
IMPLICIT PARTIAL DIFFERENTIAL EQUATIONS
AND THE CONSTRAINTS OF NON LINEAR

ELASTICITY

Abstract. We study a Dirichlet problem associated to some non-
linear partial di¤erential equations under additional constraints
that are relevant in non linear elasticity. We also give several ex-
amples related to the complex eikonal equation, optimal design,
potential wells or nematic elastomers.

Bernard Dacorogna

Département de Mathématiques, EPFL, 1015 Lausanne, Switzerland
E-mail address: Bernard.Dacorogna@ep�.ch

Chiara Tanteri

Département de Mathématiques, EPFL, 1015 Lausanne, Switzerland
E-mail address: Chiara.Tanteri@ep�.ch

1. Introduction

We consider here the following Dirichlet problem (as well as some
higher order versions of the problem)

(1)
�
Fi (x; u (x) ; Du (x)) = 0; i = 1; 2; :::; I, a.e. x 2 

u = ', on @


where 
 � Rn is a bounded open set, u : 
 ! Rn and therefore
Du 2 Rn�n, Fi : Rn�n ! R; i = 1; : : : ; I; are quasiconvex functions
and ', the boundary datum, is given.
This problem has been intensively studied and we refer to Dacorogna-

Marcellini [6] for a discussion of these implicit equations. We will be
interested here in considering the case where we require that the solu-
tions satisfy some constraints that are natural in non linear elasticity.
The �rst one is the non interpenetration of matter that is expressed
mathematically by detDu > 0 and the second one is the incompressibil-
ity which reads as detDu = 1. These two questions were raised in [6]
and are discussed in Dacorogna-Marcellini-Tanteri [7] for the �rst one
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and in Müller-Sverak [14] for the second one, using a di¤erent approach
based on the method of convex integration of Gromov.
We will discuss here some theoretical results related to the �rst (Sec-

tion 2) and second (Section 3, 4) cases and deal with several relevant
examples (Section 5 to 10). We will also make some general considera-
tions concerning polyconvex hulls (Section 11) and we will conclude in
an Appendix (Section 12) with some well known properties of singular
values of matrices.
We now describe six examples that we will investigate here, but we

�rst recall that we respectively denote by coE; PcoE; RcoE, the
convex, polyconvex, rank one convex hull of a given set E � Rm�n.
The �rst example has already been considered when n = 2 in Dacoro-

gna-Marcellini [6].

Example 1.1 (Complex eikonal equation). The problem has been in-
troduced by Magnanini and Talenti [12] motivated by problems of geo-
metrical optics with di¤raction. Given 
 � Rn a bounded open set,
f : 
� R� R! R, f = f (x; u; v), a continuous function, we wish to
�nd a complex function w 2 W 1;1 (
;C)

w (x) = u (x) + i v (x)

such that

(2)

8<:
nP
i=1

w2xi + f
2 = 0; a.e. in 
;

w = '; on @


where wxi = @w=@xi. The problem is then equivalent to8<: jDvj2 = jDuj2 + f 2; a.e. in 
;
hDv;Dui = 0; a.e. in 
;
w = '; on @
:

We will solve, in fact, a more restrictive problem, namely8<: jDvj2 = r2 + f 2; jDuj2 = r2; a.e. in 
;
hDv;Dui = 0; a.e. in 
;
w = '; on @
;

for an appropriate r > 0. In algebraic terms (at this point we can
consider f to be constant) we have, letting s =

p
r2 + f 2,

E =

�
� =

�
a
b

�
2 R2�n : jaj = r; jbj = s and ha; bi = 0

�
:

Letting

A =

�
1=r 0
0 1=s

�
2 R2�2



we will prove that

PcoE = RcoE =
�
� 2 R2�n : �1 (A�) ; �2 (A�) � 1

	
where �1 (A�) ; �2 (A�) are the singular values of the matrix A� 2 R2�n
(c.f. the Appendix for more details).

The second example is important for optimal design and is related to
the method of confocal ellipses of Murat-Tartar [17] and of the results
of Dacorogna-Marcellini [4] and [6]. However the existence part will be
obtained without the use of the confocal ellipses method, contrary to
the one in [4] and [6].

Example 1.2 (Optimal design). Let 
 � R2 be a bounded open set
and consider the Dirichlet-Neumann problem8<: �w (x) 2 f0; 1g ; a.e. x 2 
;

detD2w (x) � 0; a.e. x 2 
;
w (x) = ' (x) , Dw (x) = D' (x) ; x 2 @
:

The associated algebraic problem is (denoting the set of 2�2 symmetric
matrices by R2�2s ) when we let

E =
�
� 2 R2�2s : trace � 2 f0; 1g ; det � � 0

	
;

to �nd that

RcoE = coE =
�
� 2 R2�2s : 0 � trace � � 1; det � � 0

	
:

We will next consider two more academic examples but that exhibit
some interesting features. The �rst one shows how we can handle
some problems depending on singular values under a constraint on the
positivity of the determinant.

Example 1.3. Let 
 � R2 be an open set and consider8<: �1 (Du) + �2 (Du) = 1; a.e. in 

detDu > 0; a.e. in 

u (x) = ' (x) , x 2 @
:

The associated algebraic problem is : given

E =
�
� 2 R2�2 : �1 (�) + �2 (�) = 1; det � � 0

	
to prove that

PcoE = RcoE =
�
� 2 R2�2 : �1 (�) + �2 (�) � 1; det � � 0

	
:

The fourth problem that we want to discuss is the following second
order problem.



Example 1.4. Let 
 � R2 be a bounded open set and consider the
Dirichlet-Neumann problem( ��� @2u

@xi@xj

��� = 1; a.e. x 2 
; i; j = 1; 2

u (x) = ' (x) , Du (x) = D' (x) ; x 2 @
:

The algebraic problem is then

E =
�
� =

�
�ij
�
2 R2�2s :

���ij�� = 1; i; j = 1; 2
	

and we will �nd that

PcoE = RcoE =

�
� =

�
�ij
�
2 R2�2s :

���ij�� � 1; i; j = 1; 2
j�11 � �22j � � det �

�
:

The last two examples concern the incompressibility constraint. The
�rst one is the problem of two potential wells in two dimensions that
was resolved by Müller-Sverak in [13] and by Dacorogna-Marcellini in
[5] and [6] for the case detA 6= detB and by Müller-Sverak in [14] for
the case detA = detB. In Section 9 we will show that our results also
apply to this problem.

Example 1.5 (Potential wells). Let 
 � Rn be open and

E = SO(2)A [ SO(2)B

with detA = detB > 0. Let

� 2 intRcoE

where intRcoE stands for the interior (relative to the manifold det � =
detA = detB) of the rank one convex hull of E (c.f. Section 9 for the
characterization of RcoE). Then there exists u 2 W 1;1 (
;R2) such
that �

Du (x) 2 E, a.e. in 

u (x) = �x, on @
:

The last example is related to some recent work of DeSimone-Dolzmann
[9] on nematic elastomers; we refer to this article for the description of
the physical model.

Example 1.6 (Nematic elastomers). Let r < 1 (this is called the oblate
case while r > 1 is called the prolate case and it can be handled sim-
ilarly), let 0 � �1 (A) � ::: � �n (A) denote the singular values of a
matrix A 2 Rn�n and

E =
n
A : �� (A) = r

1
2n ; 1 � � � n� 1; �n (A) = r

(1�n)
2n , detA = 1

o
:



We will prove that

RcoE =

(
A :

nY
i=�

�i (A) � r(1��)=2n; 2 � � � n; detA = 1
)

=
�
A : �� (A) 2

�
r1=2n; r(1�n)=2n

�
; 1 � � � n; detA = 1

	
(this representation formula, under the second form, has been estab-
lished in [9] when n = 2; 3; actually we will consider below a slightly
more general case). Our analytical result is then: given � 2 intRcoE
and 
 � Rn an open set, there exists u 2 '+W 1;1

0 (
;Rn) (' (x) = �x)
such that8<: �1 (Du (x)) = ::: = �n�1 (Du (x)) = r

1=2n, a.e. x 2 

�n (Du (x)) = r

(1�n)=2n, a.e. x 2 

detDu (x) = 1, a.e. x 2 
:

2. Inequality constraints

The results of this section are inspired by those of Dacorogna-Marcellini-
Tanteri [7].
We recall �rst some notations and de�nitions introduced in [6].
Notations: (1) Let N; n;m � 1 be integers. For u : Rn ! Rm
we write

DNu =

�
@Nui

@xj1 :::@xjN

�1�i�m
1�j1;:::;jN�n

2 Rm�nNs :

(The index s stands here for all the natural symmetries implied
by the interchange of the order of di¤erentiation). When N = 1
we have

Rm�ns = Rm�n

while if m = 1 and N = 2 we obtain

Rn2s = Rn�ns

i.e., the usual set of symmetric matrices.
(2) For u : 
! Rm we let

D[N ]u =
�
u;Du; :::; DNu

�
stand for the matrix of all partial derivatives of u up to the
order N . Note that

D[N ]u 2 Rm�Ms = Rm � Rm�n � Rm�n2s � :::� Rm�n(N�1)s ;

where

M = 1 + n+ :::+ n(N�1) =
nN � 1
n� 1 :



Hence

D[N ]u =
�
D[N�1]u;DNu

�
2 Rm�Ms � Rm�nNs :

We now de�ne the main property, called the relaxation property (c.f.
[6]), in order to get existence of solution.

De�nition 2.1 (Relaxation property). Let E;K � Rn � Rm�Ms �
Rm�nNs : We say that K has the relaxation property with respect to E
if for every bounded open set 
 � Rn; for every u�; a polynomial of
degree N with DNu� (x) = �, satisfying�

x;D[N�1]u� (x) ; D
Nu� (x)

�
2 intK;

there exists a sequence u� 2 CNpiec
�

;Rm

�
such that

u� 2 u� +WN;1
0 (
;Rm)

u�
�
* u� in WN;1�

x;D[N�1]u� (x) ; D
Nu� (x)

�
2 E [ intK, a.e in 
R



dist

��
x;D[N�1]u� (x) ; D

Nu� (x)
�
;E
�
dx! 0 as � !1:

The following theorem is the main abstract existence theorem.

Theorem 2.2. Let 
 � Rn be open. Let Fi : 
 � Rm�Ms � Rm�nNs !
R; Fi = Fi (x; s; �), i = 1; 2; :::; I; be continuous with respect to all
variables and quasiconvex with respect to the variable �: Let E;K �
Rn � Rm�Ms � Rm�nNs be such that

E =

�
(x; s; �) :

Fi (x; s; �) = 0; 1 � i � I1
Fi (x; s; �) � 0; I1 + 1 � i � I

�
K � f(x; s; �) : Fi (x; s; �) � 0; 1 � i � Ig :

Assume that the set in the right hand side of the inclusion is bounded
uniformly for x 2 
 and whenever s vary on a bounded set of Rm�Ms

and that K has the relaxation property with respect to E. Let ' 2
CNpiec

�

;Rm

�
such that�

x;D[N�1]' (x) ; DN' (x)
�
2 E [ intK, a.e in 
;

then there exists (a dense set of) u 2 '+WN;1
0 (
;Rm) such that�

Fi
�
x;D[N�1]u (x) ; DNu (x)

�
= 0; i = 1; 2; :::; I1, a.e. x 2 


Fi
�
x;D[N�1]u (x) ; DNu (x)

�
� 0; i = I1 + 1; :::; I, a.e. x 2 
:

Remark 2.3. (1) This result has been proved in Dacorogna-Marcellini
[6] (Theorem 6.3) when I = I1. With substantially the same proof it
can be found in Dacorogna-Marcellini-Tanteri [7].
(2) An interesting case of constraints is when I = I1 + 1 and

FI1+1 (�) = � det �



(i.e. det � � 0). It is actually this constraint that will be used in two
of the examples below.

If the set E is given by only one equation the theorem takes a simpler
form.

Theorem 2.4. Let 
 � Rn be open. Let F : 
 � Rn � Rn�n ! R be
continuous and quasiconvex. Assume that f� 2 Rn�n : F (x; s; �) � 0;
det � > 0g is bounded in Rn�n uniformly with respect to x 2 
 and s
in a bounded set of Rn. If ' 2 C1piec(
;Rn) is such that�

F (x; '(x); D'(x)) � 0; a.e. x 2 
;
detD'(x) > 0; a.e. x 2 
;

then there exists (a dense set of) u 2 '+W 1;1
0 (
;Rn) such that�

F (x; u(x); Du(x)) = 0, a.e. x 2 

detDu(x) > 0; a.e. x 2 
:

Remark 2.5. The fact that we can treat strict inequalities follows
from the observation that, by hypothesis, we can �nd � > 0 such that
detD' > � since ' 2 C1piec. The remaining part of the proof follows
from the next theorem.

We have a generalization of the above theorem.

Theorem 2.6. Let 
 � Rn be open. Let F;� : 
�Rm�Ms �Rm�nNs ! R
be continuous and respectively quasiconvex and quasia¢ ne. Assume
that n

� 2 Rm�nNs : F (x; s; �) � 0; �(x; s; �) � 0
o

is bounded in Rm�nNs uniformly with respect to x 2 
 and s in a bounded
set of Rm�Ms . If ' 2 CNpiec(
;Rm) is such that�

F
�
x;D[N�1]'(x); DN'(x)

�
� 0; a.e. x 2 
;

�
�
x;D[N�1]'(x); DN'(x)

�
< 0; a.e. x 2 
;

then there exists (a dense set of) u 2 '+WN;1
0 (
;Rm) such that�

F
�
x;D[N�1]u(x); DNu(x)

�
= 0, a.e. x 2 


�
�
x;D[N�1]u(x); DNu(x)

�
� 0; a.e. x 2 
:

Proof. We will do the proof when ' is a¢ ne and when there is no
dependence on lower order terms, i.e.

E =
n
� 2 Rm�nNs : F (�) = 0; � (�) � 0

o
:

The general case follows as in [6].



Step 1: We �rst prove that

RcoE =
n
� 2 Rm�nNs : F (�) � 0; � (�) � 0

o
:

Indeed call X the right hand side. It is clear that E � X and that
X is rank one convex; we therefore have RcoE � X. We now show
the reverse inclusion. Let � 2 X be �xed and assume that F (�) < 0,
otherwise � 2 E and the result is trivial. Since � is rank one a¢ ne, we
have for every �, a matrix of rank one, that for every t 2 R

� (� + t�) = � (�) + t hD� (�) ; �i :
We therefore choose � a matrix of rank one so that

hD� (�) ; �i = 0
(in the preceding theorem � (�) = � det �+ � and D� (�) = �adjn�1�)
and this leads to the desired identity

� (� + t�) = � (�) ; 8t 2 R:
By compactness of E we deduce that we can �nd t1 < 0 < t2 so that�

F (� + t�) < 0; 8t 2 (t1; t2)
F (� + ti�) = 0; i = 1; 2:

We can therefore rewrite

� =
t2

t2 � t1
(� + t1�) +

�t1
t2 � t1

(� + t2�)

which leads to � 2 RcoE. Note for further reference that we easily
obtain

intRcoE �
n
� 2 Rm�nNs : F (�) � 0; � (�) < 0

o
:

Step 2: We wish now to show that RcoE has the relaxation property
with respect to E, i.e. that for every bounded open set 
 � Rn; for
every u�; an a¢ ne function with DNu� (x) = �, satisfying

DNu� (x) 2 intRcoE;

there exists a sequence u� 2 CNpiec
�

;Rm

�
such that

u� 2 u� +WN;1
0 (
;Rm)

u�
�
* u� in WN;1

DNu� (x) 2 intRcoE, a.e in 
R


F
�
DNu� (x)

�
dx! 0 as � !1:

If F (�) = 0; we choose u� = u�. So from now on we can assume that
F (�) < 0 and � (�) < 0. Using then the compactness assumption we



can �nd as in Step 1, � a matrix of rank one, t1 < 0 < t2 such that (we
let �t = � + t�)

� (� + t�) = � (�) < 0

F (� + t�) = F (� + t�) < 0; 8t 2 (t1; t2)
F (� + t1�) = F (� + t2�) = 0:

The approximation lemma (c.f. Lemma 6.8 of Dacorogna-Marcellini
[6]) with A = �t1+" and B = �t2�" for " small enough and � =
t2�"

t2�t1�2"A +
�(t1+")
t2�t1�2"B leads immediately to the result. Note that in

this Lemma since rank [A�B] = 1

� (A) = � (B) = � (�) < 0

and the constructed function satis�es

dist
�
DNu�(x); co fA;Bg

�
� " a.e. in 


we deduce that by choosing " su¢ ciently small we have � (Du�) < 0
and F (Du�) < 0 which implies that

DNu�(x) 2 intRcoE

as wished. We may then apply Theorem 2.2 to get the result. �

The more di¢ cult question is to know when the relaxation property
holds if the set E is given by more than one equation. One such case is
the following theorem that uses the notion of approximation property
(c.f. Theorem 6.14 in [6]).

De�nition 2.7 (Approximation property). Let E � K (E) � Rn �
Rm�Ms � Rm�nNs : The sets E and K (E) are said to have the approxi-
mation property if there exists a family of closed sets E� and K (E�),
� > 0, such that
(1) E� � K (E�) � intK (E) for every � > 0;
(2) for every " > 0 there exists �0 = �0 (") > 0 such that dist(�;E) �

" for every � 2 E� and � 2 [0; �0];
(3) if � 2 intK (E) then � 2 K (E�) for every � > 0 su¢ ciently

small.

Theorem 2.8. Let E � Rn � Rm�Ms � Rm�nNs be closed and bounded
uniformly with respect to x 2 Rn and whenever s vary on a bounded
set of Rm�Ms and RcoE has the approximation property with K (E�) =
RcoE�, then it has the relaxation property with respect to E.

As a corollary we obtain (c.f. Corollary 6.18 in [6] or [7]).



Corollary 2.9. Let 
 � Rn be open. Let Fi : Rm�n
N

s ! R; i =
1; 2; :::; I; be quasiconvex and let

E =

�
� 2 Rm�nNs : Fi(�) = 0; i = 1; 2; :::; I1

Fi (�) � 0; i = I1 + 1; :::; I

�
:

Assume that RcoE is compact and RcoE = coE. Let ' 2 CNpiec(
;Rm)
verify

DN' (x) 2 E [ intRcoE; a.e. x 2 
;
or ' 2 WN;1(
;Rm) satisfy

DN' (x) compactly contained in intRcoE; a.e. x 2 
:

Then there exists (a dense set of) u 2 '+WN;1
0 (
;Rm) such that�

Fi(D
Nu(x)) = 0; a.e. x 2 
; i = 1; :::; I1

Fi
�
DNu(x)

�
� 0; a.e. x 2 
; i = I1 + 1; :::; I:

3. The incompressible case

Comparable results to those of the present Section are obtained by
Müller-Sverak [14] using the ideas of Gromov on convex integration;
here we show how the method of Dacorogna-Marcellini in [6] can also
be applied.
In the present Section and in Section 9 and 10 we will consider subsets

E or K of the manifold det � = 1, so when we will write intK we will
mean the interior relative to the manifold.
We now adapt the de�nitions of the relaxation and the approxima-

tion properties to the present context. Here we give the �rst one under
a slightly more restrictive form in order to avoid some technicalities.
We �rst let for � > 0 and 
 � Rn an open set, W� be the set of
functions u 2 C1piec

�

;Rn

�
such that there exists an open set 
� � 


so that meas (
� 
�) < � and u is piecewise a¢ ne in 
�. We could
consider a more general set but the proof is then more involved.

De�nition 3.1 (Relaxation property). Let E;K � Rn � Rn � Rn�n.
We say that K has the relaxation property with respect to E if for
every bounded open set 
 � Rn; for every u�; an a¢ ne function with
Du� (x) = �, satisfying

(x; u� (x) ; Du� (x)) 2 intK;



there exists a sequence u� 2 W1=� such that

u� 2 u� +W 1;1
0 (
;Rn)

u�
�
* u� in W 1;1

(x; u� (x) ; Du� (x)) 2 E [ intK, a.e in 
R


dist ((x; u� (x) ; Du� (x)) ;E) dx! 0 as � !1:

The following theorem is the main abstract existence theorem.

Theorem 3.2. Let 
 � Rn be open. Let Fi : 
�Rn�Rn�n ! R; Fi =
Fi (x; s; �), i = 1; 2; :::; I; be continuous with respect to all variables and
quasiconvex with respect to the variable �: Let E � Rn �Rn �Rn�n be
such that

E =

�
(x; s; �) 2 Rn � Rn � Rn�n : Fi (x; s; �) = 0; i = 1; 2; :::; I1

Fi (x; s; �) � 0; i = I1 + 1; :::; I; det � = 1

�
:

Assume that RcoE has the relaxation property with respect to E and
that it is bounded uniformly for x 2 
 and whenever s vary on a
bounded set of Rn�n. Let ' be an a¢ ne function such that

(x; ' (x) ; D' (x)) 2 E [ intRcoE, in 
;

then there exists (a dense set of) u 2 '+W 1;1
0 (
;Rn) such that8<: Fi (x; u (x) ; Du (x)) = 0; i = 1; 2; :::; I1, a.e. x 2 


Fi (x; u (x) ; Du (x)) � 0; i = I1 + 1; :::; I, a.e. x 2 

detDu (x) = 1, a.e. x 2 
:

Proof. We will make the proof when there is no dependence on lower
order terms, otherwise use the standard procedure in [6].
Step 1: We �rst observe that 
 � Rn can be assumed bounded,

without loss of generality. We then let V be the set of functions u so
that there exists u� 2 W1=� , u� = ' on @
 and Du� 2 E [ intRcoE
a.e. such that u� ! u in L1(
) as � !1.
Note that ' 2 V and V is a complete metric space when endowed with
the C0 norm. Note that by weak lower semicontinuity we have

V �

8<: u 2 '+W 1;1
0 (
;Rn) :

Fi (Du (x)) � 0; i = 1; 2; :::; I, a.e. x 2 

detDu (x) = 1, a.e. x 2 


9=; :
Step 2: Let for u 2 V

L (u) =

I1X
i=1

Z



Fi (Du (x)) dx:



Observe that by quasiconvexity of Fi we have for every u 2 V
(3) lim inf

us
�
*u;us2V

L (us) � L (u) :

We next immediately see that for every u 2 V (recall that in V we
have detDu = 1 and Fi (Du) � 0, i = I1 + 1; :::; I)
(4) L (u) = 0, Du (x) 2 E, a.e. in 
:
We then let

V k =

�
u 2 V : L (u) > �1

k

�
:

We have that V k is open (c.f. (3)). Furthermore it is dense in V:
This will be proved in Step 3. If this property has been established we
deduce from Baire category theorem that \V k is dense in V . Thus the
result by (4).
Step 3: So it remains to prove that for any u 2 V and any " > 0

su¢ ciently small we can �nd u" 2 V k so that
ku" � uk1 � ":

We will prove this property under the further assumption that, for
some � > 0, small, u 2 W� and

Du (x) 2 E [ intRcoE, a.e in 
:
The general case will follow by de�nition of V . By working on each
piece where u is a¢ ne and by setting u" = u on 
�
� we can assume
that u is a¢ ne in 
. The result now follows at once from the relaxation
property. �

As usual if the set E is de�ned by only one equation the relaxation
property is easier to establish and we therefore have as a �rst conse-
quence of the theorem.

Theorem 3.3. Let 
 � Rn be open. Let F : 
 � Rn � Rn�n ! R
be continuous and quasiconvex and coercive, with respect to the last
variable �, in any direction, uniformly with respect to x 2 
 and s in
a bounded set of Rn. If ' is a¢ ne and is such that�

F (x; '(x); D'(x)) � 0; a.e. x 2 
;
detD'(x) = 1; a.e. x 2 
;

then there exists (a dense set of) u 2 '+W 1;1
0 (
;Rn) such that�

F (x; u(x); Du(x)) = 0, a.e. x 2 

detDu(x) = 1; a.e. x 2 
:



Proof. We �rst let


0 = fx 2 
 : F (x; '(x); D' (x)) = 0g

1 = 
� 
0 = fx 2 
 : F (x; '(x); D' (x)) < 0g

and observe that, by continuity, 
0 is closed and hence 
1 is open; we
therefore need only to work on this last set, since in 
0 we can choose
u = '.
We may now apply the abstract theorem with

E =
�
(x; s; �) 2 Rn � Rn � Rn�n : F (x; s; �) = 0; det � = 1

	
:

K = RcoE =
�
(x; s; �) 2 Rn � Rn � Rn�n : F (x; s; �) � 0; det � = 1

	
:

The proposition below ensures that all the hypotheses of the abstract
theorem are satis�ed and therefore the theorem is proved. �
Proposition 3.4. Let F : Rn � Rn � Rn�n ! R be continuous and
rank one convex and coercive, with respect to the last variable �, in any
direction, uniformly with respect to x 2 
 and s in a bounded set of
Rn. Let

E =
�
(x; s; �) 2 Rn � Rn � Rn�n : F (x; s; �) = 0; det � = 1

	
:

Then

RcoE =
�
(x; s; �) 2 Rn � Rn � Rn�n : F (x; s; �) � 0; det � = 1

	
:

Furthermore RcoE has the relaxation property with respect to E.

Proof. We will do the proof when there is no dependence on lower order
terms, i.e.

E =
�
� 2 Rn�n : F (�) = 0; det � = 1

	
:

Step 1 : We now prove that

RcoE =
�
� 2 Rn�n : F (�) � 0; det � = 1

	
:

Indeed call X the right hand side. It is clear that E � X and that
X is rank one convex; we therefore have RcoE � X. We now show
the reverse inclusion. Let � 2 X be �xed and assume that F (�) < 0,
otherwise � 2 E and the result is trivial. We can then �nd � 2 Rn�n a
matrix of rank one so that

det (� + t�) = det � = 1

for every t 2 R. This is easy and follows from the following observation
(� being a matrix of rank one)

det (� + t�) = det � + t hadjn�1�; �i ;
so choose � so that

(5) hadjn�1�; �i = 0:



By compactness of E we deduce that we can �nd t1 < 0 < t2 so that�
F (� + t�) < 0; 8t 2 (t1; t2)
F (� + ti�) = 0; i = 1; 2:

We can therefore rewrite

� =
t2

t2 � t1
(� + t1�) +

�t1
t2 � t1

(� + t2�)

which leads to � 2 RcoE.
Step 2 : We wish now to show that for every bounded open set


 � Rn; for every u�; an a¢ ne function with Du� (x) = �, satisfying
Du� (x) 2 intRcoE;

there exists a sequence u� 2 W1=� , such that

u� 2 u� +W 1;1
0 (
;Rn)

u�
�
* u� in W 1;1

Du� (x) 2 intRcoE, a.e in 
R


F (Du� (x)) dx! 0 as � !1:

If F (�) = 0; we choose u� = u�. So from now on we can assume
that F (�) < 0 (and det � = 1). Using then the coercivity assumption
we can �nd as in Step 1, � a matrix of rank one, t1 < 0 < t2 such that
(we let �t = � + t�)

det (� + t�) = det � = 1

F (� + t�) = F (� + t�) < 0; 8t 2 (t1; t2)
F (� + t1�) = F (� + t2�) = 0:

So let � be large enough. We can then �nd � = �(�) > 0 so that

F (�t) � ��; 8t 2 [t1 + 1=�; t2 � 1=�]:
Call A = �t1+1=� , B = �t2�1=� , '(x) = u�(x) and observe that

detA = detB = 1; rankfA�Bg = 1
and

D' = � =
t2 � 1=�

t2 � t1 � 2=�
A+

� (t1 + 1=�)
t2 � t1 � 2=�

B:

By continuity of F we can �nd �
0
= �

0
(� = �(�)) > 0 so that

dist(�; co fA;Bg) � �0 ) F (�) � ��=2:

Therefore apply approximation Lemma 4.1 with " < minf1=�; �0g and
call u� the function that is found in the Lemma, to get the result. �



The next question we discuss is to know when the relaxation property
holds if the set E is de�ned by more than one equation. The question
is more involved and we need, as in Section 2 or as in [6], the so called
approximation property.

De�nition 3.5 (Approximation property). Let E � K (E) � Rn �
Rn � Rn�n: The sets E and K (E) are said to have the approximation
property if there exists a family of closed sets E� and K (E�), � > 0,
such that
(1) E� � K (E�) � intK (E) for every � > 0;
(2) for every " > 0 there exists �0 = �0 (") > 0 such that dist(�;E) �

" for every � 2 E� and � 2 [0; �0];
(3) if � 2 intK (E) then � 2 K (E�) for every � > 0 su¢ ciently

small.

Theorem 3.6. Let E � Rn � Rn � Rn�n be closed and bounded uni-
formly with respect to x 2 Rn and whenever s vary on a bounded set of
Rn and RcoE has the approximation property with K (E�) = RcoE�,
then it has the relaxation property with respect to E.

Proof. We will make the proof when there is no dependence on lower
order terms. We therefore are given 
 � Rn, a bounded open set and
u, an a¢ ne function with Du (x) = �, with � 2 intRcoE and we wish
to show that there exists a sequence u" 2 W" such that

(6)

u" 2 u+W 1;1
0 (
;Rn)

u"
�
* u in W 1;1

Du" (x) 2 E [ intRcoE, a.e in 
R


dist (Du" (x) ;E) dx! 0 as "! 0:

By the approximation property we have, for some �, that � 2 RcoE�
and hence that � 2 RJ coE� for a certain J . We then proceed by
induction on J .
Step 3.1: We start with J = 1. We can therefore write

Du = � = tA+ (1� t)B; rank fA�Bg = 1;

with

A;B 2 E�:



We then use the approximation Lemma 4.1 to �nd (setting 
" = 
A [

B) u" 2 W" 8>>>>>><>>>>>>:

u" � u near @

ku" � uk1 � "

Du"(x) =

�
A in 
A
B in 
B

detDu"(x) = detA = detB; in 

dist (Du"(x); RcoE�) � "; in 


where we have used the fact that

co fA;Bg � RcoE�:

The claim (6) follows by choosing " and � smaller if necessary.
Step 3.2: We now let for J > 1

� 2 RJ coE�:

Therefore there exist A;B 2 Rn�n such that�
� = tA+ (1� t)B; rank fA�Bg = 1
A;B 2 RJ�1 coE�:

We then apply the approximation Lemma 4.1 and �nd that there exist
a vector valued function v 2 W"=2 and 
A;
B disjoint open sets such
that 8>>>>>><>>>>>>:

meas (
� (
A [ 
B)) � "=2 .meas

v � u near @

kv � uk1 � "=2

Dv(x) =

�
A in 
A
B in 
B

dist (Dv(x); RcoE�) � ", in 
:

We now use the hypothesis of induction on 
A;
B and A;B. We
then can �nd e
A; e
B, vA 2 W"=4 in 
A, vB 2 W"=4 in 
B satisfying8>>>>>>>><>>>>>>>>:

meas(
A � e
A); meas(
B � e
B) � "=4 .meas

vA � v near @
A, vB � v near @
B
kvA � vk1 � "=2 in 
A; kvB � vk1 � "=2 in 
B
dist(DvA(x);E�) � "; a.e. in e
A;
dist(DvB(x);E�) � "; a.e. in e
B;
dist(DvA(x); RcoE�) � "; a.e. in 
A;
dist(DvB(x); RcoE�) � "; a.e. in 
B:



Letting e
 = e
A [ e
B and
u"(x) =

8<: v(x) in 
� (
A [ 
B)
vA(x) in 
A
vB(x) in 
B

we have indeed obtained (6) by choosing " and � smaller if necessary,
and thus the result. �

4. The approximation lemma

The following result is due to Müller-Sverak [14] and is an extension
of a classical lemma (c.f. for example Lemma 6.8 in [6]) to handle
constraint on the determinants. For the convenience of the reader we
will give the proof of Müller-Sverak with however a slight variation.

Lemma 4.1. Let 
 � Rn be an open set with �nite measure. Let t 2
[0; 1] and A;B 2 Rn�n with rank fA�Bg = 1 and detA = detB > 0.
Let ' be such that

D'(x) = tA+ (1� t)B; 8x 2 
:

Then, for every " > 0; there exist u 2 C1
�

;Rn

�
and disjoint open

sets 
A;
B � 
, so that8>>>>>>>><>>>>>>>>:

jmeas 
A � t meas 
j ; jmeas 
B � (1� t)meas 
j � "
u � ' near @

ku� 'k1 � "

Du(x) =

�
A in 
A
B in 
B

detDu(x) = detA = detB; in 

dist (Du(x); co fA;Bg) � "; in 
:

Remark 4.2. By co fA;Bg = [A;B] we mean the closed segment join-
ing A to B.

Proof. We divide the proof into two steps.
Step 1: We �rst assume that

D' = tA+ (1� t)B = I

and hence detA = detB = 1. We also assume (these assumptions will
be removed in Step 2) that the matrix has the form

A�B = � 
 e1



where e1 = (1; 0; :::; 0) ; � = (0; �2; :::; �n) 2 Rn, i.e.

A�B =

0BB@
0 0 ::: 0
�2 0 ::: 0
::: ::: ::: :::
�n 0 ::: 0

1CCA 2 Rn�n:

We can express 
 as union of cubes with faces parallel to the coordinate
axes and a set of small measure. Then, by posing u � ' on the set
of small measure, and by homotheties and translations, we can reduce
ourselves to work with 
 equal to the unit cube.
Let 
" be a set compactly contained in 
 and let � 2 C10 (
) and

L > 0 be such that

(7)

8>>>><>>>>:
meas (
� 
") � "=2
0 � �(x) � 1; 8x 2 

�(x) = 1; 8x 2 
"
jD�(x)j � L="; 8x 2 
� 
"
jD2�(x)j � L="2; 8x 2 
� 
":

Let us de�ne a C1 function v : [0; 1]! R in the following way: given
� > 0; divide the interval (0; 1) into three �nite unions IA, IB, J of
disjoint open subintervals such that8>>>>>><>>>>>>:

IA [ IB [ J = [0; 1]
meas IA = t� �; meas IB = 1� t� �

v00(x1) =

�
(1� t) if x1 2 IA
�t if x1 2 IB

v00(x1) 2 [�t ; (1� t) ] ; 8x1 2 (0; 1)
jv(x1)j ; jv0(x1)j � �; 8x1 2 (0; 1) :

We then let


A = fx 2 
" : x1 2 IAg ; 
B = fx 2 
" : x1 2 IBg

and observe that by choosing � small enough we have

jmeas 
A � t meas 
j ; jmeas 
B � (1� t)meas 
j � ":

We next de�ne V : Rn ! Rn by

V (x) = v0 (x1) � (x) (0; �2; :::; �n)

+v (x1) (�
nX
i=2

�i
@�

@xi
; �2

@�

@x1
; �3

@�

@x1
; :::; �n

@�

@x1
):



Note that V 2 C1 and has the following properties (where � has been
chosen su¢ ciently small)

div V � 0 in 


V � 0 near @


jDV � v00� �
 e1j ; jV j � "2 in 


DV =

�
(1� t)� 
 e1, in 
A
�t � 
 e1, in 
B:

We can now de�ne u as the �ow associated to the vector �eld V (this
is the usual procedure to construct a volume preserving map), i.e.

(8)
�

d
ds
u(s; x) = V (u(s; x)); s 2 [0; 1]

u(0; x) = x:

The map u(x) = u(1; x) has all the claimed properties, as will now be
shown.
1) Indeed since V � 0 near @
, we have by uniqueness of the solution

of the di¤erential system that

u(s; x) � x; 8s 2 [0; 1]

and hence the boundary condition for u is satis�ed (recall that by
hypothesis we are considering the case '(x) = x).
2) Since we have jV j � "2 we deduce that

(9) ju(s; x)� xj =
����Z s

0

V (u(�; x))d�

���� � "2s; 8s 2 [0; 1] ; 8x 2 
:
3) If x 2 
A [ 
B then by uniqueness of solutions we �nd

u(s; x) = x+ s v0 (x1)�; 8s 2 [0; 1]

and hence

Du(x) = Dxu(1; x) = I + v
00(x1)�
 e1 =

�
A in 
A
B in 
B:

4) Since div V � 0 in 
 we have automatically (c.f. for example [2]
page 28)

detDxu(s; x) � 1; 8s 2 [0; 1] ; 8x 2 
:
5) Finally it remains to show that

dist (Du(x); co fA;Bg) � " a.e. in 
:

We �rst set
L (x) = v00(x1) �(x) �
 e1:



Returning to (8) we get�
d
ds
Dxu(s; x) = DV (u(s; x))Dxu(s; x); s 2 [0; 1]

Dxu(0; x) = I

and we compare the solution of this system with the one of�
d
ds
F (s; x) = L (x)F (s; x); s 2 [0; 1]

F (0; x) = I:

Using the properties of V and (9) we get that

jF (s; x)�Dxu(s; x)j � "; 8s 2 [0; 1] ; 8x 2 
:

The conclusion then follows from the observation that

F (s; x) = esL(x) = I + sv00(x1) �(x) �
 e1; s 2 [0; 1]

and the facts that � 2 [0; 1], v00 2 [�t ; (1� t) ].
Step 2: We now consider the general case. Since A� B is a matrix

of rank one we can �nd a; b 2 Rn (replacing a by jbj a we can assume
that jbj = 1) such that

C�1A� C�1B = a
 b:

where C = D' = tA + (1� t)B. We can then �nd R = (rij) 2
SO (n) � Rn�n (i.e. a rotation) so that b = e1R and hence e1 = bRt.
We then set e
 = R
 andeA = RC�1ARt and eB = RC�1BRt:
We observe that by construction, setting � = Ra, we have

t eA+ (1� t) eB = IeA� eB = �
 e1:

Note that this implies in particular that �1 = 0 (since det eA = det eB =
1) and hence � = (0; �2; :::; �n) : We may therefore apply Step 1 to e

and to e' (y) = RC�1' (Rty) and �nd e
 eA, e
 eB and eu 2 C1(e
;Rn) with
the claimed properties. By setting�

u (x) = CRteu(Rx); x 2 


A = R

te
 eA; 
B = R
te
 eB

we get the result by recalling that

Du (x) = CRtDeu(Rx)R:
�



5. The complex eikonal equation

We now discuss Example 1.1. We will �rst derive a theorem on the
rank one convex hull and then go back to the di¤erential equation.
First recall the notation of the Appendix. For a matrix � 2 Rm�n

� =

0@ �11 � � � �1n
...

...
�m1 � � � �mn

1A =

0@ �1

...
�m

1A = (�1; :::; �n)

we let 0 � �1 (�) � ::: � �m^n (�) be its singular values.
We then have the following

Theorem 5.1. Case 1 : Let m � n; r1; :::; rm > 0 and
E =

�
� 2 Rm�n :



�i; �j

�
= rirj�ij

	
where �ij is the Kronecker symbol. Let

A = diag

�
1

r1
; :::;

1

rm

�
2 Rm�m

then

E =
�
� 2 Rm�n : �i (A�) = 1; i = 1; :::;m

	
RcoE = coE =

�
� 2 Rm�n : �m (A�) � 1

	
:

Case 2 : Let m � n; r1; :::; rn > 0 and
E =

�
� 2 Rm�n :



�i; �j

�
= rirj�ij

	
where �ij is the Kronecker symbol. Let

A = diag

�
1

r1
; :::;

1

rn

�
2 Rn�n

then

E =
�
� 2 Rm�n : �i (�A) = 1; i = 1; :::; n

	
RcoE = coE =

�
� 2 Rm�n : �n (�A) � 1

	
:

Remark 5.2. (1) The �rst case with m = 2 will apply to the complex
eikonal equation.
(2) If we consider the second case with m = 3, n = 2, r1 = r2 and

� = Du (x; y) =

0@ u1x u1y
u2x u2y
u3x u3y

1A
then Du 2 E means, in geometrical terms, that the surface has been
parametrized globally by isothermal coordinates.



(3) The casem = n = 2 has been established in [6]. Recently Boussel-
sal and Le Dret [1] (still when m = n = 2), in the context of nonlinear
elasticity, found that (c.f. their Theorem 3.11 with " = 0) if r1 = r2 = 1
then

F =
n
� 2 R2�2 :

���i��2 + ��
�1; �2��� � 1; i = 1; 2
o
� RcoE:

This is of course compatible with the result of [6] and of the above
theorem. Note however that F 6= RcoE since, for example,

� =

 
1p
3
0

p
2p
3
0

!
2 RcoE, � =2 F:

Proof. Obviously the two cases are transposed one from each other and
we therefore will only deal with the second one. We start by letting

X =
�
� 2 Rm�n : �n (�A) � 1

	
:

Step 1 : We �rst prove that RcoE � coE � X. The �rst inclu-
sion RcoE � coE always holds and the second one follows from the
following two observations.
First we note that the set X is convex since the function � ! �n (�A)

is convex (c.f., for example, Lemma 7.10 in [6]).
Next observe that the inclusion E � X holds. Indeed if � 2 E (note

that �A =
�
�1

r1
; :::; �n

rn

�
) then

� 2 E ,
D
(�A)i ; (�A)j

E
= �ij ,

�A 2 O (m;n), �� (�A) = 1; 1 � � � n:

Step 2 : We now discuss the reverse inclusions X � RcoE � coE.
Let � 2 X. Replacing � by �A we can assume, without loss of generality,
that A = In�n. Applying Theorem 12.4, we can �nd R 2 O (n) such
that

�R = e� = �e�1; :::;e�n� , with De�i;e�jE = ���e�i��� ���e�j��� �ij; �i (�) = ���e�i��� :
Since the sets E and X are invariant under the (right) action of O(n)
we will assume, without loss of generality, that

� = (�1; :::; �n) , with


�i; �j

�
= 0, 8i 6= j; �i (�) = j�ij � 1; 1 � i � n:

It is therefore su¢ cient to show that such � belongs to RcoE.



Assume �rst that j�ij > 0, 8i = 1; :::; n and write

� = (�1; :::; �n) =
1 + j�1j
2

�+ +
1� j�1j
2

��

=
1 + j�1j
2

�
�1
j�1j

; �2; :::; �n

�
+
1� j�1j
2

�
��1
j�1j

; �2; :::; �n

�
:

Note that rank f�+ � ��g = 1 and that if �� =
�
��1 ; �

�
2 ; :::; �

�
n

�
then


��i ; �
�
j

�
= 0, 8i 6= j;

����1 �� = 1; ����i �� � 1, 8i = 2; :::; n:
Iterating the procedure with the second component and then with the
other ones we conclude that � can be written as a rank one convex
combination of elements of E; i.e. � 2 RcoE.
The case where some of the j�ij = 0 is handled similarly. For example

if �1 = 0 we write

� = (�1; :::; �n) =
1

2
�+ +

1

2
��

=
1

2
(e1; �2; :::; �n) +

1

2
(�e1; �2; :::; �n)

where e1 is any vector of Rm such that

je1j = 1; h�i; e1i = 0, 8i = 2; :::; n:

Iterate again the procedure to deduce that � 2 RcoE, as claimed. This
concludes the proof. �

We can �nally apply the results in Section 2 to obtain the following
existence theorem for the complex eikonal equation (the case n = 2 is
already in [6]).

Corollary 5.3. Let 
 � Rn be a bounded open set, f : 
�R�R! R,
f = f (x; u; v), a continuous function and ' 2 W 1;1 (
;C). Then there
exists w 2 W 1;1 (
;C) satisfying

(10)

8<:
nP
i=1

w2xi + f
2 = 0; a.e. in 
;

w = '; on @


where wxi = @w=@xi. Or, in other words, there exists (u; v) 2 W 1;1 (
;R2)
such that 8<: jDvj2 = jDuj2 + f 2; a.e. in 
;

hDv;Dui = 0; a.e. in 
;
(u; v) = ('1; '2) ; on @
:



Proof. In fact we solve a more restrictive problem of the type of the
above theorem, i.e.8>><>>:

jDuj2 = r2; a.e. in 
;
jDvj2 = r2 + f 2; a.e. in 
;
hDv;Dui = 0; a.e. in 
;
(u; v) = ('1; '2) ; on @


where r > 0 is chosen so large that

�2 (AD') � 1� "
for " > 0; i.e.

D' (x) compactly contained in intRcoE; a.e. x 2 
:
We may then apply Corollary 2.9 with F1 = �1 + �2 � 2; F2 = �2 � 1
(in case f is constant, otherwise proceed as in [6]). �

6. A problem of optimal design

We will denote, in this section, the set of 2 � 2 symmetric matrices
by R2�2s . Our algebraic result is as follows.

Theorem 6.1. Let

E =
�
� 2 R2�2s : trace � 2 f0; 1g ; det � � 0

	
;

then

RcoE = coE =
�
� 2 R2�2s : 0 � trace � � 1; det � � 0

	
;

intRcoE =
�
� 2 R2�2s : 0 < trace � < 1; det � > 0

	
:

Remark 6.2. Note that it is slightly surprising that the rank one convex
hull is in fact convex since the function � ! det � is not convex.

Proof. We call

X =
�
� 2 R2�2s : 0 � trace � � 1; det � � 0

	
Y =

�
� 2 R2�2s : 0 < trace � < 1; det � > 0

	
:

Step 1 : we �rst prove that

RcoE � coE � X:
The �rst inclusion always holds and the second one follows from the
fact that E � X and that X is convex. Indeed let �; � 2 X, 0 � t � 1
we wish to show that t� + (1� t) � 2 X. It is clear that the �rst
inequality in the de�nition of X holds since � ! trace � is linear. We
now show the second one. Observe �rst that since det � = �11�22� �212,
det � = �11�22� �212 � 0 and trace �; trace � � 0 then �11; �22; �11; �22 �



0 and we therefore have (assume below that �11; �11 > 0 otherwise the
inequality below is trivial)De�; �E � �11�22 + �11�22 � 2�12�12

� �11
�212
�11

+ �11
�212
�11

� 2�12�12 =
(�11�12 � �11�12)

2

�11�11
� 0:

We therefore deduce that

det (t� + (1� t) �) = t2 det � + t (1� t)
De�; �E+ (1� t)2 det � � 0:

Step 2 : we now prove that

X � RcoE:
Since X is compact, as usual, it is enough to prove that @X � RcoE.
However it is easy to see that

@X = E [
�
� 2 R2�2s : 0 � trace � � 1; det � = 0

	
and therefore the proof will be completed once we will show that the
second set in the right hand side is in RcoE. Assume that � is such
that 0 < t = trace � < 1 and det � = 0: We can then write

� =

�
x

p
x (t� x)p

x (t� x) t� x

�
= t�1 + (1� t) �2

= t

�
�

p
� (1� �)p

� (1� �) 1� �

�
+ (1� t)

�
0 0
0 0

�
where x = t�: The result follows from the facts that �1; �2 2 E and
det (�1 � �2) = 0.
Step 3 : The fact that Y = intRcoE is easy. �
Combining the above theorem with Corollary 2.9 we get

Theorem 6.3. Let 
 � R2 be an open set and ' 2 C2piec
�


�
satisfy�

0 � �' (x) � 1; a.e. x 2 
;
detD2' (x) > 0; a.e. x 2 
;

or ' 2 W 2;1 (
) such that�
" � �' (x) � 1� "; a.e. x 2 
;
detD2' (x) � "; a.e. x 2 
;

for some " > 0; then there exists w 2 '+W 2;1
0 (
)�

�w (x) 2 f0; 1g ; a.e. x 2 
;
detD2w (x) � 0; a.e. x 2 
:



Remark 6.4. The above theorem has been proved (except the case with
W 2;1 boundary data) in Theorem 3.12 in [6] using the method of con-
focal ellipses of Murat-Tartar. However the proof we have here (c.f.
also [7]) relies on the abstract existence result of Section 2 and on the
algebraic theorem above. Of course the use of the abstract theorem is
more �exible, because we could imagine, for example, to replace 1 by a
function a (x; u;Du), which is out of reach by the explicit method.

7. A first academic example

Inspired by the two preceding examples we look to the problem (re-
calling that we denote the singular values of a matrix � 2 R2�2 by
0 � �1 (�) � �2 (�)).
Theorem 7.1. Let 0 � �; � < 1 and

E =
�
� 2 R2�2 : �1 (�) + �2 (�) = 1� �; det � � �

	
then

RcoE =
�
� 2 R2�2 : �1 (�) + �2 (�) � 1� �; det � � �

	
intRcoE =

�
� 2 R2�2 : �1 (�) + �2 (�) < 1� �; det � > �

	
:

Remark 7.2. Note that if (1� �)2 � 4� < 0 then E = ;. It can also
be proved that if f (�) = �1 (�) + �2 (�) and g (�) = j�j2 � 2 det � then

coE =
�
� 2 R2�2 : f (�) � 1� �; g (�) � (1� �)2 � 4�

	
;

which in the case � = 0 takes the simpler form

coE =
�
� 2 R2�2 : �1 (�) + �2 (�) � 1� �

	
:

Proof. We let

X =
�
� 2 R2�2 : �1 (�) + �2 (�) � 1� �; det � � �

	
:

The fact that RcoE � X is elementary since E � X and the functions
� ! �1 (�) + �2 (�) and � ! � det � are polyconvex. So we only need
to show the converse inclusion. The compactness of X implies that the
result will be proved if we can show that @X � RcoE. Since

@X = E [
�
� 2 R2�2 : �1 (�) + �2 (�) � 1� �; det � = �

	
;

we only need to show that any � 2 R2�2 with �1 (�) + �2 (�) < 1 � �
and det � = � belongs to RcoE. Choose � 2 R2�2 be any matrix of
rank one such thatDe�; �E � �11�22 + �11�22 � �12�21 � �21�12 = 0:
De�ne then for t 2 R

�t = � + t�



and observe that by construction det �t = det � = �: Using again the
compactness argument we can �nd t1 < 0 < t2 such that �t1 ; �t2 2 E;
i.e.

�1
�
�ti
�
+ �2

�
�ti
�
= 1� �; i = 1; 2;

the result then follows at once (the representation formula for intRcoE
is easily deduced). �

As a corollary we obtain

Corollary 7.3. Let 
 � R2 be an open set and ' 2 C1piec
�


�
be such

that
�1 (D') + �2 (D') < 1; detD' > 0; a.e. in 
:

Then there exists u 2 '+W 1;1
0 (
) satisfying

�1 (Du) + �2 (Du) = 1; detDu > 0; a.e. in 
:

Proof. This theorem follows either directly from Theorem 2.4 or via
the approximation property as done below. First �nd �0 > 0 so that

detD' � �0 > 0:
Let � � �0 and

E� =
�
� 2 R2�2 : �1 (�) + �2 (�) = 1� �; det � � �

	
(E = E�0) hence according to the above theorem we have

RcoE� =
�
� 2 R2�2 : �1 (�) + �2 (�) � 1� �; det � � �

	
:

We may then combine Theorem 2.2 and Theorem 2.8 to get the result
�

8. A second academic example

We will now consider Example 1.4 and we will compute its rank one
convex hull. Recall that the set of 2� 2 symmetric matrices is denoted
by R2�2s .

Theorem 8.1. Let aij > 0; i; j = 1; 2 with a12 = a21. Let

E =
�
� =

�
�ij
�
2 R2�2s :

���ij�� = aij; i; j = 1; 2
	
:

then

coE =
�
� =

�
�ij
�
2 R2�2s :

���ij�� � aij; i; j = 1; 2
	
:

Case 1 : If a11a22 � a212 < 0 then
RcoE =

�
� =

�
�ij
�
2 R2�2s : j�12j = a12; j�11j � a11; j�22j � a22

	
:



Case 2 : If a11a22 � a212 = 0 then

RcoE =

�
� =

�
�ij
�
2 R2�2s :

���ij�� � aij; i; j = 1; 2
ja22�11 � a11�22j � � det � = ��11�22 + �212

�
:

Case 3 : If a11a22 � a212 > 0 then

RcoE �
�
� =

�
�ij
�
2 R2�2s :

���ij�� � aij; i; j = 1; 2
ja22�11 � a11�22j � a11a22 � a212 � det �

�
:

Remark 8.2. (1) If we consider the 2�2 matrix 0 then it is clear that
in Case 1 : 0 =2 RcoE, while in Case 2 : 0 2 RcoE but 0 =2 intRcoE.
It can be shown, however, that in Case 3 : 0 2 intRcoE.
(2) To apply the above theorem to partial di¤erential equations one

needs that intRcoE 6= ;; this does not happen in Case 1, contrary to
the two other cases. However we need also the approximation property
(c.f. De�nition 2.7) of the rank one convex hull that we are not able,
at the moment, to prove.
(3) In Case 3 we were not able to �nd a complete characterization of

RcoE; the set given in the right hand side of the inclusion is too large.

Proof. The representation formula for the convex hull is trivial.
Case 1 : We denote by

X =
�
� =

�
�ij
�
2 R2�2s : j�12j = a12; j�11j � a11; j�22j � a22

	
:

1) It is clear that X � RcoE: Indeed write any � 2 X (assume
without loss of generality that �12 = a12) as

� =

�
�11 a12
a12 �22

�
=
a11 + �11
2a11

�
a11 a12
a12 �22

�
+
a11 � �11
2a11

�
�a11 a12
a12 �22

�
and similarly�
�a11 a12
a12 �22

�
=
a22 + �22
2a22

�
�a11 a12
a12 a22

�
+
a22 � �22
2a22

�
�a11 a12
a12 �a22

�
to deduce that � 2 RcoE.
2) We now show the reverse inclusion. Observe �rst that trivially

E � X. Therefore to get the claimed result it is enough to show that
X is a rank one convex set. So let �; � 2 X with det (� � �) = 0 and
0 < t < 1: Note that since �; � 2 X then (�12 � �12)

2 is either 0 or 4a212:
The second case cannot happen since we would have

(11)
�

0 = det (� � �) = (�11 � �11) (�22 � �22)� (�12 � �12)
2

� (j�11j+ j�11j) (j�22j+ j�22j)� 4a212 � 4a11a22 � 4a212 < 0
;

which is absurd. So the only case that can happen is �12 = �12 (with
j�12j = a12). The claimed result t� + (1� t) � 2 X is then immediate.



Case 2 : As before we call

X =

�
� =

�
�ij
�
2 R2�2s :

���ij�� � aij; i; j = 1; 2
ja22�11 � a11�22j � � det � = ��11�22 + �212

�
:

1) We easily see that E � X and that X is a rank one convex
(in fact even polyconvex) set since all the functions involved with the
inequalities are polyconvex and thus rank one convex. We therefore
have RcoE � X.
2) We now discuss the inclusion X � RcoE. We start by observing

that if we can show (c.f. below) that @X � RcoE then the result will
follow. Indeed if � 2 intX, since X is compact, we can �nd for every
� 2 R2�2s with rank� = 1, t1 < 0 < t2; such that

� + t1�; � + t2� 2 @X
and hence since @X � RcoE we get that � 2 RcoE.
We now wish to show that if � 2 @X then � 2 RcoE. Note �rst that

the last inequality in the de�nition of X is equivalent, bearing in mind
that a11a22 � a212 = 0, to

(12)
�
0 � a212 � �212 � (a11 � �11) (a22 + �22)
0 � a212 � �212 � (a11 + �11) (a22 � �22)

:

Observe that if either j�11j = a11 or j�22j = a22 then by (12) necessarily
j�12j = a12: However if j�12j = a12 then, by the same argument as in
Case 1, we deduce that � 2 RcoE.
So we now assume that

���ij�� < aij and (since � 2 @X) one of the
inequalities in (12) is an equality and without loss of generality say the
�rst one while the second one is a strict inequality. If we call

V1 =
�
� =

�
�ij
�
2 R2�2s : a212 � �212 = (a11 � �11) (a22 + �22)

	
V2 =

�
� =

�
�ij
�
2 R2�2s : a212 � �212 = (a11 + �11) (a22 � �22)

	
Y1 = @X \ V1

then � 2 relintY1 (the relative interior of Y1). We can then choose

� =

�
�21 �1�2
�1�2 �22

�
with �1; �2 6= 0 so that

� + t� 2 V1; 8t 2 R;
this is always possible by choosing

�1 = 1; �2 = �
a12 + �12
a11 � �11



or more generally any non zero solution of

�22 (a11 � �11) + 2�1�2�12 � �21 (a22 + �22) = 0:
Then since � 2 relintY1 and Y1 is compact we can �nd t1 < 0 < t2;
such that

� + t1�; � + t2� 2 @Y1:

But e� 2 @Y1 means that either ���e�ij��� = aij for a certain i; j and this

case has already been dealt with or e� 2 V2. Hence the only case that
requires still to be analyzed is when

���ij�� < aij and � 2 V1 \ V2, i.e.
when in (12) the two inequalities are actually equalities. Note that any
� 2 V1 \ V2 is of the form

� = �11

0@ 1 �
q

a22
a11

�
q

a22
a11

a22
a11

1A
and thus if we denote by

� =

0@ 1 �
q

a22
a11

�
q

a22
a11

a22
a11

1A ;
which is a matrix of rank one, we �nd that

� + t� 2 V1 \ V2; 8t 2 R:
The usual argument then applies, namely if

���ij�� < aij and � 2 V1 \ V2
we can �nd t1 < 0 < t2; such that one of the inequalities

���ij�� < aij
becomes an equality; in which case we conclude that � 2 RcoE by the
previous steps.
Case 3 : The claimed inclusion follows for the same reasons as in

Case 2. �

9. The case of potential wells

We now discuss how to apply Theorem 3.2 to the case of two po-
tential wells under incompressibility constraint (this result has recently
been obtained by Müller-Sverak [14] and we show here how our method
gives the same result). We start, as usual, with some algebraic consid-
erations.

Proposition 9.1. Let 0 < � < 1,

� =

�
� 0
0 1=�

�



and
E = SO(2)I [ SO(2)�:

Let

F (�) =
p
(�11 � �22)2 + (�12 + �21)2+

r
(
1

�
�11 � ��22)2 + (��12 +

1

�
�21)

2

G (�) = (�11 � �22)2 + (�12 + �21)2 + (
1

�
�11 � ��22)2 + (��12 +

1

�
�21)

2:

Then F and G are convex and invariant under the (left) action of
SO(2). Moreover

E =

(
� 2 R2�2 : F (�) = 1

�
� �, G (�) =

�
1

�
� �
�2
, det � = 1

)

RcoE =

�
� 2 R2�2 : F (�) � 1

�
� �; det � = 1

�
intRcoE =

�
� 2 R2�2 : F (�) < 1

�
� �; det � = 1

�
:

Remark 9.2. Note that �1 = diag (1� �; 1= (1� �)) 2 intRcoE and
�2 = diag (�=(1� �); (1� �) =�) 2 intRcoE for � > 0 su¢ ciently
small.

Proof. The result follows from the representation obtained by Sverak
and Corollary 8.3 of [6].
1) The fact that F and G are convex and invariant under the (left)

action of SO(2) is easy.
2) Let us show now that if

X =

(
� 2 R2�2 : F (�) = 1

�
� �, G (�) =

�
1

�
� �
�2
, det � = 1

)
then E = X. The inclusion E � X is easy since

F (I) = F (�) =
1

�
��; G (I) = G (�) =

�
1

�
� �
�2
; det I = det� = 1

and F , G and det are invariant under the (left) action of SO(2). We
now discuss the reverse inclusion. Let � 2 X then either�

(�11 � �22)2 + (�12 + �21)2
�
= 0

which implies that � 2 SO(2) or�
(
1

�
�11 � ��22)2 + (��12 +

1

�
�21)

2

�
= 0



which implies that � 2 SO(2)�. In either cases we �nd that � 2 E.
3) Call

Y =

�
� 2 R2�2 : F (�) � 1

�
� �; det � = 1

�
:

We now show that RcoE = Y . To prove this we use the representation
formula established by Sverak (c.f. [6]), i.e.,

RcoE =

8>><>>:
� =

�
y1 �y2
y2 y1

��
1 0
0 1

�
+

�
z1 �z2
z2 z1

��
� 0
0 1=�

�
p
y21 + y

2
2 +

p
z21 + z

2
2 � 1; det � = 1

9>>=>>; :
Expressing y1, y2, z1, z2 in terms of �ij we �nd8>>>>>>><>>>>>>>:

�11 = y1 + �z1

�12 = �(y2 + 1
�
z2)

�21 = y2 + �z2

�22 = y1 +
1
�
z1

,

8>>>>>>>><>>>>>>>>:

�
1
�
� �
�
y1 =

1
�
�11 � ��22�

1
�
� �
�
y2 = ��12 +

1
�
�21�

1
�
� �
�
z1 = �(�11 � �22)�

1
�
� �
�
z2 = �(�12 + �21)

:

Since

F (�) =

�
1

�
� �
��q

y21 + y
2
2 +

q
z21 + z

2
2

�
we get immediately the result.
4) We now discuss the representation formula for intRcoE. Call Z

the right hand side in the formula. The inclusion Z � intRcoE is
clear and so we show the reverse one. Let � 2 intRcoE; then up to a
rotation we can always assume that �12 = 0 and hence since det � = 1
we deduce that if

�t =

�
�11 0
�21 + t 1=�11

�
;

then � = �0 and
det �t � 1; 8t 2 R:

Since � 2 intRcoE we �nd that �t 2 RcoE for all t small enough.
Observe �nally that the function t ! F (�t) is strictly convex (note
however that the function � ! F (�) is not strictly convex) and there-
fore if t 6= 0 is small enough we have

F (�) <
1

2
F
�
��t
�
+
1

2
F (�t) �

1

�
� �

which is the claimed result � 2 Z. �



Theorem 9.3. Let 
 � Rn be open and

E = SO(2)A [ SO(2)B

with detA = detB > 0. Let

� 2 intRcoE

then there exists u 2 W 1;1 (
;R2) such that�
Du (x) 2 E, a.e. in 

u (x) = �x, on @
:

Remark 9.4. If detA 6= detB this result was already obtained by
Müller-Sverak [13] and Dacorogna-Marcellini [5].

Proof. Step 1: We start with some algebraic considerations. Observe
that there is no loss of generality if we assume that

A = I and B =
�
� 0
0 1=�

�
:

Indeed �rst diagonalize BA�1; i.e. �nd Ra; Rb 2 SO(2) so that

RaBA
�1Rb = � =

�
� 0
0 1=�

�
we therefore deduce that

R�bEA
�1Rb = SO(2)I [ SO(2)�:

Step 2: We de�ne for � 2 (0; 1]

I� =

�
1� � 0
0 1

1��

�
; �� =

�
�
1�� 0

0 1��
�

�
:

Observe that I�, �� 2 intRcoE and if

E� = SO(2)I� [ SO(2)��
and accordingly F�; G�, we then have

E� � intRcoE

and

K(E�) = RcoE� � intRcoE:
ThereforeE andRcoE have the approximation property withK (E�) =
RcoE�. Hence combining Proposition 9.1 with Theorem 3.6 and The-
orem 3.2 we get the result. �



10. The case of nematic elastomers

The problem considered here has been introduced by DeSimone-
Dolzmann [9].
We begin with the computation of the rank one convex hull; this

follows from [8] and [6] (in the case n = 2; 3 c.f. [9]).

Theorem 10.1. Let 0 � �1 (A) � ::: � �n (A) denote the singular
values of a matrix A 2 Rn�n and

E =

(
A : �i (A) = ai; i = 1; :::; n; detA =

nY
i=1

ai

)
where 0 < a1 � ::: � an. The following then holds

PcoE = RcoE =

(
A :

nY
i=�

�i (A) �
nY
i=�

ai; � = 2; :::; n; detA =
nY
i=1

ai

)
:

Moreover if 0 < a1 < ::: < an and � is su¢ ciently small so that

0 < a�1 = (1� �)1�na1 � a�2 = (1� �)a2 � ::: � a�n = (1� �)an
then E and RcoE have the approximation property with K (E�) =
RcoE�, where

E� =

(
A : �i (A) = a

�
i ; i = 1; :::; n; detA =

nY
i=1

ai

)
:

Remark 10.2. (i) Note that when n = 3 and a1 = a2 = r1=6; a3 =
r�1=3, r < 1, we recover the result of DeSimone-Dolzmann, namely

PcoE = RcoE =
�
A 2 R3�3 : �i (A) 2

�
r1=6; r�1=3

�
; detA = 1

	
:

(ii) The hypothesis that all the ai are di¤erent is too strong and can
be weakened; it is enough to assume that the ai are not all equal. It
is clear also that if all the ai are equal, then intRcoE = ;, since then
E = RcoE.

Proof. Let us denote by

X =

(
A 2 Rn�n :

nY
i=�

�i (A) �
nY
i=�

ai; � = 2; :::; n; detA =

nY
i=1

ai

)
:

Step 1 : The fact that RcoE � PcoE � X is easy, since E � X
and the functions

A!
nY
i=�

�i (A)�
nY
i=�

ai; � = 2; :::; n;



are polyconvex and A! detA�
nQ
i=1

ai is quasia¢ ne.

Step 2 : As usual by compactness of X it is enough to prove that
@X � RcoE. We show the result by induction.
(1) n = 1 . This is trivial.
(2) n � 2 . Any A 2 X can, without loss of generality, be assumed

of the form

A =

0@ x1
. . .

xn

1A
with 0 � x1 � x2 � : : : � xn, �ni=�xi � �ni=�ai, � = 2; : : :; n and
�ni=1xi = �

n
i=1ai. Since A 2 @X we deduce that �ni=�xi = �

n
i=�ai, for a

certain � 2 f2; : : :; ng. We can then apply the hypothesis of induction
to

fx1; :::; x��1g and fa1; :::; a��1g

and to

fx� ; :::; xng and fa� ; :::; ang :

Indeed for the second one this follows from the hypotheses

nY
i=�

xi �
nY
i=�

ai; � = � + 1; : : :; n

nY
i=�

xi =
nY
i=�

ai

while (note that if � = 2 then necessarily x1 = a1 and this part is
trivial , so we will assume that � � 3) for the �rst one we have

��1Y
i=�

xi =
nY
i=�

xi

 
nY
i=�

xi

!�1
=

nY
i=�

xi

 
nY
i=�

ai

!�1

�
nY
i=�

ai

 
nY
i=�

ai

!�1
=

��1Y
i=�

ai; � = 2; :::; � � 1

and
��1Y
i=1

xi =
��1Y
i=1

ai:

We can therefore deduce, by hypothesis of induction, that A 2 RcoE.



Step 3: We now observe that the approximation property follows
from the fact that (if 0 < a1 < ::: < an)

intRcoE =

(
A :

nY
i=�

�i (A) <
nY
i=�

ai; � = 2; :::; n; detA =
nY
i=1

ai

)
:

�
The main result is then, adopting the notations of the above theorem

(assume here that
Qn
i=1 ai = 1).

Theorem 10.3. Let 
 � Rn be open, 0 < a1 < ::: < an and

E =

(
A 2 Rn�n : �i (A) = ai; i = 1; :::; n; detA =

nY
i=1

ai = 1

)
:

Let ' be an a¢ ne function (D' = �) such that
nY
i=�

�i (�) <
nY
i=�

ai; � = 2; :::; n;

det � = 1;

then there exists (a dense set of) u 2 '+W 1;1
0 (
;Rn) such that�

�i (Du (x)) = ai; i = 1; 2; :::; n, a.e. x 2 

detDu (x) = 1, a.e. x 2 
:

Remark 10.4. Of course a similar result holds if the ai are not con-
stants but depend on (x; u).

Proof. Observe �rst that

E =

(
A 2 Rn�n :

nY
i=�

�i (A) =
nY
i=�

ai; � = 2; :::; n; detA = 1

)
and that A !

Qn
i=� �i (A), � = 2; :::; n, are quasiconvex. The result

follows then by combining Proposition 10.1 with Theorem 3.2 and The-
orem 3.6. �

11. Gauges, Choquet functions and Minkowski theorem
for polyconvex sets

We conclude this article with some general considerations about
polyconvex sets. In classical convex analysis the gauge of a convex
set, the Choquet function that characterizes extreme points or the
Minkowski theorem (often known as Krein-Milman theorem which is its
in�nite dimensional version) are important tools. We generalize these
notions to polyconvex sets.



We �rst recall some notations and de�nitions and we refer to [3] and
[6] for more details.

De�nition 11.1. (1) For a matrix A 2 Rm�n we let
T (A) = (A; adj2A; : : : ; adjm^nA)

where adjsA stands for the matrix of all s � s subdeterminants of the
matrix A; 1 � s � m ^ n = min fm;ng, and

� (m;n) =
m^nX
s=1

�
m
s

��
n
s

�
;

where
�
m
s

�
=

m!

s! (m� s)! :

(2) The di¤erent envelopes of a given function are de�ned as

Cf = sup fg � f : g convexg ;
Pf = sup fg � f : g polyconvexg ;

Rf = sup fg � f : g rank one convexg ;
they are respectively the convex, polyconvex and rank one convex enve-
lope of f .
(3) We say that a set K � Rm�n is polyconvex if for every ti � 0

with
P�(m;n)

i=1 ti = 1 and every Ai 2 K with

�(m;n)X
i=1

tiT (Ai) = T

0@�(m;n)X
i=1

tiAi

1A ;
then

�(m;n)X
i=1

tiAi 2 K:

We start with a theorem de�ning the gauge of a polyconvex set.

Theorem 11.2. Let K � Rm�n be a non empty polyconvex set and let

�K(x) =

�
0, if x 2 K
+1, if x =2 K

be its indicator function. Let H : R�(m;n) ! R = R [ f+1g be de�ned
as

H (�) = sup
x2K

fhT (x) ; �ig :

The following then hold
(1) H is lower semicontinuous, convex and positively homogeneous

of degree one.



(2) If K is closed and if H� : R�(m;n) ! R = R [ f+1g is the
conjugate function of H (i.e. H� (��) = sup fh��; �i �H (�)g) then

�K(x) = H� (T (x))

K =
�
x 2 Rm�n : H� (T (x)) � 0

	
:

(3) If 0 2 K then H (�) � H (0) = 0. And if K is compact then H
takes only �nite values.
(4) If 0 2 intK and if K is compact then

H (�) = 0, � = 0;

and in this case

K =
�
x 2 Rm�n : H0 (T (x)) � 1

	
where H0 is the polar of H (called the gauge of K), i.e.

H0 (��) = sup
� 6=0

�
h��; �i
H (�)

�
:

Remark 11.3. (1) When m = n = 2 we have H : R2�2 � R ! R =
R [ f+1g is given by

H (�; �) = sup
x2K

fhx; �i+ � detxg

and
K =

�
x 2 R2�2 : H� (x; detx) � 0

	
:

(2) Note that H0 is positively homogeneous of degree one but of
course this is not the case for the function x! H0 (T (x)).

Example 11.4. Let for � 2 R2�2; 0 � �1 (�) � �2 (�) denote its
singular values and

K =
�
� 2 R2�2 : �2 (�) � a2; �1 (�)�2 (�) � a1a2

	
;

which is a polyconvex set (c.f. [6]).Then

H0 (��; ��) = max

�
�2 (�

�)

a2
;
j��j
a1a2

�
is a gauge for K.

Proof. (1) Since K is non empty then H > �1. H being the supre-
mum of a¢ ne functions, it is convex and lower semicontinuous. The
fact that H is positively homogeneous of degree one is easy.
(2) Observe �rst that according to a result in [3] (c.f. page 199-202)

we have

H (�) = �pK (�)

�K (x) = �ppK (x) = H
� (T (x))



hence the result.
(3) This is obvious.
(4) We now show that if 0 2 intK and if K is compact then

H (�) = 0, � = 0:

The implication (() follows from (1) and we therefore discuss only the
converse one. Let x 2 Rm�n be an arbitrary point. Since 0 2 intK
we deduce that for every " su¢ ciently small then " x= jxj 2 K and
therefore

(13) 0 = H (�) �
�
T

�
" x

jxj

�
; �

�
since x 2 Rm�n is arbitrary the above inequality implies that � = 0;
as claimed. We prove this last fact only when m = n = 2, the general
case being proved similarly. The inequality (13) reads then (writing
� = (x�; �))

0 = H (�) � "

jxj hx;x
�i+ "2�detx

jxj2
, 8x 2 R2�2:

We therefore get, using the arbitrariness of "�
hx;x�i = 0, 8x 2 R2�2
� detx � 0, 8x 2 R2�2

hence (x�; �) = (0; 0).
The last identity

K =
�
x 2 Rm�n : H0 (T (x)) � 1

	
is easy. �

The next step is to de�ne a function that characterizes the extreme
points. In the convex case this is known as the Choquet function (see
for example Pianigiani [15]); but �rst let us de�ne the following.

De�nition 11.5. Let K � Rm�n be polyconvex; we say that X 2 K is
an extreme point in the polyconvex sense of K if

T (X) =
IP
i=1

tiT (Ai)

ti > 0 with
IP
i=1

ti = 1, Ai 2 K

9>>=>>;) Ai = X; i = 1; : : : ; I:

The set of extreme points in the polyconvex sense of K is denoted by
Kp
ext.



Theorem 11.6. Let K � Rm�n be a non empty compact polyconvex
set and Kp

ext be its extreme points in the polyconvex sense. Then there
exists ' : Rm�n ! R = R[f+1g a polyconvex function so that

Kp
ext = fx 2 K : ' (x) = 0g

' (x) � 0, x 2 K:
Proof. We �rst de�ne

f (x) =

�
� jxj2 , if x 2 K
+1, otherwise

and

' (x) =

�
Pf (x)� f (x) , if x 2 K

+1, otherwise.
In the convex case it is the function ' that is the Choquet function.
Observe that ' : Rm�n ! R = R[f+1g is polyconvex and that�

' (x) � 0, if x 2 K
' (x) = 0, if x 2 Kp

ext:

Indeed the inequality is clear since in K the function f is �nite and,
by de�nition, Pf is always not larger than f . We now show that

' (x) = 0, x 2 Kp
ext:

Note that if x 2 K then

' (x) = jxj2 + inf
xi2K

8<: �
�(m;n)+1P
i=1

ti jxij2 : T (x) =
�+1P
i=1

tiT (xi)

ti � 0 with
P�+1

i=1 ti = 1

9=; :
Therefore if x 2 Kp

ext; we deduce, by de�nition, that in the in�mum the
only admissible xi are xi = x; and hence we have ' (x) = 0. We now
show the converse implication, i.e. ' (x) = 0 ) x 2 Kp

ext. From the
above representation formula we obtain, since ' (x) = 0 and x 2 K,
that

jxj2 = sup
xi2K

8<:
�(m;n)+1X
i=1

ti jxij2 : T (x) =
�+1X
i=1

tiT (xi)

9=; :
Combining the above with the convexity of the function x ! jxj2 we
get that

jxj2 �
�(m;n)+1X
i=1

ti jxij2 �

������
�(m;n)+1X
i=1

tixi

������
2

= jxj2 ;

the strict convexity of x ! jxj2 implies then that xi = x. Thus x 2
Kp
ext. �



We now have the following version of Minkowski theorem.

Theorem 11.7. Let E � Rm�n be a non empty compact set. Let Epext
be the extreme points in the polyconvex sense of PcoE, then

PcoE = PcoEpext:

Proof. We adapt here an idea of Zhang [18].
Step 1 : We �rst prove that if K is a compact and polyconvex set

then it has at least one extreme point in the polyconvex sense, i.e.
Kp
ext 6= ;. Let coK be the convex hull of K, which is a compact and

convex set. It is a well established fact in convex analysis that coK
has then at least one extreme point (in the convex sense). Since, by
de�nition, any extreme point (in the convex sense) is an extreme point
in the polyconvex sense, we deduce the result.
Step 2 : We next let

K = PcoE; L = PcoEpext:

The only non trivial inclusion is K � L. We then de�ne

(14)

8<: g (X) =

�
dist (X;L) , if X 2 K
+1, otherwise

f (X) = Pg (X) � 0:
We could also have taken, if we want a function that is �nite every-
where, �

g (X) = [dist (X;L)](m^n)+1

f (X) = Pg (X) � 0:
Observe that

(15) L = fX 2 K : f (X) = 0g
(this follows from the polyconvexity of L). Let

(16) a = max ff (X) : X 2 Kg � 0:
We will show that a = 0 which by (15) implies K � L as claimed. Let

(17)
�
Ea = fX 2 K : f (X) = ag 6= ;eK = PcoEa � K:

Since f is polyconvex and non negative we get

(18) eK � fX 2 K : 0 � f (X) � ag :
It follows from Step 1 that

(19) ; 6= eKp
ext � Ea:

Assume for a moment that we can show

(20) ; 6= eKp
ext � Epext



then combining (19), (20) and the fact that

Epext � L = fX 2 K : f (X) = 0g

we would then deduce that

; 6= eKp
ext � Ea \ L:

This implies at once that a = 0 and hence K � L as claimed.
So it only remains to show (20). We thus let � 2 eKp

ext be such that8>><>>:
T (�) =

IP
i=1

tiT (�i)

ti > 0 with
IP
i=1

ti = 1, �i 2 K

and we wish to show that

(21) �i = �; 8i = 1; : : : ; I

which implies that � 2 Epext and hence (20). Ordering di¤erently the
�i 2 K, if necessary, we have

�i 2 Ea (, f (�i) = a), i = 1; : : : ; I1

�i 2 K�Ea () f (�i) < a), i = I1 + 1; : : : ; I:

We �rst show that I1 = I. If this were not the case we would have
from (19) and the polyconvexity of f that

a = f (�) �
IX
i=1

tif (�i) = a

I1X
i=1

ti +
IX

i=I1+1

tif (�i) < a

which is absurd, thus I1 = I. However since � 2 eKp
ext (where eK =

PcoEa) we therefore deduce that (21) holds and hence � 2 Epext which
is the claimed inclusion (20). �

12. Appendix: Singular values

We recall here the de�nition and some properties of singular values
of matrices (c.f. Horn-Johnson [11] page 152 and [6] page 171). First
we write any A 2 Rm�n as

A =

0@ a11 � � � a1n
...

...
am1 � � � amn

1A =

0@ a1

...
am

1A = (a1; :::; an) :

We start with the following



De�nition 12.1. We denote by O (m;n) the set of orthogonal matrices
R 2 Rm�n; i.e.

RtR = In�n

where In�n denotes the identity matrix in Rn�n. When m = n; we
write O (n) = O (n; n).

Remark 12.2. If m 6= n; then in general

RtR = In�n ; RRt = Im�m

(i.e. R 2 O (m;n) ; Rt 2 O (n;m)); while if m = n then these two
properties are equivalent (i.e. R 2 O (n) , Rt 2 O (n)).

We now give the de�nition of the singular values.

De�nition 12.3. (1) Let m � n and A 2 Rm�n: The singular values
of A; denoted by 0 � �1 (A) � ::: � �m (A), are de�ned to be the
square root of the eigenvalues of the symmetric and positive semide�nite
matrix AAt 2 Rm�m.
(2) Let m � n and A 2 Rm�n: The singular values of A; denoted

by 0 � �1 (A) � ::: � �n (A), are de�ned to be the square root of the
eigenvalues of the symmetric and positive semide�nite matrix AtA 2
Rn�n.

The following theorem is the standard decomposition theorem (c.f.
Horn-Johnson [10] Lemma 7.3.1).

Theorem 12.4. (1) Let m � n, A 2 Rm�n and 0 � �1 (A) � ::: �
�m (A) be its singular values then there exists R 2 O (m) such that

RA = eA =
0@ ea1
...eam

1A , with 
eai;eaj� = ��eai�� ��eaj�� �ij; �i (A) = ��eai�� :
Furthermore there exists Q 2 O (n;m) � Rn�m (i.e. QtQ = Im�m)
such that

RAQ =

0@ �1 (A) � � � 0
...

. . .
...

0 � � � �m (A)

1A :
(2) Let m � n, A 2 Rm�n and 0 � �1 (A) � ::: � �n (A) be its

singular values then there exists R 2 O (n) such that

AR = eA = (ea1; :::;ean) , with heai;eaji = jeaij jeajj �ij; �i (A) = jeaij :



Furthermore there exists Q 2 Rn�m with QQt = In�n (i.e. Qt 2
O (m;n)) such that

QAR =

0@ �1 (A) � � � 0
...

. . .
...

0 � � � �n (A)

1A :
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