condition s and
V(I'?) > n are considered for a given n. By definition the isoperimetric constants

x2(n) satisty

V(2

X2(n)~! := inf {C TR I'? such that V(I'?) > n} .
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x2(n) is a bounded increasing sequence; we set x2(00) := lim,, x2(n), and define

Ry(n) := inf X2(m).

m:m<n m%

There are similar definitions for x7(n) and R;(n). The corresponding isoperi-
metric inequalities control the analyticity properties of w(I't) around u*.

Lemma 2.2. For any x; < xq(00), there exists N(xy) such that for all n >
N(Xg),

8

) .

-

XI
X < () < X0
nd nd

For g =1,2, n— n®Ry(n) is increasing in n, provided that a > é.
Proof. Let ¢ = 2 and suppose that

(m)

Ro(n) = X2

for m < n.

al=

Then Ryo(m') = Ra(n) for all m < m’ < n. Let n’ be the largest n > m such
that

m
Ra(n) = X2(l )
mid
We have n’ < oo, otherwise
0 < Ro(m) = Ra(n) < XQ(SO) Vn>m,
nd
which is impossible. Therefore, either
! I
1
Rofn') = 20D o Ry 41y = 22D
n'd (n'+1)a

and for all kK > n/ + 1, since x2(m) is increasing,

Ry (k) = inf x2(m) = inf X2(m) > inf xa2(n') X2(n/).

m<k md n'<m<k ma  n'<m<k m% k%

(2.21)

Inequality (2.21) is true for infinitely many n'; since there exists m such that
X5 < x2(m), the first statement is proved.
On an interval of constancy of Ra(n), n — n®Ry(n) is increasing. On the
other hand, if on [mq, ms]
RQ(n) - XQ(n) )
n

=

s . . _1
then n — n®Ry(n) is increasing on [my,ms] since n — x2(n) and n +— n® 7 are
increasing. a

The next proposition gives the domains of analyticity and the stability prop-
erties of the weights w(I") needed for estimating the derivatives of the free energy.
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Proposition 2.3. Let 0 < 6 <1 and 0 < e < 1 so that p(1 —0) —e > 0.
There exist 0 < § < 1,0 < 0" <1 and B}, > Bo, such that for all 8 > B w(I'?)
is analytic and 11 (3;0’)-stable in a complex neighborhood of

{z € C: Rez < p*(Imz; B) + A Ry (V(I?)) } Ny
Moreover
|dizw(p2)| < BCye- T8O
Similar properties hold for w(I'Y) in a complex neighborhood of
{zeC: p*(Imz; B) — A 'R (V(I')) < Rez} NUp.
71(8;0") and 72(5;0') are defined at (2.3) and (2.4).
Proof. We prove the proposition for w(I'?). By Proposition 2.1 w(I'?) is 7(3)-

stable if Rez < p*(v; 8) NUp, and by Proposition 2.2 d%w(lﬂ) is 7/(8)-stable on
the same region. Let

I,(v; B) := (" (v; B) — 0AT Ry (n), u* (v; B) + 0A ' Ra(n)) . (2.22)

We prove by iteration, that on the intervals I,,(v; 8) w(I'?), ¢ = 1,2, is 71(8;6')-
stable, and “Lw(I'?) is 75(3;0')-stable. To prove the stability of w(I'?) it is
sufficient by Remark 2.4 to verify (2.9) and (2.10). Suppose that the statement
is correct for V(I'?) <n—1. Let V(I'?) = n, 2 = p+iv, and u > p*(v; 3). Then

Re(fp 1) - () L) - e / T ) ) YD)

12| - dp 172
ni
S (A+20)(Jpe — p*| + |05 — iy
( (= o[+ | — g I)Xz(n)
i(n) 1
LAY, 2AA+26)8
A B(A—26) x2(n)

<@.

We used (2.19) to control |u* — uk|. If 8 is large enough and § small enough,
then there exists 6’ < 1. The stability of “£w(I'?) is a consequence of

| oT)] < Bo(I?)|(I1N(C: +26C0) + V(I?)(A +20))

< BCs| |77 |w(I'?)] .
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2.8. Derivatives of the free energy at finite volume. Although non-analytic be-
havior of the free energy occurs only in the thermodynamical limit, most of the
analysis is done at finite volume. We write

k d*
ol o= G|
for the k' order derivative at ¢’ of the function g. The method of Isakov [2]
allows to get estimates of the derivatives of the free energy at p*, which are
uniform in the volume. We consider the case of the boundary condition ts.
The other case is similar. We tacitly assume that § is large enough so that
Lemma 1.1 and all results of subsections 2.1 and 2.2 are valid. The main tool for
estimating the derivatives of the free energy is Cauchy’s formula. However, we
need to establish several results before we can obtain the desired estimates on the
derivatives of the free energy. The preparatory work is done in this subsection,
which is divided into three subsections. In 2.3.1 we give an expression of the
derivatives of the free energy in terms of the derivatives of a free energy of a
contour u(I'?) = —log(1 + ¢A(I'?)) ~ —pa(I'?) (see (2.24)). The main work is

to estimate
L'j{ 6a(I?)"(2)
2mi Jop, (2 — p*)

The boundary of the disc D, is decomposed naturally into two parts, dD¢ and
ODZ, and the integral into two integrals I,Z’n(]ﬂ) and I,‘in(lﬁ) (see (2.26) and
(2.27)). In 2.3.2 we prove the upper bound (2.28) for Igm(FZ), and in 2.3.3 we
evaluate Ig’n(]“z) by the stationary phase method, see (2.34) and (2.35). This is
a key point in the proof of Theorem 1.1, since we obtain lower and upper bounds
for I,‘in(]ﬂ).

2.8.1. An expression for the derivatives of the free energy. Let A = A(L) be the
cubic box
AL):={xecz’: |z|<L}.

We introduce a linear order, denoted by <, among all contours I'? C A with
boundary condition 1,. We assume that the linear order is such that V(I?) <
V(I'?) if I"® < I'9. There exists a natural enumeration of the contours by the
positive integers. The predecessor of I'? in that enumeration (if I'? is not the
smallest contour) is denoted by i(I'?). We introduce the restricted partition
function ©rq(A), which is computed with the contours of

Ca(I) :={T""C A: " <T9},

that is .
Ora(A) =1+ JJw, (2.23)
i=1
where the sum is over all families of compatible contours {I{,..., '} which
belong to CA(I'?). The partition function ©4(A) is written as a finite product
Orq(A)
raca ')
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By convention ©;(pay(A) := 1 when I'? is the smallest contour. We set

Ora(A)
Oiray(A)

u,(I'?) is the free energy cost for introducing the new contour I'? in the restricted
model, where all contours satisfy I'? < I'?. We have the identity

Ora(A) = Oira)(4) +w(I™) Oy(ra) (A(I))

O;(ray(A(I?
= O,(ray(A) (1 +w(I') W)

In this last expression @;(pa)(A(I'?)) denotes the restricted partition function

upa(I'?) := —log

Oiray(A(I) =1+ H w(I'd,

where the sum is over all families of compatible contours {I{,..., "%} which
belong to C4(i(I'?)), and such that {I'?, I'},..., "7} is a compatible family. We
also set o (A(T)

i(I°9)

64(I) = (1) =

Oi(ra)(4)

With these notations
—1)"
UA(Fq) = —log (1 + ¢A(Fq)) = Z %(ﬁA(Fq)n, (2.24)
n>1

and for k > 2
ABLEAIGY = D Tua(r)] Y.

r{acA

We consider the case of the boundary condition . [¢p4 (I 2)”]516) is computed
using Cauchy’s formula,

0 _ K[ o))
"= 2w o, (o — e

[0a(1%)"]
where 0D, is the boundary of a disc D, of radius r and center p* inside the
analyticity region of Proposition 2.3,

UpN{z € C: Rez < p*(Im(2); B) + 0A 'Ry (V(I'?))} .

2\n
The function z — % is real on the real axis, so that

(dm(FQ)"(?)) _ oa(I*)"(2)
(z—po)kt/) (2= pr)ktL”

and consequently

k! oa(l?)"(2) k! Pa(I?)"(2)
ﬁDT A dz Re{—%d A dz}. (2.25)

2mi (z — p*)k+1 77 2mi Jop, (2 — p*)kt?
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Remark 2.5. From Lemma 2.1, there exists C’ independent of v and n, so that
pn (v ) = 1y, (05 8) = C'v2.
This implies that the region {Rez < p* —C’'(Imz)% +0 A~ Ry (V(I'?))} is always
in the analyticity region of w(I"?), which is given in Proposition 2.3. Therefore,
if
C' < L
2(0A-1Ry(V(I2)))

then the disc D, of center p* and radius r = @A Ry(V(I'?)) is inside the
analyticity region of w(I™?). This happens as soon as V (I'?) is large enough.

2

Assuming that the disc D, is inside the analyticity region of w(I'?), we de-
compose 0D, into

ODY := 0D, N{z: Rez < pu*(Im(2); B) — A 'R (V(I'?))},

and
0D := 0D, N{z: Rez > pu*(Im(2); B) — BAT R (V(I'?))},

and write (2.25) as a sum of two integrals I} (I"®) and I}!  (I'?),

(I?) = Re{% deg W dz} (2.26)
and
2\n P
I (%) = Re{% ]gm Wdz}. (2.27)

2.3.2. An upper bound for If (I'*). I}, (I'*) is not the main contribution to

(2.25), so that it is sufficient to get an upper bound for this integral. Let z € Uy
and Rez < p* (Im(2); 3). From (2.16) we get

lw(I™®)| < exp [ — B + B|Rez|C1 |2 + 3Co8| 7] .

Using formula (1.24), we get after cancellation and the use of Lemma 1.2 and
Proposition 2.3 (see also (1.23)),

‘w‘ < bl < e9CsI?|
Oi(r=)(4)
We set

Ci=z—u".

Therefore, there exists a constant C so that
2 —1 . * *
|6 (1?)] < e PITIO=Cod=IRCICeT i Re¢ < p*(Im(C); B) — p* -

This upper bound implies

k! 1
I (I%) £ e IO cesmren ™, (2.28)
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(v B)

0N R (V(I?))

0N RI(V(I?))

Fig. 2.1. The decomposition of the integral into I{ (I'?) and I¢ (1?)

2.8.8. Lower and upper bounds for I,in(FQ). In order to apply the stationary
phase method to evaluate Ig,n(f'g), we first rewrite ¢,(I"?) in the following
form,

PA(I?)(2) = ¢ (I'2) AV (T (CHET)Q) (2.29)
where g(I"?) is an analytic function of ¢ in a neighborhood of ¢ = 0 and
g(I'?)(0) = 0. Let

1 (Im(2); B) — 0AT' Ry (V(I'?)) < Rez < p* (Im(2); ) + 0A™ Ry (V(I7?)) .

In this region (see figure 2.1) we control the weights of contours with boundary
conditions ¥ and 1. Therefore, by the cluster expansion method, we control
log ©;1(Int; I'?), and we can write

61 (Int; I'?) log Oy(r2y(A(I?)) }
QQ(Intl F2) Qz(FQ)(A) -

=a(I'2)

64(1%) = exp | — BH(oraliz) + log

By definition z = ¢ + p*, so that we have (see (1.9))

—BH(prz|t2)(2) + G(I%)(2) = —BH(prz|tb2) (1) + BAV(I*)¢
H ¢
~ Balpra)C + / L o(r?) () + o) (u")

ur dz’'
= —BH(pr2|v2) (1) + G(I?) (%) + BAV (I*)¢

" / o (-Se(r)(')  patprs))d='

*

=BAV(I'?)g(I?)(C)
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This proves (2.29). For large enough 3, 7(8) > 71(8,0") > m(5,6").
d 1 d d
d—gg(['g)(() - BAVi(FZ)(diC log ©1 (Int; I'?) — ¢ o2 (Ints ) (2.30)

d Qi(F2)(A(F2))
+ - log —L
dC "% Oy (A)

The last term of the right-hand side of (2.30) is estimated using (1.8). The first
two terms are estimated using Proposition 2.3, (1.21) and (1.20). The third term
is estimated by writing explicitly the logarithm of the quotient, using (1.24).
After cancellation the resulting series is derived term by term and is estimated

as in Lemma 1.2 using the basic estimates of Proposition 2.3. There exists K >
max{ K7, Ko}, such that

~ Balpr2)) -

d Cmen (1 Coll? I G| 12|
2 (2 < 20;Ke B0 (— :
LI £ 20K (34 SBios b ues )+ e
, I?
S C7 6—72(5§9 ) + CS | | (231)

V(r?)’
for suitable constants C7 and Cg. Moreover, there exists a constant Cy so that
exp [ = BIIT|[(1 + Cod)] < ¢4(1%) < exp[-B I||(1 — Cod)]. (2.32)
Let
c(n) == nBAV(I'?).

We parametrize 9D? by z := p* +re'®, —a; < a < s, 0 < a; < .

* F2 n (o3 . -
I;in(l—Q) _ k'¢A( ) / ec(n)rcosa+c(n)Reg(F2)(C) [COS(’(/J(CV))] dO[,

k
2mr —on

where

(@) == c(n)rsina + c(n) Img(I'%)(¢) — ka.

We search for a stationary phase point (j,, = rk,neia""" defined by the equations

d

@(c(n)r cosa + c¢(n)Re g(FQ)(rem)> =0 and %@Z(Q) =0.

These equations are equivalent to the equations ( ’ denotes the derivative with
respect to ¢)

c(n)sina(l+ Reg(FZ)'(C)) + cosalmg(I'?) () =0;
c(n)rcosa(l+ Reg(FQ)'(C)) —rsinalmg(I?)'(¢) = k.

Since g(I'?) is real on the real axis, ag,, = 0 and ry_, is solution of

c(n)r(1+g(I™?)(r)) =k. (2.33)
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Lemma 2.3. Let oy > /4,1 =1,2, A <1/25 and c¢(n) > 1. If g(¢) is analytic
in ¢ in the disc {¢: |C] < R}, real on the real axis, and for all ¢ in that disc

d
g(I'? <A
then there exists ko(A) € N, such that for all integers k,
k € [ko(A),c(n)(1 —2VA)R],
there is a unique solution 0 < r,, < R of (2.33). Moreover,
remtem g (ren) ] [ _

€ < — ec(n)rcosa+c(n)Reg(F2) [COS(ZZJ(CY))] dov

10+/c(n)ri.n 21 J oy
ec(")rk,n"!‘c(n) g(rz)(rk,n)

c(n)rem
Proof. Existence and uniqueness of ry , is a consequence of the monotonicity of

7 c(n)r(1+g(I?)'(r)). The last part of Lemma 2.3 is proven in appendix of
[2]. The computation is relatively long, but standard. O

Setting c¢(n) = nBAV(I'?) and R = 0A~'Ry(V(I'?)) in Lemma 2.3 we get
sufficient conditions for the existence of a stationary phase point and the follow-
ing evaluation of the integral I g’n(]“ 2) by that method. Since Tik,n is solution of

(2.33), we have

k— Mk <ec(n)r <L—k’+i
A+4) @+ -7 =a—a " a4y
and
5 A
c(n)|g(I)(rn)| = e(n \ Od¢| < Ac(n)rin < kst
Therefore Lemma 2.3 implies
1-A & kRl e 2 d 2
r-n<i; (I 2.34
ek ol B ()" < () (234
VI+A % k;'e 9
< clc(n r
SN (n)" =7 oa(I™)",
with
24
cr(A):=(1+A)exp [ A} (2.35)
24
c—(A):=(1—A)exp [— m]
If A converges to 0, then ¢y converges to 1. We assume that (see (2.31))
oy A |2 A
—72(B:0") « 2 < = )
Cre <3 and Cg v S 2 (2.36)
%]

A can be chosen as small as we wish, provided that ( is large enough and )
small enough.
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2.4. Lower bounds on the derivatives of the free energy at finite volume. We

estimate the derivative of | fﬁ]ff) for large enough k. The main result of this
subsection is Proposition 2.4. Subsection 2.4.2 is a very important point of our
analysis.

Let 0 <0 <1, A<1/25, and set

6:=0(1—2VA).
Let & > 0 and x5 so that
(1+¢€")x5 > xa(c0). (2.37)

The whole analysis depends on the parameters 6 and &’. We fix the values of 6,
and ¢’ by the following conditions, which are needed for the proof of Proposition
2.4. We choose 0 < Ap < 1/25, 6 and ¢’ so that

d—1
ot ! 4 W) T g WA 4 g g
01— 2/Ay) d—1 1+¢ 1+e d—1
This is possible, since
d
- >1
(d—1)ed
Indeed,
1 1 1 1 1 /1\n-1
d<ed1)d(ed1d+d>n>2n'<d> 1
1 1\
|
nEl(n—Fl).(d)
1 1 /1\" 1 1
1— — —(=) =ei——.
< 2d+nz>:1n!<d) Y

Notice that conditions (2.38) are still satisfied with the same values of § and &’
if we replace Ag by 0 < A < Ay. Given 6, the value of ¢ is fixed in Proposition
2.3. From now we assume that ( is so large that all results of subsections 2.1
and 2.2 are valid. The value of 0 < A < Ay is fixed in the proof of Lemma 2.5.

Given k large enough, there is a natural distinction between contours I'? such
that 06V (I'*)Ry(V (I'?)) < k and those such that 86V (I'?)Ry(V(I'?)) > k. For
the latter we can estimate I} (I'?) by the stationary phase method. We need
as a matter of fact a finer distinction between contours. We distinguish three
classes of contours:

1. k-small contours: 88V (I'2) Ry (V (I'?)) < k;
2. fat contours: for n > 0, fixed later by (2.41), V(l’a)%1 <l

d—1

3. k-large and thin contours: 08V (I"?)Ry(V(I'2)) > k, V(I'2) T > n||I"2|.
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We make precise the meaning of k large enough. By Lemma 2.2 V +— V Ry(V)
is increasing in V, and there exists N(x5) such that

!

Ry(V) > if V>N(xb).

1
d

We assume that there is a k-small contour I'? such that V(I'?) > N(x4), and
that the maximal volume of the k-small contours is so large that remark 2.5 is
valid. We also assume (see Lemma 2.3) that k& > ko(A) and that for a k-large
and thin contour (see (2.31) and (2.36))

C L I © S
VI T pgv(rz)i T 2
so that |g(I"?)'] < A, and
Cik - < L (2.39)
pA(1 — Ag)nV(r2)a — 10

are verified. There exists K(A,n, 8) such that if & > K(A,n, ), then k is large
enough. From now on k > K(A,n, 3).

2.4.1. Contribution to [fgh(ﬁ) from the k-small and fat contours. Let I'? be a
k-small contour. Since V +— Ry(V) is decreasing in V, u,(I'?) is analytic in the
region

{z: Rez < p*(Imz; B) + 0A ' Ry(V*)} N Uy,

where V* is the maximal volume of k-small contours. V* satisfies

et e ko
634

Hence
OAT Ry(V*) 2 6AT NGV H 2 A7 (0) T gk o

Since remark 2.5 is valid, we estimate the derivative of u,(I"?) by Cauchy’s

~ _d_
formula with a disc centered at p* with radius A~! (9)(’2) 4=t ﬂﬁ ka7 . There
exists a constant Cg such that

k
ur ()M < ¢y # Kl kT . 2.40
o _1 _d_
I2:Int 230 BTT(0x5) 7T
V()T <ok
X2

Let I'? be a fat contour, which is not k-small. We use in Cauchy’s formula a
disc centered at p* with radius

DA X2V (1)~ < OAT Ry(V(I?)).
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We get (see (1.10))

x2(1

1\ k
< k! <A<C277)‘> |2 |2kt -l (30)-Csdll |

1\ k
6a(r2)"%)] < ki <AV(F22d ol (8:6)~Caa)Ir?|
)0

x2(1)0

We sum over n and over I'? using the inequality

1
domte S S IpH1) (022.022).

m>1
There exist C11 and C12(6") > 0 so that
A(C
> (a5 s0u< L ) (7 +1)
[2:Int 130 (CLoB) ™ xa(1

v(r? ) <17HF2H
I'? not k-small

<Cun ( 0277 )
(Cr125) d Tya(1

We choose 7 so small that (see (2.40))

Al . 4 — < = . (2.41)

(Cr2B)TTx2(1)8 BT (Bya(00))TT BT (Byh) 7

2.4.2. Contribution to [fA] from the k-large and thin contours. For k-large

and thin contours we get lower and upper bounds for [¢(I"?)" ](f) . There are
two cases.

A. Assume that Ry(V(I'?)) > Ra(V(I'?)), or that V(I'?) is so large that
08V (I’ Ry (V(I'?)) > k.
For each n > 1 let ¢(n) = nBAV(I'?). Under these conditions we can apply

Lemma 2.3 with a disc D,, , so that 0D,, , = ank_’n. Indeed, if Ry (V(I?)) >
Ro(V(I'?)), then we apply Lemma 2.3 with R = AT Ry(V(I'?)), and in the
other case we set R = AR (V(I'?)). In both cases 1y, < R, which implies
dDy,,, = OD;, . Therefore we get for I{ (I'?) the lower and upper bounds
(2.34).

Lemma 2.4. There exists a function D(k), limy_,oc D(k) = 0, such that for (
sufficiently large and A sufficiently small the following holds. If k > K(A,n, )

and Ry (V(I'?)) > Ry(V(I'2)) or 08V (I'2)Ry(V(I'?)) > k, then

(1= D(k) [pa (@))% < ~[ua(T?)]'%) < (14 D(k)) [pa(T?)]'E).
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Proof. We have

. (=)D [ ()]0
[UA(FQ)]%B[¢A(F2)]ﬁf3+[¢A(F2)]f3§ T e

From (2.34) there exists a constant Ci3,

2\n1(k)
W < Cy3 ¢y (1)1 (ci_)k:nk.
A )

C_

The isoperimetric inequality (2.20), Ra(n) < xa2(n)n~a and the definition of
k-large volume contour imply

d—

BIT2|| > Bxa(V(IP2)V(I?) T > 0B8Ry (V(I2)V(I?) > k.

Let b := Cy6 (see (2.32)); we may assume 5 — b > % by taking [ large enough.
Then

k k
C C
k+ § :nk—le—(n—l)(l—b)k < CZ Ze——llo(n—l)ke—k[ 190—b)(n—1)—1nn]

~ n>2 — n>2
< ﬁ Ze—%o(n—nke—k[g(n—u_lnn}
S &
n>2
Cy _ 1 k _ 1k
< [ —TLe 10) e~ 10MF |
< (& >
n>1
We choose A so small that ¢y (A)c_(A) e 10 <1 O

B. The second case is when

0BV (I*)Ry(V(I?)) < k < 6BV (I®)Ra(V(I'?)) .

Since the contours are also thin,

d—1
d

BIC2 <010~ xa () B0 (VV (%)
<0707 ha ()T ARV () Ry V(1))
<0 (1) T e = Ak
We choose R = BA7'Ry(V(I'?)) in Lemma 2.3. The integration in (2.25) is

decomposed into two parts (see figure 2.1). We show that the contribution from
the integration over dD{, is negligible for large enough f3. Since k > K (4,7, 3)

d—

and the contours satisfy V(I'2)“@T > n||I'2||, we have

k k
A0 V(T2 = A1 AV ()i

B 02|l <
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By definition of K(A,n,3) (see (2.39))
nB| 2 p™ Crrgm < L
=10

From (2.28) with r = ry ,, we obtain that the contribution to |[uA(F‘1)](f*)| is at
most

k k| k! Bl (1—Ce
(1+ Ak (BAV(I?))" exp (E)ﬁznke BT (1-Co0)

n>1

As in the proof of Lemma 2.4, we choose 3 large enough so that we can assume
that -5 — Cs0 > 2. Then

Z nke—nm|r2”(1—065) < 6—5”1“2”(1—066) (1 + Z e—%(n—l)ke—k[é(n—l)—lnn})
n>1 n>2

< o BIr2I(1-Ce0) (1 +3 e,%nk)

n>1

— o AIP*I0=Ca3) (1 | (k).

Since B||1"?|| < Ak, by choosing A small enough and 3 large enough, so that J is
small enough, we have

2k
3

(1— D(k))c’je’“e_m'm“%(s > (1 — D(k))ck ekekACad 5 ¢
and
(1+ D(k)(1 _,_A)ke%eﬁl\rzl\csé < (1+D(k)(1 _i_A)kel%e)\kC(jé <eb.

If these inequalities are satisfied, then the contribution to —[us (I ‘1)](5*) coming

from the integrations over 9Dy,  is negligible with respect to that coming from
the integrations over ank_ - Taking into account (2.34) we get Lemma 2.5.

Lemma 2.5. There exists 0 < A’ < Ag so that for all 8 sufficiently large, the
following holds. If k > K(A',n,3) and I'? is a k-large and thin contour, then

1

55 (L= D(R) (BAV (1) ek 674(1?).

k
a3 =
Proposition 2.4. There exists 3 so that for all 8 > [, the following holds.

There exists an increasing diverging sequence {ky} such that for each k., there
exists A(Ly) such that for all A D A(Ly,)

dkp

—[f2) %) > Oy kit Ake g T

C14 > 0 is a constant independent of 3, k, and A.
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Proof. We compare the contribution of the small and fat contours with that of
the large and thin contours for k > K(A’,n, ). The contribution of the small

contours to |[f/21](f*)\ is at most

R _ k
CloAkﬂfﬁ(QX)d1]€|kd1<010Akﬂ k(ed)dlkldl
x5
The contribution of the fat contours is much smaller by our choice of 7 (see

(2.41)). The contribution to [fA}(k*) of each large and thin contour is nonneg-
ative. By assumption (2.37) and the definition of the isoperimetric constant xo,
there exists a sequence I'2, n > 1, such that

[P

hm ||F || — oo and V(FQ) W

. _d . .
Since "7 Te~* has its maximum at z = k=%, we set

a1
d—1
kp = | ——p||?||| .
| s
For any n, I'? is a thin and k,-large volume contour, since by (2.38)

B(1—2VAYW(I?)Ro(V(I?)) 2 B (1 - 2VA)NWV ()T

(1-2V4)

>
2 1te

Y BIDE > ky

If AD T2, then

a2 > 22 e v o)
1- D(k) de' ™ dby

> 'R g (r2)

Ak g (

20 (d— 1)(1+gf)xf2)

and (see (2.32))

knd knd d
ki T n(In) = ki Texp [ — (kn=—7 +1)(1+ Co)]
o T Cadtrhn
(2k,,) T

By the choice (2.38) of the parameters 6 and &', if ¢ is small enough, i.e. 3 large
enough, then

d—1

1
ed d c ' _os
< e ?
(1 —2v/A) d—11+¢

Hence the contributions of the small and fat contours are negligible for large k,,
(see (2.40) and (2.41)). Let A(L,) be a box which contains at least |A(L,)|/4
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translates of I'2. For any A D A(Ly,,), if k, and 3 are large enough, then there
exists a constant C14 > 0, independent of 3, k,, and A D A(L,), such that

dkp,

_[f/Ql](:’?) > Cif kn!ﬁ Ak"ﬂ_ it xo 1.

2.5. Lower bounds of the derivatives of the free energy at infinite volume. We
show that it is possible to interchange the thermodynamical limit and the op-
eration of taking the derivatives, and that the Taylor series, which exists, has
a radius of convergence equal to 0. These statements are the consequence of
Lemmas 2.6 and 2.7.

Lemma 2.6. If 3 is sufficiently large, and € > 0 sufficiently small, then for any
k € N there exists M = My(8) < oo, such that for all t € (u* — e, p*] and for
all finite A,

A21W] < My

Proof. For sufficiently large contours, w(I'?) is analytic and 71 (3, #’)-stable on a
disc of radius § A~ Ry(V (I'?)). From Cauchy formula

[lua(P?)] ] < kO 0277 08I,
for some constants C15 and x > 0. Therefore, for sufficiently large contours,

> uaN P < ket Y0 %@ eI = 1418M; < oo
rzca rzca

This implies the existence of M}, such that |[f/21](tk)| < M. O

Lemma 2.7.
. 2 (k) _ q: (k)
A [yl = Em [T

Proof. We compute the first derivative at the origin. Let > 0.

fu*) = f(p* —m)

Aln) =
(n) ;
. fi(L)(N*)_f/%(L)(N* )
= lim
L—oo n
1 (2)
Bt sl ew T
= lim
L—oo n

L 2 (1) 1o (2)
= Jim () + gl )
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By Lemma 2.6, |[f/21(L)](2) | < Ms. Therefore {A(n)}, is a Cauchy sequence.

pwr—=zr(n)

Hence the following limits exist,

(719 = tim fws) = fw™=mn) _ lim [ ] =

o mlo n tTpr

: 2 ()
Lh_{réo[fA(L)] wr e

Same proof for the derivatives of any order. O
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