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Abstract

We will discuss here Dirichlet problems for non linear �rst order partial
di¤erential equations. We will present the recent results of Dacorogna-
Marcellini on this subject; mentioning brie�y, as a matter of introduction,
some results on viscosity solutions.
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1 Introduction

We will discuss here Dirichlet problems for �rst (and incidentally for second)
order partial di¤erential equations. Of course this subject is so large that several
books would be needed to cover it. We will focus on the work of Dacorogna-
Marcellini that is developed in a recent book [12] (following earlier work [9], [10],
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[11]). We have not touched the very closely related work on convex integration
of Gromov [17] (cf. also Spring [22]) as developed by Müller-Sverak [20], [21]
and others. We also will speak only little on the very important tool known as
viscosity method introduced by Crandall-Lions following earlier work of Hopf,
Lax, Kruzkov and others. Some of the results mentioned in the present article
have been obtained concurrently or partially by other authors or in collabora-
tion. In order to make this survey as short as possible we did not enter into this
matter referring to [12] for details.

2 The scalar case

2.1 Statement of the problem

We will discuss here the following Dirichlet problem for �rst order partial dif-
ferential equations �

F (Du (x)) = 0 a.e. x 2 

u (x) = ' (x) x 2 @
: (1)

where
- 
 � Rn, n � 1, is a bounded open set,
- u : 
 � Rn ! R, Du 2 Rn is the gradient of u,
- F : Rn ! R is a continuous function
- the boundary datum ' is a given Lipschitz function.

Remark 1 The method developed here also applies to functions F = F (x; u;Du).
In Section 2 we will also consider vector valued function u : 
 � Rn ! Rm.

Very simple examples (cf. below) show that it is not reasonable to expect
C1 solutions of (1). We will however look for Lipschitz solutions, u 2 Lip

�


�
,

which means that there exists L > 0 such that

ju (x)� u (y)j � L jx� yj ; 8x; y 2 
:

Remark 2 In fact we will look for solutions in the Sobolev space W 1;1 (
).
As well known if the domain 
 is su¢ ciently regular it can then be identi�ed
with Lip

�


�
. We will throughout the present article make this identi�cation.

Rademacher theorem implies that any Lipschitz function is di¤erentiable almost
everywhere, the equation (1) is therefore understood in the almost everywhere
sense.

We now explain our terminology.

De�nition 3 We will call an equation F (Du) = 0 implicit if

intcoE 6= ;

where
E = f� 2 Rn : F (�) = 0g ;

coE denotes its convex hull and intcoE the interior of this hull.
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Remark 4 (1) Linear equations are not implicit equations in the above sense
since then E = coE and intcoE = ;.
(2) A better terminology could have been �fully nonlinear equations�; how-

ever this could lead to confusion with the so called �fully nonlinear elliptic equa-
tions� (such as the Monge-Ampère equation) which are disjoint from ours. For
the scalar case one can also use the name of Hamilton-Jacobi equations.

2.2 A trivial example

We will start with a trivial example that has however the merit of explaining
the situation.
Consider the problem( ���u0 (x)��� = 1, a.e. x 2 (0; 1)

u (0) = 0; u (1) = �:
(2)

In our notations E = f�1g, intcoE = (�1; 1) and ' (x) = �x.
Case 1. Let j�j < 1. Observe that there is no C1 solution of (2) but there

are in�nitely many Lipschitz solutions; in particular the following ones

u+ (x) =

�
x if x 2 [0; (1 + �) =2]

�x+ (1 + �) if x 2 [(1 + �) =2; 1]

u� (x) =

�
�x if x 2 [0; (1� �) =2]

x� (1� �) if x 2 [(1� �) =2; 1]

uN (x) =

�
x� n

N +
n�
N if x 2

�
n
N ;

n
N +

1+�
2N

�
�x+ n+1

N (1 + �) if x 2
�
n
N +

1+�
2N ;

n+1
N

�
where n;N 2 N and 0 � n � N � 1 (note for further reference that uN ! '
uniformly as N !1).
It is easy to see that any solution u of (2) satis�es

u� � u � u+:

One can also prove that if " > 0 and u" is a solution of(
�" u00" +

���u0"��� = 1, a.e. x 2 (0; 1)
u" (0) = 0; u" (1) = �:

then u" ! u+ uniformly (similarly if we replace in the equation �" by +" we
get u" ! u�).
Case 2. If � = �1 then there is a unique C1 solution of (2), namely u (x) = x

if � = 1 and u (x) = �x if � = �1.
Case 3. If j�j > 1 then no Lipschitz solution exists.

3



2.3 The eikonal equation

Consider the eikonal equation which is one of the most important nonlinear �rst
order equation �

jDu(x)j = 1 a.e. x 2 

u (x) = ' (x) x 2 @
: (3)

In our notations we have E = f� 2 Rn : j�j = 1g = Sn�1, int coE = f� 2 Rn : j�j < 1g
where we have denoted by j�j =

�P
�2i
�1=2

the Euclidean norm. The following
theorem is then standard

Theorem 5 Let 
 be a bounded, open and convex set of Rn and

j' (x)� ' (y)j � jx� yj ; 8x; y 2 @
:

Then the functions

u+ (x) = inf
y2@


f' (y) + jx� yjg

u� (x) = sup
y2@


f' (y)� jx� yjg

are Lipschitz solutions of (3) so that any other Lipschitz solution u satis�es
u� � u � u+. In particular if ' = 0 then

u� (x) = �dist (x; @
) :

The hypothesis of convexity of the domain is made only to have simpler
expressions for u+ and u�. It is interesting to note that the compatibility
condition on ' is also necessary and it corresponds if ' is appropriately de�ned
all over 
 to D' 2 coE.

2.4 Viscosity solutions

The above example can be generalized a great deal and it leads us to the so
called viscosity method. This has now a long history that �nds its origins in
work of Hopf, Lax, Kruzkov and several others but that was developed and
brought to the present framework by Crandall and Lions. In [12] we have a
large bibliography (as well as an introduction on this method) and here we
just mention recent books that deal with this subject: Bardi-Capuzzo Dolcetta
[1], Barles [2], Benton [3], Fleming-Soner [16], Subbotin [23] or the reference
article of Crandall-Ishii-Lions [7]. However the most appropriate reference for
the theorems either in the preceding section or in the present one is Lions [18].
We start with the de�nition of viscosity solution for the equation

F (Du (x)) = 0, a.e. x 2 
: (4)

4



De�nition 6 A function u 2 C (
) is said to be a viscosity solution of (4) if
the following two conditions are satis�ed.
(1) u is a viscosity subsolution of (4) which means that, for any w 2 C1 (
)

and for any y 2 
 local maximum of u� w, the following inequality holds
F (Dw (y)) � 0;

(2) u is a viscosity supersolution of (4) which means that, for any w 2 C1 (
)
and for any z 2 
 local minimum of u� w, the following inequality holds

F (Dw (z)) � 0:
Remark 7 The terminology �viscosity solution�refers to the fact that in earlier
work on the subject these solutions were obtained as limit (when "! 0+) of the
approximate problem�

F (Du" (x)) = "�u" (x) a.e. x 2 

u" (x) = ' (x) x 2 @
: (5)

This is what we also discussed in the above trivial example.

One can then prove the following theorem (this is only one of the simplest
results that can be obtained by the viscosity method).

Theorem 8 Let 
 � Rn be a bounded open convex set. Let F : Rn ! R be
convex with F (0) < 0 and such that limF (�) = +1 if j�j ! +1.
Let � be the gauge associated to f� : F (�) � 0g which means that

� (�) = inf f� � 0 : F (�=�) � 0g :
and �0 be its polar, which is de�ned as

�0 (��) = sup
� 6=0

�
h�; ��i
� (�)

�
:

Let ' : @
! R satisfy

' (x)� ' (y) � �0 (x� y) , 8x; y 2 @
; (6)

then the function
u+ (x) = inf

y2@


�
' (y) + �0 (x� y)

	
is the unique Lipschitz viscosity solution of�

F (Du (x)) = 0 a.e. x 2 

u (x) = ' (x) x 2 @
: (7)

In addition
u� (x) = sup

y2@


�
' (y)� �0 (y � x)

	
is also a Lipschitz solution of (7) and any other Lipschitz solution u is such that

u� � u � u+:
Remark 9 The above theorem is an extension of Theorem 5. In this last case
and with the above notations we have F (�) = j�j � 1, � (�) = �0 (�) = j�j.
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2.5 A counterexample

The viscosity method is a very powerful tool, however it is very closely linked
with the convexity of the Hamiltonian F . In absence of convexity it may well
happen that Lipschitz solutions do exist but no viscosity ones. The following
example has been given by Cardaliaguet-Dacorogna-Gangbo-Georgy [5]. In this
article a general theorem relates the existence of viscosity solutions, the zeroes
set of F and the geometry of the domain 
.

Theorem 10 Let 
 � R2 be convex. Then (writing for u = u (x; y), ux =
@u=@x and uy = @u=@y)�

F (Du) =
�
u2x � 1

�2
+
�
u2y � 1

�2
= 0; a.e. in 


u = 0, on @

(8)

has in�nitely many Lipschitz solutions but no viscosity one unless 
 is a rec-
tangle whose faces are orthogonal to the vectors (1; 1) and (1;�1).

The existence of Lipschitz solutions follow from the theory developed in the
next section. The theorem shows in particular that if 
 is any smooth domain
such as the disk then there is no viscosity solution.
In terms of the set E we have

E =
�
� = (�1; �2) 2 R2 : j�1j = j�2j = 1

	
coE =

�
� = (�1; �2) 2 R2 : j�1j ; j�2j � 1

	
:

2.6 The Baire category method

The main theorem is the following.

Theorem 11 Let 
 � Rn be open and E � Rn. Let ' 2 Lip
�


�
satis�es

D' (x) 2 E [ int coE; a.e. x 2 
 (9)

(where int coE stands for the interior of the convex hull of E); then there exists
(a dense set of) u 2 Lip

�


�
such that�
Du (x) 2 E a.e. x 2 

u (x) = ' (x) x 2 @
: (10)

Remark 12 (1) If the domain is not su¢ ciently regular so that W 1;1 (
) 6=
Lip

�


�
then the existence result has to be understood in W 1;1 (
).

(2) The theorem obviously applies to�
F (Du (x)) = 0 a.e. x 2 

u (x) = ' (x) x 2 @
:
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It su¢ ces to write E = f� 2 Rn : F (�) = 0g. If for example F is convex with
F (0) < 0 and limF (�) = +1 if j�j ! +1, as in Theorem 8, then the compat-
ibility condition (9) reads as follows

F (D' (x)) � 0; a.e. x 2 
:

(3) The compatibility condition (9), when appropriately interpreted, is also
necessary, cf. [12].
(4) The fact that there is a dense set of solutions has to be understood in

the sense of Baire category theorem (cf. below for more details). It implies, in
particular, that for every " > 0 there is a Lipschitz solution of (10) such that
ku� 'kL1 < ".
(5) This theorem has a long history and we refer to [12] for more historical

background. Note only that when the boundary datum is a¢ ne, this result was
established by Cellina and Friesecke with a very explicit construction that we call
�pyramidal�. The method of proof that we will outline below follows works of
Cellina [6], Bressan-Flores [4], De Blasi-Pianigiani [14], [15] and Dacorogna-
Marcellini [12].

Proof. We very roughly outline the idea of the proof only in a very spe-
cial case that has the advantage to make the procedure transparent and not
burdened by too many technical details. It should be pointed out that, in this
particular case, the result can be obtained by several other methods, notably
the viscosity one.
We will assume, as in Theorem 8, that F is convex with F (0) < 0 and

limF (�) = +1 if j�j ! +1 and that

E = f� 2 Rn : F (�) = 0g :

We then let

V =
n
u 2 '+W 1;1

0 (
) : F (Du (x)) � 0; a.e. x 2 

o

which in this particular case is the set of subsolutions. Note also that V is non
empty since ' 2 V . We next endow V with the C0 metric. V is then a complete
metric space. This follows from the coercivity (limF (�) = +1 if j�j ! +1)
and the convexity of F . Indeed the coercivity condition ensures that any Cauchy
sequence in V has uniformly bounded gradient and therefore has a subsequence
that converges weak * in W 1;1 to a limit. The convexity of F implying lower
semicontinuity, we get that the limit is indeed in V .
We next introduce, for every integer k, the subset V k of V

V k =

�
u 2 V :

Z



F (Du (x)) dx > �1
k

�
:

By the very same above argument we �nd that V k is open in V . It can then
be proved (and this is the di¢ cult step) that V k is dense in V , by means of the
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relaxation theorems of the calculus of variations (involving constructions similar
to that of the functions uN in the trivial example of Section 2.2).
The Baire category theorem implies then that

\
k
V k =

�
u 2 V :

Z



F (Du (x)) dx � 0
�

=
n
u 2 '+W 1;1

0 (
) : F (Du (x)) = 0; a.e. x 2 

o

is dense, and hence non empty, in V , which is just to say that the set of solutions
is non empty.

3 The vectorial case

3.1 Statement of the problem

We now want to discuss the analogue of Theorem 11 in the vectorial case. The
problem is then �

F1 (Du) = ::: = FN (Du) = 0; a.e. in 

u = ', on @


(11)

where u : 
 � Rn ! Rm, n;m > 1, so that now Du 2 Rm�n (the set of m� n
matrices) and Fi : Rm�n ! R; i = 1; :::; N:
We then let

E =
�
� 2 Rm�n : Fi (�) = 0; i = 1; :::; N

	
:

No simple analogue to Theorem 11 exists and in order explain some results that
can be applied to vectorial problems we need to introduce some terminology (cf.
[8] or [12]).

De�nition 13 (1) A function f : Rm�n ! R = R[f+1g is said to be rank
one convex if

f (tA+ (1� t)B) � tf (A) + (1� t) f (B)

for every t 2 [0; 1] and every A;B 2 Rm�n with rank fA�Bg = 1.
(2) Given a set E � Rm�n we de�ne the rank one convex hull of E to be

RcoE =

�
A 2 Rm�n : f(A) � 0; 8f : Rm�n ! R = R[f+1g ;

f jE = 0 ; f rank one convex

�
:

In the scalar case m = 1 the usual notion of convexity coincide with that of
rank one convexity (since, by de�nition, vectors are rank one matrices). However
in the vectorial context convex functions are obviously rank one convex but not
conversely as the classical example f (A) = detA (when m = n) shows. This
implies in particular that given a set E � Rm�n we have in general that

RcoE �
6=
coE
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while in the scalar case they are both equal. Note also that rank one convex sets
are much wilder than convex sets; for example, just to quote one peculiarity, such
sets may even be disconnected (choose E = fA;Bg with rank fA�Bg � 2).
All the theorems that can generalize Theorem 11 to the vectorial case are

considerably harder, even in their statements. They involve RcoE (or some
other sets, such as the quasiconvex hull that we do not de�ne here) but also
need other properties, di¢ cult to verify, such as the so called relaxation property
and that we do not discuss here; we refer for details to [12].
We will therefore not give, in the following sections, any general theorem

but we will only present some relevant examples where we can obtain existence
theorems.

3.2 The singular values case

We now present a problem that can be applied to some geometrical problems
or to non linear elasticity. Let � 2 Rn�n and denote by 0 � �1 (�) � ::: � �n (�)
the singular values of the matrix � (i.e. the eigenvalues of

�
�t�
�1=2

). This implies
in particular that

j�j2 =
nX

i;j=1

�2ij =

nX
i=1

(�i (�))
2 , jdet �j =

nY
i=1

�i (�) :

Theorem 14 Let 
 � Rn be a bounded open set, 0 < a1 � ::: � an. Let
' 2 C1

�

;Rn

�
satisfy

nY
i=�

�i (D' (x)) <
nY
i=�

ai, x 2 
, � = 1; :::; n (12)

(in particular ' � 0), then there exists u 2W 1;1 (
;Rn) such that�
�i (Du (x)) = ai a.e. x 2 
, i = 1; :::; n
u (x) = ' (x) x 2 @
: (13)

Remark 15 (1) Using the notations of the previous section we have

E =
�
� 2 Rn�n : �i (�) = ai; i = 1; :::; n

	
coE =

(
� 2 Rn�n :

nX
i=�

�i (�) �
nX
i=�

ai, � = 1; :::; n

)

RcoE =

(
� 2 Rn�n :

nY
i=�

�i (�) �
nY
i=�

ai, � = 1; :::; n

)
:

(2) If ai � 1, for every i = 1; :::; n, then

RcoE = coE =
�
� 2 Rn�n : �n (�) � 1

	
and (12) becomes

�n (D' (x)) < 1, x 2 
:
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3.3 The complex eikonal equation

The problem (coming from geometrical optics, cf. Magnanini-Talenti [19]) is to
�nd a complex function

w (x) = u (x) + iv (x)

(where x = (x1; :::; xn)) satisfying� Pn
i=1 w

2
xi = f

2 a.e. in 

w = ' on @
;

where 
 � Rn is a bounded open set and f 2 R is a constant (one can also
handle continuous functions f : 
 � R2 ! R, f = f (x; u; v)). The stated
problem is equivalent to the real system (setting h:; :i for the scalar product in
Rn) 8<: jDuj2 = jDvj2 + f2 a.e in 


hDu;Dvi = 0 a.e in 

(u; v) = ('1; '2) on @
:

(14)

Note that when Imw = v � 0 then we recover the classical eikonal equation.
In the terminology introduced before we have

E =
n
A = (�; �) 2 Rn � Rn : j�j2 = j�j2 + f2; h�; �i = 0

o
RcoE = coE = R2�n:

We can then prove (cf. [12], [13])

Theorem 16 Let ' 2W 1;1 �
;R2�; then there exists w = (u; v) 2W 1;1 �
;R2�
satisfying (14).

3.4 The second order case

The method can also be applied to problems with constraints [13] or to second
order equations. We give here just one typical theorem that can be established.

Theorem 17 Let 
 � Rn be bounded and open. Let F : Rn�ns ! R (where
Rn�ns stands for the set of n � n symmetric matrices) be convex and coercive
(which means that limF (�) = +1 if j�j ! +1). Let ' 2 C2(
) be such that

F
�
D2'(x)

�
� 0; a.e. x 2 
:

Then there exists u 2W 2;1 (
) such that�
F (D2u(x)) = 0 a.e. in 

u = '; Du = D' on @
:

(15)
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By W 2;1 (
) we denote the Sobolev space that can be identi�ed, if 
 is
regular enough, to the set of functions u 2 C1

�


�
whose Hessian D2u (in the

distributional sense) has entries that are bounded; or if 
 is su¢ ciently regular,
this means that the partial derivatives uxi , i = 1; :::; n, are Lipschitz continuous.
Note the simultaneous Dirichlet-Neumann condition which excludes from

our analysis �fully non linear elliptic equations�, as mentioned previously.
Some examples can be handled by this theorem or by some of its generaliza-

tions, in particular the following ones.
(1) If ' 2 C2(
) is such that

j�'(x)j � 1; 8x 2 


then there exists u 2W 2;1 (
) such that�
j�uj = 1 a.e. in 


u = '; Du = D' on @
:

Observe that because of the boundary data one cannot solve this problem just
by solving the linear Poisson equation �u = 1 with the Dirichlet boundary
datum u = '.
(2) If ' 2 C2(
) satis�es

��detD2'(x)
�� < f , for every x 2 
; then there

exists u 2W 2;1 (
) such that� ��detD2u (x)
�� = f a.e. in 


u = '; Du = D' on @
:

As in the previous example the above problem cannot be solved by the Monge-
Ampère equation detD2u (x) = f because of the simultaneous Dirichlet-Neumann
conditions u = ' and Du = D'.
(3) Consider the generalization of the eikonal equation to second derivatives,� ��D2u(x)

�� = a a.e. in 

u = '; Du = D' on @
:

(16)

Then the compatibility condition on ' 2 C2
�


�
for existence is that��D2'(x)

�� � a; 8x 2 
.

References

[1] Bardi M. and Capuzzo Dolcetta I. : Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellman equations; Birkhäuser (1997).

[2] Barles G. : Solutions de viscosité des équations de Hamilton-Jacobi ; Math-
ématiques et Applications 17, Springer, Berlin (1994).

[3] Benton S.H. : The Hamilton-Jacobi equation. A global approach; Academic
Press, New-York (1977).

11



[4] Bressan A. and Flores F. : On total di¤erential inclusions; Rend. Sem.
Mat. Univ. Padova, 92 (1994), 9-16.

[5] Cardaliaguet P., Dacorogna B., Gangbo W. and Georgy N. : Geometric
restrictions for the existence of viscosity solutions; Annales Institut Henri
Poincaré, Analyse Non Linéaire 16 (1999), 189-220.

[6] Cellina A. : On the di¤erential inclusion x0 2 f�1; 1g ; Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur. 69 (1980), 1-6.

[7] Crandall M.G., Ishii H. and Lions P.L. : User�s guide to viscosity solutions
of second order partial di¤erential equations; Bull. Amer. Math. Soc. 27
(1992), 1-67.

[8] Dacorogna B. : Direct methods in the calculus of variations; Springer,
Berlin (1989).

[9] Dacorogna B. and Marcellini P. : Théorème d�existence dans le cas scalaire
et vectoriel pour les équations de Hamilton-Jacobi ; C.R. Acad. Sci. Paris
322, Série I, (1996), 237-240.

[10] Dacorogna B. and Marcellini P. : Sur le problème de Cauchy-Dirichlet
pour les systèmes d�équations non linéaires du premier ordre; C.R. Acad.
Sci. Paris 323, Série I, (1996), 599-602.

[11] Dacorogna B. and Marcellini P. : General existence theorems for Hamilton-
Jacobi equations in the scalar and vectorial case; Acta Mathematica 178
(1997), 1-37.

[12] Dacorogna B. and Marcellini P. : Implicit partial di¤erential equations;
Birkhäuser, Boston (1999).

[13] Dacorogna B. and Tanteri C. : Implicit partial di¤erential equations and the
constraints of non linear elasticity ; Commun. in PDEs (2001), to appear.

[14] De Blasi F.S. and Pianigiani G. : Non convex valued di¤erential inclusions
in Banach spaces; J. Math. Anal. Appl. 157 (1991), 469-494.

[15] De Blasi F.S. and Pianigiani G. : On the Dirichlet problem for Hamilton-
Jacobi equations. A Baire category approach; Nonlinear Di¤erential Equa-
tions Appl. 61 (1999), 13�34.

[16] Fleming W.H. and Soner H.M. : Controlled Markov processes and viscosity
solutions; Springer, Berlin (1993).

[17] Gromov M. : Partial di¤erential relations; Springer, Berlin (1986).

[18] Lions P.L. : Generalized solutions of Hamilton-Jacobi equations; Research
Notes in Math. 69, Pitman, London (1982).

12



[19] Magnanini R. and Talenti G. : On complex-valued solutions to a 2D eikonal
equation. Part one, qualitative properties; Contemporary Mathematics,
American Mathematical Society, edited by G.Q. Chen and E. DiBenedetto,
238 (1999), 203-229.

[20] Müller S. and Sverak V. : Attainment results for the two-well problem by
convex integration; edited by J. Jost, International Press (1996), 239-251.

[21] Müller S. and Sverak V. : Unexpected solutions of �rst and second order
partial di¤erential equations; Proceedings of the International Congress of
Mathematicians, Berlin 1998, Documents mathematica, vol II (1998), 691-
702.

[22] Spring D. : Convex integration theory; Birkhäuser, Basel (1998).

[23] Subbotin A.I. : Generalized solutions of �rst order partial di¤erential equa-
tions: the dynamical optimization perspective; Birkhäuser, Boston (1995).

13


