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Abstract

We consider hyperelastic stored energy functions in Rn�n that are
isotropic. We give necessary and su¢ cient conditions for the ellipticity of
such functions. The present article is essentially a review of recent results
on the subject

1 Introduction

Let Rn�n+ be the set of n� n matrices whose determinant is positive. Consider
a C2 function f : Rn�n+ ! R such that

f (F ) = g (�1 (F ) ; :::; �n (F )) (1)

for a certain symmetric g : Rn+ ! R and where �i (F ) stands for the singular
values of F (i.e. the eigenvalues of

�
FTF

�1=2
).

The aim of the present article is to give necessary and su¢ cient conditions
on g so that f satis�es the ellipticity (or Legendre-Hadamard) condition

nX
i;j;k;l=1

@2f (F )

@Fik@Fjl
�i�j�k�l � 0 (2)

for every �; � 2 Rn and every F 2 Rn�n+ . As a consequence we will also have
results for strong ellipticity, which means that (2) holds with a strict inequality
whenever j�j ; j�j 6= 0.
We now present the motivations for such a study. In nonlinear elasticity the

function f is called the stored energy function, F is the deformation gradient and
�i (F ) are the principal stretches. Many elastic materials are isotropic which,
combined with the requirement that f is objective, means that

f (FR) = f (QF ) = f (F ) ; 8F 2 Rn�n+ ; 8Q;R 2 SO (n)
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where SO (n) stands for the set of orthogonal matrices with positive determi-
nant. It turns out that these assumptions are equivalent to the existence of a
function g such that (1) holds.
One also usually requires that the stored energy function f is either con-

vex (which seems to be, in general, not physically realistic), or polyconvex or
rank one convex. The last one is equivalent, when f is C2, to the ellipticity
condition mentioned above. Hill [13], Thompson and Freede [20] and Ball [5]
gave necessary and su¢ cient conditions on g for the convexity of f while Ball
in [5] dealt with the polyconvexity of f (see also for both cases Le Dret [15] and
Dacorogna-Marcellini [10]). The same was achieved by Knowles and Sternberg
[14] for rank one convexity only in the plane (i.e. when n = 2). This last result
was then proved in a di¤erent manner by Aubert [1], Aubert and Tahraoui [3],
Ball [6], Davies [11] and Dacorogna and Marcellini [10]. When n = 3 Aubert
and Tahraoui in [2] gave also some necessary conditions and, although in a
slightly di¤erent context, necessary and su¢ cient conditions were derived by
Simpson and Spector [19] (see also Zee and Sternberg [21]). Finally Silhavy [18]
established the result in any dimension but in terms of the copositivity of some
matrices.
We here combine the result of Silhavy with one of Hadeler [12] on copositive

matrices in dimension 3 and we will also give some simpler su¢ cient conditions
in general dimension. The necessary and su¢ cient conditions for rank one con-
vexity when n = 3 are now discussed. The �rst set of conditions is (letting
gi = @g=@xi, gij = @2g=@xi@xj)

gii � 0, i = 1; 2; 3 (3)

�igi � �jgj
�i � �j

� 0; �i 6= �j ; 1 � i < j � 3 (4)

and express for the �rst ones the convexity of g with respect to each variable
separately, while the second ones are equivalent to the Baker-Ericksen inequal-
ities [4] and are also valid in any dimension. Actually these conditions are the
easiest to derive and were known before the di¤erent works that we mentioned
above. The last set of conditions read as follows for �i 6= �j (if �i = �j these
inequalities are still valid when properly interpreted, cf. below)

p
giigjj +m

"
ij � 0; 1 � i < j � 3 (5)

(these are identical to those from the case n = 2) and either

m"
12

p
g33 +m

"
13

p
g22 +m

"
23

p
g11 +

p
g11g22g33 � 0 (6)

or
detM" � 0 (7)

where M" =
�
m"
ij

�
with

m"
ij =

(
gii if i = j

"i"jgij +
gi�"i"jgj
�i�"i"j�j if i 6= j
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and for any choice of "i 2 f�1g.
Note that there are 3 inequalities in (3), 3 in (4) and 12 in (5). However,

since g is symmetric, it is enough to establish only 6 of them, for example those
with i = 1 and j = 2. Due to all possible signs we have 4 equations in (6) or in
(7).

2 Main result

We will let

Rn+ = fx 2 Rn : xi > 0; i = 1; :::; ng
Rn�n+ =

�
A 2 Rn�n : detA > 0

	
:

A function g : Rn+ ! R will be said to be symmetric if for every x 2 Rn+ and for
every permutation P of n elements the following holds

g (Px) = g (x) :

We also need he following de�nition (cf. Motzkin [16], see also Hadeler [12]
for an extended bibliography).

De�nition 1 A matrix A 2 Rn�n is said to be copositive if

hAx;xi � 0; 8x 2 Rn with xi � 0; i = 1; :::; n:

It will be said to be strictly copositive if the inequality is strict whenever xi � 0
and x 6= 0.

We start with a lemma which holds in any dimension and that was estab-
lished by Silhavy [18], Proposition 6.4 (cf. also [19]). We give here his proof.

Lemma 2 Let
f (F ) = g (�1 (F ) ; :::; �n (F ))

where g 2 C2
�
Rn+
�
and g is symmetric. Then f : Rn�n+ ! R is rank one convex

if and only if the following two sets of conditions hold for every � 2 Rn+

�igi � �jgj
�i � �j

� 0; �i 6= �j ; 1 � i < j � n (8)

M" =
�
m"
ij

�
1�i;j�n is copositive (9)

where M" is symmetric and

m"
ij =

(
gii if i = j or if i < j and �i = �j

"i"jgij +
gi�"i"jgj
�i�"i"j�j if i < j and �i 6= �j or "i"j 6= 1

and for any choice of "i 2 f�1g.
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Remark 3 The proof of the lemma also shows that strong ellipticity is equiva-
lent to the conditions (8) with strict inequalities and to the strict copositivity of
M".

Proof. As well known the function f is rank one convex if and only if the
Legendre-Hadamard condition holds, namely

L =
nX

i;j;k;l=1

@2f (F )

@Fik@Fjl
�i�j�k�l � 0

for every �; � 2 Rn and every F 2 Rn�n+ . According to Ball (Theorem 6.4 in
[6], see also [7], [8]) if �i (F ) > 0 and all di¤erent then

L =

nX
i;j=1

gij�i�j�i�j +
X
i 6=j

Gij�
2
i�

2
j +

X
i 6=j

Hij�i�j�i�j

where

Gij =
�igi � �jgj
�2i � �2j

; Hij =
�jgi � �igj
�2i � �2j

:

Note that when �i = �j the symmetry of g (which implies that at �i = �j
gi = gj and gii = gjj) allows us to interpret Gij and Hij as

Gij =
1

2

�
gii � gij +

gi
�i

�
; Hij =

1

2

�
gii � gij �

gi
�i

�
:

We rewrite L as

L =
nX
i=1

gii (�i�i)
2
+ 2

X
i<j

["i"jgij +Gij + "i"jHij ] "i"j�i�j�i�j

+
X
i<j

Gij
�
�i�j � "i"j�j�i

�2
:

Note that since

m"
ij =

�
gii if i = j

"i"jgij +Gij + "i"jHij if i < j

we can then infer that

L =

nX
i=1

m"
ii (�i�i)

2
+2
X
i<j

m"
ij"i"j�i�j�i�j+

X
i<j

Gij
�
�i�j � "i"j�j�i

�2
: (10)

Step 1. We �rst discuss the necessary part. To get the Baker-Ericksen
inequalities, i.e. Gab � 0 for 1 � a < b � n, choose �i = 0 if i 6= a, �a = 1 and
�i = 0 if i 6= b, �b = 1. To obtain the copositivity of M", it su¢ ces to choose,
given x 2 Rn with xi � 0, �i =

p
xi and �i = "i

p
xi to get

L =
nX
i=1

m"
ii (xi)

2
+ 2

X
i<j

m"
ijxixj � 0
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which is the claimed result.
Step 2. We now discuss the su¢ ciency part. We wish to show that Legendre-

Hadamard condition in its form (10) is valid if M" is copositive and Gij � 0. It
is enough, given �; � 2 Rn, to choose, for every 1 � i � n, "i = �1 so that

xi = "i�i�i � 0

to get the result.
Of course the above lemma is not entirely satisfactory in the sense that,

for general dimension, there is no simple criterion to know if a given matrix is
copositive or not. However when n = 2 or n = 3 the situation is simpler and we
discuss it now (the case n = 2 is well known and elementary, the case n = 3 is
Theorem 4 of Hadeler [12]).

Proposition 4 Let A = (aij) 2 Rn�ns be an n� n symmetric matrix.
(i) If n = 2 then A is copositive if and only if

a11; a22 � 0
p
a11a22 + a12 � 0:

The matrix is strictly copositive if the inequalities are strict.
(ii) If n = 3 then A is copositive if and only if

aii � 0; i = 1; 2; 3 (11)

p
aiiajj + aij � 0; 1 � i < j � 3 (12)

and at least one of the following conditions holds

a12
p
a33 + a13

p
a22 + a23

p
a11 +

p
a11a22a33 � 0 (13)

detA � 0: (14)

The matrix is strictly copositive if (11), (12) are strict inequalities and if (13)
holds (not necessarily with strict inequality) or if (14) holds with strict inequality.

The combination of the preceding lemma and proposition leads to

Theorem 5 Let
f (F ) = g (�1 (F ) ; �2 (F ) ; �3 (F ))

where g 2 C2
�
R3+
�
and g is symmetric. Then f : R3�3+ ! R is rank one convex

if and only if the following four sets of conditions hold for every � 2 R3+

gii � 0; i = 1; 2; 3 (15)

�igi � �jgj
�i � �j

� 0; �i 6= �j ; 1 � i < j � 3 (16)

p
giigjj +m

"
ij � 0; 1 � i < j � 3 (17)
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and either

m"
12

p
g33 +m

"
13

p
g22 +m

"
23

p
g11 +

p
g11g22g33 � 0 (18)

or
detM" � 0 (19)

where M" =
�
m"
ij

�
is symmetric and

m"
ij =

(
gii if i = j or if i < j and �i = �j

"i"jgij +
gi�"i"jgj
�i�"i"j�j if i < j and �i 6= �j or "i"j 6= 1

and for any choice of "i 2 f�1g.

Remark 6 If we are interested in the strong ellipticity then the necessary and
su¢ cient conditions read as follows: (15), (16) hold with strict inequalities and
either (18) holds (not necessarily with strict inequality) or (19) holds with strict
inequality.

We conclude this article by giving some simpler su¢ cient conditions that
turn out to be also the necessary ones in dimension 2.

Proposition 7 Let
f (F ) = g (�1 (F ) ; :::; �n (F ))

where g 2 C2
�
Rn+
�
and g is symmetric. Then f : Rn�n+ ! R is rank one convex

if the following four conditions hold for every � 2 Rn+
gii � 0; i = 1; :::; n (20)

�igi � �jgj
�i � �j

� 0; �i 6= �j ; 1 � i < j � n (21)

p
giigjj

n� 1 + gij +
gi � gj
�i � �j

� 0; �i 6= �j ; 1 � i < j � n (22)

p
giigjj

n� 1 � gij +
gi + gj
�i + �j

� 0; 1 � i < j � n: (23)

Furthermore when n = 2 the conditions are also necessary.

Remark 8 One advantage of Proposition 7 over Lemma 2 or Theorem 5 is
that there are much less conditions to verify. In theory there are (3n� 1)n=2
inequalities to check but because of all the symmetries it is enough to verify only
4 of them (for example those with i = 1 and j = 2).

Proof. We discuss only the case where all the �i are di¤erent (the case
where some of them are equal is handled similarly by passing to the limit).
Recall the Legendre-Hadamard condition

L =
nX

i;j=1

gij�i�j�i�j +
X
i 6=j

Gij�
2
i�

2
j +

X
i 6=j

Hij�i�j�i�j � 0
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where

Gij =
�igi � �jgj
�2i � �2j

; Hij =
�jgi � �igj
�2i � �2j

:

We next rewrite L in a di¤erent manner. We �rst let "ij to be either 1 or �1.
An elementary computation gives

L =
1

n� 1
X
i<j

�p
gii�i�i +

p
gjj"ij�j�j

�2
+
X
i<j

Gij
�
�i�j + "ij�j�i

�2
�2
X
i<j

�p
giigjj

n� 1 � "ijgij +Gij � "ijHij
�
"ij�i�j�i�j :

Observing that

Gij � "ijHij =
gi + "ijgj
�i + "ij�j

we get

L =
P

i<j

�
(
p
gii�i�i+

p
gjj"ij�j�j)

2

n�1 +Gij
�
�i�j + "ij�j�i

�2�
�2
P

i<j

hp
giigjj
n�1 � "ijgij + gi+"ijgj

�i+"ij�j

i
"ij�i�j�i�j :

(24)

The result follows easily from (24). Indeed let F 2 Rn�n+ be such that (20)
to (23) are satis�ed. We wish to show that Legendre-Hadamard condition in
its form (24) is valid. It is enough, given �; � 2 Rn, to choose, for every
1 � i < j � n, "ij = �1 so that

"ij�i�j�i�j � 0:

Then in view of (20) to (24) we have the claimed result.
The fact that when n = 2 the conditions are also necessary follows from

Lemma 2 and Proposition 4.

Remark 9 One should note that if we consider the same problem but without
the restriction detF > 0 then all the conditions of Lemma 2 and Theorem 5 are
obviously still necessary but are not anymore su¢ cient. One needs to impose
some conditions of the type gi � 0 at �i = 0. This matter is discussed for the
case n = 2 in [10].
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