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Abstract

This paper develops the theory of singular reduction for implicit Hamiltonian systems ad-
mitting a symmetry Lie group. The reduction is performed at a singular value of the momentum
map. This leads to a singular reduced topological space which is not a smooth manifold. A
topological Dirac structure on this space is defined in terms of a generalized Poisson bracket and
a vector space of derivations, both being defined on a set of smooth functions. A corresponding
Hamiltonian formalism is described. It is shown that solutions of the original system descend
to solutions of the reduced system. Finally, if the generalized Poisson bracket is nondegenerate,
then the singular reduced space can be decomposed into a set of smooth manifolds called pieces.
The singular reduced system restricts to a regular reduced implicit Hamiltonian system on each
of these pieces. The results in this paper naturally extend the singular reduction theory as
previously developed for symplectic or Poisson Hamiltonian systems.
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1 Introduction

Consider a symplectic manifold (M,ω) admitting a symmetry Lie groupG acting freely and properly
on M . Denote by g the Lie algebra of G and by g∗ its dual. Suppose this action admits an
equivariant momentum map P : M → g∗. In [24] it is shown that at a regular value µ ∈ g∗ of
the momentum map, the symplectic structure on M naturally reduces to a symplectic structure
ωµ on the reduced manifold Mµ = P−1(µ)/Gµ, where Gµ denotes the coadjoint isotropy subgroup
of G at µ. Furthermore, the integral curves of a Hamiltonian vector field defined by a G-invariant
Hamiltonian H ∈ C∞(M)G project to integral curves of the reduced Hamiltonian vector field
on Mµ associated to the reduced Hamiltonian function Hµ ∈ C∞(Mµ). This theory has been
generalized in [22] to the case of Poisson manifolds. At a regular value µ of the momentum map,
the Poisson bracket {·, ·} : C∞(M)×C∞(M) → C∞(M) on M descends to a Poisson bracket {·, ·}µ
on the reduced phase space Mµ. Again, the Hamiltonian flow defined by a G-invariant Hamiltonian
H ∈ C∞(M)G reduces to a Hamiltonian flow on Mµ corresponding to Hµ ∈ C∞(Mµ). We refer to
[1, 11, 21, 23, 27, 36] for some excellent presentations of various aspects of this theory as well as
several worked examples.

By Sard’s Theorem (e.g. [2]), the set of regular values of the momentum map is dense in g∗.
Hence regular reduction can be considered to be the “generic” case of reduction. On the other
hand, certain interesting dynamics, such as bifurcation phenomena, may occur at singular values
of the momentum map. The main difference with regular reduction is that at a singular value
µ of the momentum map, the level set P−1(µ) is, in general, not a manifold. Thus the reduced
space Mµ will not be a smooth manifold either. A simple example is provided by a spherical
pendulum moving with angular momentum zero, i.e. moving in a plane. Another example is the
reduction by the gravitational S1-symmetry of a Lagrange top obtained after regular reduction
of its internal S1-symmetry (corresponding to the top’s homogeneous mass distribution). In [3,
4, 12, 13, 18, 29, 30, 34] the theory of singular reduction of symplectic and Poisson Hamiltonian
systems has been developed. See also [11] for a nice overview and some worked examples (including
the spherical pendulum and the Lagrange top). Since the reduced space Mµ is not a manifold,
symplectic forms and Hamiltonian vector fields cannot be defined. As a consequence, the reduced
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“Hamiltonian dynamics” cannot be written as a system of ordinary differential equations on Mµ

as in the regular case. However, since Mµ is a topological space (relative to the natural quotient
topology), a reduced Poisson bracket {·, ·}µ on the space of smooth functions C∞(Mµ) may still
be defined. This bracket induces a Hamiltonian formalism that allows one to write the reduced
Hamiltonian dynamics on the singular reduced space Mµ. The Hamiltonian flow corresponding to
this Hamiltonian dynamics is exactly the projection to Mµ of the regular Hamiltonian flow on M .
Finally, in [4, 11, 12, 13, 18, 30, 34] it has been shown that the singular reduced space Mµ resulting
from a symplectic manifold (M,ω) may be stratified by symplectic manifolds, called pieces. The
stratification is by orbit type decomposition. The Hamiltonian flow on Mµ leaves these pieces
invariant and restricts to a regular Hamiltonian flow on each of them.

Regular reduction has been recently extended in [6, 7] to the more general case of implicit Hamil-
tonian systems, building on preliminary work in [10, 37]. The geometric structure underlying an
implicit Hamiltonian system on a state space M is the Dirac structure, defined as a maximally
isotropic smooth vector subbundle of TM ⊕ T ∗M . As opposed to the symplectic or Poisson for-
malism, the “Hamiltonian dynamics” associated to a function H ∈ C∞(M) via a Dirac structure
consists of a coupled set of differential and algebraic equations. Perhaps the most striking example
of an implicit Hamiltonian system is the one defined by a Poisson bracket on M , restricted to a sub-
manifold of M which is not the level set of a collection of Casimir functions. This example actually
motivated the original definition of a Dirac structure in [10], later adopted in [15]. Implicit Hamil-
tonian systems were defined in [8, 25, 40, 41, 42] extending those introduced in [10, 15]. They were
successfully employed in the context of network modeling of energy conserving physical systems.
Examples are mechanical systems with nonholonomic kinematic constraints, electrical LC circuits,
and electromechanical systems. We refer to [38] and references therein for more information; see
also [6] for a detailed historical account.

The study of symmetries and reduction of implicit Hamiltonian systems evolved from preliminary
results in [10, 15, 37] culminating to a regular reduction theory described in [6, 7]. It was shown
that a Dirac structure on M admitting a symmetry Lie group G with corresponding equivariant
momentum map P , reduces to a Dirac structure on the quotient manifold Mµ := P−1(µ)/Gµ, if µ
is a regular value of P and Gµ acts regularly on the level set P−1(µ). Furthermore, the projectable
integral curves of the implicit system defined by a G-invariant function H ∈ C∞(M)G, descend to
integral curves of the reduced implicit Hamiltonian system corresponding to the reduced Hamilto-
nian Hµ. The theory is a generalization of the classical regular reduction theory for symplectic and
Poisson Hamiltonian systems, as well as the recently developed reduction theories for constrained
mechanical systems. Section 3 briefly recalls the main results of [6, 7] from a different perspective
needed in this paper. For a discussion of the reduction theory for constrained mechanical systems
we refer to [6, 7].

The goal of the present work is to develop a reduction theory for implicit Hamiltonian systems at
singular values of the momentum map. We restrict our attention to a class of Dirac structures de-
scribed by a generalized Poisson bracket and a (“characteristic”) distribution of derivations (vector
fields), both defined on a class of smooth functions. We consider the special subclass of symmetries
that preserve both the generalized Poisson bracket and the distribution. Using these ingredients,
we prove that one can define a so-called topological Dirac structure on the singular reduced space
Mµ (where for ease of exposition we will take µ = 0). This represents the reduced Dirac structure.
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This topological Dirac structure, whose construction implicitly uses Sikorski differential spaces (see
[13, 33]), defines a Hamiltonian formalism on the reduced space Mµ. The dynamics corresponding
to an implicit Hamiltonian system with Hamiltonian H ∈ C∞(Mµ) are described. It is shown
that the projectable integral curves of the implicit Hamiltonian system on M , corresponding to a
G-invariant function H ∈ C∞(M)G, induce “integral curves” of the Hamiltonian dynamics defined
on the singular reduced space. In the last two sections of the paper we make the assumption that
the generalized Poisson bracket corresponding to the Dirac structure is nondegenerate. Secondly,
we assume that the infinitesimal generators of the Lie group action are Hamiltonian vector fields,
whose Hamiltonian is defined by the contraction of the momentum map with the corresponding
Lie algebra element. Furthermore, the differential of the momentum map is assumed to annihi-
late the characteristic distribution. Under these assumptions, the singular reduced space can be
decomposed by orbit type into a disjoint set of smooth manifolds, called pieces. It is shown that
the topological Dirac structure restricts to a regular reduced Dirac structure on each piece. The
Hamiltonian flow leaves the pieces invariant and restricts to a regular Hamiltonian flow on each
piece.

The paper is organized as follows. Section 2 gives a brief introduction to Dirac structures and
implicit Hamiltonian systems. The basic results concerning symmetries and regular reduction of
implicit Hamiltonian systems are recalled in Section 3. Section 4 describes the topological reduction
of an implicit Hamiltonian system admitting a symmetry group. The result is a so-called topological
Dirac structure on the singular reduced space (which is not a smooth manifold). It is shown that
if the symmetry group acts regularly and the value of the momentum map is regular (hence the
reduced space is a smooth manifold), then the singular reduced implicit Hamiltonian system equals
the regular reduced implicit Hamiltonian system as described in Section 3. Section 5 discusses the
dynamics of singular reduced implicit Hamiltonian systems. It is shown that the “projectable”
solutions of the original system descend to solutions of the singular reduced system. Section 6
describes the decomposition of the singular reduced space into smooth manifolds called pieces. The
singular reduced implicit Hamiltonian system restricts to a regular reduced implicit Hamiltonian
system on each piece. In Section 7 the theory developed in this paper is illustrated by working
out in detail the singular reduction of a spherical pendulum with angular momentum zero about
the vertical axis. Some additional comments on the singular reduction of constrained mechanical
systems are included in this section. Section 8 contains the conclusions. For ease of reference, a
list of notation is included at the end of this paper.

2 Implicit Hamiltonian systems

This section gives a brief introduction to Dirac structures and implicit Hamiltonian systems. It
includes the important example of mechanical systems with kinematic constraints. The next section
gives an overview of the regular reduction theory developed for these systems. These two review
sections, recalling previously published results (see e.g. [6, 7, 8, 10, 14, 15, 20, 25, 37, 38, 39, 40, 41,
42]), set up notations and conventions, give the necessary definitions and results, and present the
general framework of Dirac geometry, in order to serve as reference to the singular reduction theory
developed in this paper. The authors would like to stress, however, that some of the definitions
and theorems, as well as their general presentation, slightly differ from previous treatments of the
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subject. In particular, the introduction of the Dirac structure in Definition 1 and the consistent use
of local sections throughout the paper have some advantages over previous formulations facilitating
the passage to singular reduction.

Let M be a smooth n-dimensional manifold and let TM ⊕ T ∗M denote the vector bundle whose
fiber at x ∈ M is given by TxM × T ∗xM . Here TM denotes the tangent and T ∗M the cotangent
bundle of M . Throughout this paper all geometric objects are assumed to be smooth, so when
manifolds, vector bundles, sections are mentioned, they are all smooth. A Dirac structure on M is
defined as follows.

Definition 1. A smooth vector subbundle D ⊂ TM ⊕ T ∗M is called a Dirac structure if every
fiber D(x) ⊂ TxM × T ∗xM, x ∈M , satisfies D(x) = D⊥(x), where

D⊥(x) = {(w,w∗) ∈ TxM × T ∗xM | 〈v∗, w〉+ 〈w∗, v〉 = 0, ∀(v, v∗) ∈ D(x)}. (2.1)

Here 〈·, ·〉 denotes the duality pairing between TM and T ∗M .

Notice that D being a vector subbundle of TM ⊕ T ∗M implies, by definition, that its fibers all
have the same dimension, i.e., dimD(x) = dimD(x′), ∀x, x′ ∈ M . In particular, if D is a Dirac
structure then dimD(x) = n, ∀x ∈M . Furthermore, D(x) = D⊥(x), x ∈M, implies that

〈v∗, v〉 = 0, ∀(v, v∗) ∈ D(x). (2.2)

Remark 1. In [14] a constant Dirac structure on a vector space V is defined as a vector subspace
D ⊂ V×V∗ such that D = D⊥. An equivalent way of writing Definition 1 is therefore the following.
A Dirac structure on a manifold M is a smooth vector subbundle D ⊂ TM ⊕ T ∗M such that each
fiber D(x), x ∈M, is a constant Dirac structure on TxM . �

Remark 2. In [10] there is yet another slightly different definition of a Dirac structure. Denote
by Xloc(M), respectively X(M), the space of local, respectively global, smooth sections of TM .
That is, these are the spaces of smooth local, respectively global, vector fields on M . Similarly,
Ωk
loc(M) and Ωk(M) denote the spaces of smooth local and global k-forms on M . The spaces of

smooth local and global sections of the vector subbundle D ⊂ TM ⊕T ∗M are denoted by Dloc and
D respectively. Throughout, let X,Y ∈ Xloc(M) and α, β ∈ Ω1

loc(M). Define a pairing on smooth
sections of TM ⊕ T ∗M by

〈〈(X,α), (Y, β)〉〉 = 〈α, Y 〉+ 〈β,X〉, for (X,α), (Y, β) ∈ Xloc(M)⊕ Ω1
loc(M). (2.3)

According to [10], a Dirac structure on M is a smooth vector subbundle D ⊂ TM ⊕T ∗M such that

1. D is isotropic: For every two local sections (X,α), (Y, β) ∈ Dloc we have 〈〈(X,α), (Y, β)〉〉 = 0;

2. D is maximal: If (Y, β) is a local section of TM ⊕ T ∗M such that 〈〈(X,α), (Y, β)〉〉 =
0, ∀(X,α) ∈ Dloc, then (Y, β) ∈ Dloc.

It is easily shown that this definition given in [10] and Definition 1 are equivalent. Indeed, since D
is a smooth vector subbundle, every (v, v∗) ∈ D(x) can be extended to a local section (X,α) ∈ Dloc.
Furthermore, D being a smooth vector subbundle and the duality pairing 〈·, ·〉 between TM and
T ∗M being nondegenerate, implies that also D⊥ ⊂ TM ⊕ T ∗M , with fibers given by D⊥(x), is a
smooth vector subbundle. Therefore, also every (w,w∗) ∈ D⊥(x) can be extended to a local section
(Y, β) of D⊥. Elementary linear algebra (see, e.g., [1], §5.3 for such an argument) shows that
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• D is isotropic if and only if D ⊂ D⊥ and that

• maximal isotropy is equivalent to D = D⊥, or to the fact that dimD(x) = n for all x ∈M .

Thus the two definitions are equivalent. �

A Dirac structure induces several (co-)distributions. Recall that a distribution ∆ on a manifold
M is an assignment of a vector subspace ∆(x) ⊂ TxM to each x ∈ M . The distribution ∆ is said
to be smooth if for each x0 ∈M there exist a neighborhood U of x0 in M and smooth vector fields
X1, . . . , Xk ∈ X(U) such that ∆(x) = span {X1(x), . . . , Xk(x)} for all x ∈ U . The distribution
∆ is called constant dimensional if the dimension of the linear subspace ∆(x) ⊂ TxM does not
depend on the point x ∈ M . Notice that if ∆ is a smooth constant dimensional distribution on
M , then it defines a smooth vector subbundle (also denoted by ∆) of the tangent bundle TM ,
with fibers ∆(x), x ∈ M . Analogously, a codistribution Γ is an assignment of a vector subspace
Γ(x) ⊂ T ∗xM to each x ∈ M . Smoothness and constant dimensionality are defined in the same
way as for distributions. A smooth constant dimensional codistribution defines a smooth vector
subbundle of the cotangent bundle T ∗M .

Any Dirac structure D naturally defines

• a distribution ∆ whose fibers are given by1

∆(x) := {X(x) | X ∈ Xloc(M), (X, 0) ∈ Dloc} (2.4)

• a codistribution Γ whose fibers are given by2

Γ(x) := {α(x) | α ∈ Ω1
loc(M), ∃X ∈ Xloc(M) such that (X,α) ∈ Dloc}. (2.5)

Since D is isotropic it follows that ∆(x) ⊂ Γ◦(x). Here Γ◦(x) denotes the annihilating vector
subspace of Γ(x) in TxM , that is, Γ◦(x) := {v ∈ TxM | 〈v∗, v〉 = 0, ∀v∗ ∈ Γ(x)}. Equivalently,
Γ(x) ⊂ ∆◦(x), where ∆◦(x) denotes the annihilating vector subspace of ∆(x) in T ∗xM , that is,
∆◦(x) := {v∗ ∈ T ∗xM | 〈v∗, v〉 = 0, ∀v ∈ ∆(x)}. Furthermore, if Γ is constant dimensional, and
hence defines a vector subbundle of T ∗M , it follows, by maximal isotropy of D, that ∆(x) = Γ◦(x),
or equivalently, Γ(x) = ∆◦(x). Notice that in this case, ∆ is also constant dimensional and hence
defines a vector subbundle of TM .

Remark 3. In order to obtain a smooth distribution, it is important to define ∆ in terms of local
sections, as in (2.4). In particular, it is not true that v ∈ ∆(x) if and only if (v, 0) ∈ D(x). To
see this, consider the following example. Let M = R2 with (global) coordinates x = (x1, x2) ∈M .
Consider the closed two-form ω = ‖x‖2dx1 ∧ dx2, and let D be given by

D(x) = {(v, v∗) ∈ R2 × R2 | v∗ = ω(x)(v, ·)}. (2.6)

Then D defines a Dirac structure on M . To see this, notice that D defines a smooth vector
subbundle of TM ⊕ T ∗M . A basis for its fibers is given by the smooth tensor fields ∂

∂x1
+ ‖x‖2dx2

1In the literature on implicit Hamiltonian systems, this distribution is usually denoted by G0 and sometimes called

the characteristic distribution. However, in order to avoid confusion with notation defined later on in this paper we

have decided to adopt a different notation here.
2This codistribution is usually denoted by P1 in the literature.
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and ∂
∂x2

−‖x‖2dx1, which immediately shows that D⊥(x) = D(x). Since ω is nondegenerate outside
x = (0, 0) the smooth distribution ∆ defined in (2.4) is given by ∆ = {0} (the zero section of TM).
However, (v, 0) ∈ D(0) for every v ∈ R2.

This example illustrates also something else. Notice that Γ defined in (2.5) is the smooth codis-
tribution whose basis is given by the one-forms −‖x‖2dx1 and ‖x‖2dx2. In particular, Γ◦(0) =
({0})◦ = T0M = R2, which does not equal ∆(0) = {0}. Hence Γ◦(x) 6= ∆(x). The problem stems
from the fact that Γ is not constant dimensional in this example. In general, if Γ is constant
dimensional, then Γ◦(x) = ∆(x). �

Remark 4. The codistribution Γ defined in (2.5) can be equivalently defined pointwise by:

Γ(x) = {v∗ ∈ T ∗xM | ∃v ∈ TxM such that (v, v∗) ∈ D(x)}. (2.7)

To see this, recall that, by definition, D is a smooth vector subbundle of TM ⊕ T ∗M . Hence there
exists a smooth local basis for its fibers. The canonical projection of this basis to T ∗M yields a
smooth local basis for Γ (around the point x). Therefore, definitions (2.5) and (2.7) are equivalent.
(See e.g. the previous Remark for an example.) �

A Dirac structure can satisfy the following special property.

Definition 2. A Dirac structure D is called closed, or integrable, if for all local sections (X1, α1),
(X2, α2), (X3, α3) ∈ Dloc

〈LX1α2, X3〉+ 〈LX2α3, X1〉+ 〈LX3α1, X2〉 = 0. (2.8)

Equivalently (see [10, 14, 15]), D is closed if and only if for all (X1, α1), (X2, α2) ∈ Dloc

([X1, X2], LX1α2 − LX2α1 + d〈α1, X2〉) ∈ Dloc. (2.9)

The notation LX is reserved for the Lie derivative operator (acting on any type of tensor field)
defined by the local vector field X on M .

It is easy to see that the graph of a symplectic form ω : TM → T ∗M , or the graph of the skew-
symmetric vector bundle map J : T ∗M → TM induced by a Poisson bracket {·, ·} on M , defines
a Dirac structure on M . As customary, we will call both the bundle map J and the two-tensor
defined by {·, ·} the Poisson structure on M . The Dirac structure D being closed corresponds to
the condition that ω is a closed two-form, respectively, that the Poisson bracket satisfies the Jacobi
identity.

In this paper we will concentrate on a rather frequently occurring type of Dirac structure defined
as follows. Let {·, ·} : C∞(M)× C∞(M) → C∞(M) be a generalized Poisson bracket on M . That
is, {·, ·} is skew-symmetric, bilinear, and satisfies the Leibniz property. Denote the corresponding
vector bundle map by J : T ∗M → TM . By definition, 〈dF, J(dH)〉 = {F,H}, for all F,H ∈
C∞(M). Recall that J is skew-symmetric, that is, J∗ = −J . Note that we do not require {·, ·}
to satisfy the Jacobi identity, nor J to have constant rank. Moreover, given a subbundle ∆ of
TM (i.e., a smooth constant dimensional distribution ∆ on M), it is easy to see that the vector
subbundle D ⊂ TM ⊕ T ∗M with fiber

D(x) = {(v, v∗) ∈ TxM × T ∗xM | v − J(x)v∗ ∈ ∆(x), v∗ ∈ ∆◦(x)} (2.10)
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defines a Dirac structure on M . In terms of its local sections this is expressed as

Dloc = {(X,α) ∈ Xloc(M)⊕ Ω1
loc(M) | X − Jα is a local section of ∆,

α is local section of ∆◦}. (2.11)

Here ∆◦ denotes the vector subbundle of T ∗M whose fiber at x ∈M equals ∆◦(x).

Remark 5. In [10, 14] it is shown that under a mild constant dimensionality assumption, every
Dirac structure can be written in the form (2.10) or, equivalently, (2.11). Indeed, if D is an
arbitrary Dirac structure on M , define the codistribution Γ as in (2.5), and assume that Γ is
constant dimensional (hence defines a vector subbundle of T ∗M). Then there exists a well defined
(see [14]) skew-symmetric vector bundle map J(x) : Γ(x) ⊂ T ∗xM → (Γ(x))∗ ⊂ TxM, x ∈ M ,
defined by

J(x)v∗ = v̄ ∈ (Γ(x))∗, v∗ ∈ Γ(x), (2.12)

where v̄ ∈ (Γ(x))∗ denotes the restriction of some v ∈ TxM to Γ(x) ⊂ T ∗xM which satisfies the
condition (v, v∗) ∈ D(x). Notice that the kernel of J(x) is given by the codistribution Γ0 with
fibers defined by3

Γ0(x) := {α(x) | α ∈ Ω1
loc(M), (0, α) ∈ Dloc}. (2.13)

Then the Dirac structure D is of the form (2.10) or, equivalently, (2.11) with ∆ = Γ◦. The map J
may be locally extended to a skew-symmetric vector bundle map J(x) : T ∗xM → TxM , defining a
generalized Poisson structure on M . �

Notice that, in general, the Dirac structure defined in (2.10) is not closed. Although it does not
play an important role in the rest of the paper, we remark for completeness that (2.11) defines a
closed Dirac structure if and only if (see [14])

1. ∆ is involutive,

2. the bracket {·, ·} restricted to the set of admissible functions AD := {H ∈ C∞(M) |
dH is a section of ∆◦} defines a Poisson bracket on AD (that is, the Jacobi identity holds).

Remark 6. Before leaving this brief introduction to Dirac structures and we proceed to the de-
scription of implicit Hamiltonian systems, we would like to mention the following generalization.
In [20] a Dirac structure is defined as a maximal isotropic subbundle D ⊂ A⊕A∗, where the pair
(A,A∗) is a Lie bialgebroid over a smooth manifold M . The isotropy condition is defined with
respect to the natural pairing 〈〈·, ·〉〉 defined analogously as in (2.3) by A and its dual A∗. If we take
the special case A = TM and dually A∗ = T ∗M , then we recover Definition 1. For more informa-
tion on this generalization we refer to [20] and references therein. We remark that [20] require the
Dirac structure to be closed. In their terminology, Dirac structures are always closed, while Dirac
structures not satisfying condition (2.9) are called almost Dirac structures. In this paper, however,
we prefer to use the terminology as introduced above. That is, we shall call a maximally isotropic
subbundle of TM ⊕T ∗M a Dirac structure and add the prefix closed if (and only if) the conditions
of Definition 2 are satisfied. �

3This codistribution is usually denoted by P0 in the literature.
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Now we turn to the definition of an implicit Hamiltonian system. Consider a Dirac structure D
on M and a smooth function H ∈ C∞(M), called the Hamiltonian or energy function. Then the
three-tuple (M,D,H) defines an implicit Hamiltonian system in the following way.

Definition 3. The implicit Hamiltonian system (M,D,H) is defined as a set of smooth time
functions {x(t) | x : R →M of class C∞}, called solutions, satisfying the condition

(ẋ(t), dH(x(t))) ∈ D(x(t)), ∀t. (2.14)

Equations (2.2) and (2.14) imply that implicit Hamiltonian systems are energy conserving, i.e.,

dH

dt
(x(t)) = 〈dH(x(t)), ẋ(t)〉 = 0, ∀t. (2.15)

If D is the graph of a symplectic form ω or of a Poisson structure J , then Definition 3 yields a
classical symplectic or Poisson Hamiltonian system. On the other hand, if D is defined by (2.10)
then the system includes the algebraic constraints

dH(x(t)) ∈ ∆◦(x(t)), ∀t. (2.16)

Thus all solutions of the implicit Hamiltonian system necessarily lie in the constraint manifold

Mc := {x ∈M | dH(x) ∈ ∆◦(x)}. (2.17)

Since implicit Hamiltonian systems consist of coupled differential and algebraic equations, there
is no existence and uniqueness theorem as for classical Hamiltonian systems described by ordinary
differential equations. In particular, not every point x0 ∈ Mc necessarily lies on the trajectory
of some solution x(t) of the system. Neither are the solutions through a point x0 ∈ Mc, if they
exist, necessarily unique. This happens, for instance, if the Lagrange multipliers corresponding to
the algebraic constraints cannot be solved uniquely. In the sequel we will not investigate these
problems. Instead, we will study the reduction of the underlying Dirac structure in the presence
of symmetries (to be defined later on). We shall show that certain “projectable” solutions, whose
existence will be postulated, will descend to solutions of an implicit Hamiltonian system on the
reduced space.

The problem of existence and uniqueness of solutions to implicit systems is an important and
active area of research and will not be touched upon here. We only would like to mention the special
case of so-called index 1 systems. Consider the implicit Hamiltonian system defined by a Dirac
structure of type (2.10) and the Hamiltonian function H ∈ C∞(M). Let the vector subbundle ∆
be locally expressed as the span of the independent vector fields g1, . . . , gm. Then the constraint
manifold can be written as

Mc = {x ∈M | LgjH(x) = 0, j = 1, . . . ,m}. (2.18)

Now assume that the constraints are of index 1, that is, the matrix[
LgiLgjH(x)

]
i,j=1,...,m

(2.19)

is nonsingular for all x ∈ Mc. In that case, the restriction of the implicit Hamiltonian system
(M,D,H) to Mc yields an explicit Hamiltonian system on Mc. This system is defined by a (possibly

9



non-integrable) Poisson bracket on Mc (see [6, 41]). Its corresponding dynamics is thus given by a
set of ordinary differential equations on Mc. Standard existence and uniqueness results now yield
the usual conclusion: through every point x0 ∈ Mc there exists a unique (local) solution of the
implicit Hamiltonian system restricted to Mc.

Example 1. As an important example of implicit Hamiltonian systems, and in anticipation to
Section 7, we mention the class of mechanical systems with kinematic constraints. These systems
are described by implicit Hamiltonian systems (M,D,H) with D of the form (2.10). The phase
space M = T ∗Q is the cotangent bundle of the configuration space Q. Local coordinates are
denoted, as usual, by (q, p) ∈ T ∗Q. The function H ∈ C∞(M) denotes the total energy of the
system. The Poisson bracket {·, ·} is the usual one associated to the canonical symplectic form
ω = dq ∧ dp on T ∗Q. It induces a Poisson structure J . We assume that the kinematic constraints
are linear in the velocities, and that they are independent. Then there exists a set of k independent
one-forms α1, . . . , αk on Q such that the constraints are given by

αi(q)q̇ = 0, i = 1, . . . , k. (2.20)

Define the matrix AT , whose i-th row expresses the one-form αi. Then the kinematic constraints
can be equivalently written in the familiar form

AT (q)q̇ = 0. (2.21)

The matrix AT (q) is a k × n matrix, n = dimQ, with full row rank k at every point q ∈ Q. The
distribution Λ = kerAT (q) is called the constraint distribution. It describes the allowed infinitesimal
motions of the system. Recall that the constraints are called holonomic if they can be integrated
to a set of configuration constraints {f1(q) = 0, . . . , fk(q) = 0}. If this is not possible, then the
constraints are called nonholonomic. A necessary and sufficient condition for the constraints to be
holonomic is that the constraint distribution is involutive. (This is Frobenius’ Theorem.)

By d’Alembert’s principle, the constraints (2.21) generate constraint forces of the form Fc =
A(q)λ, where λ ∈ Rk are called the Lagrange multipliers. Hence, the equations of motion of the
system are given by the implicit Hamiltonian system(

q̇

ṗ

)
=

(
0n In
−In 0n

)(
∂H
∂q (q, p)
∂H
∂p (q, p)

)
+

(
0n×k
A(q)

)
λ, (2.22a)

0 =
(
0k×n AT (q)

)(∂H
∂q (q, p)
∂H
∂p (q, p)

)
. (2.22b)

From (2.22a) it follows that the distribution ∆ is locally spanned by the columns of the matrix(
0 AT (q)

)T , where each column is understood as a vector field on T ∗Q. With this in mind, we
write (with some abuse of notation)

∆(q, p) = Im

[
0n×k
A(q)

]
, (q, p) ∈ T ∗Q. (2.23)

More intrinsically, ∆ can be defined in the following way: Define the bundle projection πQ :
T ∗Q → Q. Lift the one-forms α1, . . . , αk on Q by means of a vertical lift to the one-forms
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π∗Qα1, . . . , π
∗
Qαk on T ∗Q. The span of these lifted one-forms defines a codistribution on T ∗Q, which

in fact equals Γ0 as defined in (2.13). Now, recall that the symplectic form ω is nondegenerate and
hence defines two isomorphisms: ω[ : T (T ∗Q) → T ∗(T ∗Q) and its inverse ω] : T ∗(T ∗Q) → T (T ∗Q).
These are sometimes called the musical isomorphisms. Define the vector fields Xi = −ω](π∗Qαi),
with i = 1, . . . , k, on T ∗Q. The span of these vector fields defines a distribution on T ∗Q, which is
exactly ∆. Since the vector fields are independent, the distribution is constant dimensional (with
dimension k) and defines a vector subbundle of T (T ∗Q).

Finally, if the kinetic energy is defined by a positive definite metric on Q, then the constraints are
of index 1. In that case, the Lagrange multipliers λ can be solved uniquely. Hence the constrained
mechanical system on T ∗Q can be written as an unconstrained generalized Hamiltonian system
on Mc. In [39] it is shown that the corresponding generalized Poisson bracket on Mc satisfies the
Jacobi identity if and only if the kinematic constraints are holonomic. ♦

3 Symmetries and regular reduction

In this section we recall some of the results in [6, 7] concerning symmetries and regular reduction
of implicit Hamiltonian systems. They will serve as reference for the rest of the paper. Specifically,
they are needed in Section 6 where we shall prove that the singular reduced Dirac structure restricts
to regular reduced Dirac structures on the pieces defined by the orbit type decomposition of the
singular reduced space M0. We refer to [6, 7] for all technical details and proofs. We stress
that, unless specifically stated otherwise, the results in this section are valid for arbitrary Dirac
structures, not necessarily of the form (2.10).

Definition 4. A smooth vector field Y on M is called a symmetry of the Dirac structure D if for
every local section (X,α) of D, the pair (LYX,LY α) is also a local section of D. The vector field
Y is called a symmetry of the implicit Hamiltonian system (M,D,H) if Y is a symmetry of D and
a symmetry of H, i.e., LYH = 0.4

Definition 4 generalizes the classical notion of symmetry for symplectic or Poisson Hamiltonian
systems. To see this, let J : T ∗M → TM be the vector bundle map over the identity defined by the
Poisson structure: {F1, F2} = 〈dF1, J(dF2)〉 for any smooth locally defined functions F1, F2 : M →
R. Denote by the same letter the map induced on local sections, that is, (Jα)(x) = J(α(x)), for any
α ∈ Ω1

loc(M) and any x in the domain of definition of α. Thus we can think of J also as a C∞(M)-
linear map J : Ω1

loc(M) → Xloc(M). It is easy to check that the vector field Y is a symmetry of
D if and only if LY ◦ J = J ◦ LY . This is equivalent to the condition that Y is a derivation of
the Poisson bracket, that is, LY {F1, F2} = {LY F1, F2}+ {F1, LY F2} for any F1, F2 ∈ C∞(M). In
turn, this is equivalent to the statement that the flow of Y consists of Poisson diffeomorphisms. If
J = ω−1, where ω is a symplectic form on M , then this condition is clearly equivalent to LY ω = 0.

In this paper we will consider a special subclass of symmetries, defined in the following Proposi-
tion.

Proposition 1. Consider a Dirac structure D of the type defined in (2.10). Assume that the vector
field Y on M is a derivation of the generalized Poisson bracket (equivalently, LY ◦ J = J ◦ LY ).

4This is called a strong symmetry in [6, 7].
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Furthermore, assume that LY Z is a local section of ∆ whenever Z is a local section of ∆. Then Y

is a symmetry of D.

In particular, this means that we restrict our attention to the case where Y is a symmetry of the
generalized Poisson bracket, as well as a symmetry of the vector subbundle ∆ ⊂ TM . These kinds
of symmetries often arise in constrained mechanical systems, as will be seen in Section 7.

More specifically, we will consider Lie algebra symmetries, defined as follows. Recall that a left
Lie algebra action on a manifold M is a Lie algebra anti-homomorphism ξ ∈ g 7→ ξM ∈ X(M) such
that the map (x, ξ) ∈M × g 7→ ξM (x) ∈ TxM is smooth.

Definition 5. The Lie algebra g is called a symmetry Lie algebra of D if ξM is a symmetry of D
for every ξ ∈ g. It is called a symmetry Lie algebra of the implicit Hamiltonian system (M,D,H)
if ξM is a symmetry of D and also a symmetry of H, i.e. LξMH = 0, for every ξ ∈ g.

In particular, if the Dirac structure is of the type (2.10), then the criterion (sufficient condition)
in Proposition 1 applies.

Lie algebra symmetries are often induced by Lie group actions. Let G be a Lie group with Lie
algebra g and φ : G ×M → M a smooth left action of G on the manifold M . The infinitesimal
generator of the action associated to ξ ∈ g is defined by

ξM (x) =
d

dt

∣∣∣∣
t=0

φ(exp(tξ), x) ∈ TxM, x ∈M. (3.1)

The assignment ξ ∈ g 7→ ξM ∈ X(M) is a left Lie algebra action of g on M .

Definition 6. The Lie group G is said to be a symmetry Lie group of D if for every (X,α) ∈ Dloc

and every g ∈ G it follows that
(
φ∗gX,φ

∗
gα
)
∈ Dloc. It is said to be a symmetry Lie group of the

implicit Hamiltonian system (M,D,H) if, in addition, H is G-invariant, that is, H ◦ φg = H for
all g ∈ G.

Setting g = exp(tξ) for ξ ∈ g and taking the derivative of the defining relations in Definition 6, it
follows that the conditions in Definitions 4 and 5 hold. Thus a G-symmetry of the Dirac structure
D (respectively of the implicit Hamiltonian system (M,D,H)) induces a similar g-symmetry of D
(respectively of (M,D,H)).

We turn now to the analysis of the regular reduction process of Dirac structures and implicit
Hamiltonian systems. We start by explaining how an implicit Hamiltonian system on M can be
restricted to an implicit Hamiltonian system on a submanifold N of M . Let D be a Dirac structure
on M and let N ⊂ M be a submanifold of M . Following [10], define for each x ∈ N the map
σ(x) : TxN × T ∗xM → TxN × T ∗xN, x ∈ N, by σ(x)(v, v∗) = (v, v∗|TxN ). Here v∗|TxN denotes the
restriction of the covector v∗ ∈ T ∗xM to the subspace TxN ⊂ TxM . Define a vector subspace of
TxN × T ∗xN by

DN (x) = σ(x) (D(x) ∩ (TxN × T ∗xM)) , x ∈ N. (3.2)

It is clear that DN (x) ⊂ D⊥
N (x), ∀x ∈ N . To prove the reverse inclusion, suppose that (w,w∗) ∈

D⊥
N (x) ⊂ TxN × T ∗xN . That is, 〈v∗, w〉 + 〈w∗, v〉 = 0, ∀(v, v∗) ∈ DN (x). Then there exists a

v̄∗ ∈ T ∗xM such that (v, v∗) = σ(x)(v, v̄∗), i.e. v̄∗|TxN = v∗, and (v, v̄∗) ∈ D(x). Since v, w ∈ TxN ,
one gets

0 = 〈v∗, w〉+ 〈w∗, v〉 = 〈v̄∗, w〉+ 〈w̄∗, v〉,
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where w̄∗ is an arbitrary extension of w∗ to TxM . Since this relation holds for all (v, v̄∗) ∈ D(x)
with v ∈ TxN , this implies that

(w, w̄∗) ∈ [D(x) ∩ (TxN × T ∗xM)]⊥ = D⊥(x) + (TxN × T ∗xM)⊥

= D(x) + ({0} × TxN
◦). (3.3)

Hence there exists a ū∗ ∈ TxN
◦ ⊂ T ∗xM such that (w, w̄∗ + ū∗) ∈ D(x). However, since w ∈ TxN

and σ(x)(w, w̄∗ + ū∗) = (w, (w̄∗ + ū∗)|TxN ) = (w,w∗), it follows that (w,w∗) ∈ DN (x). This shows
that D⊥

N (x) ⊂ DN (x).
Now assume that the dimension of D(x) ∩ (TxN × T ∗xM) is independent of x ∈ N , i.e. that

D ∩ (TN × T ∗M) is a vector subbundle of TN × T ∗M . Then it follows that σ is a vector bundle
map and hence that DN is a vector subbundle of TN × T ∗N . So we have proved the following
result (which is a slightly rewritten version of the result in [10]).

Proposition 2. Consider a Dirac structure D on M and let N be a submanifold of M . Assume
that D(x) ∩ (TxN × T ∗xM), x ∈ N, has constant dimension on N . Then the bundle DN with fibers
defined by (3.2) is a Dirac structure on N . This is called the restriction of D to N .

In order to do computations it is convenient to describe the restricted Dirac structure DN in
terms of its local sections. This gives the following proposition (an improved version of [6, 7]). Let
ι : N ↪→M denote the inclusion map.

Proposition 3. Consider a Dirac structure D on M and let N be a submanifold of M . Assume
that D(x)∩ (TxN ×T ∗xM), x ∈ N, has constant dimension on N and let DN denote the restriction
of D to N . Then (X̄, ᾱ) is a local section of DN if and only if there exists a local section (X,α) of
D such that X̄ ∼ι X and ᾱ = ι∗α. Otherwise stated, in terms of local sections,

(DN )loc = {(X̄, ᾱ) ∈ Xloc(N)⊕ Ω1
loc(N) | ∃(X,α) ∈ Dloc such that X̄ ∼ι X and ᾱ = ι∗α}. (3.4)

Here ι∗ denotes the pull back by ι and X̄ ∼ι X signifies that X̄ and X are ι-related, that is,
Tι ◦ X̄ = X ◦ ι. In particular, if X̄ ∼ι X, this means that X is tangent to N and its restriction to
N is exactly X̄.

IfD is closed, then alsoDN is closed. This fact follows immediately from Definition 2 by observing
that for (X̄1, ᾱ1), (X̄2, ᾱ2), (X̄3, ᾱ3) ∈ (DN )loc, we have

〈LX̄1
ᾱ2, X̄3〉+ 〈LX̄2

ᾱ3, X̄1〉+ 〈LX̄3
ᾱ1, X̄2〉 =

(
〈LX1α2, X3〉+ 〈LX2α3, X1〉+ 〈LX3α1, X2〉

)
◦ ι. (3.5)

Now let (M,D,H) be an implicit Hamiltonian system on M and let N be a submanifold of M
such that the constant dimensionality condition of Proposition 2 is satisfied. Assume that (the
flow corresponding to) the solutions of (M,D,H) leave the submanifold N invariant. Restrict the
Hamiltonian H to a smooth function HN on N by HN = H ◦ ι and define the implicit Hamiltonian
system (N,DN ,HN ) on N . Then we have the following result.

Proposition 4. Every solution x(t) of (M,D,H) which leaves N invariant (i.e. which is contained
in N) is a solution of (N,DN ,HN ).

We remark that, in general, there is not a one-to-one correspondence between the solutions gener-
ated by the original system (M,D,H) and those generated by the restricted system (N,DN ,HN ).
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(For comparison, one can consider the restriction of a symplectic form ω on M to an arbitrary
submanifold N , leading to a nontrivial kernel and hence a presymplectic form ωN .) An exceptional
case is obtained when N is the level set of a Casimir function.

Definition 7. A Casimir function of a Dirac structure D on M is a smooth function C ∈ C∞(M)
such that (0, dC) ∈ Dloc.

If D is of the form (2.10) then a sufficient condition for C to be a Casimir function of D is that
C is a Casimir of the generalized Poisson structure and dC is a section of ∆◦. It can easily be seen
that if C is a Casimir function of a Dirac structure D (not necessarily of the form (2.10)), then it is
a first integral (or, conserved quantity) of the implicit Hamiltonian system (M,D,H), for arbitrary
H ∈ C∞(M).

Now, in case the submanifold N in Proposition 4 happens to be the level set of a Casimir function
of the Dirac structure D then there does exist a one-to-one correspondence between the solutions
of the original system and those of the restricted system. See [6], Proposition 4.1.7, for a proof.

Next, we explain how an implicit Hamiltonian system on M , admitting a symmetry Lie group
G, can be projected to an implicit Hamiltonian system on the orbit space M/G. Consider a Dirac
structure D on M and let G be a symmetry Lie group of D, acting regularly on M . That is,
the orbit space M/G is a smooth manifold and the canonical projection map π : M → M/G

is a surjective submersion. Let V = kerTπ denote the vertical subbundle of TM , with fiber
V (x) = span {ξM (x) | ξ ∈ g} for every x ∈ M . We assume that V + ∆ is a smooth vector
subbundle of TM , i.e., its fibers all have the same dimension. Furthermore, define the smooth
vector subbundle E ⊂ TM ⊕ T ∗M in terms of its local sections by

Γloc(E) = {(X,α) ∈ Xloc(M)⊕ Ω1
loc(M) | α = π∗α̂ for some α̂ ∈ Ω1

loc(M/G)}; (3.6)

Γloc(E) denotes the space of local sections of the subbundle E. Assume that D ∩ E is a smooth
vector subbundle of TM ⊕ T ∗M , i.e., its fibers all have the same dimension. Then we have the
following result.

Proposition 5. [6, 7, 37] Consider a Dirac structure D on M admitting a symmetry Lie group G
acting regularly on M . Assume that V + ∆ is a smooth vector subbundle of TM and that D ∩E is
a smooth vector subbundle of TM ⊕T ∗M . Then D projects to a Dirac structure D̂ on M̂ := M/G,
described in terms of its local sections by

D̂loc = {(X̂, α̂) ∈ Xloc(M̂)× Ω1
loc(M̂) | ∃(X,α) ∈ Dloc such that X ∼π X̂ and α = π∗α̂}. (3.7)

This is called the projection ofD toM/G. Just as in the case of restriction, D being closed implies
that D̂ is closed. Let (M,D,H) be an implicit Hamiltonian system admitting a symmetry Lie group
acting regularly on M and such that the conditions in Proposition 5 are satisfied. The G-invariant
function H defines a function Ĥ ∈ C∞(M/G) by H = Ĥ ◦ π. Consider the implicit Hamiltonian
system (M/G, D̂, Ĥ). A G-projectable solution x(t) of (M,D,H) is defined as a solution x(t) of
(M,D,H) for which there exists a projectable vector field X ∈ Xloc(M) having x(t) as an integral
curve. This condition means that X ∼π X̂, for some X̂ ∈ Xloc(M/G), and the solution x(t) of
(M,D,H) satisfies ẋ(t) = X(x(t)). The following proposition was obtained in [6, 7].
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Proposition 6. If x(t) is a G-projectable solution of (M,D,H) then x̂(t) := π(x(t)) is a solution
of (M/G, D̂, Ĥ). Conversely, every solution x̂(t) of (M/G, D̂, Ĥ) is locally the projection under π
of a G-projectable solution x(t) of (M,D,H).

In [6] a simple example is given showing that not every solution of an implicit Hamiltonian
system (M,D,H) admitting a symmetry Lie group G is necessarily G-projectable. However, if the
constraints are of index 1, then it can be shown that every solution is G-projectable and hence
descends to a solution of the reduced implicit Hamiltonian system on M/G.

Finally, let us briefly recall some results in [6, 7] concerning the reduction of implicit Hamiltonian
systems admitting a symmetry Lie group having an associated momentum map. Consider an
implicit Hamiltonian system (M,D,H) admitting a symmetry Lie group G with Lie algebra g.
Assume that there exists an Ad∗-equivariant map P : M → g∗ (Ad∗ denoting the coadjoint action),
called momentum map, such that

(ξM , dPξ) ∈ D, ∀ξ ∈ g, (3.8)

where Pξ ∈ C∞(M) is defined by Pξ(x) = 〈P (x), ξ〉, x ∈ M . Notice that if D is the graph of a
symplectic form ω, or a Poisson structure J , then this corresponds to the classical definition of a
momentum map. Assuming that µ ∈ g∗ is a regular value of P , it follows that the level set P−1(µ)
is a closed submanifold of M . Since the Hamiltonian is G-invariant, the solutions of (M,D,H)
leave the level set P−1(µ) invariant. Thus by (2.14), (3.8), and the identity D(x) = D⊥(x), it
follows that

dPξ
dt

(x(t)) = 〈dPξ(x(t)), ẋ(t)〉 = −〈dH, ξM 〉(x(t)) = 0, ∀t, ∀ξ ∈ g. (3.9)

In other words, P is a first integral of the implicit Hamiltonian system (M,D,H). Assuming that
the conditions in Proposition 2 hold, we can restrict the implicit Hamiltonian system (M,D,H) to
an implicit Hamiltonian system (N,DN ,HN ) on N := P−1(µ). The system (N,DN ,HN ) admits
the symmetry Lie group Gµ := {g ∈ G | Ad∗gµ = µ}. Assume that Gµ acts regularly on N , that is,
N/Gµ is a smooth manifold with the canonical projection a surjective submersion, and assume that
the conditions in Proposition 5 are satisfied. Then we can project the implicit Hamiltonian system
(N,DN ,HN ) to an implicit Hamiltonian system (Mµ, Dµ,Hµ). Here Mµ := N/Gµ = P−1(µ)/Gµ is
the regular reduced space and Hµ ∈ C∞(Mµ), defined by Hµ◦π = HN , is the reduced Hamiltonian.
The implicit Hamiltonian system (Mµ, Dµ,Hµ) is called the reduced implicit Hamiltonian system
corresponding to (M,D,H). Moreover, Dµ is called the reduced Dirac structure. If D happens
to be the graph of a symplectic form ω, then Dµ is precisely the graph of the Marsden-Weinstein
[24] reduced symplectic form ωµ. Likewise, if D is the graph of a Poisson structure J on M , then
Dµ is the graph of the reduced Poisson structure Jµ [22]. Notice however, that contrary to these
classical reduction results, the Dirac structure is not required to be closed for the reduction scheme
to work. This observation is important since it allows the reduction method to be applied to the
class of mechanical systems with (possibly nonholonomic) kinematic constraints. See [6, 7] for
further information and a discussion of other recent results in this area. Finally, notice that if D
happens to be closed then also the reduced Dirac structure Dµ will be closed.

As a last remark we would like to mention that in [6, 7] it is shown that the reduction scheme
can also be applied the other way round. One starts with factorizing by the symmetry group G,
thus obtaining M/G, and afterwards restricting to a level set M̃µ of the remaining first integrals
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(which actually turn out to be Casimir functions). The resulting implicit Hamiltonian system
on M̃µ is isomorphic to the system (Mµ, Dµ,Hµ). Notice that M̃µ equals the orbit reduced space
P−1(Oµ)/G, where Oµ denotes the coadjoint orbit in g∗ through µ. See also [19, 21, 27] for classical
orbit reduction if Oµ is embedded in g∗ and [30] for the general regular and singular cases.

Intrinsic reductions. In this paragraph we compare the reduction results described in this sec-
tion with what we call intrinsic reductions. The latter are independent of any symmetry properties
of the Dirac structure and, in fact, can be performed on any closed Dirac structure. They are
analogous in spirit to the Cartan reduction of a symplectic form to the leaf space of the character-
istic distribution of its pull back to a given submanifold (see e.g. §4.3 in [1]) or the reduction of
a Poisson structure relative to a subbundle compatible with the bracket (see [22]). These kind of
reductions have been described in the literature by various authors [6, 7, 10, 15, 20].

Consider a closed Dirac structure D on M . By (2.9) it follows that the characteristic distribution
∆ is involutive. Assume, in addition, that ∆ has constant rank, that is, ∆ ⊂ TM is a vector
subbundle. Then, by Frobenius’ Theorem, ∆ defines a regular foliation Φ∆ partitioning M into
integral submanifolds of ∆. On the other hand, the distribution defined by5

Θ(x) := {X(x) | X ∈ Xloc(M),∃α ∈ Ω1
loc(M) such that (X,α) ∈ Dloc} (3.10)

is clearly also involutive. Assuming, as before, that Θ ⊂ TM is a subbundle, it follows that Θ
defines a regular foliation ΦΘ partitioning M into integral submanifolds of Θ.

There a two logical ways to “reduce” the Dirac structure on M to a lower dimensional manifold.
The first is to project the Dirac structure to the quotient manifold M/Φ∆, i.e., by factoring out the
characteristic distribution. This was done in [10] where it was shown that the Dirac structure D on
M induces a well defined Poisson bracket on the quotient manifold M/Φ∆ ([10], Corollary 2.6.3).
This remarkable result was generalized in [20] to Dirac structures on Lie bialgebroids as described in
Remark 6, where it was referred to as Poisson reduction. In [6] it was observed that this reduction
can be interpreted as a special case of symmetry reduction if one notices that the distribution ∆
is a symmetry distribution of D, which means that every section Y of ∆ is a symmetry of D as
in Definition 4. The Dirac structure D can be projected to a Dirac structure D̂ on M/Φ∆ using
Proposition 5. It turns out that D̂ is exactly the graph of the Poisson structure corresponding to
the Poisson bracket defined by Courant [10]. We refer to [6], Example 4.2.4, p. 73, for more details.

The second possibility to obtain a Dirac structure on a lower dimensional manifold is to restrict
the Dirac structure on M to each of the integral submanifolds of Θ. This can be done using
Proposition 2 and results in a Dirac structure on each of the integral submanifolds of Θ. In [6, 7]
it is shown that each of the reduced Dirac structures represents a presymplectic structure on the
corresponding leaf of the foliation. See [6], Example 4.1.8, p. 69, and [7], Example 9, p. 79. This
corresponds to Theorem 2.3.6 in Courant [10] and Theorem 2.2 in Dorfman [15], stating that a
closed Dirac structure has a foliation by presymplectic leaves.

Once more we want to stress that the reductions described above are “intrinsic” and have nothing
to do with the existence of any symmetry groups of the implicit Hamiltonian system. (Although as
explained above, the first reduction can be interpreted in terms of symmetries of the Dirac struc-
ture.) They can be performed on any closed Dirac structure. We will not deal with these intrinsic

5This distribution is usually denoted by G1 in the literature.
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reductions in the paper and instead will investigate symmetry Lie groups of implicit Hamiltonian
systems, together with their (singular) reductions. Doing so, we do not assume that the Dirac
structure is closed and, in fact, all our results will be presented for the general case.

4 Singular reduction

Contrary to the regular reduction reviewed in the previous section, we now describe a topological
method of reducing a Dirac structure on M to one on the reduced space Mµ, even if Mµ is not a
manifold. This occurs when µ is a singular value of the momentum map P . In such a case, vector
fields and differential one-forms on Mµ are not defined. Therefore, the results described in the
previous section cannot be used. Describing the dynamics corresponding to such a topologically
reduced Dirac structure on Mµ will be done in section 5. For ease of exposition we will take µ = 0
throughout the rest of this paper.

From this point on we specifically consider Dirac structures of the form (2.10), admitting sym-
metries as described in Proposition 1. Let us specify the precise setting of the problem. Given is a
vector subbundle ∆ ⊂ TM and a generalized Poisson structure J : T ∗M → TM (not necessarily
satisfying the Jacobi identity). Define the Dirac structure by

D(x) = {(v, v∗) ∈ TxM × T ∗xM | v − J(x)v∗ ∈ ∆(x), v∗ ∈ ∆◦(x)}. (4.1)

The vector field Y ∈ X(M) is a symmetry of D if

LY ◦ J = J ◦ LY , and LY Z is a local section of ∆ whenever Z is a local section of ∆. (4.2)

A symmetry Lie group of a Dirac structure of the type (4.1) is defined as a smooth left action
φ : G×M →M satisfying for every g ∈ G

φ∗g ◦ J = J ◦ φ∗g, and φ∗gZ is a local section of ∆ whenever Z is a local section of ∆. (4.3)

It immediately follows that if G is a symmetry group in the sense defined above then for every
(X,α) ∈ Dloc and every g ∈ G it follows that

(
φ∗gX,φ

∗
gα
)
∈ Dloc. Thus G is a symmetry Lie group

in the sense of Definition 6. Also, if (4.3) holds, then every infinitesimal generator ξM , ξ ∈ g,
is a symmetry of D as defined in (4.2). Assume, in addition, that the action φ admits an Ad∗-
equivariant momentum map P : M → g∗. Recall from (3.8) that this means (ξM , dPξ) ∈ D for all
ξ ∈ g, where Pξ(x) := 〈P (x), ξ〉, x ∈M . It is not assumed that G acts regularly on M .

Let µ = 0 ∈ g∗ be a singular value of P and consider N := P−1(0). The level set N is, in general,
not a smooth submanifold of M . However, N is a closed subset of M and it is a topological
space relative to the induced subspace topology. The level set N is G-invariant, since the coadjoint
isotropy subgroup G0 at zero equals G. Hence one can endow the orbit space M0 := N/G =
P−1(0)/G with the quotient topology. Denote by π : N →M0 the canonical projection map, that
is, π maps x ∈ N onto its orbit G · x ∈M0.

Define the set of smooth functions on M0 as follows (see [11] or, for the original source, [32]).

Definition 8. A continuous function f0 on M0 is called smooth, denoted by f0 ∈ C∞(M0), if there
exists a smooth G-invariant function f ∈ C∞(M)G such that f0 ◦ π = f |P−1(0).
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Given the singular reduced space M0 together with its topology and a set of smooth functions
C∞(M0) on M0, our goal is to define a reduced Dirac structure on M0.

We begin by constructing the generalized Poisson structure. By (4.3), G is a symmetry Lie group
of the generalized Poisson bracket {·, ·} : C∞(M)×C∞(M) → C∞(M) corresponding to the bundle
map J . Therefore we can use the theory in [3, 11, 28, 29, 30] to define a generalized Poisson bracket
{·, ·}0 : C∞(M0) × C∞(M0) → C∞(M0) on the singular reduced space M0. This goes as follows.
Let f0, h0 ∈ C∞(M0) and let f, h ∈ C∞(M)G be such that f0 ◦ π = f |P−1(0) and h0 ◦ π = h|P−1(0).
Define the bracket

{f0, h0}0 ◦ π = {f, h}|P−1(0). (4.4)

This yields a well defined generalized Poisson bracket on M0. In particular, (4.4) does not depend
on the choice of the G-invariant extensions f and h (whose existence is assumed, by definition).

Remark 7. The reduction theory in [3, 11] is only developed for the singular reduction of symplectic
manifolds under a symmetry Lie group action. That is, the Poisson bracket {·, ·} is assumed to
be nondegenerate and to satisfy the Jacobi identity. In particular, [3, 11] show that (under the
assumption that G acts properly) nondegeneracy of {·, ·} implies that of {·, ·}0. In [29, 30] the
reduction theory is carried out for Poisson brackets in the singular case and for presheaves of
Poisson algebras. This extends easily to the case of generalized Poisson brackets, as described
above in (4.4). Note that by (4.4), the bracket {·, ·}0 satisfies the Jacobi identity if {·, ·} does. The
general theory of reduction for Leibniz brackets (one drops also the skew-symmetry condition and
is left only with a bilinear operation {·, ·} : C∞(M)×C∞(M) → C∞(M) satisfying the derivation
property in every factor) and various applications thereof can be found in [28].

Once again for clarity: In this paper we neither assume that the generalized Poisson bracket {·, ·}
is nondegenerate, nor that it satisfies the Jacobi identity. Furthermore, properness of the group
action is not needed until Section 6. �

Next, we construct the analogue of the subbundle ∆ ⊂ TM on M0. Since M0 is not a manifold,
it is hopeless to search for a subbundle of the inexistent tangent bundle of M0, so instead one seeks
a vector space of derivations ∆̂ on C∞(M0) naturally induced by ∆. To do this, denote by Γloc(∆)
the local sections of the subbundle ∆ ⊂ TM . We shall show that every vector field X ∈ Γloc(∆) is
“tangent” to N = P−1(0). For regular values µ, when N = P−1(µ) is a smooth submanifold of M ,
this means that X restricts to a well defined vector field X̄ on N . However, if µ = 0 is a singular
value of the momentum map, then N is not a smooth manifold and hence we have to define what
“tangent” means. Recall that a vector field X ∈ X(M) is in one-to-one correspondence with a
derivation on C∞(M), denoted by the same letter X : C∞(M) → C∞(M). This correspondence is
given by the Lie derivative formula

LXf := X[f ] := 〈df,X〉, ∀f ∈ C∞(M). (4.5)

A derivation X on C∞(M) is said to be tangent to the subset N ⊂M if it restricts to a well defined
derivation X̄ on the set of Whitney smooth functions on N . A continuous function f̄ on N is said
to be a Whitney smooth function if there exists a smooth function f on M such that f̄ = f |N ; the
set of Whitney smooth functions on N is denoted by W∞(N). Otherwise stated, X is tangent to
N if there exists a derivation X̄ on W∞(N) such that X[f ](x) = X̄[f |N ](x) for all f ∈ C∞(M)
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and all x ∈ N . A necessary and sufficient condition for X to be tangent to N is that

X[f ](x) = X[h](x), ∀x ∈ N, (4.6)

for all f, h ∈ C∞(M) such that f |N = h|N . Notice that if N is a smooth closed submanifold of
M and M is paracompact, then the set W∞(N) of Whitney smooth functions on N equals the set
C∞(N) of all smooth functions on N (as defined by the differential structure on the submanifold
N)6. In this case, the previous definition has the usual meaning of a vector field X being tangent
to the submanifold N . Consequently, its restriction X̄ to N yields a vector field on N .

Consider a vector field (or equivalently, a derivation) X on M . Define γ(t) to be an integral curve
of X through x0 ∈M if7

d

dt
f(γ(t)) = X[f ](γ(t)), ∀t, ∀f ∈ C∞(M), γ(0) = x0. (4.7)

Now, consider an arbitrary vector field X ∈ Γloc(∆) and let γ(t) be an integral curve of X through
x0 ∈ P−1(0). In particular,

d

dt
Pξ(γ(t)) = X[Pξ](γ(t)) = 0, ∀t, ∀ξ ∈ g. (4.8)

This follows from the fact that, by (4.1) and (3.8), we have dPξ(x) ∈ ∆◦(x), ∀x ∈ M . Thus the
integral curve ofX ∈ Γloc(∆) through every x0 ∈ P−1(0) is contained in P−1(0). By the equivalence
of derivations and velocity vectors it then follows that

X[f ](x0) =
d

dt

∣∣∣∣
t=0

f(γ(t)) =
d

dt

∣∣∣∣
t=0

h(γ(t)) = X[h](x0), (4.9)

for all f, h ∈ C∞(M) satisfying f |N = h|N . (Remember that M is a smooth manifold.) Hence (4.6)
holds which shows that every vector field X ∈ Γloc(∆) is tangent to N = P−1(0). Consequently,
every vector field X ∈ Γloc(∆) restricts to a well defined derivation X̄ on W∞(N). In conclusion,
the constant dimensional distribution ∆ on M restricts to a vector space ∆̄ of derivations on
W∞(N). If ∆ is locally spanned by the independent vector fields X1, . . . , Xm, then ∆̄ is locally
spanned by the independent derivations X̄1, . . . , X̄m.

Using the results mentioned above, we will now show that the distribution ∆ on M projects to a
well defined vector space ∆̂ of derivations on the smooth functions C∞(M0). A vector field X on M
is said to project to M0 if there exists a derivation X̂ on C∞(M0) such that for every f ∈ C∞(M)G,
X[f ](x) = X̂[f0](π(x)), ∀x ∈ N , where f0 is defined by f0 ◦ π = f |N . It is clear that X restricts to
a well defined derivation X̂ on C∞(M0) if and only if

1. X[f ](x) does not depend on the extension of f0 ◦ π off N to M , and

2. X[f ](x) = X[f ](y) for all x, y ∈ N such that π(x) = π(y).

6The definition of Whitney smooth functions can be relaxed as in [30]. Proposition 1.1.23 in [30] guarantees this

equality if N is an embedded submanifold of M . With the more common defintion given here, that coincides with

the one in [11], even if N is open, the inclusion W∞(N) ⊂ C∞(N) is strict, in general. However, with our definition,

if M is paracompact, and hence admits partitions of unity, and N is closed, then W∞(N) = C∞(N).
7Take the coordinate functions f = xi to obtain the usual definition, γ̇i(t) = Xi(γ(t)).
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Now, let X be a local section of ∆. Since X is tangent to N it follows that X[f ](x) = X̄[f |N ](x) =
X̄[f0 ◦ π](x), ∀x ∈ N . Therefore its value does not depend on the extension of f0 ◦ π off N to M .
It remains to show that

X[f ](x) = X[f ](y), ∀x, y ∈ N such that π(x) = π(y). (4.10)

In general, this condition will not be satisfied by every local section X of ∆. To see this, assume
that Y is a local section of ∆ for which condition (4.10) is satisfied. Clearly, X = hY is also a
local section of ∆, for any h ∈ C∞(M). However, X will satisfy condition (4.10) if and only if h
is G-invariant, i.e. h ∈ C∞(M)G.

What we will show, however, is the following: There exists a basis of local sections X1, . . . , Xm ∈
Γloc(∆), spanning ∆, which satisfy (4.10). To do this, denote by Vloc the space of local sections of
the vertical distribution V . Recall that V is defined by V (x) = kerTxπ = span {ξM (x) | ξ ∈ g}.
Since by (4.2), LξM Γloc(∆) ⊂ Γloc(∆) for every ξ ∈ g, it follows that [Γloc(∆),Vloc] ⊂ Vloc+Γloc(∆).
To see this, take an arbitrary local section of V of the form Y =

∑
i hiξ

i
M , with hi ∈ C∞(M), for

i = 1, . . . , r = dim g. Here ξ1M , . . . , ξ
r
M denotes a local basis of V . If X ∈ Γloc(∆), then

[X,Y ] =

[
X,

r∑
i=1

hiξ
i
M

]
=

r∑
i=1

hi
[
X, ξiM

]
+ (LXhi)ξiM ∈ Γloc(∆) + Vloc. (4.11)

This proves the inclusion [Γloc(∆),Vloc] ⊂ Vloc + Γloc(∆).
Now assume that the distribution V +∆ has constant dimension onM . Then the above mentioned

inclusion implies that there exists a basis of local sections X1, . . . , Xm ∈ Γloc(∆), spanning ∆,
such that [Xi,Vloc] ⊂ Vloc, i = 1, . . . ,m; see e.g. [26], Theorem 7.5, p. 214, for the proof of
this statement. (In the notation used in that theorem: the involutive distribution D is V , the
distribution G is ∆, and one takes f = 0.) In particular, [Xi, ξM ] ∈ Vloc, which implies that for all
f ∈ C∞(M)G

0 = [Xi, ξM ] [f ] = Xi [LξM f ]− LξM (Xi[f ]) = −LξM (Xi[f ]), ∀ξ ∈ g. (4.12)

This means that the function Xi[f ] is G-invariant and therefore satisfies (4.10). In conclusion, we
have shown that there exists a basis of local sections X1, . . . , Xm ∈ Γloc(∆), spanning ∆, such that
each Xi projects to a well defined derivation X̂i on C∞(M0). The derivations X̂1, . . . , X̂m locally
span (in other words, form a basis of) a vector space of derivations on C∞(M0), which we will
denote by ∆̂.

Remark 8. Notice that the constructed basis X̂1, . . . , X̂m of ∆̂ depends on the choice of a “pro-
jectable” basis X1, . . . , Xm of ∆ (which, as we have shown, exists). Of course, any other choice
Y1, . . . , Ym of a projectable basis of ∆ will lead to another constructed basis Ŷ1, . . . , Ŷm. It is clear
from the construction of these bases that this second basis spans the same vector space ∆̂ of deriva-
tions on C∞(M0). Hence, the definition of ∆̂ is independent on the choice of a projectable basis
for ∆. This means that ∆̂ is an intrinsically defined vector space, only determined by ∆ and the
symmetry group action. �

Remark 9. In the regular case, i.e., when µ = 0 is a regular value of the momentum map and G

acts freely and properly on M , the reduced space M0 is a smooth manifold. Furthermore, under the
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assumption that M is paracompact, the set of smooth functions C∞(M0) equals the set of smooth
functions as defined by the differential structure on M0. To see this, notice that since N = P−1(0)
is closed in M , every smooth G-invariant function on N can be smoothly extended to a G-invariant
function on M (see [3]). In this case, the notion of a “projecting derivation” as employed above has
the usual meaning of the projection of a vector field on M to a vector field on the reduced space
M0. In particular, there exists a basis X1, . . . , Xm of local sections of ∆, tangent to N , such that
their restrictions X̄1, . . . , X̄m project to M0. That is, each X̄i is π-related to a vector field X̂i on
M0. The projected vector fields X̂1, . . . , X̂m form a basis of the local sections of ∆̂. �

So far we have defined the following three objects on the singular reduced space M0:

1. a set of smooth functions C∞(M0),

2. a generalized Poisson bracket {·, ·}0 on C∞(M0), and

3. a vector space ∆̂ of derivations on C∞(M0).

Recall that the original Dirac structure D on the manifold M (of the type (4.1)) was completely
determined by the generalized Poisson bracket {·, ·}, corresponding to J and the distribution ∆.
Therefore it makes sense to define a reduced Dirac structure on M0 as follows.

Definition 9. Consider the singular reduced space M0 together with the set of smooth functions
C∞(M0). The singular reduced Dirac structure D0 is defined as the pair ({·, ·}0, ∆̂).

We call D0 a topological Dirac structure. It will be shown in the next section that the singular
reduced Dirac structure D0 defines a Hamiltonian formalism on the singular reduced space M0.

In order to get a better understanding of the topological Dirac structure introduced in Definition
9, let us see how things look like in case of regular reduction. We now show that, in the case of
regular reduction, the topological Dirac structure D0 equals the regular reduced Dirac structure on
M0 as described in Section 3.

Regular reduction. Suppose that µ = 0 is a regular value of the momentum map and that
G acts regularly on M . That is, M/G is a smooth manifold and the projection M → M/G is
a surjective submersion. For example, if G acts freely and properly, then these conditions are
satisfied. According to the results described in Section 3, the Dirac structure D on M is reduced to
a Dirac structure D̂ on the manifold M0 in two steps. Firstly, D is restricted to a Dirac structure
DN on N = P−1(0) defined by (3.4). Secondly, DN is projected to a Dirac structure D̂ on M0

defined by (3.7) (where Dloc should be replaced by (DN )loc). Otherwise stated, in terms of its local
sections we have

D̂loc = {(X̂, α̂) ∈ Xloc(M0)⊕ Ω1
loc(M0) | ∃(X,α) ∈ Dloc such that X is tangent to N

and X|N ∼π X̂, ι∗α = π∗α̂}. (4.13)

Here ι : N ↪→ M denotes the inclusion map and X|N denotes the restriction of X to N , which
exists, since N is a closed submanifold of M and X is tangent to N by hypothesis.

Consider the topological Dirac structure D0 introduced in Definition 9. Since M0 is a manifold,
the generalized Poisson bracket {·, ·}0 on the set of smooth functions C∞(M0) (see also Remark 9)
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defines a skew-symmetric vector bundle map J0 : T ∗M0 → TM0. This map is completely defined by
the condition that 〈df0, J0(dh0)〉 = {f0, h0}0, ∀f0, h0 ∈ C∞(M0). The vector space ∆̂ of derivations
on C∞(M0) defines a constant dimensional distribution of vector fields on M0 (in other words, a
vector subbundle of TM0), also denoted by ∆̂. It now follows that the topological Dirac structure
D0 defines a usual Dirac structure on the manifold M0. Indeed, this Dirac structure, also denoted
by D0, is given in terms of its local sections by

(D0)loc = {(X̂, α̂) ∈ Xloc(M0)⊕ Ω1
loc(M0) | X̂ − J0α̂ ∈ Γloc(∆̂), α̂ ∈ Γloc(∆̂◦)}. (4.14)

This makes it obvious that D0 is a Dirac structure on M0 according to Definition 1, since it has the
form given in (2.11). Now we show that D̂ = D0. Since both are Dirac structures, and therefore
their fibers are of the same dimension (i.e., equal to dimM0), it is enough to show that D̂ ⊂ D0.

Let (X̂, α̂) be a local section of D̂. Then, by (4.13), there exists a local section (X,α) of D such
that X|N ∼π X̂ and ι∗α = π∗α̂. Since (X,α) is a local section of D (being of the form (2.11)) we
conclude that

Z := X − Jα is a local section of ∆, and α is a local section of ∆◦. (4.15)

Consider the vector field Jα ∈ Xloc(M). Since (Jα, α) ∈ Dloc, it follows from (3.8) and D = D⊥

that

(Jα)[Pξ](x) = 〈dPξ, Jα〉(x) = −〈α, ξM 〉(x) = −〈α̂, 0〉(π(x)) = 0, ∀x ∈ N, ∀ξ ∈ g. (4.16)

This implies that the vector field Jα is tangent to N . Furthermore, by construction of the reduced
generalized bracket (4.4), it follows that (Jα)|N ∼π J0α̂. Since also X|N ∼π X̂, equation (4.15)
implies that there exists a vector field Ẑ ∈ Xloc(M0) such that Z|N ∼π Ẑ. It follows that Ẑ ∈
Γloc(∆̂), by construction of ∆̂. This yields

X̂ − J0α̂ = Ẑ ∈ Γloc(∆̂). (4.17)

By construction, the distribution ∆̂ is spanned by vector fields Ẑ1, . . . , Ẑm for which there exists a
basis of vector fields Z1, . . . , Zm ∈ Γloc(∆) such that Zj |N ∼π Ẑj , for j = 1, . . . ,m. Since ι∗α = π∗α̂

and α ∈ Γloc(∆◦), it follows immediately that

〈α̂, Ẑj〉 ◦ π = 〈α,Zj〉 ◦ ι = 0, j = 1, . . . ,m. (4.18)

Therefore α̂ ∈ Γloc(∆̂◦). By (4.14) it follows that (X̂, α̂) is a local section of D0. Hence we have
shown that D̂ ⊂ D0. Since both are Dirac structures on M0 this implies that D̂ = D0.

We conclude that in the case of regular reduction, the topological Dirac structure D0 equals the
regular reduced Dirac structure on M0.

5 Singular dynamics

This section introduces a Hamiltonian formalism for the singular reduced Dirac structure D0 in
Definition 9. It defines the dynamics corresponding to an implicit Hamiltonian system (M0, D0,H0)
on the singular reduced spaceM0. We shall show that if (M0, D0,H0) is the reduction of the implicit
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Hamiltonian system (M,D,H), then the G-projectable solutions of (M,D,H) project to solutions
of the reduced system (M0, D0,H0).

First let us define a Hamiltonian formalism on a topological space in the spirit of Sikorski differ-
ential spaces (see [13, 33]). Consider a topological space M0 together with a subalgebra C∞(M0) of
the algebra of continuous functions on M0, called the set of smooth functions on M0. A continuous
curve γ(t) on M0 is said to be smooth (see [33]) if f0 ◦γ is smooth, as a function from (a subinterval
of) R to R, for every f0 ∈ C∞(M0). Let X̂ denote a derivation on C∞(M0). An integral curve of
X̂ through some point x0 ∈M0 is defined (see [33]) as a smooth curve γ(t) for which, cf. (4.7),

d

dt
f0(γ(t)) = X̂[f0](γ(t)), ∀t, ∀f0 ∈ C∞(M0), γ(0) = x0. (5.1)

Let D0 be a topological Dirac structure on M0 as given in Definition 9. It consists of a generalized
Poisson bracket {·, ·}0 on C∞(M0) (not necessarily satisfying the Jacobi identity) and a vector space
∆̂ of derivations on C∞(M0). Furthermore, let H0 ∈ C∞(M0) be a smooth function on M0, called
the Hamiltonian function. Notice that {·,H0}0 : C∞(M0) → C∞(M0) defines a derivation on
C∞(M0) by {·,H0}0[f0] := {f0,H0}0, f0 ∈ C∞(M0). If X̂ is a derivation on C∞(M0) and x ∈M0,
then X̂(x) : C∞(M0) → R is defined by (X̂(x))[f0] := X̂[f0](x), f0 ∈ C∞(M0). The three-tuple
(M0, D0,H0) defines an implicit Hamiltonian system in the following way.

Definition 10. A smooth curve γ(t) on M0 is called an integral curve (or, solution) of
(M0, D0,H0) if there exists a derivation X̂ on C∞(M0) such that γ(t) is an integral curve of
X̂, and

X̂(γ(t))− {·,H0}0(γ(t)) ∈ ∆̂(γ(t)), ∀t, (5.2)

Ẑ[H0](γ(t)) = 0, ∀t, ∀Ẑ ∈ ∆̂. (5.3)

The implicit Hamiltonian system (M0, D0,H0) is defined as the collection of all integral curves γ(t)
of (M0, D0,H0).

Note that if M0 would be a smooth manifold, then Definition 10 of an implicit Hamiltonian
system equals Definition 3 given in Section 2 (with D0 defined by (4.14)). However, since M0 is
not a smooth manifold but only a topological space, the implicit Hamiltonian system (M0, D0,H0)
cannot be written as a set of differential and algebraic equations. As for implicit Hamiltonian
systems defined on manifolds, the implicit Hamiltonian system (M0, D0,H0) is energy conserving,
cf. (2.15),

dH0

dt
(γ(t)) = X̂[H0](γ(t)) = {H0,H0}0(γ(t)) = 0, ∀t. (5.4)

Remark 10. Equation (5.2) implies that

d

dt
f0(γ(t)) = {f0,H0}0(γ(t)), ∀t, ∀f0 ∈ AD0 , (5.5)

where AD0 = {f0 ∈ C∞(M0) | Ẑ[f0] = 0, ∀Ẑ ∈ ∆̂}. However, (5.5) does not imply (5.2). Even in
the regular case it is not true that Ẑ being a local section of ∆̂ is equivalent to Ẑ[f0] = 0, ∀f0 ∈ AD0 .
A counterexample can easily be constructed by considering a suitable noninvolutive distribution
∆̂. �
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Remark 11. If ∆̂ = 0, then AD0 = C∞(M0) and (5.2, 5.3) are equivalent to (5.5). This happens
when ∆ = 0, i.e. when the original system (M,D,H) does not include constraints. In this case,
the Hamiltonian dynamics defined by (5.5) is exactly the singular reduced Hamiltonian dynamics
as defined in [11, 12, 29, 30, 34]. �

Recall that implicit Hamiltonian systems defined on manifolds define a set of differential and
algebraic equations. As a consequence, the standard results on existence and uniqueness of solutions
for ordinary differential equations do not apply. As explained in Section 2, in general one cannot
expect existence or uniqueness of solutions for these systems. Therefore one can neither expect
existence nor uniqueness of solutions for implicit Hamiltonian systems on topological spaces, such
as given in Definition 10. In particular, all solutions necessarily lie on the constraint space

M c
0 = {x ∈M0 | Ẑ[H0](x) = 0, ∀Ẑ ∈ ∆̂}. (5.6)

(This is a topological space, with topology induced from M0.) What we can show however, is
the following. Suppose (M0, D0,H0) is the singular reduction of an implicit Hamiltonian system
(M,D,H). Then, as we will show next, every G-projectable solution of (M,D,H), if it exists, will
project to a solution of (M0, D0,H0).

So let x(t) be a solution of (M,D,H) with x(0) ∈ N = P−1(0). Then, by (3.9), the curve x(t)
is contained in N . Now assume that x(t) is a G-projectable solution. Recall that this means that
there exists a projectable vector field X on M , with integral curve x(t), such that X projects to a
well defined derivation X̂ on C∞(M0). By (2.10) and (2.14) it follows that

X(x(t))− {·,H}(x(t)) =: Z(x(t)) ∈ ∆(x(t)), ∀t, (5.7)

Y [H](x(t)) = 0, ∀t, ∀Y ∈ Γloc(∆). (5.8)

Let M0 be the singular reduced space and D0 the singular reduced Dirac structure on M0. Since H
is assumed to be G-invariant, its restriction to N projects to a well defined function H0 ∈ C∞(M0)
defined by H0 ◦π = H|N . (For the definition of C∞(M0), see Definition 8 in Section 4.) Define the
singular reduced implicit Hamiltonian system (M0, D0,H0) as in Definition 10. Project the curve
x(t) to M0 to obtain the smooth curve γ(t) = π(x(t)) on M0. (Recall that π : N →M0 denotes the
projection map.) Then γ(t) is an integral curve of the derivation X̂. To see this, take an arbitrary
f0 ∈ C∞(M0) and let f ∈ C∞(M)G be such that f0 ◦ π = f |N . Then

d

dt
f0(γ(t)) =

d

dt
f(x(t)) = X[f ](x(t)) = X̂[f0](γ(t)), ∀t, (5.9)

where we used the fact that x(t) is an integral curve of X, cf. (4.7), and that X projects to
a derivation X̂ on C∞(M0). According to (5.1) it follows that γ(t) is an integral curve of X̂.
Furthermore, suppose that Y1, . . . , Ym ∈ Γloc(∆) is a basis of projectable local sections spanning ∆,
hence projecting to a basis Ŷ1, . . . , Ŷm of ∆̂. Then it follows that

0 = Yj [H](x(t)) = Ŷj [H0](γ(t)), ∀t, j = 1, . . . ,m. (5.10)

This yields equation (5.3). It remains to be proven that condition (5.2) is satisfied. Notice that by
(4.4) the derivation {·,H} projects to a well defined derivation {·,H0}0 on C∞(M0). Since also X
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projects to a derivation X̂ on C∞(M0), it follows from (5.7) that the derivation Z projects to a
well defined derivation on C∞(M0), denoted by Ẑ. Again, suppose that Y1, . . . , Ym ∈ Γloc(∆) is a
basis of projectable local sections spanning ∆. Then it follows from (5.7) that at each point x0 on
the curve x(t), one has

Z(x0) = c1Y1(x0) + · · ·+ cmYm(x0), (5.11)

for some constants c1, . . . , cm ∈ R. We claim that the reduced derivation Ẑ can be expressed as

Ẑ(γ0) = c1Ŷ1(γ0) + · · ·+ cmŶ (γ0), where γ0 = π(x0). (5.12)

To see this, take an arbitrary f0 ∈ C∞(M0) and let f ∈ C∞(M)G be such that f0 ◦ π = f |N . Then

(Ẑ(γ0))[f0] = Ẑ[f0](γ0) = Z[f ](x0)

= (c1Y1[f ] + · · ·+ cmYm[f ]) (x0)

=
(
c1Ŷ1[f0] + · · ·+ cmŶm[f0]

)
(γ0)

=
(
c1Ŷ1(γ0) + · · ·+ cmŶm(γ0)

)
[f0], (5.13)

which proves (5.12). Since Ŷ1, . . . , Ŷm forms a basis of ∆̂ it follows that Ẑ(γ(t)) ∈ ∆̂(γ(t)), ∀t.
Therefore condition (5.2) is satisfied. This implies that γ(t) is an integral curve of the reduced
implicit Hamiltonian system (M0, D0,H0). We have obtained the following result.

Proposition 7. Every G-projectable solution x(t) of (M,D,H), with x(0) ∈ P−1(0), projects to a
solution γ(t) = π(x(t)) of the singular reduced implicit Hamiltonian system (M0, D0,H0).

Remark 12. Suppose that the implicit Hamiltonian system (M,D,H) is of index 1. As remarked
in Section 2, the system can be restricted to an explicit Hamiltonian system on the constraint
manifold Mc. This restricted system is defined by a generalized Poisson bracket, denoted by {·, ·}c,
on C∞(Mc). Since this system is explicit, it is described by a set of ordinary differential equations
on Mc. Hence we can conclude the local existence and uniqueness of solutions of this system on Mc.
The G-action leaves the manifold Mc invariant. Hence G is a symmetry Lie group of the explicit
Hamiltonian system on Mc. That is, LξMc

{f, g}c = {LξMc
f, g}c + {f, LξMc

g}c, ∀f, g ∈ C∞(Mc),
and LξMc

Hc = 0 (where Hc = H|Mc), for all ξ ∈ g. The corresponding equivariant momentum map
is given by the restriction of P to Mc. Every solution of the (restricted) system is G-projectable.
See [6, 7, 37] for details on all this. Then we can use the singular reduction theory developed in
[11, 12, 29, 30, 34] to reduce the system to a Hamiltonian system on the singular reduced space
M0. Alternatively, we can use the theory developed in this paper, considering ∆ = 0. The reduced
generalized Poisson bracket ({·, ·}c)0 is defined in the same way as in (4.4). The reduced dynamics
is given by equation (5.5), where {·, ·}0 is replaced by ({·, ·}c)0, and AD0 = C∞((Mc)0). Local
existence of solutions now follows from the local existence of solutions on Mc and Proposition 7.
Furthermore, if the G-action is proper then also uniqueness of solutions of the singular reduced
system can be proved [11, 34]. �

6 Orbit type decomposition

Consider a symplectic manifold (M,ω) admitting a symmetry Lie group with a corresponding
equivariant momentum map. Let M0 denote the singular reduced space, and {·, ·}0 the singular
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reduced Poisson bracket. The singular reduced Hamiltonian dynamics is defined by equation (5.5),
cf. Remark 11. In [4, 11, 12, 13, 30, 34] it is shown that the space M0 may be decomposed into
a family of symplectic manifolds, called pieces. The decomposition is by orbit type and defines a
stratification of the singular reduced space M0. Furthermore, the Hamiltonian flow corresponding
to (5.5) leaves the pieces invariant and restricts to a regular Hamiltonian flow on each of the
pieces. In this section we show that, to some extent, these results can be generalized to singular
reduced implicit Hamiltonian systems. We specifically consider Dirac structures of the type (4.1)
and assume that the generalized Poisson structure is nondegenerate. Furthermore, we assume that
the infinitesimal generators corresponding to the Lie group action are Hamiltonian vector fields. As
will become clear in the sequel, we need these assumptions to prove that the pieces corresponding
to the orbit type decomposition are smooth manifolds. We refer to Remark 15 for a brief discussion
of these assumptions.

Consider an implicit Hamiltonian system (M,D,H) with a Dirac structure D as defined in
(4.1). The generalized Poisson structure defined by J is assumed to be nondegenerate. That
is, the Poisson bracket is defined by a nondegenerate two-form ω on M . In fact, we have that
{f, h} = 〈df, J(dh)〉 = ω(Xf , Xh), ∀f, h ∈ C∞(M), where Xf is defined by df = ω(Xf , ·). Notice
that we do not assume that ω is a closed two-form. This means that we do not assume that {·, ·}
satisfies the Jacobi identity.

Let G be a symmetry Lie group of (M,D,H), that is, it satisfies conditions (4.3). From now
on we will assume that the action of G is proper. Furthermore, we assume that there exists an
Ad∗-equivariant momentum map P : M → g∗ such that

dPξ = ω(ξM , ·) (equivalently: ξM = JdPξ), and dPξ is a section of ∆◦, ∀ξ ∈ g. (6.1)

In other words, the infinitesimal generators of the Lie group action are Hamiltonian vector fields
with Hamiltonian Pξ and the differential of Pξ annihilates ∆. Notice that this is a special case of
(3.8).

In the sequel we will show that, under the assumptions given above, the singular reduced spaceM0

can be decomposed into a set of smooth manifolds (pieces). The Dirac structure D on M reduces to
a Dirac structure on each of the pieces. Hence, the implicit Hamiltonian system (M,D,H) can be
reduced to an implicit Hamiltonian system on each of the pieces. This will be the result of Theorem
1. If, additionally, some constant dimensionality conditions are satisfied, then the reduced system
on each of the pieces can be obtained by regular reduction; see Theorem 2 and Corollary 1. In
the last part of this section we will show that the regular reduced implicit Hamiltonian system
on each of the pieces equals the restriction of the singular reduced implicit Hamiltonian system
(M0, D0,H0) to the relevant piece. In order to enhance the readability of this section, we have
subdivided it into a number of subsections.

The orbit type decomposition of M0. The manifold M can be decomposed into submanifolds
as follows [11, 30, 34]. Let K be a compact subgroup of G and define M(K) to be the set of points
in M whose stabilizer group Gx = {g ∈ G | φ(g, x) = x} is conjugate to K, that is,

M(K) = {x ∈M | ∃g ∈ G such that gGxg−1 = K}. (6.2)

Notice that since the G-action is assumed to be proper, every stabilizer group Gx, x ∈ M , is a
compact subgroup of G. The set M(K) is a submanifold of M called the manifold of orbit type (K).
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On the set of compact subgroups of G we can define an equivalence relation by saying that K̃ ∼ K

if and only if K̃ is conjugate to K. The equivalence class of K under this relation is denoted by
(K). As (K) runs over the set of equivalence classes, the manifolds M(K) partition M . Since the
G-action is proper it follows that this partition is locally finite. This partition is called the orbit
type decomposition of M . We refer to [11, 16, 30, 34] for more details and proofs.

Next, we show that the image of the tangent of the momentum map at a point x ∈ M , is equal
to the annihilator in g∗ of the Lie algebra of the stabilizer group Gx, that is,

Im TxP = g◦x, ∀x ∈M. (6.3)

See also [1, 11, 19, 23, 30]. This can be seen from the following set of equivalent expressions.

ξ ∈ gx ⇐⇒ ξM (x) = 0 ⇐⇒ dPξ(x) = 0 ⇐⇒ (TxP (v))ξ = 0, ∀v ∈ TxM ⇐⇒ ξ ∈ (Im TxP )◦ (6.4)

Here we used (6.1) and the fact that ω is nondegenerate. This yields gx = (Im TxP )◦. Taking the
annihilator of both sides yields (6.3).

Equation (6.3) implies that the tangent of the restriction of the momentum map P to the subman-
ifold M(K) has constant rank, equal to the codimension of K in G. It follows that the intersection
P−1(0)∩M(K) is a smooth submanifold of M . The level set P−1(0) is invariant under the action of
G. Clearly M(K) is also G-invariant. Hence, the manifold P−1(0) ∩M(K) is G-invariant. It turns
out that the quotient (M0)(K) := (P−1(0) ∩M(K))/G = π(P−1(0) ∩M(K)) is a smooth manifold
[11, 30, 34]. Consequently, the singular reduced space M0 is decomposed into a disjoint set of
manifolds, called pieces,

M0 =
∐
(K)

(M0)(K). (6.5)

Here (K) runs over the set of conjugacy classes of compact subgroups of G. Since the orbit type
decomposition of M is locally finite, the decomposition of M0 is also locally finite.

A generalized Poisson bracket on the pieces. Next, let us define a generalized Poisson
bracket on each of the pieces (M0)(K). For clarity of exposition, consider the commuting diagram
in Figure 1. In this diagram ι, ι(K), ι̃(K), and ι0(K) are inclusions and π(K) is the restriction of π to
P−1(0) ∩M(K). The commutativity of the diagram is obvious.

First, we define a set of smooth functions on (M0)(K) called Whitney smooth functions. A
continuous function f̄0 on (M0)(K) is said to be a Whitney smooth function if there exists a smooth
G-invariant function f ∈ C∞(M)G such that f̄0◦π(K) = f |P−1(0)∩M(K)

. The set of Whitney smooth
functions on (M0)(K) is denoted by W∞((M0)(K)).

Remark 13. In fact, W∞((M0)(K)) is equal to the set of functions obtained by restricting the
functions in C∞(M0) to (M0)(K). This is the reason why we have called it the set of Whitney
smooth functions. To see this, notice that any G-invariant function f on M descends to a smooth
function f0 on M0, whose restriction to (M0)(K) is precisely f̄0. Indeed, use the commutativity of
the diagram to obtain the following:

f0 ◦ ι0(K) ◦ π(K) = f0 ◦ π ◦ ι̃(K) = f ◦ ι ◦ ι̃(K) = f ◦ ι(K) = f̄0 ◦ π(K) (6.6)

Since π(K) is surjective the result follows. �
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Figure 1: Orbit type decomposition.

Just as in (4.4), we can define a generalized Poisson bracket {·, ·}(K) on W∞((M0)(K)) by

{f̄0, h̄0}(K) ◦ π(K) = {f, h}|P−1(0)∩M(K)
. (6.7)

We need to show that this bracket is well defined and does not depend on the choice of G-invariant
extensions f and h. If we can prove that for every f ∈ C∞(M)G the flow of the Hamiltonian
vector field Xf = {·, f} preserves the submanifold P−1(0) ∩ M(K), then I = {f ∈ C∞(M)G |
f |P−1(0)∩M(K)

= 0} is a Poisson ideal of C∞(M)G. In that case it follows that the bracket (6.7)
is well defined (see e.g. [11], Appendix B, Claims (5.2) and (5.3)). Now consider an arbitrary
f ∈ C∞(M)G. The function f being G-invariant means that φ∗gf = f , for all g ∈ G. Here
φg : M →M denotes the diffeomorphism induced by the action of the element g ∈ G on M . Since
the action leaves the two-form ω invariant, it follows that φ∗gXf = Xφ∗gf = Xf , for all g ∈ G.

This implies that the flow ψft of Xf commutes with the action φg, for every g ∈ G. What we
need to show is that ψft preserves the submanifold M(K). Notice that M(K) = G · MK , where
MK = {x ∈M | Gx = K} (which again is a submanifold of M ; see e.g. [11, 16, 30, 34]). Since the
flow of Xf and the G-action commute, it is enough to show that ψft preserves MK . In order to do
that, proceed as follows. Observe that for every g ∈ K and x ∈MK we have

φg(ψ
f
t (x)) = ψft (φg(x)) = ψft (x), (6.8)

since φg(x) = x. Therefore, K ⊂ G
ψf

t (x)
(the stabilizer group of ψft (x)). Suppose g ∈ G

ψf
t (x)

, that is,

φg(ψ
f
t (x)) = ψft (x). Since the flow and the G-action commute, this implies that ψft (φg(x)) = ψft (x).

Applying the backwards flow ψf−t to this relation yields φg(x) = x, so g ∈ K. Hence G
ψf

t (x)
⊂ K.

It follows that G
ψf

t (x)
= K and therefore ψft (x) ∈MK . Hence we have shown that ψft preserves the

submanifold MK and therefore also the submanifold M(K). Since the flow ψft of any G-invariant
function f preserves the level set P−1(0), we can conclude the following:

The flow of any G-invariant function f preserves the submanifold P−1(0) ∩M(K). (6.9)

As indicated above, this implies that I is a Poisson ideal of C∞(M)G and hence the bracket (6.7)
is well defined (see [11]).
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The projection of ∆ to the pieces. Next we show that the distribution ∆ projects to a vector
space ∆̂(K) of derivations on W∞((M0)(K)). Recall the following from Section 4 (cf. the text above
formula (4.12)). There exists a basis X1, . . . , Xm ∈ Γloc(∆) of projectable local sections spanning
∆, such that [Xj , ξM ] ∈ Vloc, for all ξ ∈ g, and j = 1, . . . ,m. By condition (4.2) it follows that

[Xj , ξM ] ∈ Γloc(∆ ∩ V ), ∀ξ ∈ g, j = 1, . . . ,m. (6.10)

Now, if we make the additional assumption that ∆ ∩ V = 0, then it follows that [Xj , ξM ] = 0 and
hence the flow of Xj commutes with the G-action. Just as in the previous subsection, it then follows
that the flow of Xj preserves the submanifold P−1(0) ∩M(K). This implies that Xj is tangent to
the manifold P−1(0) ∩M(K), for all j = 1, . . . ,m. As in Section 4, the basis X1, . . . , Xm projects
to a set of independent derivations X̂ ′

1, . . . , X̂
′
m on W∞((M0)(K)), which define ∆̂(K).

Remark 14. If the system is of index 1, then it is always true that ∆(x) ∩ V (x) = 0, ∀x ∈ Mc.
See [6, 7]. �

Summary and main results. So far in this section we have defined the following objects:

1. a decomposition of the singular reduced space M0 into a set of smooth manifolds (M0)(K),
called pieces;

2. a generalized Poisson bracket {·, ·}(K) on W∞((M0)(K)), for each of the pieces (M0)(K);

3. a vector space of derivations ∆̂(K) on W∞((M0)(K)).

At this point, and throughout the rest of this Section, we will make the assumption that M is
paracompact. Together with the properness of the G-action this implies that M admits G-partitions
of unity. This, in turn, implies that the set of Whitney smooth functions W∞((M0)(K)) is dense
in the set C∞((M0)(K)) of smooth functions as defined by the differential structure on (M0)(K).
To see this, notice that the pull back to P−1(0) ∩M(K) of a smooth function f̄0 ∈ C∞((M0)(K)),
compactly supported on (M0)(K), can be extended to a smooth G-invariant function f on M .

Hence the bracket {·, ·}(K) in (6.7) yields a well defined generalized Poisson bracket {·, ·}(K) on
C∞((M0)(K)). The associated generalized Poisson structure is denoted by J(K). It is equal to the
inverse of the nondegenerate two-form ω(K), which is defined by the following condition: the pull
back of ω(K) to P−1(0) ∩M(K) equals the restriction of ω to P−1(0) ∩M(K). See also [11, 30, 34].

Furthermore, the vector space ∆̂(K) of derivations on W∞((M0)(K)) defines a smooth distribution
of vector fields on (M0)(K).

Using these objects we can define a Dirac structure D(K) on each of the pieces (M0)(K). In terms
of its local sections, this Dirac structure is defined by(

D(K)

)
loc

=
{

(X̂, α̂) ∈ Xloc

(
(M0)(K)

)
⊕ Ω1

loc

(
(M0)(K)

) ∣∣∣
X̂ − J(K)α̂ ∈ Γloc

(
∆̂(K)

)
, α̂ ∈ Γloc

((
∆̂(K)

)◦)}
. (6.11)

We summarize the results we have obtained so far in this section in the following theorem.

Theorem 1. Consider an implicit Hamiltonian system (M,D,H) with a Dirac structure D of type
(4.1), and assume M is paracompact. Suppose that the generalized Poisson structure defined by J
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is nondegenerate. Assume the system admits a symmetry Lie group G acting properly on M and
satisfying the conditions (4.3). Assume also that this action admits an Ad∗-equivariant momentum
map P satisfying (6.1). Then the singular reduced space M0 can be decomposed into a disjoint set
of manifolds (M0)(K), cf. (6.5), called pieces.

The generalized Poisson structure J induces a generalized Poisson structure J(K) on each of the
pieces (M0)(K), cf. (6.7). Assume furthermore that ∆∩V = 0. Then the distribution ∆ projects to
a distribution ∆̂(K) on (M0)(K). These two objects define a Dirac structure D(K) on (M0)(K), given
by (6.11). Define the reduced Hamiltonian H(K) ∈ C∞((M0)(K)) by H(K) ◦ π(K) = H|P−1(0)∩M(K)

.
Then the triple ((M0)(K), D(K),H(K)) defines an implicit Hamiltonian system on the piece (M0)(K).

Remark 15. Suppose now that the generalized Poisson bracket is degenerate, or that the momen-
tum map does not satisfy condition (6.1). It is not clear at the moment if in this case one can still
prove that the sets P−1(0)∩M(K) and (M0)(K) are smooth manifolds. On the other hand, a topo-
logical Dirac structure D(K) on (M0)(K) may still be defined. Just as in Definition 9, it is defined
by the bracket {·, ·}(K) and the vector space of derivations ∆̂(K). As in Definition 10, it defines a
Hamiltonian formalism on (M0)(K). However, since (M0)(K) may not be a smooth manifold, the
corresponding Hamiltonian dynamics may not necessarily be expressible as a set of differential and
algebraic equations. �

Later on, in Section 7, we will see that the assumptions in Theorem 1 are typically satisfied for
the class of constrained mechanical systems defined in Example 1.

Under the assumptions in Theorem 1 it follows that the sets P−1(0) ∩M(K) and (M0)(K) are
smooth manifolds. Now, assume that the conditions in Propositions 2 and 5 are satisfied. Then
we can first restrict the Dirac structure D to a Dirac structure on P−1(0) ∩M(K) and afterwards
project to a Dirac structure on (M0)(K). Following the same line of proof as in Section 4, under
the heading “Regular reduction”, one can show that the result of this regular reduction process
is exactly the Dirac structure D(K) as defined in (6.11). For clarity, we will state the result in a
theorem.

First we introduce the following notation. The manifold N(K) = P−1(0)∩M(K) will play the role
of N in Proposition 2. The restricted Dirac structure will be denoted by DN(K)

. Its characteristic
distribution is denoted by ∆N(K)

. Furthermore, denote by EN(K)
the vector subbundle of TN(K) ⊕

T ∗N(K), whose local sections are defined by

Γloc(EN(K)
) = {(X,α) ∈ Xloc(N(K))⊕Ω1

loc(N(K)) | α = π∗(K)α̂ for some α̂ ∈ Ω1
loc((M0)(K))}. (6.12)

The vector bundle EN(K)
will play the role of E in Proposition 5. Now we can state the theorem.

Theorem 2. Suppose that the conditions in Theorem 1 are satisfied. Assume that D(x)∩(TxN(K)×
T ∗xM), x ∈ N(K), has constant dimension on N(K). Then the Dirac structure D can be restricted
to a Dirac structure DN(K)

on N(K) by using Proposition 2. Assume next that the following two
conditions hold:

1. V |N(K)
+ ∆N(K)

is a smooth vector subbundle8 of TN(K), and

2. DN(K)
∩ EN(K)

is a smooth vector subbundle of TN(K) ⊕ T ∗N(K).

8Notice that the distribution V |N(K) is constant dimensional on N(K). Its dimension is equal to the codimension

of K in G.
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Then the Dirac structure DN(K)
projects to a Dirac structure on (M0)(K) by using Proposition 5.

The resulting Dirac structure is precisely D(K) given in (6.11).

Corollary 1. Assume that all the conditions in Theorems 1 and 2 are satisfied. Then the implicit
Hamiltonian system (M,D,H) reduces by means of regular reduction to an implicit Hamiltonian
system on each of the pieces (M0)(K), yielding precisely the system

(
(M0)(K), D(K),H(K)

)
.

Remark 16. The constant dimensionality conditions in Theorem 2 are technical conditions, needed
for the two-step regular reduction scheme to work. Basically, Theorem 2 and Corollary 1 state that
if these technical conditions are satisfied, then the result by regular reduction to the pieces equals
the result of Theorem 1. Even in the case of regular reduction of an ordinary Poisson structure, the
first of these three technical conditions will be needed in order to be able to describe the restriction
to a Dirac structure on the level set N . (In this case, the other two conditions will be satisfied
automatically.) The last two conditions specifically arise from including constraints (i.e. algebraic
equations) in the formalism. For a detailed discussion on these technical conditions, we refer to [6],
Chapter 5.1, or [7], Section 7. �

The restriction of the singular reduced system to the pieces. Finally, in the last part
of this section we reconsider the singular reduced implicit Hamiltonian system (M0, D0,H0), as
defined in Sections 4 and 5. Assume that the conditions in Theorem 1 are satisfied. Then we prove
that the implicit Hamiltonian systems ((M0)(K), D(K),H(K)) are precisely obtained by restricting
the singular reduced implicit Hamiltonian system (M0, D0,H0) to each of the pieces (M0)(K).

First we show that the inclusion map ι0(K) : (M0)(K) →M0 in Figure 1 is a Poisson map. Consider
arbitrary f0, h0 ∈ C∞(M0), together with their restrictions f̄0, h̄0 ∈W∞((M0)(K)), cf. Remark 13.
Let f, h ∈ C∞(M)G be such that f0 ◦ π = f |P−1(0) and h0 ◦ π = h|P−1(0). Notice that by (6.6) we
have that f̄0 ◦ π(K) = f |P−1(0)∩M(K)

and h̄0 ◦ π(K) = h|P−1(0)∩M(K)
. By definition of the brackets

(see (4.4) and (6.7)) and by the commutativity of the diagram in Figure 1 we have the following:

{f̄0, h̄0}(K)◦π(K) = {f, h}◦ι(K) = {f, h}◦ι◦ ι̃(K) = {f0, h0}0◦π◦ ι̃(K) = {f0, h0}0◦ι0(K)◦π(K) (6.13)

Since π(K) is surjective it follows that

{f̄0, h̄0}(K) = {f0, h0}0|(M0)(K)
. (6.14)

Hence the inclusion map ι0(K) is a Poisson map and it follows that the generalized Poisson bracket
{·, ·}(K) is precisely the restriction of the generalized Poisson bracket {·, ·}0 to (M0)(K).

Second, recall the construction of ∆̂ in Section 4 and the construction of ∆̂(K) given in this
section. The vector space of derivations ∆̂ on C∞(M0) restricts to a vector space, say ∆̂|(M0)(K)

,

of derivations on W∞ ((M0)(K)

)
. Indeed, a derivation X̂ in ∆̂ is the projection of a projectable

vector field X ∈ Γloc(∆). As explained before, this vector field projects to a vector field X̂ ′ on
(M0)(K), which induces a derivation X̂ ′ on W∞ ((M0)(K)

)
. Commutativity of the diagram in

Figure 1, together with Remark 13, ensures that X̂ ′ is the restriction of X̂ to W∞((M0)(K)). By
construction it is immediately clear that ∆̂|(M0)(K)

and ∆̂(K) are equal. Indeed, both are derived
from the same basis X1, . . . , Xm ∈ Γloc(∆) of projectable local sections spanning ∆.

We conclude that the Dirac structure D(K) equals precisely the restriction of the singular reduced
Dirac structure D0 to the piece (M0)(K).
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Next, we show that the solutions γ(t) of the singular reduced implicit Hamiltonian system
(M0, D0,H0) leave the pieces (M0)(K) invariant and restrict to solutions of the implicit Hamil-
tonian systems

(
(M0)(K), D(K),H(K)

)
. Consider a solution γ(t) of (M0, D0,H0), as stipulated in

Definition 10. Recall the construction of ∆̂ in Section 4 and let X̂1, . . . , X̂m denote a basis of
∆̂. Then, everywhere locally along the integral curve γ(t), there exist locally defined functions
c10, . . . , c

m
0 ∈ C∞(M0) such that

X̂(γ(t))− {·,H0}0(γ(t)) = c10(γ(t))X̂1(γ(t)) + . . .+ cm0 (γ(t))X̂m(γ(t)) ∈ ∆̂(γ(t)). (6.15)

Consider the derivation Ŷ on C∞(M0) defined by

Ŷ = {·,H0}0 + c10X̂1 + . . .+ cm0 X̂m. (6.16)

This is the projection of a local vector field Y = {·,H} + c1X1 + . . . + cmXm on M . Here cj ∈
C∞(M)G are such that cj0◦π = cj |P−1(0) and X1, . . . , Xm ∈ Γloc(∆) form a basis of projectable local
sections spanning ∆. Since the flow of this vector field commutes with the G-action, it preserves the
submanifold P−1(0) ∩M(K), cf. (6.9). It follows that the flow corresponding to the integral curve
γ(t) preserves the pieces (M0)(K) and therefore γ(t) restricts to a smooth curve γ̄(t) on (M0)(K).
The vector field Y restricts to a vector field Ŷ ′ on (M0)(K). By construction, it follows that

Ŷ ′ = {·,H(K)}(K) + c̄10X̂
′
1 + . . .+ c̄m0 X̂

′
m. (6.17)

Here c̄j0 = cj0|(M0)(K)
, and X̂ ′

j ∈ Γloc
(
∆̂(K)

)
is the restriction of X̂j to (M0)(K), for j = 1, . . . ,m.

The curve γ̄(t) is an integral curve of Ŷ ′. To see this, notice that

d

dt
f̄0(γ̄(t)) =

d

dt
f0(γ(t)) = X̂[f0](γ(t)) = Ŷ [f0](γ(t)) = Ŷ ′[f̄0](γ̄(t)), ∀f̄0 ∈W∞ ((M0)(K)

)
,

(6.18)
where we used (6.15). Since W∞ ((M0)(K)

)
is dense in C∞

(
(M0)(K)

)
, the result follows. Further-

more, it follows from (6.17) that everywhere locally along the integral curve γ(t),

Ŷ ′(γ̄(t))− J(K)(γ̄(t))dH(K)(γ̄(t)) = Ŷ ′(γ̄(t))− {·,H(K)}(K)(γ̄(t)) ∈ Γloc
(
∆̂(K)

)
(γ̄(t)). (6.19)

Also, from (5.3) it follows that

Ẑ ′[H(K)](γ̄(t)) = 0, ∀Ẑ ′ ∈ Γloc
(
∆̂(K)

)
. (6.20)

This means that γ̄(t) is a solution of the implicit Hamiltonian system
(
(M0)(K), D(K),H(K))

)
.

Concluding, we have proved the following result.

Proposition 8. Assume that the conditions in Theorem 1 are satisfied. Then the implicit Hamilto-
nian system

(
(M0)(K), D(K),H(K)

)
is exactly the restriction of the singular reduced implicit Hamil-

tonian system (M0, D0,H0) to the piece (M0)(K). A solution γ(t) of (M0, D0,H0), with γ(0) ∈
(M0)(K), preserves the piece (M0)(K) and restricts to a solution γ̄(t) of ((M0)(K), D(K),H(K)).

Finally, we remark that since the pieces (M0)(K) are smooth manifolds, each implicit Hamiltonian
system

(
(M0)(K), D(K),H(K)

)
can be written as a set of differential and algebraic equations (DAE).

The singular reduced implicit Hamiltonian system (M0, D0,H0) can thus be written as a collection
of DAEs, one (set of differential and algebraic equations) on each piece.
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7 Constrained mechanical systems

The assumptions in Theorem 1 are typically satisfied for the class of constrained mechanical systems
described in Example 1. Usually, the symmetries of these systems are lifted from symmetries on
the configuration space. Consider the constraint distribution Λ = kerAT (q) on Q, where AT (q) is
defined as in (2.21). Let G be a Lie group acting properly on the configuration space Q, with action
denoted by φQ : G × Q → Q. Suppose that the action leaves Λ invariant, that is, (φQ(g))∗Λ ⊂ Λ
for all g ∈ G. (Equivalently, the action leaves the codistribution on Q defined by the one-forms
α1, . . . , αk invariant.) Let g be the Lie algebra of G. Then the infinitesimal generators of the action
satisfy the condition LξQΓloc(Λ) ⊂ Γloc(Λ), ∀ξ ∈ g.

The action φQ of G on Q lifts to an action of G on M = T ∗Q, denoted by φ : G ×M → M .
It is defined by φg : M → M, φg = T ∗(φQ(g−1)), for every g ∈ G; see e.g. [1]. Let (q, p) denote
local coordinates for M . Then a straightforward calculation shows that the local expression of the
infinitesimal generators ξM corresponding to the action φ is

ξM (q, p) =

(
ξQ(q)

−∂ξQ
∂q (q)T p

)
, ξ ∈ g. (7.1)

Let ω = dq∧dp denote the canonical symplectic form on M . It is well know that the lifted action
φ leaves the symplectic form invariant; see e.g. [1], Corollary 4.2.11. Furthermore, it can easily be
checked that φ∗g∆ ⊂ ∆, where ∆ is given by (2.23). Hence G is a symmetry Lie group of the type
(4.3). The infinitesimal generators satisfy the condition LξM Γloc(∆) ⊂ Γloc(∆), ∀ξ ∈ g. Hence g

defines a symmetry Lie algebra of the type (4.2).
Furthermore, a standard result shows that the action φ has an Ad∗-equivariant momentum map

P : M → g∗; again see [1], Corollary 4.2.11. It is defined by 〈P (αq), ξ〉 = αq(ξQ(q)) for αq ∈ T ∗qQ

and ξ ∈ g, or, in local coordinates, P (q, p)(ξ) = pT ξQ(q). Hence P satisfies the first condition in
(6.1). Finally, we assume that the symmetry group acts “horizontally”, that is, its infinitesimal
generators satisfy the kinematic constraints: ξQ ∈ Λ, ∀ξ ∈ g. Then, as follows from (2.23), also the
second condition in (6.1) is satisfied.

In the case of regular reduction the following additional assumption is made: the action of G on Q
is free and proper. By definition, freeness means that for every q ∈ Q the map g 7→ φQ(g, q), g ∈ G,
is one-to-one. (Notice that this implies that the action of G on Q has no fixed points.) In particular,
ξQ(q) 6= 0, for all q ∈ Q and ξ ∈ g\{0}. Then it follows immediately from (2.23) and (7.1) that the
last condition in Theorem 1 holds, namely ∆ ∩ V = 0. Furthermore, in this case there is only one
piece, corresponding to the identity element e in G. Indeed, we have that M(e) = G ·Me = G ·M =
M . Hence, the one and only piece is given by (M0)(e) = (P−1(0) ∩M(e))/G = P−1(0)/G = M0,
which is precisely the whole reduced space (being a smooth manifold). So Theorems 1 and 2
collapse to the usual regular reduction theorem. Furthermore, since we do reduction at µ = 0 it is
well known that the reduced space M0 is symplectomorphic to the cotangent bundle T ∗(M/G), see
e.g. [1, 17, 21, 31]. Regular reduction of constrained mechanical systems has been explicitly carried
out by various authors. See e.g. [5], [6] (Chapter 5.3), [9, 35, 37].

However, in the case of singular reduction we do not assume that the G action on Q is free. In
particular, at certain points q ∈ Q the stabilizer group Gq is nonzero.9 In that case we need an

9Indeed, recall that this is exactly the idea behind the orbit type decomposition given in Section 6.
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extra condition to make sure that ∆ ∩ V = 0. This condition is the following: For every point
(q, p) ∈ T ∗Q we have that

Im
(
−
∂ξQ
∂q

(q)T p
)
∩ ImA(q) = 0, ∀ξ ∈ gq. (7.2)

Here gq denotes the Lie algebra of the stabilizer group Gq. If this condition holds then we can
conclude that ∆ ∩ V = 0. In that case all the assumptions in Theorem 1 are satisfied, and hence
we can reduce the constrained mechanical system to a dynamical system on each of the pieces.

7.1 The spherical pendulum

As a basic example of singular reduction we will treat the spherical pendulum in this section. The
technique of singular reduction applied to the spherical pendulum was first presented in [3]. See
also [11]. In these texts the system was embedded as a constrained system in TR3. The manifold
Q = R3 represents the configuration space of the pendulum, and q ∈ R3 describes the position
of the pendulum’s mass in Cartesian coordinates. The pendulum is assumed to have length and
mass equal to 1. The tangent bundle TR3 is a symplectic manifold by pulling back the standard
symplectic form on the cotangent bundle by the Euclidean metric. The constrained phase space
was defined by TS2 = {(q, v) ∈ TR3 | ‖q‖ = 1 and qT v = 0}. This is a cosymplectic submanifold
of TR3. Hence the symplectic form on TR3 restricts to a symplectic form on TS2. Using modified
Dirac brackets the dynamics of the spherical pendulum was calculated as an unconstrained (i.e.,
explicit) Hamiltonian system on TS2. Next, this unconstrained Hamiltonian system was reduced
at the singular value zero of the momentum map, leading to an unconstrained reduced Hamiltonian
system on the singular reduced space (TS2)0.

To illustrate the theory developed in this paper, we will take a different point of view and treat
both the unreduced and the reduced system as constrained, i.e. implicit, Hamiltonian systems. We
describe the spherical pendulum as a constrained Hamiltonian system on the configuration space
Q = R3. The kinematic constraint is holonomic and is given by

α(q)q̇ = 0, with α(q) = q1dq1 + q2dq2 + q3dq3 ∈ T ∗qQ, (7.3)

which integrates to
q21 + q22 + q23 = 1 (7.4)

(the length of the pendulum). The implicit Hamiltonian system will be reduced at the singular
value zero of the momentum map. The result is an implicit Hamiltonian system on the singular
reduced space. The constraint is integrable (i.e. holonomic) and will be shown to give rise to
a Casimir function of the singular reduced system. Our presentation here is based in part on
the calculations and analysis performed in the above mentioned references. However, the implicit
point of view, as well as the corresponding calculations regarding the projection of the holonomic
constraint to the singular reduced space, are new. Furthermore, we will decompose the singular
reduced space into pieces and calculate the dynamics on each of these pieces. We will show that
these dynamics generate the usual equations of motion for a planar pendulum. Surprisingly, the
reduction of the dynamics to the pieces and their correspondence to the equations of motion for
a planar pendulum does not seem to have been reported in the literature before, at least to our
knowledge.
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Consider the Lie group S1 acting on Q by rotations about the vertical q3-axis:

(q1, q2, q3)
θ∈S1

7−→ (q1 cos θ − q2 sin θ, q1 sin θ + q2 cos θ, q3). (7.5)

Since S1 is compact, its action is automatically proper. The infinitesimal generator is given by

ξQ(q) = −q2
∂

∂q1
+ q1

∂

∂q2
. (7.6)

Denote the holonomic constraint (7.4) by the zero level set of the function C(q), where C(q) :=
q21 + q22 + q23 − 1. Since LξQC = iξQdC = 0, the constraint is invariant under the S1 action.
Moreover the action is horizontal. The cotangent bundle M := T ∗Q ' R6, with fiber coordinates
(p1, p2, p3) ∈ T ∗qQ, is equipped with the canonical symplectic form ω = dq1∧dp1+dq2∧dp2+dq3∧dp3.
The action on Q lifts to an action on the cotangent bundle given by

(q1, q2, q3, p1, p2, p3)
θ∈S1

7−→(q1 cos θ − q2 sin θ, q1 sin θ + q2 cos θ, q3,

p1 cos θ − p2 sin θ, p1 sin θ + p2 cos θ, p3). (7.7)

The infinitesimal generator is given by

ξM (q, p) = −q2
∂

∂q1
+ q1

∂

∂q2
− p2

∂

∂p1
+ p1

∂

∂p2
. (7.8)

The corresponding momentum map is defined by P (q, p) = q1p2 − q2p1, representing the angular
momentum of the pendulum about the q3-axis. The Hamiltonian of the system is defined by the
total energy of the pendulum,

H(q, p) =
1
2
(p2

1 + p2
2 + p2

3) + q3. (7.9)

Clearly, the Hamiltonian is invariant under the S1 action (7.7). The vector field X spanning ∆ can
be calculated as X = −ω](π∗Qα), where α is given by (7.3). This yields

∆ = span
{
X := q1

∂

∂p1
+ q2

∂

∂p2
+ q3

∂

∂p3

}
. (7.10)

From (7.6) it follows that the stabilizer group of the action on Q is nonzero if and only if q1 = q2 = 0.
In other words, every point on the q3-axis is a fixed point of the rotation. At these points we have
that ξM = −p2

∂
∂p1

+ p1
∂
∂p2

and ∆ = span {q3 ∂
∂p3

}. Hence, condition (7.2) is satisfied and we can
conclude that ∆ ∩ V = 0. Thus all conditions in Theorem 1 are satisfied and we can perform the
reduction process.

Reduction to the singular reduced space. We do reduction at µ = 0, which is clearly a
singular value of P . To see this, notice that dP vanishes at the points where q1 = q2 = p1 = p2 = 0,
which lie in P−1(0). In order to describe the singular reduced space M0 = P−1(0)/S1, we need to
find the algebra of S1-invariant polynomials on R6. According to [3, 11, 43] this algebra is generated
by

σ1 = q3, σ3 = p2
1 + p2

2 + p2
3, σ5 = q21 + q22,

σ2 = p3, σ4 = q1p1 + q2p2, σ6 = q1p2 − q2p1.
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Notice that σ6 equals the momentum map P . These polynomials satisfy the (in-)equalities

σ2
4 + σ2

6 = σ5(σ3 − σ2
2), σ3 ≥ 0, σ5 ≥ 0. (7.11)

The Hilbert map for the S1 action is defined by

σ : R6 → R6, (q, p) 7→ (σ1(q, p), . . . , σ6(q, p)). (7.12)

According to [3, 11] the singular reduced space M0 can be identified with σ(P−1(0)). Hence we
conclude that M0 is given by the semialgebraic variety

M0 = {(σ1, . . . , σ5) ∈ R5 | σ2
4 = σ5(σ3 − σ2

2), σ3 ≥ 0, σ5 ≥ 0}. (7.13)

The singular reduced Poisson bracket {·, ·}0 on M0 can easily be calculated as follows. First,
calculate all the pairwise brackets {σi, σj} on R6 (where, {·, ·} denotes the standard Poisson bracket
defined by ω). This yields the following table, see [3, 11]:

{σi, σj} σ1 σ2 σ3 σ4 σ5 σ6

σ1 0 1 2σ2 0 0 0
σ2 −1 0 0 0 0 0
σ3 −2σ2 0 0 −2(σ3 − σ2

2) −4σ4 0
σ4 0 0 2(σ3 − σ2

2) 0 −2σ5 0
σ5 0 0 4σ4 2σ5 0 0
σ6 0 0 0 0 0 0

Notice that the bracket of σ6 with any other invariant polynomial vanishes. Hence, the bracket
{·, ·}0 on M0 = σ(P−1(0)) = σ(σ−1

6 (0)) is simply given by deleting the last row and column in the
table above. Secondly, we calculate the vector space ∆̂ of derivations on C∞(M0). Recall from
Section 4 that we need to show that the spanning vector field X in (7.10) projects to a derivation
X̂ on C∞(M0). By Definition 8, a function f0(σ1, . . . , σ5) on M0 is smooth if and only if there
exists a S1-invariant function f(σ1, . . . , σ6) such that f(σ1, . . . , σ5, 0) = f0(σ1, . . . , σ5). Now,

X[f ]
∣∣∣
σ6=0

=
3∑
i=1

∂f

∂pi
qi

∣∣∣
σ6=0

=
3∑
i=1

6∑
j=1

∂f

∂σj

∂σj
∂pi

qi

∣∣∣
σ6=0

=
(
∂f

∂σ2
q3 +

∂f

∂σ3
2(q1p1 + q2p2 + q3p3) +

∂f

∂σ4
(q21 + q22)

)∣∣∣∣
σ6=0

=
(
∂f

∂σ2
σ1 +

∂f

∂σ3
2(σ4 + σ1σ2) +

∂f

∂σ4
σ5

)∣∣∣∣
σ6=0

=
∂f0

∂σ2
σ1 +

∂f0

∂σ3
2(σ4 + σ1σ2) +

∂f0

∂σ4
σ5

=: X̂[f0]. (7.14)

Hence, the vector field X projects to a derivation X̂ on C∞(M0), defined by the last two lines of
(7.14). This derivation spans a one-dimensional vector space of derivations on C∞(M0) denoted
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by ∆̂. As in Definition 9, the singular reduced Dirac structure is defined as the pair ({·, ·}0, ∆̂).
The dynamics of the implicit Hamiltonian system (M0, D0,H0), with H0 = 1

2σ3 + σ1, is described
in Definition 10.

Some remarks are in order. First of all, consider the smooth function C = σ2
4−σ5(σ3−σ2

2) on R5.
It can easily be seen that C is a Casimir function of the bracket {·, ·}0. Indeed, a simple calculation
shows that {σi,C}0 = 0 for all i = 1, . . . , 5. Furthermore, another calculation shows that we also
have that X̂[C] = 0. This implies that C is a Casimir function of the singular reduced system. As
a consequence we can conclude that any integral curve of (M0, D0,H0) leaves the level set C−1(0)
invariant, and hence defines an integral curve on M0. That is, we have directly checked that the
singular dynamics on M0 is indeed well defined.

Secondly, recall that the kinematic constraint defined by (7.3) is holonomic, with integral (7.4).
Next, we show that the constraint on the singular reduced space, defined by the derivation ∆̂,
is also holonomic. That is, it can be “integrated” to a Casimir function. Indeed, the function
C(q) = q21 + q22 + q23 − 1 defined earlier induces on M0 the function C0(σ1, . . . , σ5) := σ5 + σ2

1 − 1.
As can easily be checked, X̂[C0] = 0. Moreover, we also have

{·, C0}0 = −2
(
0 σ1 2(σ4 + σ1σ2) σ5 0

)T
= −2X̂ ∈ ∆̂. (7.15)

This implies that C0 is a Casimir function of the singular reduced dynamics since it satisfies the
condition in Definition 7. (Notice, however, that we are considering a topological Dirac structure in
this case!) In particular, the level set C−1

0 (0) is invariant under the integral curves of (M0, D0,H0).
If we would restrict the implicit dynamical system to the constraint space M c

0 = C−1
0 (0), then we

would obtain the unconstrained singular reduced Hamiltonian system studied in [3, 11].

Reduction to the pieces. Next, we calculate the pieces. Since S1 is one-dimensional, its only
connected subgroups are e (the identity element, θ = 0) and S1 itself. Furthermore, S1 is Abelian.
The manifold of orbit type S1 is exactly given by the fixed points of the action on R6. That is,

M(S1) = {(q, p) ∈ R6 | q1 = q2 = 0 and p1 = p2 = 0}. (7.16)

The manifold of orbit type e is just the complement, i.e., M(e) = R6 \M(S1). The action on M(S1)

is trivial, whereas the action on M(e) is free and proper (and hence, regular). Factoring out the
group action yields the following.

(M0)(S1) = σ
(
P−1(0) ∩M(S1)

)
= {(σ1, . . . , σ5) ∈ R5 | σ3 − σ2

2 = 0, σ4 = 0, σ5 = 0}. (7.17)

This is a smooth 2-dimensional manifold, being the graph of the function (σ1, σ2) 7→ (σ1, σ2, σ
2
2, 0, 0).

To calculate the second piece, notice that

P−1(0) ∩M(e) = {(q, p) ∈ R6 | q1p2 − q2p1 = 0 and q21 + q22 + p2
1 + p2

2 > 0} (7.18)

which implies

(M0)(e) = σ
(
P−1(0) ∩M(e)

)
= {(σ1, . . . , σ5) ∈ R5 | σ2

4 = σ5(σ3 − σ2
2), σ3 ≥ 0, σ5 ≥ 0, σ5 + σ3 − σ2

2 > 0}. (7.19)
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This can equivalently be written as (notice the inequalities)

(M0)(e) = {(σ1, . . . , σ5) ∈ R5 | σ2
4 = σ5(σ3 − σ2

2), σ3 − σ2
2 ≥ 0, σ5 ≥ 0, σ5 + σ3 − σ2

2 > 0}. (7.20)

The piece (M0)(e) is a connected smooth 4-dimensional manifold. To see this, consider two charts.
The first is defined by the subset

U1 = {(σ1, . . . , σ5) ∈ R5 | σ2
4 = σ5(σ3 − σ2

2), σ3 − σ2
2 > 0, σ5 ≥ 0}. (7.21)

On U1, define the bijection (σ1, σ2, σ3, σ4) ∈ R× R× (0,∞)× R u17−→
(
σ1, σ2, σ3, σ4,

σ2
4

σ3−σ2
2

)
∈ U1.

Secondly, define the subset

U2 = {(σ1, . . . , σ5) ∈ R5 | σ2
4 = σ5(σ3 − σ2

2), σ3 − σ2
2 ≥ 0, σ5 > 0}. (7.22)

On U2, define the bijection (σ1, σ2, σ4, σ5) ∈ R× R× R× (0,∞) u27−→ (σ1, σ2,
σ2
4
σ5

+ σ2
2, σ4, σ5) ∈ U2.

Clearly, U1 and U2 overlap and the overlap map u−1
2 ◦ u1 is smooth. Hence, (U1, u1), (U2, u2)

form an atlas of (M0)(e), and it follows that (M0)(e) is a smooth 4-dimensional manifold. Its
connectedness is a direct verification. Finally, notice that (M0)(e) is open and dense in M0, as
expected from the general theory (see [12], Theorem 2.7, and [34], Theorem 5.9).

Dynamics on the pieces. Next, we calculate the dynamics on the pieces. We start with the
two-dimensional piece (M0)(S1). In the original coordinates this piece is defined by the equations
q1 = q2 = 0 and p1 = p2 = 0. It is clear that the implicit dynamical system on this piece,
together with the holonomic constraint (7.4), restricts to the points (0, 0,±1, 0, 0, 0). These are the
equilibria, where (0, 0,−1, 0, 0, 0) represents the stable downward and (0, 0, 1, 0, 0, 0) the unstable
upright equilibrium position of the pendulum.

To calculate the dynamics on the second piece (M0)(e) we first restrict our attention to the chart
(U1, u1). We need to calculate the Poisson bracket and the characteristic distribution on U1. Recall
that the bracket {·, ·}0 on M0 is given by

{σi, σj}0 σ1 σ2 σ3 σ4 σ5

σ1 0 1 2σ2 0 0
σ2 −1 0 0 0 0
σ3 −2σ2 0 0 −2(σ3 − σ2

2) −4σ4

σ4 0 0 2(σ3 − σ2
2) 0 −2σ5

σ5 0 0 4σ4 2σ5 0

Now, the Poisson bracket {·, ·}U1 on U1 is simply given by deleting the last row and column from
the table above. Next, consider the vector space ∆̂ of derivations on C∞(M0), spanned by the
derivation X̂ defined in (7.14). It induces the vector field

X̂ ′
U1

= σ1
∂

∂σ2
+ 2(σ4 + σ1σ2)

∂

∂σ3
+

σ2
4

σ3 − σ2
2

∂

∂σ4
(7.23)

on U1 which spans the one-dimensional characteristic distribution ∆̂U1 on U1. Finally, the Hamil-
tonian H0 restricts to the function HU1 = 1

2σ3 + σ1 on U1. The dynamics defined in Definition 10,
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restricted to the chart (U1, u1), then yields the following set of differential and algebraic equations:

σ̇1 = σ2 (7.24a)

σ̇2 = −1 + σ1λ (7.24b)

σ̇3 = −2σ2 + 2(σ4 + σ1σ2)λ (7.24c)

σ̇4 = σ3 − σ2
2 +

σ2
4

σ3 − σ2
2

λ (7.24d)

0 = σ4 + σ1σ2. (7.24e)

Here, λ ∈ R denotes the Lagrange multiplier, determined by the condition that the algebraic con-
straint (7.24e) be satisfied at all times. Notice that (7.24e) is defined by the condition X̂ ′

U1
[HU1 ] = 0

and corresponds in original coordinates to the holonomic constraint (7.3).
The function C0|U1 = σ2

4

σ3−σ2
2
+σ2

1−1 satisfies the condition X̂ ′
U1

[C0|U1 ] = 0. Moreover, {·, C0|U1}U1 =

−2X̂ ′
U1
∈ Γloc(∆̂U1). Therefore it is a Casimir (in the sense of Definition 7) and hence a first integral

of the system (7.24). The existence of this Casimir can be interpreted as the constraint (7.24e) be-
ing holonomic, or integrable. We can eliminate the Lagrange multiplier λ by differentiating (7.24e)
once with respect to time. If we restrict attention to the zero level set of the Casimir C0|U1 we
obtain after a straightforward calculation:

0 = σ̇4 + σ̇1σ2 + σ1σ̇2 = σ3 − σ1 + λ. (7.25)

This implies that λ = σ1 − σ3. Substituting this into (7.24) we obtain the unconstrained dynamics
on (C0|U1)

−1(0):

σ̇1 = σ2, σ̇2 = −1 + σ1(σ1 − σ3), σ̇3 = −2σ2, σ̇4 = σ1 − σ2
2 − σ2

1(σ1 − σ3). (7.26)

This is a set of nonlinear ordinary differential equations which can be integrated to obtain the
trajectories of the pendulum restricted to the chart (U1, u1). Notice that the equations imply that

σ̇5 =
d

dt
(1− σ2

1) = −2σ1σ2. (7.27)

Next, we calculate the dynamics on the second chart (U2, u2) of (M0)(e). The Poisson bracket
{·, ·}U2 is simply given by deleting the third row and column in the table for {·, ·}0. In order to
calculate X̂ ′

U2
it suffices to notice that because of the constraints (7.3) we have that σ4 + σ1σ2 = 0.

Hence the derivation X̂ restricted to the smooth functions on the level set (C0|U2)
−1(0) yields

the vector field X̂ ′
U2

= σ1
∂
∂σ2

+ σ5
∂
∂σ4

. The Hamiltonian becomes HU2 = 1
2

(
σ2
4
σ5

+ σ2
2

)
+ σ1. The

dynamics on U2, restricted to the level set (C0|U2)
−1(0), can now be calculated to have the form

σ̇1 = σ2, σ̇2 = −1 + σ1λ, σ̇4 =
σ2

4

σ5
+ σ5λ, σ̇5 = 2σ4, (7.28)

together with the constraint σ4 + σ1σ2 = 0. The Lagrange multiplier can be solved as λ =
σ1 −

(
σ2
4
σ5

+ σ2
2

)
. Using the equality σ5 + σ2

1 − 1 = 0 it can easily be shown that on the level

set (C0|(M0)(e))
−1(0) the equations (7.28) equal the equations (7.26,7.27).

We conclude that the differential equations (7.26,7.27) describe the reduced dynamics of the
spherical pendulum everywhere on the piece (M0)(e), restricted to the level set (C0|(M0)(e))

−1(0).
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Remark 17. Notice that, by virtue of the constraint (7.24e), the first three equations in (7.26)
decouple from the last one. It is instructive to compare the result with the Hamiltonian derivation
on the singular reduced space (TS2)0 obtained in [11], Equation (27), p. 156. This derivation
represents the Hamiltonian dynamics of the unconstrained reduced Hamiltonian system on the
singular reduced space (TS2)0. (It was described as a singular reduced implicit, i.e. constrained,
Hamiltonian system on M0 = (T ∗R3)0 in the present paper.) After restriction of the Hamiltonian
derivation in [11] to the open and dense piece in (TS2)0 it becomes a smooth vector field. Its
integral curves are exactly described by the first three equations of (7.26). �

The planar pendulum. It is well known that a spherical pendulum, having angular momentum
zero about the vertical axis, moves in a vertical plane and hence behaves as a planar pendulum.
In this paragraph we show that the ordinary differential equations (7.26,7.27) indeed generate
the equations of motion for a planar pendulum. Since the motion of the spherical pendulum is
rotationally invariant we can restrict our attention to any arbitrary vertical plane through the
origin. We shall choose q1 = p1 = 0. Parameterize q2 and q3 in terms of the angle ψ on a great
circle through the north and south poles of the sphere S2 ⊂ Q as follows:

q2(t) = sinψ(t), q3(t) = − cosψ(t). (7.29)

(This defines the downward position of the pendulum at ψ = 0.) The corresponding S1-invariant
polynomials are given by

σ1(t) = − cosψ(t), σ2(t) = ψ̇(t) sinψ(t), σ3(t) = ψ̇2(t),

σ4(t) = ψ̇(t) sinψ(t) cosψ(t), σ5(t) = sin2 ψ(t). (7.30)

After substitution into (7.26,7.27) the first and the last equation are trivial, while the other three
yield

ψ̈ sinψ = − sin2 ψ, ψ̈ψ̇ = −ψ̇ sinψ, ψ̈ sinψ cosψ = − sin2 ψ cosψ. (7.31)

Notice that the last equation in (7.31) can be obtained from the first by multiplication with cosψ.
Hence we only need to consider the first two equations in (7.31).

Recall from (7.20) that on (M0)(e) the condition σ5 + σ3 − σ2
2 > 0 holds. For σ1, . . . , σ5 as in

(7.30) this yields
sin2 ψ + ψ̇2(1− sin2 ψ) > 0. (7.32)

Notice that the only points not satisfying (7.32) are those for which sinψ = 0 and ψ̇ = 0. But
those are exactly the equilibria of the pendulum, which are described on the other piece (M0)(S1).

Now, multiply the first equation of (7.31) with sinψ and the second equation with ψ̇(1− sin2 ψ).
Adding the two results yields the following equation:

ψ̈
(
sin2 ψ + ψ̇2(1− sin2 ψ)

)
= − sinψ

(
sin2 ψ + ψ̇2(1− sin2 ψ)

)
. (7.33)

In view of (7.32), we can divide by the expression in the parenthesis to get the nonlinear differential
equation

ψ̈ = − sinψ, (7.34)

which is recognized as the equation of motion for a planar pendulum under gravity moving in a
vertical plane.
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7.2 Non-horizontal symmetries and nonholonomic constraints

At the beginning of this section we indicated in which way the assumptions of Theorem 1 are usually
satisfied by constrained mechanical systems. Perhaps the most restrictive assumption is that the
symmetry group has to act horizontally. In other words, the infinitesimal generators have to satisfy
the kinematic constraints. Clearly, this is the case in the example of the spherical pendulum. The
“horizontality” condition is certainly not met in all known examples. In such cases, the momentum
map P is not a section of the annihilator of ∆ (i.e. the second condition in (6.1) does not hold).
As a consequence, the momentum map is not constant along solutions of (M,D,H). Therefore, it
does not make sense to reduce the system to P−1(0)/G, since the solutions do not leave the level
set P−1(0) invariant. On the other hand, the symmetries can still be factored out and the system
can be reduced to the quotient space M/G. (We refer to this as a one-step reduction, as opposed
to a two-step reduction where one first restricts to the level set P−1(0) and afterwards factors out
the G-action.) Even if the G-action is not regular, one can take the quotient to obtain the singular
reduced topological space M/G. Again, by considering the compact stabilizer subgroups of G, the
space M/G can be decomposed into orbit types. It is clear that the basic procedure developed in
this paper can be applied, mutatis mutandis, to such a one-step reduction.

In this light it is interesting to recall a theorem of Śniatycki [35], see also [6, 7]. This theorem
states that the set of horizontal symmetries forms a normal Lie subgroup K of G. The horizontal
momentum map Pk is defined as the restriction of P to k, the Lie algebra of K. It is constant along
solutions of the system. Hence the system can be reduced to the singular reduced space P−1

k (0)/K
following the procedure developed in this paper. Afterwards a further reduction can be done by
factoring out the remaining symmetries, defined by the symmetry Lie group G/K, using a one-step
reduction procedure as indicated above.

Finally, we want to recall that the kinematic constraint was holonomic in the spherical pendulum
example. This fact was observed again at the end of the singular reduction procedure by the
existence of a non-trivial Casimir function (i.e., C0). It is clear, however, that the reduction
procedure works equally well for mechanical systems with nonholonomic kinematic constraints. The
only difference is that after the reduction process the kinematic constraint is still nonholonomic
and cannot be “integrated” to a Casimir function.

8 Conclusions

In this paper we have studied the singular reduction of implicit Hamiltonian systems admitting
a symmetry Lie group together with a corresponding equivariant momentum map. The results
extend the singular reduction theory developed in [3, 4, 11, 12, 13, 18, 29, 30, 34] for symplectic or
Poisson Hamiltonian systems. The main result is a topological description of the reduced implicit
Hamiltonian system using the definition of a topological Dirac structure. In particular, the reduced
space is not assumed to be a smooth manifold. The dynamics corresponding to this system are
defined and it is shown that the projectable solutions of the original system project to solutions of
the singular reduced system. If the symmetry Lie group acts regularly (e.g. freely and properly)
and the value of the momentum map is regular, then the singular reduced implicit Hamiltonian
system equals the regular reduced implicit Hamiltonian system as described in [6, 7]. Finally, under
certain conditions (given in Theorems 1 and 2), the singular reduced space can be decomposed into
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a set of smooth manifolds called pieces. It is shown that the singular reduced implicit Hamiltonian
system restricts to a regular reduced implicit Hamiltonian system on each of these pieces. In order
to illustrate the theory, an example of a holonomically constrained mechanical system, namely the
spherical pendulum with zero angular momentum about the vertical axis, is worked out in detail.
In particular, the reduced dynamics on the pieces is calculated. It is shown to correspond to the
usual equation of motion for a planar pendulum under gravity moving in a vertical plane.
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Alan Weinstein, and the three anonymous referees for their valuable comments that greatly im-
proved our exposition. This research was performed during the time when the first author held a
postdoctoral position at EPFL, Switzerland. G.B. gratefully acknowledges the hospitality and the
financial support of this institution. Furthermore, G.B. also acknowledges the financial support re-
ceived from the European sponsored project GeoPlex (IST-2001-34166, www.geoplex.cc). T.S.R.
was partially supported by the European Commission and the Swiss Federal Government through
funding for the Research Training Network Mechanics and Symmetry in Europe (MASIE) as well
as the Swiss National Science Foundation.

References

[1] R. Abraham and J.E. Marsden. Foundations of Mechanics. Benjamin / Cummings Publishing
Company, second edition, 1978.

[2] R. Abraham, J.E. Marsden, and T.S. Ratiu. Manifolds, Tensor Analysis, and Applications.
Springer-Verlag, second edition, 1988.

[3] J. Arms, R. Cushman, and M. Gotay. A universal reduction procedure for Hamiltonian group
actions. In T. Ratiu, editor, The Geometry of Hamiltonian Systems, 33–51. Springer Verlag,
1991.

[4] L. Bates and E. Lerman. Proper group actions and symplectic stratified spaces. Pacific Journal
of Mathematics, 181(2):201–229, 1997.
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List of notations
M smooth n-dimensional manifold
TM ⊕ T ∗M smooth vector bundle over M with fibers TxM × T ∗xM, x ∈M
D ⊂ TM ⊕ T ∗M Dirac structure on M
Xloc(M), X(M) space of smooth local, resp. global, vector fields on M
Ωk
loc(M), Ωk(M) space of smooth local, resp. global, k-forms on M

Dloc, D space of smooth local, resp. global, sections of D
∆ characteristic distribution corresponding to D, see (2.4)
Γloc(∆) space of smooth local sections of ∆
Γ codistribution corresponding to D, see (2.5)
C∞(M) set of smooth functions on M
C∞(M)G set of smooth G-invariant functions on M
H Hamiltonian or energy function
{·, ·} generalized Poisson bracket on M
J generalized Poisson structure corresponding to {·, ·}
ω symplectic form, or nondegenerate two-form, on M
G symmetry Lie group
Gx stabilizer group of x ∈M
g Lie algebra of G
gx Lie algebra of Gx
φ : G×M →M Lie group action on M
ξM infinitesimal generator corresponding to ξ ∈ g, see (3.1)
π projection map
V vertical subbundle of TM , i.e. V = kerTπ
Vloc space of smooth local sections of V
G-projectable solution integral curve in M of a projectable vector field X ∼π X̂, see §3
P momentum map
ι inclusion map
W∞(N) set of Whitney smooth functions on the subset N ⊂M

M0 singular reduced space, i.e. M0 = P−1(0)/G
C∞(M0) smooth functions on the singular reduced space M0, see Definition 8
{·, ·}0 generalized Poisson bracket on C∞(M0), see (4.4)
∆̂ vector space of derivations on C∞(M0) induced by ∆
D0 singular reduced (topological) Dirac structure on M0

M(K) manifold of orbit type (K), see (6.2)
(M0)(K) leaf of the decomposition of M0 by orbit type, called piece
W∞ ((M0)(K)

)
set of Whitney smooth functions on (M0)(K)

C∞
(
(M0)(K)

)
set of smooth functions on (M0)(K)

{·, ·}(K) generalized Poisson bracket on (M0)(K), see (6.7)
J(K) generalized Poisson structure corresponding to {·, ·}(K)

∆̂(K) distribution on (M0)(K) induced by ∆
D(K) reduced Dirac structure on (M0)(K)

H(K) reduced Hamiltonian on (M0)(K)
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