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THE GEOMETRY AND ANALYSIS OF THE
AVERAGED EULER EQUATIONS AND A NEW

DIFFEOMORPHISM GROUP

J.E. Marsden, T.S. Ratiu and S. Shkoller

Abstract
This paper develops the geometric analysis of geodesic flow of a new
right invariant metric 〈·, ·〉1 on two subgroups of the volume preserving
diffeomorphism group of a smooth n-dimensional compact subset Ω
of Rn with C∞ boundary ∂Ω. The geodesic equations are given by
the system of PDEs

v̇(t) +∇u(t)v(t)− ε[∇u(t)]t · 4u(t) = − grad p(t) in Ω,
v = (1− ε4)u, div u = 0,

u(0) = u0,

which are the averaged Euler (or Euler-α) equations when ε = α2 is
a length scale, and are the equations of an inviscid non-newtonian
second grade fluid when ε = α̃1, a material parameter. The boundary
conditions associated with the geodesic flow on the two groups we
study are given by either

u = 0 on ∂Ω

or
u · n = 0 and (∇nu)tan + Sn(u) = 0 on ∂Ω,

where n is the outward pointing unit normal on ∂Ω, and where Sn is
the second fundamental form of ∂Ω. We prove that for initial data
u0 in Hs, s > (n/2) + 1, the above system of PDE are well-posed,
by establishing existence, uniqueness, and smoothness of the geodesic
spray of the metric 〈· , ·〉1, together with smooth dependence on initial
data. We are then able to prove that the limit of zero viscosity for
the corresponding viscous equations is a regular limit.

1 Introduction

1.1 Background. The Euler equations of ideal incompressible hydro-
dynamics on an n-dimensional compact subset Ω of Rn with smooth bound-
ary ∂Ω, are a system of partial differential equations describing the motion

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147945796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Vol. 10, 2000 AVERAGED EULER EQUATIONS 583

of a perfect (ideal, homogeneous, incompressible) fluid and are given by

∂tu(t) +∇u(t)u(t) = −grad p(t) in Ω
u is parallel to ∂Ω,

div u(t) = 0, u(0) = u0.
(1.1)

Here, p(t) is the pressure function which is determined (up to an additive
constant) by the spatial velocity field u(t), and ∇uu denotes the directional
(covariant) derivative of u in the direction u; it is often written as (u · ∇)u
using vector notation in the fluids literature.

The Lagrangian formalism for the hydrodynamics of incompressible
ideal fluids considers geodesic motion on Dsµ := Dsµ(Ω), the group of all
volume preserving diffeomorphisms of Ω of Sobolev class Hs. Geodesics in
this context extremize the energy associated with the L2 norm, which corre-
sponds to the kinetic energy of the fluid. Arnold [Ar] and Ebin and Marsden
[EM] showed that η(t) is a smooth geodesic of the weak L2 right invariant
metric in Dsµ if and only if the Eulerian velocity field u(t) = η̇(t) ◦ η(t)−1

is a solution of the Euler equations. Moreover, Ebin and Marsden [EM]
proved that the geodesic spray of the L2 right invariant metric on Dsµ is
C∞ for s > (n/2) + 1. They derived a number of interesting consequences
from this result, including theorems on the convergence of solutions of the
Navier-Stokes equations to solutions of the Euler equations as the viscosity
limits to zero when Ω is replaced by a manifold with no boundary (such as
flow in a periodic box).

Marsden, Ebin, and Fischer [MEF] conjectured that although in a re-
gion with boundary, solutions of the Navier-Stokes equations would not in
general converge to the solutions of the Euler equations, a certain aver-
aged quantity of the flow may converge. Recently, Barenblatt and Chorin
[BC1,2] also speculated that certain average properties of the flow pos-
sess well-defined limits as the viscosity tends to zero. This paper proves
that an appropriate choice of right invariant metric on certain subgroups
of Dsµ yields geodesic equations, which may be interpreted as the ensemble-
averaged Euler equations (see [MS]), whose solutions are indeed the regular
limit of the solutions of their viscous counterparts.

1.2 Main results. We consider two subgroups of Dsµ. The first is given
by

Dsµ,0 = {η ∈ Dsµ | η = identity on ∂Ω} ,
with TeDsµ,0 consisting of divergence-free Hs vector fields on Ω that vanish
on ∂Ω.

To define the second group, let N denote the normal bundle on ∂Ω, and
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set

N s
µ =

{
η ∈ Dsµ

∣∣ Tη|∂Ω · n ∈ H
s− 3

2
η (N), for all n ∈ Hs− 1

2 (N)
}
,

where Hs
η denotes the space of sections of N covering the diffeomorphism

η. In the next section, we shall prove that N s
µ is a C∞ subgroup of Dsµ; see

[S2] for the general construction of related subgroups of Dsµ(M), for M an
arbitrary compact Riemannian manifold with smooth boundary.

Let Gs
µ denote either Dsµ,0 or N s

µ. We define a right invariant H1
α

(pseudo) metric on Gs
µ, given at the identity by

1
2

∫
Ω

[
|u|s + α2|∇u|s

]
dx+ α2

∫
∂Ω

[
Sn(u) · u

]
γ ,

where α > 0 is a constant (representing a length-scale), Sn is the second
fundamental form of ∂Ω, and γ is the induced “volume”-form on ∂Ω.

The tangent space of N s
µ at e consists of divergence-free vector fields of

class Hs satisfying the free-slip boundary conditions
u · n = 0 , (∇nu)tan + Sn(u) = 0 on ∂Ω . (1.2)

Using the Euler-Poincaré reduction theorem that we recall in the Appendix,
which relates geodesic equations on groups with their corresponding Euler
equations on the associated Lie algebra, we show that, formally, geodesics
on Gs

µ of the right invariant H1
α metric defined above are solutions of the

averaged Euler (or Euler-α) equations (see [HMR1,2], namely
v̇ +∇uv − α2[∇u]T · 4u = −grad p in Ω ,

v = (1− α24)u , div u = 0 ,
(1.3)

with either the no-slip boundary conditions
u = 0 on ∂Ω

or the free-slip boundary conditions
u · n = 0 , (∇nu)tan + Sn(u) = 0 on ∂Ω .

If the length-scale α2 is replaced with the material constant α̃1, one ob-
tains the equations of second-grade non-newtonian fluids (see [RE], [NoT],
[DF] and references therein). Notice that the boundary integral term above
vanishes if Gs

µ = Dsµ,0.
In this paper we shall focus our analysis on the no-slip boundary con-

dition, as this is the case that has received a great deal of attention in
the literature (see, for example, [CiG], [CiO], and [GGS]). We shall prove
existence and uniqueness of the geodesic flow of the H1

α metric on Dsµ,0 for
s > (n/2) + 1. In fact, we shall prove that the geodesic flow is C∞, and
has C∞ dependence on initial data. This establishes sharp well-posedness
on finite time intervals for classical solutions of the inviscid system (1.3).
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As a consequence of the smoothness of the geodesic spray on Dsµ,0, we
are able to prove that solutions of (1.3) with no-slip boundary conditions
are a regular limit of the solutions of the corresponding viscous equation

v̇ − ν4u+∇uv − α2[∇u]T · 4u = −grad p in Ω ,
v = (1− α24)u , div u = 0 ,

u = 0 on ∂Ω ,
(1.4)

answering in the affirmative the conjecture of Ebin-Fischer-Marsden and
Barenblatt-Chorin, as well as establishing the limit of zero viscosity for
second-grade non-newtonian fluids.

The equation (1.4) is precisely the equation obtained from the constitu-
tive theory of simple materials and is the unique Rivlin-Ericksen momentum
equation that satisfies the principles of material frame indifference and ob-
server objectivity (see [RE], [NoT],[DF]). We remark that the mathematical
analysis of the viscous equation (1.4) first appeared in the 1984 paper of
Cioranescu and Ouazar [CiO], where well-posedness on finite time-intervals
for the case of homogeneous Dirichlet boundary conditions (u = 0) was
established using a clever eigenfunction expansion for the Galerkin trunca-
tion. Using this technique, Cioranescu and Girault [CiG] were then able to
show global existence of (1.4) for small initial data (see also [GGS]). The
equations with the stronger dissipative term ν4v are studied in [CFHO],
[FHT].

We mention, finally, that for other problems, such as compressible flow,
the averaged Euler equations and the equations for a non-newtonian fluid
are expected to be different.

1.3 Outline. The paper is structured as follows. In section 2, we prove
that N s

µ is a C∞ subgroup of Dsµ. This result uses elliptic operator theory
to show that a certain map between two infinite dimensional vector bundles
is a surjection. In section 3, we compute the geodesic spray of the right
invariant weak H1

α (pseudo) metric on Dsµ,0 and prove that it is a smooth
map in the strong Hs topology for s > (n/2) + 1. Finally, in section 4, we
prove the limit of zero viscosity result.

2 Subgroups of the Diffeomorphism Group

In this section we set up the relevant groups of diffeomorphisms that we
shall need to study the averaged Euler and second-grade fluid equations in
Lagrangian representation.
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2.1 Sobolev spaces of mappings. Let (M,g) be a compact oriented
C∞ n-dimensional Riemannian manifold with boundary, and let (Q, g′)
be a p-dimensional compact Riemannian manifold without boundary. By
Sobolev’s embedding theorem, when s > n/2 + k, the set of Sobolev map-
pings Hs(M,Q) is a subset of Ck(M,Q) with continuous inclusion, and so
for s > n/2, an Hs-map of M into Q is pointwise well-defined. Mappings
in the space Hs(M,Q) are those whose first s distributional derivatives are
square integrable in any system of charts covering the two manifolds.

For s > n/2, the space Hs(M,Q) is a C∞ differentiable Hilbert man-
ifold. Let exp: TQ → Q be the exponential mapping associated with g′.
Then for each φ ∈ Hs(M,Q), the map ωexp : TφHs(M,Q) → Hs(M,Q)
is used to provide a differentiable structure which is independent of the
chosen metric, where ωexp(v) = exp ◦v.

2.2 Diffeomorphism groups. For a compact Riemannian manifold
M with smooth boundary, the set of Hs mappings from M to itself is not
a smooth manifold; however, if we embed M in its double M̃ , then the
set Hs(M,M̃) is a C∞ Hilbert manifold, and for s > n/2 + 1, we may
form the set Ds(M) consisting of Hs maps η mapping M to M with Hs

inverses. This space is a smooth manifold. It is a well-known fact that
the diffeomorphism group Ds(M) is a C∞ topological group for which the
left translation operators and inversion are continuous and the right trans-
lation operators are smooth (see [EM] and references therein). One also
knows that η : M → M has an extension to an element of (the connected
component of the identity of) Ds(M̃) if and only if η lies in (the connected
component of the identity of) Ds(M).

We now restrict our attention to a smooth n-dimensional compact sub-
set Ω of Rn with smooth boundary ∂Ω. Let µ = dx1 ∧ · · · ∧ dxn denote the
volume-form on Ω, and let

Dsµ := Dsµ(Ω) :=
{
η ∈ Ds(Ω)

∣∣ η∗(µ) = µ
}

denote the subgroup of Ds(Ω) consisting of all volume preserving diffeo-
morphisms of class Hs. For each η ∈ Dsµ, we may use the L2 Hodge
decomposition to define the projection Pη : TηDs → TηDsµ given by

Pη(X) =
(
Pe(X ◦ η−1)

)
◦ η ,

whereX ∈ TηDsµ, and Pe is the L2 orthogonal projection onto the divergence-
free vector fields on Ω. Recall that this projection is given by

Pe(v) = v − grad p ,
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where p is the solution of the Neumann problem
4p = div v in Ω
∂p
∂n = v · n on ∂Ω ,

and where n is the orientation preserving normal vector field on ∂Ω. The
function p is the pressure associated with v.

2.3 The subgroup Dsµ,0. Ebin and Marsden [EM] showed that there
is a C∞ differentiable structure on the those (volume preserving) diffeo-
morphisms of ω which keep ∂Ω pointwise fixed.

Theorem 2.1. The sets

Ds0 =
{
η ∈ Ds

∣∣ η(x) = x for all x ∈ ∂Ω
}

and
Dsµ,0 =

{
η ∈ Dsµ

∣∣ η(x) = x for all x ∈ ∂Ω}
are smooth subgroups of Ds, and TeDs0 consists of Hs vector fields on Ω
vanishing on ∂Ω, while TeDsµ,0 = {u ∈ TeDs0 | div u = 0}.

For the proofs, see section 8 of [EM].

2.4 The subgroup N s
µ. For any vector bundle Π : E → Ω and for all

η ∈ Ds, we set Hs
η(E) := {U ∈ Hs(E) | π◦U = η}, with a similar definition

when η is restricted to ∂Ω. For us, E shall usually be the trivial bundle
Ω × V , V a vector space, with Π : Ω × V → Ω being the projection onto
the first factor.

With TΩ = Ω× Rn,

TΩ|∂Ω = T∂Ω⊕N ,

where N is the normal bundle.
We define the following vector bundles over Dsµ:

F ≡ ∪η∈DsµH
s− 3

2
η (TΩ|∂Ω)|Dsµ ,

E ≡ ∪η∈DsµH
s− 3

2
η (T∂Ω)|Dsµ ,

G ≡ ∪η∈Dsµ
[
H
s− 3

2
η (TΩ|∂Ω)∗ ⊗Hs− 3

2
η (T∂Ω)

]∣∣Dsµ .
Next, we define the following maps:

h : Dsµ → F , h(η) = Tη|∂Ω · n , n ∈ Hs− 1
2 (N) ,

Π : Dsµ → G , Π(η) : H
s− 3

2
η (TΩ|∂Ω)→ H

s− 3
2

η (T∂Ω) ,
f : Dsµ → E , f = Π ◦ h ,

where Π(η) is defined pointwise by the Rn-orthogonal projector Πη(x) :
TxΩ→ Tx∂Ω for x ∈ ∂Ω. Lemma 4 in [S2] proves that f is C∞.
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Define the subset N s
µ of Dsµ by

N s
µ =

{
η ∈ Dsµ

∣∣ Tη|∂Ω · n ∈ H
s− 3

2
η (N), for all n ∈ Hs− 1

2 (N)
}
.

Theorem 2.2. The set N s
µ is a subgroup of Dsµ for s > n

2 + 1, such that

TeN s
µ =

{
u ∈ TeDsµ

∣∣ (∇nu)tan + Sn(u) = 0 on ∂Ω ∀n ∈ Hs− 1
2 (N)

}
,

where Sn : T∂Ω→ T∂Ω is the second fundamental form of ∂Ω given by〈
Sn(u), v

〉
= −〈∇un, v〉 , u, v ∈ Hs− 3

2 (T∂Ω) .
Proof. It is clear that N s

µ is closed under right composition; hence, we
must show that N s

µ is a submanifold of Dsµ. To do so, we shall use the
transversal mapping theorem (see, for example, [AMR]) which states that
if f : Dsµ → E is transversal to the zero section of E , then N s

µ = f−1(0) is a
submanifold of Dsµ.

Since our manifolds are Hilbert, in order to establish the transversal-
ity of f with 0 ∈ C∞(E), it suffices to prove that f is a surjection. The
Fréchet derivative on Rn induces, by a pointwise lift, natural (weak) covari-
ant derivatives ∇ on F and G (see Lemma 4 in [S2] and section 9 of [EM]).

We compute that for all u in TηDsµ = Hs
η(TΩ),

∇uh(η) = ∇nu , (2.1)
where ∇ denotes the covariant derivative in the pull-back bundle η∗(TΩ).

Next, we compute the covariant derivative of Π. For all u ∈ TηDsµ, and
v, z ∈ Fη, along the boundary ∂Ω,

[∇uΠη(x)](v(x)) · z(x) = −(∇uv(x))tan · z(x)

− (∇uz(x))tan · v(x)− u · ∇
[
vtan(x) · ztan(x)

]
, (2.2)

where (·)tan denotes the tangential component. Hence, ∇uΠη is symmetric
with respect to the inner-product on Rn. Now, by definition, for x ∈ ∂Ω,

Πη(x)(v(x)) · ν(x) = 0 for all v ∈ Fη, ν ∈ H
s− 3

2
η (N) ,

so setting v = ν in (2.2) shows that
[∇uΠη](ν) = −(∇uν)tan = Sν(u) . (2.3)

It follows that for all η ∈ f−1(0),
∇uf(η) = ∇uΠη · h(η) + Πη · ∇uh(η)

= Sν(u) + (∇nu)tan ∈ Eη ,

where ν = Tη · n ∈ Hs− 3
2

η (N).
It remains to show that for every w ∈ Eη, there exists u ∈ TηDsµ such

that ∇uf(η) = w. By right translation to the identity, it suffices to find
u ∈ TeDsµ such that ∇uf(e) = w for every w ∈ Hs− 3

2 (T∂Ω).
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To do so we obtain a solution to the following elliptic boundary value
problem: For F ∈ Hs−2(TΩ), w ∈ Hs− 3

2 (T∂Ω) and n ∈ Hs− 1
2 (N), find

(u, p) ∈ TeDsµ ×Hs−1(Ω)/R such that

−4u+ grad p = F in Ω
(∇nu)tan + Sn(u) = w on ∂Ω ,

(2.4)

where in Cartesian components (4u)i = ∂k∂kui, i.e. 4 is the component-
wise Laplace operator. Note that by definition of TeDsµ, u · n = 0 on ∂Ω
and div u = 0.

A weak solution to (2.4) in the class of H1 divergence-free vector fields
that are parallel to ∂Ω is supplied by Step 3 of the proof of Theorem 1 in
[S2]. Noting that in coordinates (∇nu)tan + Sn(u) = [(ui,j + uj,i) · nj ]tan,
Theorem 2.8 of [MaPS] provides a strong solution in the class of H2 diver-
gence-free vector fields that are parallel to the boundary and satisfy the
boundary condition (∇nu)tan + Sn(u) = 0 on ∂Ω. Theorem 2.9 of [MaPS]
then provides the elliptic regularity required to obtain u ∈ TeDsµ whenever
(F,w) ∈ Hs−2(TΩ) × Hs− 3

2 (T∂Ω), and this completes the proof of the
theorem. �

A similar argument also yields

Theorem 2.3. The set

N s =
{
η ∈ Ds

∣∣ Tη|∂Ω · n ∈ Hs− 3
2

η (N) for all n ∈ Hs− 1
2 (N)

}
is a subgroup of Ds for s > n

2 + 1, such that

TeN s =
{
u ∈ TeDs

∣∣ (∇nu|∂Ω)tan + Sn(u) = 0 on ∂Ω ∀n ∈ Hs− 1
2 (N)

}
.

See [S2] for the construction of C∞ differentiable structure on a number
of new diffeomorphism groups of arbitrary compact Riemannian manifolds
with boundary that describe particular hydrodynamic motions.

Now let Gs = Ds0 or N s, and let Gs
µ = Dsµ,0 or N s

µ .
We do not call TeGs

µ literally the Lie algebra of Gs
µ as the bracket loses

regularity and thus does not belong to the Hilbert class Hs; nevertheless,
the bracket [u, v] of two elements u, v ∈ TeGs

µ satisfies the boundary condi-
tions (1.2). To see this, let ψt be the flow of u and φt the flow of v. Then
the flow σt of [u, v] may be expressed as

σt = lim
n→∞

(φ−
√
t/n
◦ ψ−√t/n ◦ φ√t/n ◦ ψ√t/n)n ,

for t ≥ 0. Hence, it is clear that Tσt|∂Ω maps sections of N into sections
of N so that [u, v] must satisfy (1.2).
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2.5 The projector P. For r ≥ 1, let Vr denote the Hr vector fields
on Ω which satisfy the boundary conditions prescribed to elements of TeGs

and let Vrµ = {u ∈ Vr | div u = 0}.
Define the Stokes projector by

Pe : Vr → Vrµ ,
P(w) = w − (1−4)−1grad p ,

(2.5)

where p depends on v and the pair (v, p) ∈ Vrµ × Hr−1(Ω)/R solves the
Stokes problem

(1−4)v + grad p = (1−4)w ,
div v = 0 ,

together with either the no-slip or free-slip boundary conditions, as appro-
priate. The Stokes projector Pe induces the decomposition

Vr = Vrµ ⊕ (1−4)−1gradHr−1(Ω) ,

and it is readily checked that the two summands are orthogonal with respect
to 〈·, ·〉1(e).

For s > (n/2)+1, define P : TGs → TGs
µ to be the bundle map covering

the identity, given on each fiber by
Pη : TηGs → TηG

s
µ ,

Pη(Xη) =
[
Pe(Xη ◦ η−1)

]
◦ η .

Proposition 2 in [S2] proves that P is a C∞ bundle map; this fact will be
crucial in proving that the geodesic spray of the invariant metric 〈·, ·〉1 is
smooth.

3 Geodesic Motion

Again, let Gs = Ds0 or N s, and let Gs
µ = Dsµ,0 or N s

µ.

3.1 H1
α metric on Gs

µ. In this section, we shall analyse the geodesic
motion of the weak H1

α right invariant (pseudo) metric 〈·, ·〉1 on the
group Gs

µ. This metric is defined as follows: For X,Y ∈ TeGs
µ, we set

〈X,Y 〉1(e) =
∫

Ω

(
X(x) · Y (x) + α2∇X(x) · ∇Y (x)

)
µ(x)

+ α2
∫
∂Ω
Sn(X(x)) · Y (x) γ(x) (3.1)

and extend 〈·, ·〉1 to Gs
µ by right invariance. Here n is the outward unit

normal on ∂Ω and γ is the induced volume measure on ∂Ω. Again, if
Gs
µ = Dsµ,0, then the boundary term vanishes.
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3.2 Euler-Poincaré equations on TeG
s
µ. Appendix 4 is devoted to

a review of Lagrangian reduction on topological groups with a one-sided
invariant metric which leads to a system of reduced equations that are
called the Euler-Poincaré equations. We refer the reader to this appendix
for the general theory; for purposes of the current development, we shall
restrict attention to geodesics of a right invariant metric on Gs

µ. The fun-
damental idea is to use the C∞ right translation maps on Gs

µ to translate
geodesic motion over the entire topological group Gs

µ onto motion in the
single fiber TeGs

µ. We shall state the reduction theorem in this context.
Theorem 3.1 (Euler-Poincaré for Gs

µ). Consider Gs
µ with the right

invariant metric 〈·, ·〉1. A curve η(t) in Gs
µ is a geodesic of this metric if

and only if u(t) = Tη(t)Rη(t)−1 η̇(t) = η̇(t) ◦ η(t)−1 satisfies
d
dtu(t) = − ad∗u(t) u(t) (3.2)

where ad∗u is the formal adjoint of adu with respect to the inner-product
〈·, ·〉1(e) given by

〈ad∗u v,w〉1(e) =
〈
v, [u,w]

〉
1(e)

for all u, v,w ∈ TeGs
µ, where

ad∗u u = (1− α24)−1 [∇u(t)(1−α24)u(t)− α2[∇u(t)]t · 4u(t)+ grad p(t)
]
,

and u = 0 on ∂Ω if Gs
µ = Dsµ,0 and u · n = 0, (∇nu)tan + Sn(u) = 0 on ∂Ω

if Gs
µ = N s

µ.

Proof. Restricting 〈·, ·〉1 to the algebra TeGs
µ, we compute the first variation

of the action function
1
2

∫ b

a

∫
Ω

[
|u|s + α2|∇u|2

]
µdt+ α2

∫
∂Ω
Sn(u) · u γ dt

for constrained variations of the form δu = ∂tw − [w, u]. Integrating by
parts, the first variation becomes∫ b

a

∫
Ω

[
(1−α24)u

]
·[∂tw + [w, u]]µdt+

∫ b

a

∫
∂Ω
α2[∇nu·δu+Sn(u)·δu

]
γ dt .

The boundary term vanishes for u and δu in TeG
s
µ, so another integra-

tion by parts yields∫ b

a

∫
Ω

[
∂t(1− α24)u+∇u(1− α24)u− α2∇ut · 4u

]
· w µdt

=
∫ b

a

〈
∂tu+ (1− α24)−1[∇u(1− α24)u− α2∇ut · 4u], w

〉
1(e)dt .

Since w ∈ TeGs
µ is arbitrary, u is a critical-point of the action if and only if

∂tu+ Pe
{

(1− α24)−1[∇u(1− α24)u− α2∇ut · 4u]
}

= 0 .
Using the definition of the Stokes projector Pe concludes the proof. �
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The Euler–Poincaré equation
∂t(1− α24)u+∇u(1− α24)u− α2[∇u)]t · 4u = −grad p ,

div u = 0 , u(0) = u0 ,
(3.3)

together with either the no-slip boundary condition u = 0 or the free-
slip boundary condition u · n = 0 and (∇nu)tan + Sn(u) = 0, is called the
averaged Euler equation or the Euler-α equation. As we already mentioned,
this equation is also the equation for inviscid second-grade non-Newtonian
fluids when α2 is replaced by α̃1, a material parameter measuring the elastic
response of the fluid.

Being Euler–Poincaré equations, of course these equations share all the
properties given by the usual Euler equations, such as a Kelvin-Noether
theorem, a Lie–Poisson Hamiltonian structure and so on (see [HMR2] for
some of the basic facts and literature).

3.3 The geodesic equations on T ∗e Gs
µ. On the dual of TeGs

µ, a simple
computation of the coadjoint action verifies that the averaged Euler or
Euler-α equations may be expressed as

∂tv + Luv = −dp ,
where the one-form v is associated to u[ by v = (1 − α24)u[. Using the
exterior derivative d, we may identify the dual of TeGs

µ with two-forms ω
(as in [MW]) and write the Euler-α equations in vorticity form as

∂tω + Lαuω = 0 ,
where ω = du[, and1

Lαu = (1− α24)−1Lu(1− α24) .
For example, on T2, we identify T ∗e Gs

µ with smooth functions, and write
the Euler-α equations as

∂tq +∇uq = 0 , q = (1− α24)ω ,
where ω = du[. Letting ω = −4ψ, these equations take the familiar Lie-
Poisson form

∂tq = {ψ, q} .
3.4 Smoothness of the geodesic spray on Dµs. In this section, we
establish the well-posedness of the averaged Euler equations with no-slip
boundary conditions by proving that the geodesic spray of 〈· , ·〉1 is smooth
on Dsµ,0. (See Theorem 2 of [S1] for the smoothness of the geodesic spray
on Dsµ(M) when M is an arbitrary compact Riemannian manifold.)

1More generally, geodesics of the Hm right invariant metric are defined as above, but
with the conjugated Lie derivative operator Lm,αu = (1− α24)−mLu(1− α24)m.
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Theorem 3.2. For s > n
2 + 1 and u0 ∈ Dsµ,0, there exists an open

interval I = (−T, T ) depending on on u0, and a unique geodesic η̇ of 〈·, ·〉1
such that u = η̇ ◦ η satisfies (3.3) with η(0) = e and η̇(0) = u0 such that
η̇ ∈ C∞(I, TDsµ,0) has C∞ dependence on u0

Proof. We compute the first variation of the action function

E(η) =
1
2

∫ b

a

〈
η̇(t), η̇(t)

〉
1dt ,

which we decompose as

E0(η) =
1
2

∫ b

a

∫
Ω
|η̇(x)|2µ(x)dt

and
E1(η) =

α2

2

∫ b

a

∫
Ω

∣∣∇(η̇ ◦ η−1)(y)
∣∣2µ(y)dt .

By definition of Dsµ,0, the boundary terms appearing from integration by
parts vanish; hence, we restrict our computations to the interior. We have

E1(η) =
α2

2

∫ b

a

∫
Ω

∣∣∇(η̇ ◦ η−1)(y)
∣∣2dy dt

=
α2

2

∫ b

a

∫
Ω

(
∇η̇(x) · [Tη(x)]−1) · (∇η̇(x) · [Tη(x)]−1) dx dt .

Let ε 7→ ηε be a smooth curve in Dsµ,0 such that η0=η and (d/dε)|ε=0η
ε=δη.

Then

dE1(η) · δη = α2
∫ b

a

∫
Ω

(
D

dε

∣∣∣∣
0
∇η̇ε · [Tηε]−1

)
·
(
∇η̇ · [Tη]−1) dx dt

= α2
∫ b

a

∫
Ω

[(
D

dε

∣∣∣∣
0
∇η̇ε · [Tη]−1

)
·
(
∇η̇ · [Tη]−1)

−
(
∇δη · [Tη]−1) · (∇η̇ · [Tη]−1)t(∇η̇ · [Tη]−1) ]dx dt

= α2
∫ b

a

∫
Ω

[
(∇[(D/dt)δη] · [Tη]−1) · (∇η̇ · [Tη]−1)

− (∇δη) · ((∇η̇ · [Tη]−1)t · (∇η̇ · [Tη]−1) · [Tη]−1t)
]
dx dt ,

where D/dε means the directional derivative along the curve ε 7→ ηε. Inte-
gration by parts yields∫ b

a

∫
Ω

(
∇
(
D

dt
δη

)
· [Tη]−1

)
·
(
∇η̇ · [Tη]−1)dx dt

= −
∫ b

a

∫
Ω

(∇δη) ·
(
D

dt

{
∇η̇ · [Tη]−1 · [Tη]−1t}) dx dt .
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We use the product rule to get that
D
dt

{
∇η̇ · [Tη]−1 · [Tη]−1t} = ∇η̈ · [Tη]−1 · [Tη]−1t

−
(
∇η̇ · [Tη]−1) · (∇η̇ · [Tη]−1) · [Tη]−1t

−
(
∇η̇ · [Tη]−1) · (∇η̇ · [Tη]−1)t · [Tη]−1t ,

Integrating by parts, noting that the boundary terms vanish by virtue of
the subgroup Dsµ,0, we have that

dE1(η) · δη = α2
∫ b

a

∫
Ω

div
(
{∇η̈ · [Tη]−1 − (∇η̇ · [Tη]−1)t · (∇η̇ · [Tη]−1)

+ (∇η̇ · [Tη]−1) · (∇η̇ · [Tη]−1)} · [Tη]−1t) .
Computing the first variation of E0, we obtain

dE0(η) · δη =
∫ b

a

∫
Ω

D

dε

∣∣∣∣
0
η̇ε · η̇ dx dt =

∫ b

a

∫
Ω

D

dt
δη · η̇ dx dt

=
∫ b

a

∫
Ω
−η̈ · δη dx dt .

Setting dE · δη = 0, and using the projector P given by (2.5) gives
Pη ◦ η̈ = Pη ◦ (1− α24̂η)−1[div{(∇η̇[Tη]−1)t(∇η̇[Tη]−1)

−∇η̇[Tη]−1∇η̇[Tη]−1 − (∇η̇[Tη]−1)(∇η̇[Tη]−1)t}[Tη]−1t] ,
where

4̂η = div
[
∇(·)(Tη)−1(Tη)−1t] . (3.4)

Let us prove that the above expression is well-defined; namely, we shall
show that it makes sense for the Stokes projector to act on both η̈ and
Fη. To see this, notice that 4̂η = TRη ◦ 4 ◦ TRη−1 , and that Pη(η̈) =
[Pe(∂t+∇uu)]◦η, where u = η̇◦η−1. The Stokes operator acts on (∂t+∇uu)
by (1 − α24) whose domain is H2(TΩ) ∩ H1

0 (TΩ), and this operation is
well-defined as both ∂tu and ∇uu are in the domain of (1 − α24), since
u = 0 on ∂Ω.

We may reexpress the above equation as[
∂tu+Pe(∇uu)

]
◦η = Pe

{
(1−α24)−1div[∇ut · ∇u−∇u · ∇u−∇u · ∇ut]

}
◦η;

thus the right-hand side is also well-defined as the image of (1 − α24)−1

is the domain of (1 − α24). Denoting the right-hand side of the above
equation by Sη(η̇), we have that

η̈ = B(η, η̇) := (1−Pη) ◦ η̈ + Sη(η̇) .
We rewrite this equation as the system

η̇ = Vη ,
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η̈ = dVη
dt = B(η, η̇) ,

η(0) = e , Vη(0) = u0 .

We shall prove that B : TDsµ,0 → T 2Dsµ,0 and that B is a C∞ bundle
map. Then the standard theorem for existence and uniqueness of ordinary
differential equations on a Hilbert manifold provides the existence of a
unique C∞ curve η̇(t) solving the above system on [0, T ), that depends
smoothly on the initial data u0; the time-reversal symmetry allows us to
extend the interval to (−T, T ).

That B is C∞ follows from the fact that ∇u · ∇u is of class Hs−1

whenever u is in Hs (because Hs−1 forms a multiplicative algebra when
s > (n/2) + 1), so that (1− α24)−1div[∇ut · ∇u−∇u · ∇u−∇u · ∇ut] is
in Hs(TΩ)∩H1

0 (TΩ). That Sη(η̇) is of class Hs follows from Proposition 6
in [S2] together with the smoothness of the Stokes projector (Proposition 2
in [S2]).

The fact that (1 − Pη) ◦ η̈ is of class Hs whenever η̇ ∈ TηDsµ,0 follows
from similar arguments (see the proof of Proposition 2 in [S2] for details). �

Using the fact that the inversion map η 7→ η−1 is C0 as a map of Dsµ,0
into Dsµ,0, and is C1 as a map of Dsµ,0 into Ds−1

µ,0 , we immediately obtain
that

u ∈ C0(I,Vsµ) ∩ C1(I,Vs−1
µ )

where for r ≥ 1, Vrµ = {u ∈ Hs(TΩ) ∩H1
0 (TΩ) | div u = 0}, and has C0

dependence on the initial data u0.

4 The Regular Limit of Zero Viscosity

The viscous averaged Euler equations or the viscous equations of second-
grade non-newtonian fluids are given by

∂t(1− α24)u− ν4u+
[
∇u(1− α24)u− α2∇ut · 4u

]
= − grad p ,

div u = 0 ,
u = 0 on ∂Ω , u(0) = u0 . (4.1)

In [CiG], global well-posedness of (4.1) for small initial data was estab-
lished. Having proven the smoothness of the geodesic spray of the Euler-α
equations, we follow [EM] and use the product formula approach to prove
the existence of viscosity independent solutions to (4.1) on finite time in-
tervals as well as the existence of the limit of zero viscosity. In the case
that α = 0, this limiting procedure is believed to be valid only for compact
manifolds without boundary (e.g., for flows with periodic boundary condi-
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tions), as the Navier-Stokes equations and the Euler equations do not share
the same boundary conditions on domains with boundary.

Theorem 4.1. Let B : TDsµ,0 → T 2Dsµ,0 be the C∞ geodesic spray
of the metric 〈·, ·〉1. For each s > (n/2) + 1, let T : TeDsµ,0 → TeDsµ,0
be a bounded linear map that generates a strongly-continuous semi-group
Ft : TeDsµ,0 → TeDsµ,0, t ≥ 0, and satisfies ‖Ft‖s ≤ eβt for some β > 0 and
some s. Extend Ft to TDsµ,0 by

F̃t(Xη) = TRη · Ft · TRη−1(Xη)

for Xη ∈ TηDsµ,0, and let T̃ be the vector field T̃ : TDsµ,0 → T 2Dsµ,0 associ-
ated to the flow F̃t.

Then B+νT̃ generates a unique local uniformly Lipschitz flow on TDsµ,0
for ν ≥ 0, and the integral curves cν(t) with cν(0) = x extend for a fixed
time τ > 0 independent of ν and are unique. Further,

lim
ν→0

cν(t) = c0(t)

for each t, 0 ≤ t < τ , the limit being in the Hs topology, s > (n/2) + 1.

Proof. The proof of this theorem is essentially identical to the proof of
Theorem 13.1 in [EM] so will not be repeated. �

Now, for the equation (4.1), the operator T is simply the order zero
differential operator T = Pe(1− α24)−14, coming from the equation

ut = (1− α24)−14u .
It is a fact that T : TeDsµ,0 → TeN s

µ is continuous and generates a smooth
semi-group in TeDsµ,0. This follows from the elliptic regularity of the Stokes
operator with Dirichlet boundary conditions.

Since Theorem 3.2 proves that the geodesic spray B is C∞ on Dsµ,0, we
use the product formula approach to iterate the composition of the time
t/n maps of the vector fields T and B to obtain our result.

Remark 4.1. With initial data u0 in TeD∞µ,0, the solution u(t) is also C∞

as a consequence of the regularization of parabolic flows.

The use of the product formula in the proof of the above theorem is
given in [EM], [M], and [ChHMM].

Appendix. Euler-Poincaré Reduction

The reduction onto the Eulerian representation is an example of the Euler-
Poincaré theorem (see, for example, [ArK] or [MR]) which we shall now
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state in the setting of a topological group G which is a smooth manifold
and admits smooth right translation. For any element η of the group, we
shall denote by TRη the right translation map on TG, so that for example,
when G is either N s

µ or Dsµ,0, then TRη−1 η̇ := η̇ ◦ η−1.

Theorem A.1 (Euler-Poincaré). Let G be a topological group which
admits smooth manifold structure with smooth right translation, and let
L : TG→ R be a right invariant Lagrangian. Let g denote the fiber TeG,
and let l : g → R be the restriction of L to g. For a curve η(t) in G, let
u(t) = TRη(t)−1 η̇(t). Then the following are equivalent:

a. the curve η(t) satisfies the Euler-Lagrange equations on G;
b. the curve η(t) is an extremum of the action function

S(η) =
∫
L(η(t), η̇(t))dt ,

for variations δη with fixed endpoints;
c. the curve u(t) solves the Euler-Poincaré equations

d
dt
δl
δu = −ad∗u

δl
δu ,

where the coadjoint action ad∗u is defined by

〈ad∗uv,w〉 =
〈
v, [u,w]

〉
,

for u, v,w in g, and where 〈· , ·〉 is the metric on g and [· , ·] is the
usual bracket;

d. the curve u(t) is an extremum of the reduced action function

s(u) =
∫
l(u(t))dt ,

for variations of the form

δu = ẇ + [w, u] , (A.1)

where w = TRη−1δη vanishes at the endpoints.

See Chapter 13 in [MR] for a detailed development of the theory of
Lagrangian reduction as well as a proof of the Euler-Poincaré theorem.
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