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We study existence of solutions for implicit partial differential equations of the form

F (z,u,Du) =0 a.e. in Q
U= on 0N.

as well as minimization problems of the type

inf{/ﬂf(Du(m))dx:u:apon 89}.

We discuss several examples that are relevant for applications to geometry, non
linear elasticity or optimal design. All these examples exhibit what can be called
microstructures.
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1 Introduction

We discuss the existence of Lipschitz solutions of implicit equations of the type

{ F(z,u(z),Du(x))=0 ae €0
u(x) =¢(x) x € 0N

where 2 C R"™ is an open set, u : 2 — R™ (if m = 1 or, by abuse of language, if n = 1,
we will say that it is scalar valued while if m,n > 2, we will speak of the vector valued

case) and Du denotes its Jacobian matrix, i.e. Du = (g;f) seen as a real matrix of
J

size m x n, F': 2 x R™ x R™*"™ — R is continuous and ¢ is a given Lipschitz map.
To make simpler the notations and the results we will mostly assume that the
function F' does not depend explicitly on the variables z and u. Many extensions
to the more general case are available, however they are more complicate to state
and are, usually, not as sharp, we refer for a thorough discussion on these matters to
Dacorogna-Marcellini [16]; we, however, give one such result in Theorem 23.

* Corresponding author: e-mail: Bernard.Dacorogna®epfl.ch
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2 Bernard Dacorogna: Calculus of variations

Depending on the context it might be convenient to rewrite (in an equivalent way)
the problem in terms of differential inclusions, more precisely

{Du(z)GE a.e. r €
u(x)=¢(x) z€dQ

where E = {{ € R™*" : F(§) = 0}. It will turn out that the sets that play the central
role are the convex hull of E (denoted by co E) in the scalar case and the quasiconvex
hull (denoted Qco F) in the vectorial case. These notions as well as the related con-
cepts of polyconver and rank one convexr hulls ( denoted respectively by Pco E' and
Rco E) are defined in the next section.

We then show how this analysis applies to minimization of non convexr (more pre-
cisely non quasiconvez) problems of the calculus of variations

inf{/ﬂf(Du(:z:))dx:ugaon@Q}.

We do not discuss now the abstract results that will be precisely stated in the
following sections, but we rather discuss several examples that are mathematically as
well as physically relevant.

We start with the scalar case (here m = 1, while n > 1).

Example 1 (Convex Hamiltonian and the eikonal equation) The most impor-
tant example, and in some sense the prototype, is the eikonal equation

{ |[Du(z)| =1 a.e x€Q
u(x)=¢(x) z€dq.

In terms of the set E we have here that E is the unit sphere and its convex hull is thus
the unit ball.

More generally, replacing the norm |.| by a convex (and coercive) Hamiltonian F
(in the particular case of the eikonal equation we have F () = || — 1) we have E =
{€eR™: F (&) =0} and its convex hull is

coE={{cR": F (£ <0}.

There is a huge literature on the subject. The main tool for solving this type of
problems is the "viscosity method" introduced by Hopf, Kruzkov, Crandall-Lions and
others. This is a very powerful technique, but its drawback is that it is not very well
adapted to (scalar) non convex Hamiltonians and to the vectorial case. Let us also
say that, for applications, the ezistence of viscosity solutions, usually, prevents the
formation of microstructures.

Example 2 (Non convex Hamiltonian and the eikonal system) Consider, for
£ € R™, the non convex Hamiltonian

F(e) = [’ -1
i=1
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and the associated equation F (Du) = 0. It is easily seen to be equivalent to the
following system

Ful=1,i=1,..,n ae inQ

{ U= on 0S).

Here E is therefore composed of the vertices of the cube [—1,1]" and its convex hull is
precisely the cube.

It can be shown, cf. Cardaliaguet-Dacorogna-Gangbo-Georgy [4], that there is no
viscosity solution and that, near the boundary, microstructure should occur. This
problem has also been investigated numerically by Dacorogna-Glowinski-Pan [11].

We now turn our attention to the vector valued case (i.e., m,n > 2). Before
describing the results, let us emphasize, once more, that, in the vector valued case,
the general rule is that microstructure will always occur.

Example 3 (Singular values) This problem has been studied in Dacorogna-Tanteri
[21] and in Dacorogna-Marcellini [16]; it is an important problem in geometry and in
non linear elasticity. First let 0 < A1 (§) < ... <\, (§) denote the singular values of a
matriz £ € R™*" (cf. below) and let 0 < a1 < ... < a,. The problem is to find a map
u satisfying

Ai (Du) =a;, i=1,....,n a.e. inQ
U= on 0S).

Generalizations of this problem have been considered in Dacorogna- Tanteri [22], namely
Xi (Du) =a;, i =2,...,n and det Du=1,

a problem that turns out to be important for incompressible materials, or in Dacorogna-
Ribeiro [20] where the problem is

Ai(Du)=a;, i=2,...,n and det Du€ {a,(}.

This last problem in fact contains both previous cases (the first one if we set f = —a,
the second one if we let = =1).

The solving of these equations have direct applications in the calculus of variations,
notably (cf. Dacorogna-Ribeiro [20]) to

inf{/ﬂg(detDu (2))dz:u = on aQ}

which turns out to have applications for phase transitions (see Dacorogna [8] or [10]).
It can also be applied to Saint Venant Kirchhoff materials (cf. Dacorogna-Marcellini

[12)).
In terms of sets we can write for the three cases under consideration, respectively

E = {f e R . i (E) =a;, 1= 1,...,7’1}
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4 Bernard Dacorogna: Calculus of variations

Ei={{eRY: N () =a;, i=2,...n, det{ =1}
Eap={(€R™": N (§) =a;, i=2,..,n, det& € {a, B} }.

Under some natural compatibility conditions on the a;, our result gives

coFE = {5 € R™*™ i/\i (é) < iai, v= 1,...,n}

Pco E = QeoE = Reo E = {5 eR™ TN (©) < [Jai, v= 1n} :

i=v

PcoEy = Rco Ey = {§ e R H)‘i & < Hai, v=2,..,n, detf = 1}.

=V

PcoE,p =RcoE,p = {E ERM™: H)\i (€) < Hai; v=2.,n, det§ € [aﬂ} .

i=v

Example 4 (Complex eikonal equation) The problem has been introduced by Mag-
nanini and Talenti [28] motivated by problems of geometrical optics with diffraction.
Given g € R, the question is to find a complex function w : Q@ C R" - C (w(z) =
u(x) +1iwv(zx)) satisfying

Sw2 =g° ae inQ
i=1
w=¢ on 0S)
where w,, = Ow/0x;. The problem is then equivalent to
|Duf’ = |Dv|* + g2 a.e. inQ,
(Dv; Du) =0 a.e. in §,
w= on 0N.

This problem can be brought back to the previous analysis (see Dacorogna-Marcellini
[16] or Dacorogna-Tanteri [22]). In terms of the set E we have, setting s = /12 + g2,

E{§ ( Z > ER¥™ : |a| =s, |b| =7 and <a;b>0}.
Letting

_ 1/5 0 2x2
A<o 1/7“)6R

it can be proved that
PcoE =ReoE = {{ € R¥™ : Ay (AL), X2 (A€) <1}
where A\ (A€), A2 (AE) are the singular values of the matriz A.

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 5

Example 5 (Nematic elastomers) This example is related to some work of DeSi-
mone-Dolzmann [24] on nematic elastomers; we refer to this article for the description
of the physical model. It turns out that it can also be treated as a problem of singular
values. More precisely we let r < 1 (this is called the oblate case while r > 1 is called
the prolate case and it can be handled similarly) and, as above, 0 < A1 (§) < ... < A\, ()
denote the singular values of a matriz £ € R™"*™. The problem is then to solve, and
this was achieved by Dacorogna-Tanteri [22],

A (Du(2)) = ... = My (Du(2)) = r/2"  ae. in Q,
A (Du(2)) = r3=™/2n det Du(z) =1  a.e. in Q,
U= on 0f).

In terms of sets we have

1—

E:{g:Au(g)zrz%, 1<v<n—1, \ () =r =2, detgzl}.

PcoE =ReoE = {g; H/\Z- €) < P20 9 <y <p, deté = 1}

= {g DA () e {7‘1/2”,7“(1_”)/2”} , 1<v<n, deté = 1}.

Example 6 (Optimal design) The classical problem of optimal design studied by
Kohn-Strang [27] which is mathematically formulated as (here u : Q C R? — R?)

inf f(Du(z))dx:u=p on 02
{/Q ( ( )) ° }
where

_ [ 1+[E? ife#£0

can also be treated, cf. Dacorogna-Marcellini [12] and [16], by the methods discussed
in the next sections.

The associated algebraic problem is (denoting the set of 2 x 2 symmetric matrices
by R3*?)

E={{eR¥? : tracef € {0,1}, det{ >0},
RcoFE =coFE = {feR?“ : 0 <trace£ <1, det{ >0} .

Example 7 (Potential wells) The general problem of potential wells has been inten-
stvely studied by many authors in congunction with crystallographic models involving
fine microstructures. The reference papers on the subject are Ball and James [1], [2].
The problem is very difficult and at the moment only the case of two potential wells
in two dimensions has been fully resolved, cf. Miiller-Sverak in [30] and Dacorogna-
Marcellini in [13] and [16] for the case det A # det B and cf. Miiller-Sverak in [31]
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6 Bernard Dacorogna: Calculus of variations

and Dacorogna-Tanteri in [22] for the case det A = det B. The problem can be for-
mulated as, given two matrices A, B € R?*? with positive determinant, find a map
u:Q CR? = R? so that

Du(z) € E=S0O(2)AUSO(2)B, a.e. x € Q

and with prescribed boundary value, u = ¢ on Of).
The different convez hulls have been computed by Sverak in [33].

2 Preliminaries

We recall the main notations that we will use throughout the article and we refer, if
necessary, for more details to Dacorogna-Marcellini [16] and to Dacorogna [10].

In the remaining part of the article we will always assume that the sets 2 C R”
are bounded and open. The boundedness is however not a real restriction, since all
constructions are done locally.

Notation 8 We will denote by
- Whee (Q;R™) the space of maps u: Q C R™ — R™ such that

aui 1Sl§m
) € L™ (Q;Ran) ;

uw € L™ (Q;R™) and Du = (3zj

1<j<n

- W™ (B R™) = W (R™) N Wy (G R™);
- Af fpice (ﬁ; Rm) will stand for the subset of W1 (Q; R™) consisting of piecewise
affine maps;

-C! (ﬁ; Rm) will denote the subset of W1°° (Q; R™) consisting of piecewise C*

piec
maps.

We next define the main notions of convexity used throughout the article.

Definition 9 (i) A function f: R™*" — R =R U {+oc} is said to be polyconvex if

T+1 T+1
f (Z ti&) <> tif (&)
i=1 i=1

whenever t; > 0 and

T+1 T+1 T+1
ST (z ti@-) ST
i=1 i=1 i=1

where for a matriz £ € R™*™ we let

T (E) = (57 adj2§a e aadjm/\ng)
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where adjs€ stands for the matriz of all s X s subdeterminants of the matriz £, 1 <
s <mAn=min{m,n} and where

rerm= 3 (1) () e (7) -

(i) A Borel measurable function [ : R™*™ — R is said to be quasiconvex if

/U f (€ + D (x)) dx > f () meas(U)

for every bounded domain U CR", £ € R™*", and ¢ € I/Vol’Oo (U;R™).
(iii) A function f: R™*" — R =RU {400} is said to be rank one convez if
f&+ (1 =)&) <tf(&)+1-1) f(&)
for every &1, & with rank {& — &} =1 and every t € [0, 1].
(iv) A Borel measurable function f : R™*"™ — R is said to be quasiaffine (or
equivalently polyaffine or rank one affine) if both f and —f are quasiconvex
(v) The different envelopes of a given function f are defined as
Cf=sup{g < f:g convex},
Pf=sup{g < f:g polyconver},
Qf =sup{g < f : g quasiconvex} ,
Rf =sup{g < f: g rank one convex} .
As well known we have that the following implications hold

f convex = f polyconvex = f quasiconvex = f rank one convex.

Remark 10 It can be shown that a quasiaffine function is necessary of the form

F©) ={aT(€)+8

for some constants « € R™ and B € R and where (.;.) stands for the scalar product in
R™; which in the case m = n = 2 reads as (o = (a1, 12, 21, a2, 5) € R?)

2

&= aij&ij+asdet{ + 3.

3,j=1
We now give an important example that concerns singular values.

Example 11 Let 0 < A1 (§) < ... < A, (§) denote the singular values of a matriz
& € R ™ which are defined as the eigenvalues of the matrix (§§t)1/ %, The functions

€ — Z)\ &) and & — H/\ ©,v=1,..n,

are respectively convez and polyconver (note that [[;_, \; (€) = |det&]). In particular
the function & — A, (§) is convex and in fact is the operator norm.
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8 Bernard Dacorogna: Calculus of variations

We finally recall the notations for various convex hulls of sets.
Notation 12 We let, for E C R™*",

Fp={f:R™" 5 R=RU{+o00}: |5 <0}

fEZ{f:Rmxn—ﬂR: f|E§O}.
We then have respectively, the convex, polyconver, rank one conver and (closure of
the) quasiconvex hull defined by

coFE = {§ e R™* ™. (&) <0, for every convex f € ?E}

PcoE = {{ € R™™: f(§)
Reo E = {E e R™*™: (&)
QeoE = {€ e R™ ™ : f(€)

IN

0, for every polyconvez f € F}

IN

0, for every rank one convezx f € fE}

IN

0, for every quasiconvex f € TE} .

We should point out that by replacing Fr by Fg in the definitions of co £ and
Pco E we get their closures denoted by coF and PcoE. However if we do so in the
definition of Rco E we get a larger set than the closure of Rco E. We should also draw
the attention that some authors call the set

{€ e R™ ™ f(£) <0, for every rank one convex f € Fp}

the lamination convex hull, while they reserve the name of rank one convex hull to
the set

{€ e R™™ : f(€) <0, for every rank one convex f € Fg}.

We think however that our terminology is more consistent with the classical definition
of convex hull.
In general we have, for any set £ C R™*",

EF CRcoE CPcoE CcoFE

E C RcoE C QcoE C PcoE C OE.

3 Implicit partial differential equations

3.1 Abstract results for first order equations

We start with the following definition introduced by Dacorogna-Marcellini in [15] (cf.
also [16]), which is the key condition to get existence of solutions.

Definition 13 (Relaxation property) Let E, K C R™*". We say that K has the
relazation property with respect to E if for every bounded open set Q0 C R"™, for every
affine function ue satisfying

Dug (z) =€ € K,
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there exist a sequence u, € Af fpicc (ﬁ; Rm)

u, € ug + Wy (G R™), Du, (z) € EUK, a.e. in

wy, > ug in WhHe, / dist (Duy, () ; E)dz — 0 as v — oc.
Q

Remark 14 (i) It is interesting to note that in the scalar case (n = 1 or m = 1) then
K = intco E has the relazation property with respect to E.

(i) In the vectorial case we have that, if K has the relazation property with respect
to E, then necessarily

K C QcoE.

Indeed first recall that the definition of quasiconvexity implies that, for every quasi-
convez f € Fg,

f(§)measQ < i f (Du,, (z)) dz.

Combining this last result with the fact that {Du,} is uniformly bounded, the fact that
any quasiconvex function is continuous and the last property in the definition of the
relaxzation property, we get the inclusion K C QcoFE.

The main theorem is then.

Theorem 15 Let 2 C R™ be open and bounded. Let E, K C R™*™ be such that E is
compact and K is bounded. Assume that K has the relazation property with respect
to E. Let ¢ € Af fpicc (Q;R™) be such that

Dy(z) e EUK, a.e. in .
Then there exists (a dense set of) u € o + W, > (Q;R™) such that
Du(z) € E, a.e. in €.

Remark 16 (i) According to Chapter 10 in [16], the boundary datum ¢ can be more
general if we make the following extra hypotheses:

- in the scalar case, if K is open, ¢ can be even taken in WhH (Q;R™), with
Dy (x) € EUK (c¢f. Corollary 10.11 in [16]);

- in the vectorial case, if the set K is open, ¢ can be taken in C;iec (ﬁ; Rm) (¢f-
Corollary 10.15 or Theorem 10.16 in [16]), with Dy (z) € EU K. While if K is open
and convez, ¢ can be taken in W1 (Q; R™) provided

Dy (z) € C, a.e. in

where C' C K is compact (cf. Corollary 10.21 in [16]).
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10 Bernard Dacorogna: Calculus of variations

(1i) This theorem has been established by Dacorogna-Pisante [18]. However it was
first proved by Dacorogna-Marcellini in [15] (cf. also Theorem 6.3 in [16]) under the
further hypothesis that

E={¢cR™": F(&=0,i=12,..,1}

where F; : R™*" — R,i = 1,2,...,1, are quasiconvex. This hypothesis was later
removed by Sychev in [34] (see also Miller and Sychev [32]). Kirchheim in [26]
pointed out that using a classical result of function theory then the proof of Dacorogna-
Marcellini was still valid without the extra hypothesis on E.

We now give the proof of Dacorogna-Pisante [18], which is a combination of [15]
and [26]. B
Proof. We let V be the closure in L> (2; R™) of

V:{ueAffpiec(ﬁ;Rm) :u:cpon@QandDu(m)EEUK}.

Observe that V' is non empty since ¢ € V. Let, for k € N,

— 1
Vk:int{ueV:/dist(Du(x);E)dmg E}
Q

We claim that V¥, in addition to be open, is dense in the complete metric space V;
this will be seen below. We can then conclude by Baire category theorem that

ﬂVk C{ueV:dist(Du(z),E)=0,ae in Q} CV

k=1

is dense, and hence non empty, in V._ The result then follows, since FE is compact.
We now show that V¥ is dense in V. So let u € V and € > 0 be arbitrary. We wish
to find v € V* so that

[u—vl e <e
- We start by finding o € V a point of continuity of the operator D so that
[u—all L~ <€/3.

This is always possible by virtue of Lemma 17.
- We next define the oscillation of D at u by

wp(u)=lim  sup D~ Dy .
0=0 0.4 €Bs(u)

where Bs (u) = {w € V : |lu — w|| . < &}. It is easy to see that
(i) D is continuous at  if and only if wp(u) =0
(ii) The set {u € V : wp(u) < €} is an open set in V.

- We next approximate o € V by 3 € V so that

18— all~ <¢/3and wp (B) < 1/2k.
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- Finally we use the relaxation property on every piece where D/ is constant and
we then construct v € V, by patching all the pieces together, such that

1 1
18— vl <€/3, wp(v) < — and / dist (Dv (z); E)dx < — .
ok o ok

Moreover, since wp (v) < 1/2k, we can find § = J (k,v) > 0 so that

1
lo =9l <0 = [IDY = Dol < o

and hence

/ dist (D (z) ; E) da < / dist (Dv (x); E) dz + |Dy — Dol ;. < 1
Q Q k

for every 1) € Bs (v); which implies that v € V'*.

Combining these facts we have indeed obtained the desired density result. m

In the proof of our main theorem we have used the following lemma (for a proof
see [18]) which is essentially a consequence of Baire theorem.

Lemma 17 Let Q C R"™ be a bounded open set and ug € WH°(R"). Let V C
ug + Wol’oo(ﬂ) be a nmon empty complete space with respect to the L> metric. Then
the set of points of continuity of the gradient operator D : V. — LP(Q;R™), where
1<p< oo, is dense in'V.

To conclude this section we give a sufficient condition that ensures the relaxation
property. In concrete examples this condition is usually much easier to check than the
relaxation property. We start with a definition.

Definition 18 (Approximation property) Let E C K (E) C R™*". The sets E
and K (E) are said to have the approzimation property if there exists a family of closed
sets E5 and K (Es), § > 0, such that

(1) Es C K (E5) Cint K (E) for every § > 0;

(2) for every € > 0 there exists 69 = 0o (€) > 0 such that dist(n; E) < € for every
n € Es and 0 € [0, do);

(8) if n € int K (F) then n € K (Es) for every § > 0 sufficiently small.

We therefore have the following theorem (cf. Theorem 6.14 in [16] and for a slightly
more flexible one see Theorem 6.15).

Theorem 19 Let E C R™*"™ be compact and Rco E have the approximation property
with K (Es) = Reo Ejs, then int Rco E has the relaxation property with respect to E.

3.2 Abstract results for general equations

For higher derivatives we will adopt the following notations.
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12 Bernard Dacorogna: Calculus of variations

Notation 20 - Let N,n,m > 1 be integers. For u : R™ — R™ we write
1<i<m

N,
DNu = (67“) e R™xn"

0jy-0%jn ) 1<jy jnsn

(The index s stands here for all the natural symmetries implied by the interchange of
the order of differentiation). When N = 1 we have

]Rmxn — Rmxn
while if m =1 and N = 2 we obtain

RHQ — R’I’IX’IZ
S

S

i.e., the usual set of symmetric matrices.
- For u:R™ — R™ we let

DWly, = (u, Du, ..., DNu)

stand for the matrix of all partial derivatives of u up to the order N. Note that

_ 2 (N—1)
DIN=ly e RIMN = R™ x R™XM x RTX™ x o x RV

where

nV -1

My=14+n4+..+n®D =
n—1

Hence

DMy = (DIN=Uu, DNu) € RIXMY xR,
We therefore have the following

Notation 21 We will denote by
- WN> (Q: R™) the space of maps u: Q C R™ — R™ such that DNy € L>°;
W (@R = W (@R AW (9 R™);
-Af N (G R™) will stand for the subset of W2 (Q; R™) so that DN u is piece-

ptec
wise constant;
- Clee (Q;R™) will denote the subset of WN->° (Q;R™) so that DNu is piecewise
continuous.

In the present section we will extend the results of the preceding section. We first
define the relaxation property in a more general context.
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Definition 22 (Relaxation property) Let F, K C R" x R7*M~x x RTX”N. We
say that K has the relazation property with respect to E if for every bounded open set
Q C R, for every ue, a polynomial of degree N with DNug¢ (z) = &, satisfying

(:c, DW=y, (x), DNug (z)) €K,

there exists a sequence u, € AffNN (ﬁ; Rm) such that

ptec
uy, € ug + Wy ™ (G R™), w, = g in W

(m,D[N_l]ul, (z),DNuy (z)) € EUK, a.e. in
/ dist ((z, DN =Yu, (z), DNu, (2)) ; E) dz — 0 as v — <.
Q

In the sequel we will denote points of E by (z,s,&) with z € R?, s € R™*M~ and
€ e RPx"Y

The following theorem, due to Dacorogna-Pisante [18], following earlier work of
Dacorogna-Marcellini [16], is the main abstract existence theorem.

Theorem 23 Let Q C R™ be open and bounded. Let E, K C R" x R™*M~ x R;”X"N
be such that E is closed, K open and both E and K are bounded uniformly for x € Q
and whenever s vary on a bounded set of R™*M~ . Assume that K has the relazation
property with respect to E. Let ¢ € CIY, . (Q;R™) be such that

piec
(m,D[N_H(p (z), DNy (x)) e EUK, a.e. in §;
then there exists (a dense set of) u € ¢ + Wy (4 R™) such that
(x, D=1y (z), DN u (z)) € E, a.e inQ.

Remark 24 (i) The boundedness of E (or of K) stated in the theorem should be
understood as follows. For every R > 0, there exists v = v (R) so that

(,8,§) e E,z€Q and |z|+|s| <R = [£] <~.

(ii) In this theorem we need that K is open (in the relative topology of R™ x R M~ x
R;"X"N) because of the presence of lower order terms.
(iii) As in the previous section, a theorem such as Theorem 19 is also available in

the present context, but we do not discuss the details and we refer to Theorem 6.1/
and Theorem 6.15 in [16].

3.3 Examples

We now return to the examples in the introduction and we give several existence
theorems that follow from the abstract ones.
The first one concerns the scalar case (Example 1 and 2).
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14 Bernard Dacorogna: Calculus of variations

Theorem 25 Let 0 C R™ be bounded and open and E C R™. Let o € W1 (Q)
satisfies

Dy (z) e EUintcoE, a.e. x €Q (3.1)

(where int co E stands for the interior of the convex hull of E); then there exists (a
dense set of) u € W1 (Q) such that

{ Du(z)€e E ae z€Q (3.2)

u(z)=p(x) x€d.
Remark 26 (i) The theorem obviously applies to

{ F(Du(z))=0 a.e x€
)= (x) x € 0N

It suffices to write E = {£ € R™ : F'(§) = 0}. If for example F is conver with F' (0) < 0
and lim F' (§) = +oo if [§] — 400, as for the eikonal equation where F (§) = |¢] — 1,
then the compatibility condition (38.1) reads as follows

F(Dy(x)) <0, a.e zeQ.

(i) The compatibility condition (3.1), when appropriately interpreted, is also nec-
essary, cf. [16].

(iii) This theorem has a long history and we refer to [16] for more historical back-
ground. Let us quote however some main results : Bressan-Flores [3], Cellina [5],
Dacorogna-Marcellini [16], De Blasi-Pianigiani [23] and Friesecke [25].

The next one deals with the singular values case and, when properly read, it incor-
porates Example 3, Example 4 or Example 5.

Theorem 27 (Singular values) Let 2 C R™ be a bounded open set, a < (3 and
0 < v <...<7, be such that

72 [ > max{lal, 18]}

1=2

Let p € C}

piec(ﬁ; R™) be such that, for almost every x € (,
a < det Do(z) < 3,

H)\i(Dgo(x)) < H%’, v=2,..,n,

then there exists u € o + W, (% R") so that

det Du € {a, 8}, a.e. in Q,
A (Du) =7, v=2,..,n, a.e. in Q.
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Remark 28 (i) If a = —3 < 0 and if we set

n -1
7= [H%] ;
=2

we recover the result of Dacorogna-Marcellini [16], namely that if

H)\ (Dp(x <H%, v=1,.

then there exists u € o + W, (% R") so that
A(Du) =, v=1,..,n, a.e. in Q.
(i) If « = B # 0 we can also prove, as in Dacorogna-Tanteri [22], that if

det Dy(x) =

H)\ (Do(x <H%, v=2,.

then there exists u € o + W, (% R™) so that
Av(Du) =7, v=2,...,n and det Du= « a.e. in .

(#4i) The theorem remains valid if the v; are allowed to be continuous functions of
the form ~v; = i (z,u).

We now discuss Example 7 (Example 6 will be discussed in the section on the
calculus of variations).

Theorem 29 Let Q) C R"™ be a bounded open set, A, B € R>*? with det B, det A > 0,
E=5S0(2)AUSO(2)B

and
£ €intReco

then there ezists u € W (Q;R?) such that

Du(z) € E, a.e. in
u(x) = &x, on ON.

Remark 30 (i) If det B > det A > 0, the set Rco E, according to Sverak |33], is given

) J g ) g

by
det B—det det E—det A
Reo F — £ ER?*2: there exist 0 < a < P e detg’ 0<p< 7{16”53 dor
R,S €850 (2), so that ¢ = aRA+ 3SB
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16 Bernard Dacorogna: Calculus of variations

while the interior is given by the same formulas with strict inequalities in the right
hand side.
(i) If det A = det B > 0.
Reo F — € € R¥*?: there exist R,S € SO(2),0<a,8<a+3<1,
o det & = det A = det B so that £ = aRA + 3SB
and in this case the interior is understood relative to the manifold of matrices with
constant determinant.

4 Calculus of variations

4.1 Abstract results

We consider here the minimization problem

(P)  inf {J(U) = [ f(Du(z) ds: uep+ W&W(Q;RM)}
Q

where Q is a bounded open set of R", ¢ is affine, i.e. Dy = & (in some cases

we can also consider more general boundary data) and f : R™*" — R is a lower

semicontinuous function.

The scalar case (n = 1 or m = 1) has been intensively studied by many authors in-
cluding: Aubert-Tahraoui, Buttazzo-Ferone-Kawohl, Cellina, Cesari, Dacorogna, Eke-
land, Friesecke, Klotzler, Marcellini, Mascolo, Mascolo-Schianchi, Olech and Raymond
and we refer to [12] for precise references.

The vectorial case has been investigated for some special examples by Mascolo-
Schianchi [29], Cellina-Zagatti [6] and Dacorogna-Ribeiro [20]. The only systematic
studies are those of Dacorogna-Marcellini [12] and Dacorogna-Pisante-Ribeiro [19] that
we discuss now.

The main tool for attacking the problem is the relaxation theorem of Dacorogna [9]
(see also [10]).

Theorem 31 (Relaxation theorem) Let @ C R"™ be a bounded open set, ¢ €
W (Q;R™) and f : R™*"™ — R be locally bounded, non negative and lower semi-
continuous function. Let Qf be the quasiconver envelope of f and

(QP)  inf {T(U) =/ Qf (Du(z)) dr: ue g+ WOI’OO(Q;R’”)} .
Then for every u € ¢ + Wol’oo(Q;Rm), there exists a sequence u, € ¢ + Wol’oo(Q;Rm)
such that

uy — uw in L (;R™) as v — o0

I(u,) —I(u) as v — oo
so that in particular

inf (QP) = inf (P).
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In the scalar case the quasiconvex envelope is nothing else than the convex envelope
(i.e. Qf = Cf) and we recover the classical result of L.C. Young, Ekeland and others.

It should be pointed out that Dacorogna formula in [10] for computing the quasi-
convex envelope is particularly useful in this context; it reads as follows

1
meas 2

Qf (¢) = inf f(E+Du(x)) dv: uwe Wy (QR™) ¢
(e }

With the help of the relaxation theorem we are now in a position to discuss some
existence results for the problem (P) when the boundary datum is affine. The follow-
ing lemma (cf. [12]) is elementary and gives a necessary and sufficient condition for
existence of minima.

Lemma 32 Let Q, [ and ¢ be as above, in particular Dy = &. The problem (P) has
a solution if and only if there exists © € ¢ + W01’°°(Q; R™) such that

f(Du(x))=Qf (Du(x)), ae. x € (4.1)
/Q Qf (DT (2)) d = Qf (£) meas . (4.2)

Proof. By the relaxation theorem and since ¢ is affine, we have
inf (P) =inf (QP) = Qf (£0) meas .

Moreover, since we always have f > @Qf and we have a solution of (4.1) satisfying
(4.2), we get that u is a solution of (P). The fact that (4.1) and (4.2) are necessary
for the existence of a minimum for (P) follows in the same way. m

The previous lemma explains why the set

K ={¢eR™™:Qf (&) < f(&)}

plays a central role in the existence theorems that follow. In order to ensure (4.1) we
will have to consider differential inclusions of the form studied in the previous section,
namely: find @ € ¢ + W, *°(Q;R™) such that

Du (z) € 0K, a.e. x € Q.

In order to deal with the second condition (4.2) we will have to impose some hypotheses
of the type "Qf is quasiaffine on K".

Before mentioning our more general existence theorem, we prefer to start with a
corollary that is simpler to state.

Corollary 33 LetQ C R" be a bounded open set, f : R™*" — R a lower-semicontinuous
function and let

KoCK={¢cR™":Qf (&) < f(9}
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18 Bernard Dacorogna: Calculus of variations

be a connected component of K that is assumed to be bounded. Let §o € Ko (¢ (z) =
éox) and assume that Qf is quasiaffine on Ko, meaning that there exist « € R™ and
B € R such that

Qf (&) = (T (§)) + B, V€ € Ko.

Then the problem
(P) inf{](u) = / f(Du(z)) dz: ue <p+W01’°°(Q;Rm)}
Q

has a solution @ € @ + W, > (Q; R™).

While the corollary is nearly optimal in the scalar case, it is not so in the vectorial
case for several reasons. The main ones are that:

1) it might be that there is no bounded connected component of K, as is exemplified
by Theorem 35;

2) the function Qf is, in general, not quasiaffine on the whole of the connected
component of K but only on a subset, as seen in Theorem 37.

We are therefore lead to refine the corollary, for example as in Dacorogna-Pisante-
Ribeiro [19].

Theorem 34 Let 2 C R"™ be a bounded open set, { € R™*™, f: R™*" — R qa
lower-semicontinuous function and let

K={¢cR™":Qf () < f(9)}

Assume that there exists Ko C K such that
b EO € KO:
o Ky is bounded and has the relazation property with respect to Ko N 0K,
e Qf is quasiaffine on K.

Let o (x) = &x. Then the problem

(P) inf{](u)/Qf(Du(a:)) da u€<p+W01’°°(Q;R’")}

has a solution @ € ¢ + W, > (Q; R™).

Broof. Since £ € Kj and K| is bounded and has the relaxation with respect to
Ko N 0K, we can find, appealing to Theorem 15, a map u € ¢ + W&’W(Q;Rm)
satisfying

Du e KgnoK, ae. in Q,

which means that (4.1) of Lemma 32 is satisfied. Moreover, since @ f is quasiaffine on
Ko, we have that (4.2) of Lemma 32 holds and thus the claim. =
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4.2 Examples

We will discuss here two examples and we refer to Dacorogna-Marcellini [12], Dacorogna-
Ribeiro [20] and Dacorogna-Pisante-Ribeiro [19] for more examples.
We start by considering the minimization problem,

(P)  inf {/Qg(q)(Du(x))) dr: ue o+ ng(Q;Rm)}

where  is a bounded open set of R", ¢ € W1°°(2;R™) and
—g:R — R =RU{+oc} is a lower-semicontinuous non convex function,
— @ :R™*"™ — R is quasiaffine and non constant.

We recall that in particular we can have, when m = n, ®(§) = det &.
The relaxed problem is then

(QP) inf{ 5 Cg(®(Du(z)))dz: uep+ W&’W(Q;Rm)} ,

where Cyg is the convex envelope of g (here f (&) = g (P (¢)) and we get Qf = Cyg, as
established by Dacorogna [8]).
The existence result is the following.

Theorem 35 Let Q C R™ be a bounded open set, g : R — R = RU {+oco} a lower-
semicontinuous function such that

90 _ 4o (4.3)

lt oo [t

and ¢ (x) = &z, with & € R™*™. Then there exists 4 € ¢ + W&’W(Q;Rm) solution
of (P).

Remark 36 (i) The above result has first been established by Mascolo-Schianchi [29]
and then by Cellina-Zagatti [6], Dacorogna-Marcellini [12] and Dacorogna-Ribeiro [20].

(ii) In the case m = n and (&) = det &, we can also handle non affine boundary
datum ¢ using a result of Dacorogna-Moser [17].

Proof. We just suggest how to construct the set Ky of Theorem 34. We also assume
that m = n and @ (£) = det&; the general case can be handled in a similar way,
cf. Dacorogna-Ribeiro [20]. Here the problem is sufficiently flexible, so that we can
proceed in several ways. We choose here the one that uses Theorem 27 (this is clearly
not the simplest way to proceed, but has the advantage to use an already existing
theorem). We have

K ={£€R™™: Cg(det§) < g(det&)}

which is, because of the hypotheses, a countable union of open intervals; let («, 3) be
such one and with the property that o < det{, < (3. Note that here the function
Qf (Qf (§) = Cg (det&)) is quasiaffine on K; so that the problem is only the lack of
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20 Bernard Dacorogna: Calculus of variations

boundedness of the set K. In order to remedy to this fact, we choose 0 < 12 < ... <,
be such that

2 [[ri = max{lal, |8} and v >\ (&), i=2,...,n
1=2

and let

1=V

Ko = {§ e R™" . H)\i () < H%, v=2..,n, detf e (a,ﬁ)} )

The proof follows then easily and we do not discuss the details. m
We now turn our attention to Example 6. We recall that the problem under con-
sideration is

(P) inf{/f(Du(a:)) dx : u€<p+W01’°°(Q;R2)}
Q
where (2 is a bounded open set of R?, ¢ € W1>°(Q;R?) is affine, i.e. Dy = &, and

_ 14 ifg#0
f(f){ 0 if € =0.

It was shown by Kohn-Strang [27] that the quasiconvex envelope is then
1+ [¢f? if €% +2]det £] > 1

Q&) =1 (1 + 2 |det§|)1/2 —2ldete] if ¢ +2|deté] < 1.

The existence of minimizers for problem (P) was then established by Dacorogna-
Marcellini in [12] and [16], namely

Theorem 37 Let Q C R2%, f and & be as above. Then a necessary and sufficient
condition for (P) to have a solution is that one of the following conditions hold:

(i) € = 0 or |&|° +2|det &| > 1, (ie. f (&) = Qf (&)
(i) det & # 0.

Proof. We do not discuss the details and in particular not the necessary part. We
just point out how to define the set Ky of Theorem 34. Assume that f () > Qf (&)
and det &y # 0. Since the function f is invariant under rotations and symmetries, we
can assume, without loss of generality, that

€0 €R?*2 det&y > 0 and trace&y € (0,1).

where R2*?2 denotes the set of 2 x 2 symmetric matrices. We next define
K= {5 € R2X2: [¢? 4 2|det €] < 1}
Ko={(€R2**:det¢ >0 and trace{ € (0,1)}.

It is clear that Qf is quasiaffine on Ky (Qf (§) = 2trace& — 2det £), while it is not so
on K. m
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