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Abstract. In this paper we will investigate the relevance of a stable family of relative equilibria
in a dissipative Hamiltonian system with symmetry. We are interested in relative equilibria of
the Hamiltonian system, whoese stability follows from the fact that they are local extrema of
the epergy—momentum function which is a combination of the Hamiltonian and a conserved
quantity of the Hamiltonian system, induced by the momentum map related to the symmetry
group.

Although the dissipative perturbation is equivariant under the action of the symmetry group,
it will destroy the conservation law asseciated with the symmetry group. We will specify
its dissipative properties in terms of the induced time behaviour of the momentum map and
quasi-static attractive properties of the relative equilibria. By analysing the time behaviour of
the previously mentioned energy-momentum function we derive sufficient conditions such that
solutions of the dissipative system which are initially close to a relative equilibrivm can be

- approximated by a (long) curve of relative equilibra. At the end we illustrate the method by
analysing the example of arigid body in a rotational symmetric field with dissipative rotation-like
perturbation added. )

AMS classification scheme numbers: 38F30, 34D10, 34D35, 34E10

1. Introduction

The behaviour of solutions of Hamiltonian systems with symmetry has long been a subject
of intensive research. The analysis of relative equilibria plays a key role in this research,
Reiative equilibria are equilibria modulo symmetries. For example, if the symmetry group
is a rotation group, then the relative equilibria are uniformly rotating states. Relative
equilibria form a highly -structured class of motions, which makes them accessible for
detailed analysis. Two (related) systematic ways to analyse the stability of relative equilibria
are the energy-Casimir method (see Holm et af [7], Krishnaprasad and Marsden [8] and
related papers) and the {reduced) energy—momentum method (see Simo et af [13], Simo et
al [14] and references therein). The key to both these methods is the characterization of
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relative equilibria as critical points of the so-called energy-momentum function, which is
determined by the Hamiltonian and the momentum map, or related induced functions. If
the relative equilibria are local extremals of the energy-momentom function modnlo certain
symmetries, then they are orbitally stable.

However, purely Hamiltonian systems seldom occur in reality, Often (small)
perturbations that destroy the Hamiltonian structure are present. In this paper we consider
the relevance of the relative equilibria in the presence of weak dissipation. If momentum
is dissipated, most relative equilibria are not preserved, even modulo symmetries. Any
trajectory must pass through the appropriate momentum level sets and will eventually leave
the neighbourhood of the relative equilibrium it initially approximated and deviate far from
this initial neighbourhood. Thus it is not generally useful to talk about the stability of a
single relative equilibrium, but rather a long curve of relative equilibria. The basic question
we address now is the following.

If a solution of the dissipative system starts near a relative equilibrium of the
unperturbed system, can one sharply approximate it by a time-dependent curve of
relative equilibria?

We shall see that under some reasonable hypotheses, it is possible to characterize
a curve of relative equilibria with dissipating momentum as being attracting. In Derks
and Valkering {5] this is shown for finite-dimensional mechanical systems with one cyclic
coordinate and uniform friction. An extension to more general Hamiltonian systems, but
still with only one-dimensional symmetry groups, is given in Derks [3] and Derks and
van Groesen [4]. They consider the approximation of sclutions of the uniformly damped
periedic Korteweg—de Vries equation with a curve of cnoidal waves and show that it can
be approximated by a curve of cnoidal waves (which are solitary wave-like solutions of the
periodic Xdv equation). The approximation is sharp in the sense that as the solutions tend
to Zero as ¢ — oc, their difference tends to zera in a norm that sharply picks out differences
in shape. Roughly speaking, this means that the solution converges to the solitary waves at
the same rate as the dissipation canses it to disappear..

In this paper we will generalize the work of [5), by considering a finite-dimensional
symplectic manifold and a compact (possibly non-Abelian) group of Hamiltonian
symmetries defining the momentum map J. We assume that the unperturbed Hamiltonian
system possesses a smooth manifold of relative equilibria which are stable according to
the criteria of the energy-momentum method. This assumption is motivated by the work
of Bloch er af [2]. They consider a relative equilibrium for which the energy—momentum
method predicts formal instability. By adding a small, momentum preserving damping to
the Hamiltonian system, the relative equilibrium becomes unstable. It seems unlikely that
such relative equilibria are stable under perturbations which do not preserve the momentum
map, hence our assumption on the stability of the relative equilibria. This assumption allows
us to use the energy—momentum function to estimate distances on a neighbourhood of the
relative equilibria.

We assume that the perturbation is smooth, dissipative, and equivariant for the action of
the symmetry group. Furthermore, there are three technical hypotheses on the perturbation.
First, the influence of the perturbation on the momentum map has to be such that the value
of the momenturm map J(x(z)) of any solution 1(¢) has a limit for t - co. This assumption
allows us to provide an asymptotic prediction of the behaviour of the system. Secondly,
the manifold of relative equilibria need not be invariant under the perturbed dynamics, but
the effects of the perturbation that push trajectories away from the manifold of relative
equilibria should not be strong for a long time. Finally, every relative equilibrium has to be
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aftractive in a ‘quasi-static’ context. This means that the linearization of the perturbation in
directions tangential to the level set of the momentum map is attractive towards the relative
equilibria.

For an approach proving the stability of the curve of relative equilibria, we loak at the
conservative case. Can the traditional variational analysis of the relative equilibria be used in
a dissipative setting? The answer is, to a great extent, yes. Once the stability of the relative
equilibria in the absence of dissipation and the asymptotic properties of the evolution of the
momentum map itself under the influence of dissipation are known, we have most of the
information in hand that is required to analyse the stability of the dissipative trajectories.
The approximation result is the following. -

Let u(?) be a solution of the perturbed system and let u(z) = J(u(#)). If the
initial distance between u(0) and the manifeld of relative equilibria is small, say of
order (¢}, then the distance between u(#) and the relative equilibria on the level
set J = (2} is of order O(ee™"), for all ¢+ > 0, where the constant ¢« depends
only on the perturbation.

Our strategy for the proof of this estimate is as follows: a familiar approach to the stability
analysis of relative equilibria in the absence of dissipation is to use the energy—momentum
function as a Lyapunov function. In the presence of dissipation, it is natural to hope that
one can estimate the time derivative of this Lyapunov function based on the dissipative
equations. However, it turns out that this estimate is not sufficiently sharp because the
family of relative equilibria is not invariant for the perturbed system. To sharpen the
estimate one needs to define a slightly different Hamiltonian. We construct a small (of the
order of the perturbation} addition to the Hamiltonian and show that this new Hamiltonian
has relative equilibria that satisfy the perturbed equation to one higher order. (A similar
idea for this construction 15 used in [3~5] and in Lebovitz and Neishtadt [9].)

As an application of the general ideas, we study the example of a rigid body in a

" rotationally symmetric field with a dissipative rotation-like perturbation. This example,

with configuration space R* x SO(3), is intended to illustrate some of the geometric
considerations: the phase space is a nonlinear manifold, the group does not act freely
on the limiting relative equilibrium, and the subgroup of momentum-preserving symmetries
is not constant. Nonetheless, the analysis can be carried out and the approximation with the
curve of relative equilibria can be verified. ' ‘

Appropriate manipulations of the symmetries of the system will be a recurrent theme
in our analysis. Hence we briefly discuss some of the most important concerns. It is a well
known aspect of the study of Hamiltonian systems with symmetry that relative equilibria
are fixed points of the induced dynamics on an appropriate orbit manifold. Many of the
techniques for analysing such equilibria are formulated on quotient manifolds. Symplectic
reduction, in which the reduced manifold is the quotient of a level set of the momentum map
by the subgroup of symmetries preserving that level set, and Poisson reduction, in which the
reduced phase space is the quotient of the original phase space by the full symmetry group,
are both well known. See, for example, Meyer [12] and Marsden and Weinstein [11].

Such an approach has several essential limitations in the present context. Symplectic
reduction involves restriction to the momentum level set and determination of the quotient
with respect to the subgroup of momentum preserving group elements. However, as
momentum is dissipated, the momentum level set clearly changes; in many cases the isotropy
subgroup changes as well. Thus application of symplectic reduction seems inherently
inappropriate in this context and the assumption of a fixed isotropy subgroup would involve
a significani restriction of the applicability of the technique.
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Another possible quotient would be the Poisson reduced space, that is, the quotient of
the full space by the full symmetry group. However, this would weaken the results for
non-Abelian group actions, since we could only show that the perturbed trajectory remains
near the full group orbit of the manifold of relative equilibria, not the manifold itself. Even
in the Abelian case, it would not significantly reduce the work that has to be done. In many
cases, it can be very hard to determine the Poisson reduced space explicitly.

Qur approach closely resembles slice techniques. We choose a representative curve
of relative equilibria and select elements in the isotropy subgroup orbit of the perturbed
trajectory which are close to this curve of relative equilibria. In conclusion, the motivation
for our approach to the problem is based on tools used in reduction theory, but for deriving
explicit estimates on the time behaviour, the full space seems to be more convenient.

To derive our estimates on the energy—-momentum function, we use charts for the local
analysis. We do not insist that the metrics or charts used in the analysis be equivariant. This
is motivated by practical considerations—since various coefficients need to be explicitly
computed in the charts, we want as much flexibility as possible in choosing convenient
charts. While this occasionally leads to more complicated proofs, we believe that it is
important to see that the results can be obtained in 2 very general setting. Thus, while the
dynamics are equivariant and our final result is phrased in terms of orbits, we do not insist
that equivariance be maintained at every step of the proof.

We note that most of the hypotheses required to show stability of the dissipative
trajectory are related to those needed to show stability of the relative equilibria of the original
conservative system. We have attempted to formulate our analysis in such a way that as
little work as possible needs to be done to translate stability results from the conservative
context to the dissipative one.

At the end of this introduction, we give a short description of each section. Section 2
contains a detailed description of the class of systems under consideration and provides the
estimate that is the ultimate goal of the paper. In this section we introduce hypotheses to
provide sufficient conditions for the existence of the manifold of relative equilibria and the
previously described desired behaviour of the perturbation. It should be mentioned that
these conditions are definitely not necessary. One can prove a number of related theorems
using slight variations of the hypotheses.

In section 3 we specify some properties of the chart maps, that we will use in the
estimates. In the section 4 we will show the existence of a curve of ‘improved relative
equilibria’ and introduce the Lyapunov function that will allow us to derive the desired
estimates on the distance to the manifold of relative equilibria in the last part of section 4.

Finally, in section. 5 we consider the previously mentioned example of a rigid body
in a rotationally symmetric potential field with dissipation as an application of the general
results.

2. The Hamiltonian system with dissipation

Let (M, e, G, J, H) be a finite-dimensional symplectic G-space. This means that (M, @)
is a symplectic manifold together with the symplectic action of a compact finite-dimensional
Lie group G on M, an equivariant momentum map J : M — g* and a G-invariant
Hamiltopian A : M — R. The symbols g and g* denote the Lie algebra, respectively the
dual Lie algebra, of the Lie group G. The pairing between the Lie algebra and its dual is
denoted by {-, -}. Furthermore, the norms on g and g* are denoted by |- |.

The symplectic structure on M induces an invertible Poisson structure I" : T* A —
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T M given by
w(Su, M) = (T (w)du, Audpq

for all # € M and du, Au € T, M. The symbol {-,"} sy denotes the pairing between T*M
and T M. In the following we will no longer write the subscript M explicitly.

The Hamiltonian vector field is denoted by Xp : M — TM. For every £ € g we
define the function J; : M — R induced by the momentum map as

Je() = (J(u), &) ueM.

These functions are conserved quantities for the (unperturbed) Hamiltonian system o=
X g (1) and they will be used to form the augmented Hamiltonian.
The level sets of the momentum map are denoted by M, that is,

My ={ne M| J@ =)
~ for any @ € g*. Noether’s theorem implies that these level sets are invariant under the flow
of the Hamiltonian system # = Xy (x). See Abraham and Marsden [1] or Guillemin and

Sternberg {6] for more information on symplectic G-spaces.
We consider the following dynamical system on A

ie=Xyu)+eP)y=Tw)DHu)+ e P(a). (1)

In this expression P : M — TM is a smooth perturbation which is equivariant for the
action of the group G and ¢ is a small parameter which measures the strength of the
perturbation.

Remark 1. There is no real difference in the analysis in the case where we consider a
perturbation of the form & P(u, &), with P(w, &) bounded uniform in u for & small, If
one considers this case, at some points one has to make sure that the desired behaviour is
uniform in e.

In the following we will make additional hypotheses on the system (1). These hypotheses
guarantee the existence of stable relative equilibria in the Hamiltonian system (hence for

= (). Furthermore, the hypotheses specify the influence of the perturbation on the
momentum map and on the relative equilibria. One aspect of the perturbation specified by
the hypotheses is that the perturbation has a certain dissipative behaviour. Purther on we
will define this behaviour which we call G,-orbit dissipative.-

2.1. Relative equilibria of the Hamiltonian system

For ¢ = 0, the system (1) is Hamiltonian. If the following three hypotheses are satisfied,
then this Hamiltonian system possesses a smooth family of stable relative equilibria. For
more details about relative equilibria, see Abraham and Marsden [1], Marsden [10], and
Simo et al [13].

(H1) There exists a smooth connected manifold of relative equilibria, denoted by MRE. This
manifold has the property that there exists a subset gi;pe C g™ such that for every value
of 1 € gyee there exists at least one relative equilibrium with momentum . If & is
a relative equilibrium in MRE with p = J(it), then the set MRE, of relative equilibria
in MRE with momentum g is equal to the G, -orbit of #. Specifically, there are smooth
maps # : gygre —> MRE and £ : gipe — g such that for each u € gypy the relative
equilibrium #(u) has momentum g and generator &(u), i.e. () is a critical point of
the augmented Hamiltonian or energy-momentum function H, = H — Jg,,,. Note that

MRE= U MRE,= U G,-i(x).
HEGRe HEGhRE
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(H2) For every & € MRE the derivative of the momentum map DJ(#) : ;M — g*
is sutjective. This implies that the group G acts freely in a neighbourhood of MRE
and that all points in this neighbourhood are regular points of J. In particular,
TyMy = ker[DJ(#)] for any i € MRE,,,

(H3) For all u € gygpg the second derivative of the augmented Hamiltonian H, at
the point @(y) is positive semi-definite on Tz M, = ker[DJ(#(u))], with kernel
Gu = {Xfe(ﬁ) [ € €gul)

This hypothesis implies that all relative equilibria #(w) are G-orbitally stable; see Simo

et al [13). We define the Lyapunov function L{x) by

L(u) = H{u} — H@a ()} = H, () — Ha@(p)) where u = .J(u).

Note that for convenience, we frequently do not indicate the explicit p, &, or ¢ dependence
of functions, e.g. y rather than F(u).

For 1 € M, sufficiently near MRE L{u) provides an estimate of the distance between
the G-orbit of # and &(p). Let & € gy and let 4 be a distance function on M which
is compatible with the Euclidean norm on R*'. Define the following G,-orbit distance
on M,: ’

pa(tty, u2) = min d(g - uy, uz) uy, iy € My .
geGu
Then there exist constants 0 < c(u) < € (1) such that for all u € M, in a neighbourhood
of MRE, we have

() max{oa(, 7)), pa(E(R), ©)} < VL) < Cu) minfpg(u, (L)), pa(E(w), 1)} .

(See lemma 8 for a proof of a generalized version of this result)) The explicit p dependence
of the constants e(x) and C(u) can lead to complications as the trajectory moves through
the momentum level sets. We shall see in our example that ¢{it) approaches zero as the
trajectory approaches its limiting value. Hence we shall modify this result, replacing the
fixed distance function d with a family of u-dependent distance functions. In this way,
although our ‘control’ over some of the variables grows increasingly weak as we approach
the limit, we still have good estimates for most of the variables.

2.2. Dissipation of the momentum map

The next hypotheses are related to the perturbation P. First we specify the dissipative
influence of P on the evolution of the momentum map.
For a solution u(z), the time evolution of u(ty = J(u(t)) is given by

p=eDJw)-P(w). (2)

Hence u is a function of a slow time variable T = g1. 'We are interested in the case that
the function 4(t) has an asymptotic value.

(H4) For any solution u(z) of (1), the curve u(r) = J(u(#)) stays in g¥. and this curve
has a limit for # — 00, say fic. Furthermore, limy o0 #(pe(t)) exists and the integral
f0°° 1€ (e (¢))|dt exists and can be bounded independently of &.

In the case that e & grpe, We additionally assume some uniformity in the properties
(H2) and (H3), which will be specified in (HS).

It follows from hypothesis (H4) that the closure of the curve (i{w(r))).>0 is compact.
For every compact subset of the manifold A there exist a finite number of chart maps
covering a neighbourhood of this subset; hence we have the following property.
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Property 1. There exist a finite number, say N, of chart maps ¢; : Uy ¢ M — R¥,
i = 1,...,N such that U = Uz (Ui is a full neighbourhood of the closure of the
curve (H(M(I))).-;o-

To avoid excessive notation, we will no longer indicate the index / explicitly.

The Hamiltonian, the Lie algebra and the perturbation vector field induce functions
and a vector field on R?* through the chart maps. Furthermore, we can locally define a
symplectic structure on R2” that is compatible with the symplectic structure of M.

Definition 2. Ler p1 € gMRE We define ¥ = o(Uf) € R, We define the functions hy
Y =R j:Y — g and the vector field p : ¥ — R¥ a5 the push forwards of rhe
energy—momentum function, etc, by the-chart map . Specifically, if y = p(u) € V. then
hy(y) = Hy(u) i =Jw and p(y) = Do(u}P(u).

For n € g, define j,(3) = (G (3}, n) = Jy(u). The induced Poisson structure y : T*Y —
TY is defined v = ¢*T, Le. y(y) = Do) ') (D)), for y = p(u) € V. The points
y{p) = @(u(p)) are critical points of k.

From this definition and hypothesis (H3), it follows that for every u € gz Dzh,‘ (F(eh)
is positive semi-definite on ker[Dj(¥(x))], with kernel g, - (i) = {X;, N | & € g}
‘We wish to be able to consider cases in which the trajectory u(¢) tends towards a limiting

value outside the set g Such that the constant c(u) approaches zero. To be able to deal
with this case, we will work with a scaled metric and a scaled distance function.

Definition 3. Let B, : R — R¥, p € gipp be a family of invertible linear
transformations. Define p-dependent inner products (, ), on R*" by

(1, y2du = (Buy1, Buy2) ¥,y € R¥.

Define the associated norms | |, the gradient V,, determined by the inner product { , ), (ie.
(Vo f(¥), v)y = Df(¥)-v forall dzﬁ"erenttable functions f B> > R, all yand v € R,
the onhogonal complement 3(y) to g, - y in ker[ Dj(y)] with respect to (, )y, for y € R

Letd : M x M — R be a smooth function that is compatible with | | w in the sense that
there exist positive constants ¢g and Cy satisfving )
cqdur, u2) <lp(r) — ()l € Cadlur, ) forall wy,us €UNMy, ey’
The corresponding orbit distance function is .

pluy, u2) = min d(g - uy, u2) Ul Uz € My, wegt.
geGy

The next hypothesis assures a uniform behaviour of the funcuons h and and 7 and the
vector field 5(y) = P,p(y), where P, denotes the projection onto the ( , }, orthogonal
complement to g, -y = {X J.E(y) | £ € g}, with respect to the norm | |,. In the case
that B, = Id, this hypothesis is satisfied if H is C* and p is C°.. (Smoothness of the
maps j and X, follows immediately from the assumption of a smooth action on M and
smooth chart maps.) We introduce the notation LC;, C(D, R; B) to denote the set of functions
with domain 2 ¢ R?', range R and Lipschitz contmuous £th derivative with respect to
the norm {{,, with Lipschitz constant bounded by B. If the bound B is not specified, the
Lipschitz constant is of order one, i.e. i and ¢ independent. Note that distances between
vectors are measured in the ||, norm, distances between covectors are measured in the
operator norm determined by ||,, and distances between elements of the algebra and the
dual of the algebra are measured with respect to the standard adjoint and coadjoint invariant
inner products. For example, f € LC} (D, R) if there exists some constant C such that
(Df{y1) — Df(»)8y| < Clvi — »lu |:Syi# for all y;, y; € D and all 8y € R?".
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(H5) There exist positive constants ¢y, C, ¢j; C;, and functions corr(u) and d(u) > corr(p)
such that for all 1 € ((£))rz0 and 7 = F(u) if we define D, ={y e R® : |y — 5|, <
d(i}}, then
() hy € LCﬁ(D#, R; Cp/comr(u)), X, € LCE(’D,_;, R™), b € LCﬁ(D#,RZ"),
§€LCL(D,,g%), and X;, € LCY(D,,, B Cjjg) for all £ € g.

(if) culdyf% < DR, ()@Y, 8y) < Cyl8y[}, for all 8y € s(3).

(iii) For all £ € g and y € D, N 5~ {w)
(@) ¢; corr(p) 1V, je (W) é DIV ie DI < Cj com () [V je () |
(b) ¢; corr(pe} [E] < | X5 (g

Tf hypothesis (H5) holds, then we can uniformly estimate the Lyapunov function L{x)
in terms ‘of the orbit distance p. In section 3, lemma 8, we shall show that there exists
constants 0 < ¢ < C such that for all # in a cone shaped neighbourhood of the MRE we
have

¢ max{p(u, #(u)), pQa{w), u)} < VTR mm{p(u E()), p(i(u), u)}
where u=Ju).

2.3. Influence of the perturbation on the relative equilibria

We continue with the hypotheses on the dissipative behaviour of the perturbation with
respect to the manifold of relative equilibria. We are not interested in motions along the
G-orbits, hence the part of the perturbation that causes such motions is not relevant for
our purposes. In other words, we are only interested in p(y), the part of the perturbation
which is (, ), orthogonal to g, - y.

First we consider the value of the perturbation at the MRE. If the component of the
perturbation orthogonal to g, - ¥, known as the residual, equals zero, then the perturbation
at the MRE is a tangent to the MRE and the MRE is an invariant manifold for the
perturbed system, as well as for the unperturbed Hamiltonian system. However, in general
res(y, &) = Pyle p(¥) — ¥} # 0; the residual acts as a forcing on the evolution of the
solution curve starting at the relative equilibrium &, causing it to leave the MRE.

Hypothesis (H6) controls the strength of the forcing taking trajectories away from
the MRE. To formulate this hypothesis, we first introduce some additional notation. For
each i € gipe, define the co-residual at ¥ = ¥(z) by

r(3.e) = By ()" res(F, e) -
Now we can formulate the hypothesis.

(H6) For any initial condition #(0) in an order £ B,-neighbourhood of the MRE (i.e.
p(u(0), a(n(0))) = O()), the solution u(t) of the differential equation (2) has
associated curves (), #(r) = ulu(?)), and ¥{&) = ¢(#{?)) of momenta and
relative equilibria, for which the functions |Z(¥)|.. |res(¥.é&)l,, and [r(F,¢&)] are
integrable. To be specific, we assume the existence of an o > 0 such that e™*¥ =
O(corr(u(1))) (e st + Iog(corr(;.z(t))) is bounded below for all t+ > 0) and an
integrable function & (meaning f k(t)dr is finite) such that [F(F), £ ¢ and
max{|res(y, &), Ir(¥, |} £ ek(ar) e‘““ for all ¢ > 0 and 7 2 0. This implies that
|Psln < g€,

Next we focus on the behaviour of the perturbation near the relative equilibria. This
behaviour has to be dissipative 10 compensate for the forcing at the relative equilibria.
We want to construct a modification H,(-, &) of the energy—momentum function, with
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critical points #{u, &) near ${u), such that L, &) = H (#,8) — HM(ﬁ(u,e),a) bounds
the distance between « and the G, orbit of (@, ) and sausﬁas the dissipation relation
d/ds f,(u, £) € —2¢BL{u, £) + “small terms’ for some positive constant 8. The remaining
two hypotheses guarantee the existence of such a function.

Hypothesis (H7) takes care of the dissipative character of the perturbation. We present
two different versions of this hypothesis. The first version (H7) is more general, but may -
require more work to verify in applications; the second version (H7A) is simpler and more
intuitive, but requires additional smoothness of the energy-momentum function and the
dissipative perturbation with respect to the ||, norm.

(H7) There exists a positive constant 8 and an integrable function & such that p = u(t)
satisfies

R 1 . . v
(Dhy(y) — Dhp (3)(P(y) — 71es(y, ) < ~2 B (y) — 1 (9) — DAy () (y, — 31
i (er)ee™ + |y = FlIy — Fla

for all y, 3 € 771 (w) satisfying |y — 5|, = O(r @, &), ¥ — ¥l = O(r(F, &)}

This hypothesis assures that £ 5(y) —res(¥, £) acts dissipatively on a neighbourhood of
y in o(M NU). This is what we mean when we say that the perturbation is G,-orbit-
dissipative with respect to the relative equilibrivm @ (w) for variations tangential to the level
set M,,. This effect of the perturbation drives a solution back to an £ neighbourhcod of
the MRE.

If the second derivative of £, and the first derivative of $ are uniformly Lipschitz,
then we can give a more mtmtwc approach to the dissipative character of the
perturbation, leading to the alternative hypothesis (H7A). We define for all € Oyre the
dissipation coefficient S(u) and the tangential dissipation coefficient Sy (i) at the relative
equilibrium #(y2). The dissipation coefficient #(u) is the largest number 8 such that for all
8y e R»

D?hy (5()) (8y, DP(F(1))8y) < —B Dzhmm)) (87, 8y).
The tangential dissipation coefficient Sr(u) is ’

 D,G(w) (8y, DG 6Y)
) = T DG By, 8y)

To explain the term dissipation coefficient, we consider the case in which there exists some
curve g(2) € G_such that g(r) - () is 2 solution curve of the perturbed system (1) and
DLg(,)-; g(t) = E(u(t)) — e n(t), with 5(?) € gu). (Here L, denotes left translation by g.)
This implies that $(u) is a soluticn curve of the time-dependent vector field

Xﬁn +elp - .anu)] : - (3)

If the submanifold of relative eguilibria which are equilibria of the vector field (3) is
sirongly attractive, then the eigenvalues of the linearization of the vector field (3) at &(n)
have a negative real part, except for the zero eigenvalues in the direction of the infinitesimal
generators of the Lie algebra g,. Because 5(¥(u)) = Py (p(F(u)) — X;, (F (1)), a sufficient
condition for this property is that the dissipation coefﬁcnent B(4) is positive. The dissipation
coefficient —-pB(u) is always larger than or equal to the largest real part of the relevant
eigenvalues of the linearization. If —B(u) is equal to this largest real part, then e™eF(¥
is a sharp estimate for the attractive behaviour of the G,-orbit of i{). Even if u(y)
is not an equilibrium of (3) for any n € g,. the dissipation coefficient still measures the
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dissipative part of the perturbation. For more information about this aspect of the analysis,
see Derks [3].

Because the evolution along the level sets is described by the ¢ equation, it would seem
that only the tangential dissipation coefficieént S(w) is.relevant. However, to avoid possible
problems with higher order terms we sometimes use the full dissipation coefficient S(u). In
hypothesis (H7A) we set restrictions on the behaviour of the dissipation coefficients in both
cases. Define fr = limyoy oo Sr(pe(t)). I e~™MADT fcomr(i(z/e)) is an integrable function,
then set 8 = Br and define the function

b(r) = [Br(u(z/e)) — Bl + e ™2EA foomr(uu(t/e))
Otherwise, set f = lim,_, o B ()} and (1) = |B(u(z/)) — B].

(HTA)

(i) The asymptotic dissipation coefficient 8 defined above is positive for every 1 &
Ourg- Lhe function b is integrable with respect to = and hence can be bounded by
an e-independent constant. Furthermore, e87 + log(corr(u(2))) is bounded below
forallt =2 0.

(i} h, & LCZ(D,,R), ie. D*h, has Lipschitz constant of order one, and § €
LCL(DF,Rh).

In section 3, we will show that hypothesis (H7A) implies hypothesis (H7).

In general, we can expect competition between a forcing which drives the solution
away from the MRE and a dissipation which attracts the solutioh towards the MRE. The
hypothesis (FI6) guarantees that the forcing does not dominate this competition.

Our last hypothesis is quite technical. To verify the approximation with the relative
equilibria, we have to use a better approximation of the solutions of the perturbed system
than our original curve of relative equilibria. In order to do this, we use a p-dependent
function on I with the property that its Hamiltonian vector field at y is approximately equal
to the residual. The hypothesis (HS8) asserts the existence of such a function and specifies
some of its behaviour. ' '

(H8) For u € {1£(t))30, € > 0, there exists a full tubular neighbourhood V' of the MRE and
a smooth function F,(-,¢) : ¥ -+ R that is G, invariant on M,. The push forward
fy. of F, by the chart map satisfies
(W) X7, G, &) — sres(F(w), )lu = OUr (7, &),

(ii) There exists an integrable function ky such that for all g = u(z)
(a) fu € LC}L(D,,,, R; Oks(e))).
(b) Xy, € LCY(D,, R*; O(min(e™ /corr(i), kr(e2))).
©) fu =D, S, i € LCY(D,, B; Oelr(F(w), &)N).

Remark 2. The last four hypotheses are expressed in terms of the chart maps . However,
for our purposes the specific choice of the charts is irrelevant—if the hypotheses are satisfied
in'one set of charts, they will be satisfied in any other charts.

2.4. The result

After stating the hypotheses on the system, we formulate the result that we will prove in
the following sections.

Theorem 4. Ler u(t) be a solution of the dissipative Hamiltonian system (1) and
define u(r) = J(u(2)). Let hypotheses 1-8 be satisfied. If u(0) is close to the set MRE, ) of
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relative equilibria in the level set M), then for all t 2 0, u(t) stays close to the set MRE, ()
of relative equilibria in the level set M. To be precise, if ¢ is sufficiently small and

£ (D), a{u(0))) = Oe) then oG (), B (1)) = O o~ mine-Alzty
Jor all t 2 0. An equivalent formulation is- - _
L(u(0)) = O(g%) = L{u(t)) = O(e? g 2min(@.plery t>0.

Remark 3. If we also know that L(u(#)) decays exponentially to 0 for ¢+ — oo (which is
suggested by the hypothesis (H7)), the result seems trivial. However, this is not true. A
counterexample is the function L(#) = (L(0) +t*)e~¢ B+’ with §, k > 0. Indeed, L(r)} =
O(e#P7) for all ¢ > 0, but for z = ¢! we have L{e™!) = [ L(0) + £~% Je~#*%, hence it is
of order £~* instead of order &! '

To prove theorem 4, we derive an estimate for the dynamical behaviour of the distance
function L(x(¢)). To do this, we first have to make a local approximation in the charts to
derive a relation between L and the distance functions in the charts.

3. A local approximation in the charts

To estimate the evolution of the Lyapunov function L, we work in the charts. In general
the solution u(z) itself need not be an element of i, even if L(x) is very small. It is only
true that if L(u) is small enough, there exist g € G, such that g .« € Z{. Therefore we first
have to let G, act on the solution and then make a transformation to the charts. We will
do this in a specific way to gain some additional properties.

Conceptually, we work modulo the current momentum isotropy subgroup G,. We do
80, not by working directly on the (varying) quotient spaces, but by defining appropriate
representatives of the orbits and estimating the distances between those representatives. In
particular, we can map the solution #(¢) onto the charts, if u(r) is sufficientdy close to
the MRE, and use invariant functions to estimate orbital distances.

We note that the closure of the set (#(gt(s)))z0 Is compact. Hence there exists a
neighbourhood &1 around this set and some &, > 0 such that for all u, € I and for all
u € M with J(u) = J(u,)

) max{d(u*, u), du, )l <$ =>uclf.
{See also definition 3.)

Lemma 5. Let u, € I and set Yo = pluy), u = J(u,). For all u € M, close enough
to uy, Le. p(u, u,) < 8 min{l, 1/Cy}, there exists y(1) € ¥V with the following properties:
(i) There exists some g € G, such that g -« € U and y = (g - 1).
(11) (y T Vs Xj,’(y))y - 0 fOl’ all n (<] g.u.
(i) cg p(, 1) S |y = yulp € Ca plu, us).

Proof. Let u € M, with p(u,u,) < & min{l, 1/Cy}; there exists some g. € G, such
that (g« - #) — Yaly < 81. Define

Vi) = (G - ) N By, () N B ()
where E’gl(u,.,)) is ‘the J—sphcrc around u, and Bg:(y*) the ||.-sphere around y. with
radius 8;. The set Y.(u) is compact; the condition p(u, u.) < 8 min{l, 1/C,} implies
that it is non-empty. Hence there is an element y(x) of YV, (1) satisfying

— V& = min
[y} — yuly y_()ly Vlp -
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If y(u) is at the boundary of Vi (u), then either d(o™ " (y ()}, wa) = 81 or |y (1) — Yul. = 81
and the condition [y(&) — yulp € Capli,u.) < 8 is violated. Hence y(u) is in
the interior of Y,(u) and y(u) is a critical point of the function f V.(u) — R given
by f(y) 2Iy y,.]r,L For any 7 € g, and & sufficiently small, the curve v(§) =

o(exp(f 1) - o (y(u))) lies in Yi(u). Thus
0= Df(y)) - v'©) = (3@) = Y, X;, (3 @)y -

There exists some element & of the G, orbit of # such that di, ) = p(u,u,). If we
set i = @7 (y(u)), then

ca (it na) < ca d(@, ) < 1y = Yolp < o) — yulu < Cad(@h, )
and hence ¢z p(u, 1) < [y(@) — yulp € Ca pu, ). O
The main part of the vector (y(#) — y.) is in the space s(y.), Le. if IT,, : R > s(y,)

denotes the projection onto s(y.), then |(1 — IE, )(y(#) — ¥l = O, (y() —
y«)|% /core(p)). This is a corollary of the following femma.

Lemma 6. Let u, & ?:{, o= Ju,) and y,. = ). A (. )y orthogonal decomposition
for B™ is given by

R* = ker[ D (3] © 7(3) = $(3u) © By - ¥ & 7(3)

where T(y)} is defined for any y € ¥ by r(¥) = {V..je(y) | &£ € gl. In other words, for
any y € YV we can write

Y— Y =8y + Xf,,(y*) + v.ujé (e) 4) .

for unique 8y e s, n€g andt €.
If 5(y) = 2 and y. € D, then

[Vl e = O(ly — yul3 feorr(p)) = O(USYIL + 1X;, () 13) /eom(wey) . &)

If u e U N M, with p(u, u,) < §;min{l, }/Cy}, y« € Dy, and y(u) is glven by lemma 5,
then

(1 = T, )y (e} — yale = O, (y(w) — 32 feorr(u)) . (6}

Proof. The identity (V,jz (), 8¥)y = (DF(3)8y.&) = O for any £ € g and 8y &
ker[ D7 ()] implies that ker[ D7 (y.)] and {V, j:(y.) | £ € g} are orthogonal with respect
to the inner product },. Because dim{V, j: (v.} | £ € g} = dim Range(D3(y.)), this shows
that the first decomposition of the lemma holds. The other decomposition is an immediate
consequence of the definitions of s(y,) and the inner product (, ).

Furthermore, hypothesis (H5.1) implies that |7(y) — 703} — DF(n)(y — ¥l =
O(ly = 3I?). I y € Y, with 5(y) = £, then using (H5.3) and (4) we can see that

¢j corr(2) [V je (il € 1DF () Vi e ) = O (Iy = wal2).

Let u € U N M, with p(u,u,) < § mm{l 1/Cy} and define y = y(r). Lemma 5.2
implies that (y — yu, Xj, (3%) ) = O(ly — y*l [£]), for any ¢ € gg. stng the decompo-
sition (4) for (y — %) and choosing ¢ = n, it follows that |Xh(y.,)| = 0Oy~ y*[zlnl)
Hypothesis (H5.3) implies that the algebra element 5 satisfies |7 = O([X i (VaH e /corr{,u)}
hence |X;, (3l = O(ly — ;y,.=|2 /corr(,u,)) Combining this estimate with the estimate (3),
we obtain |V j (¥l = Oy — wlZ /eor(u)) = O(TL, (y — p )2 /com(u)). a

We are now able to show that hypothesis (H7A) can replace (H7).
Lemma 7. If hypotheses (HI)—(H6) and (H7A) hold, then (H7) holds as well.
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Proof. Let y, § € 771 (u) satisfying |y — 3|, = OQr(F, o, 15 — ¥l = OUr(F, &)]). We
write 8y = y — ¥, then |8y, = O(|r (¥, £}|). Hypothesis (H5) implies that

v . e 1.
(Dhy(y) — Dh#()’))(P(}’) - p(N + ;y)
v . - 1. _
= (Dh,(y) — Dhu(y))(Dp(y) y—»+ gy) + O(8yluly = 712)

| .
- = D*yu(3) (Dﬁ@) 8y + =7, 8)’) + O8] + 1F = Fladéyl) -

Differentiating the relation Dk, (7(r)) = 0 with respect to ¢ and then applying lemma 6
yields

D2 (5)8y, )| = D7 ) 31 = O(E] 16y12)

since 7(y) = j(¥) implies that §y = y — ¥ is mainly tangent to the momentum level set.
Similarly,

D?*h,(7)8y, DP(F)8y) < —Pr(w) D*ha(H)(8y, 8y) + O(dy L3 feorr(u)) .

If e~miotefr@he joorr(y) is integrable, then we will use this estimate, since 1Byl =
Oe~min=8ery Otherwise we use the estimate

D?hy(5)(8y, DB(TISYY < —B(u) D2hu(5)(8y, 87) .
In either case, o
DR, (5)(8y, DB(3)8y) < —B D, (3)(8y, 8y) + b(n)O(8y12)
= =28 (hu(y) — £ (3) — Dhu(3Sy) + k(1) 18y[%

for some (1) = O(I8yl, + 1§ — 7l + [E| + b)) = O(r G, &)l + [E] + (), which is
integrable. . O

One of the consequences of the following lemma is that the Lyapunov function L acts as
a measure for the G, -orbital distance to the relative equilibria. This measure is compatible
on the momentum level sets with the measure induced by |y(u) — i(u)|2 We prove these
facts in a more general setting so as to be able to state similar facts for another Lyapunov
function in section 4.

Lemma 8. Assume that there exists a neighbourhood W of the MRE, positive constants B,
and &o, and a compact set gy, C g such that for any (1, £) € g}, x [0, g0) there exist
differentiable functions Ny, points ui €W, NUY, where W, = WN M, and n{n,¢) € g
satisfying

(i) DAS(us) = Doy (1), where He=H, +eN:.

(i) & = p(ut) €D, and |niu.£)| < & B,

(iii) The restriction of N to W), is Gy-invariant and nj, = N o pt e LCL(qo(W M

w,rR).
Then there exist p-independent positive constants €1, 8, ¢ and C such that for any 0<e <g,
any u € W, satisfying pu, u ) < dcorr{w) also satisfies

cly(e) = yo I3 € HoG) — HSuS) < Cly) — 35 M

where y is the map associated to y;, given by lemma 5.
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Proof. Given u € W, with p(u,u,) < & min{l, 1/Cy}, let Ay = y(u) — y; =
8y + X;,(v) + Vuje(y;) be the decomposition given by lemma 6. Lemma 6 and
equations (5) and (6) 1mp1y that there exist positive constants d,, «, and &’ such that
|Ayly < 82 corr(u) implies that |V, js (¥5)l, < k[6y|%/com(u) < w8208yl and [Ayl, =
018yl (1 + 18yl /eom(u})) < «7[8y[,. Then

| D, (YENAY, AY) — DPhy (V)(8y, 6301 < Cyldyly,

where C;, = Chicda(2 + 185), if |Ay| p < ézcorr(p). If we define ¢z = (¢ ~ Cr)/(k')? and
Cy = (Cy + C)/ ()2, then y2 € D, and |Ay|, < &com(u) imply

e By < el Y18y 12 < DPhu(yE)(AY, 8y) < Cilbyll .

We assume that §; has been chosen to be sufficiently small that ¢ is positive.
Define 2, = Hf o ¢~'. Because y; is a critical point of A}, — jy.e, (H5.3) and
F(y@)) = j(y;) imply that there exists B; > 0 such that

| DR 35) AV = |Djpuy(3p) AY1 < BilnGe, 1AV -

Hence if |Ay|, < 83corr(u) the estimate
B () =BG, () ~ § D hu (i) (Ay, Ay)|

< elnf, (y()) —ns, (7) — Drs, (7 Ay 14 By ln (i, )| Ay T}, +1Chl Ayl fcore(u)

< (e(BjBj + By) + 1Cids} 1Ay |
with B, some Lipschitz constant, follows from Lipschitz continuity of D%k, and Dns,. By
taking 8; and £ sufficiently small, we can guarantee that ¢z > ¢, =83 Cp +28(B; B, + B,}.
Hence, if we set ¢ = 1(c; ~ ¢) and C = 3(Ca+ &), then (7) holds if p(x, &f) < Scorr(y),
where § = min{l, &, &, 83} min{1, 1/¢c4}. - O

Lemmas 5 and 8 imply that there exist positive constants 8y, ¢, and Cp such that for

u € l>.10 M) which satisfy L(#) < §2corr(p)? the map y(x) is well defined and, for
12

p= Ju),

e§ 1y = @)} < L) < G5y — FU1; - , (®)
This can be seen by setting 1, = #{u) in lemma 5 and using the compactness of the closure
of the curve (z4(1));»g to derive the existence of the map y(x) in a uniform neighbourhood
of the MRE. The estimates (8) follow from lernma 8 by taking W = M, g}, = ({t)rz0,
N =0, n{u, e} =0, and u}, = u(p). :

Unfortunately, applying these results directly to the Lyapunov function L does not yield
sufficiently sharp bounds to accurately estimate the evolution of the perturbed trajectory. If
u(#) is a solution of the systemn (1), then the following estimate on the time derivative of L
can be derived:

L) < ~26(8 ~ CUPDu +560]) L@ +25 € 1)y LW

for some constant C and L(z) < 6% corr(e)®. Applying differential inequalities such as
Gronwall’s Lemma to this estimate will give

- . t
VL@@) < Ce™ L@@+ Ce™# fn | PG @, e dr

for some constant €, which does not imply that L(z) = O(g) even if L{u(0)) =
Hence this straightforward estimate of L(u(r)} does not work. The residual at the relative
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equilibria is of order & and this gives the order 1 term in the estimate. {(See also Derks
and van Groesen [4], Derks and Valkering [5), and Lebovitz and Neishiadt [91.) In order
to avoid this technical problem, we have to use the curve (F{(t, £})gigeo)» Which has a
co-residual of order 2.

4. Estimate of the Lyapunov function

In the previous section we have seen that we need a curve (F(U, £))jgceuy € V with a

" co-residual of order £2. This curve can be interpreted as determining an improved MRE for
the dissipative equation, because the forcing at this new curve is smaller. To explain this,
we first define the residual of an differential equation. Let y(t) be a curve in the charts.
The forcing on this curve is the residual of the differential equation at this curve, defined
by

res(y(r), &) =Py (Xp(y) + e p(y) — 3)

where Py denotes the (, ),-orthogonal projection onto s(y)@r(y), as discussed in Jemma 6,
Intuitively, to find a curve (F(i, £Djeigepeu)» we should solve an equation of the form

Dhu(3) ~ Djy() + ¥ () Mres (7, £) = O

for € 71(u) and € g.
To establish the existence of the curve y{ut, s) we apply the Implicit Fanction Theorem
to the functions induced by Hp,, = H, -+ e¢F, on the symplectically reduced manifolds
P, = J~1(u)/ G, associated to the momentum value p and the tubular neighbourhood ¥

of the MRE, because st#(y, &) =y res (y, £) + O,

Lemma 9. For all |t € gyupe there exist some o) > 0 and a curve (J(u, &),
Nt &) helgent) € Y X g depending smoothly on p that satisfies

Dy, +efy — ) =0 andtgsj(3) = p
Furthermore,

¥ — ¥lu = O(r (¥, &)1} = O(ck(et) ) and (7l = O(&‘k(et))-

Proof. Since both H, and F, are G, invariant on My, they determine functions H
and F on Py. Hypo[hesm (1-13) 1mplzes that D2H «([()]) is positive definite, since t.he
tangent space of P, at the equivalence class [Z(z)] is isomorphic to ker [DJ(i#())] modulo
gy + 4(p). Hence the implicit function theorem implies that for sufficiently small &, there
exists a curve [#(u, &)] satisfying D(H + aF#)([u(,u, )} =

We now use lemima 5 to map the equivalence class {u(u, £)] onto an element of 1/
near Z{u). Specifically, if we set y, = ${u), then the map y given in lemma 5 determines
a map ¥ on a meighbourhood of [¥(i)] in Py, since y(u) = y(g - u) if u € M, and
g € G,. We can choose a representative i(g) for each equivalence class [ii(, €)] by
defining 5(u, &) = $([#(u, £)]) and &1, &) = ¢~ (F(i, &)). The implicit function theorem
implies that the distance between [i2(w)] and [2(i, £)] is of order |7 (¥, &)|; hence the bound

ol (e, €) = T = Ha(in. €)) ~ Hy(@(w) = H, (@, ©0)) - Au(aG)
_ = O(r (5. &)}
given by lemma 8 for some constant co implies that [y(u, £) — ¥(u), = O(r (7. £)]).
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The Lagrange multiplier theorem implies that there exists a curve n{u, £) € g such that
i, £) is a critical point of H#-i- Jnuey and hence y(;L ¢) is a critical point of h# + Tt
Hypotheses (H5.2) and (H8) imply that

¢j bnl corr(p) < 1X;, Dy = 1%, (Dl < 1X;, () — X;;u Dl +&lXr, G, Dl
and hence

Inl = OWF — Flu + etes(F, O)lu + 173, ) com(p)) = Olek(er)
since |§ — ¥l = O(r{y, &)) = O(ek(et)e™**) and e~ = O(comr(u)). O

To derive estimates for the distance between a solution and the approximation #{u, £),
we define a new Lyapunov function centred around i(u, £).

Definition 10. Define the G, -invariant Lyapunov function L as

Lu,e) = H,(u, &) — B, G, ), €) (®)
with i = J(u). _
The new Lyapunov function L() determines a G ,-orbit distance function.

Lemma 11, Let § be the map given in lemma 5 for u. = (i, ). There exist constants
0<50<5<C<ooand0<i<C <00 independent of £ and u, such that

& pla, Bps, )% < & (5w, &) ~ Fu, )% < L) € C 19, 8) — 5w, )2
< € plu, #(p, £)° (10)
for u € My satisfying p(u, (i, €)) < 8 corr(is).

Proof. We will apply lemma 8, taking W =V, N; = F,(, &), n(u, £} as given, and u}, =
&, ). The restrictign of F,(,&) to M, is G -invariant. Because r(¥, £) = (Hcorr(w)),
the points ¥(u, £} € D,. The functions |r(¥, &)| and k() are bounded; hence B, and B,
exist. Thus the conditions of lemma 8 are satisfied and (10) holds. O

We can rewrite the time derivative of L, by using the appropriate functions on Y.
Define £, to be the push forward of H, by .

Lemma 12. If u(t) is a solution of (1), p(2) = J(u()) and y(2) = y(u(t), £), then
%i(u(r), £) = & Dhy(y, £) v().+ (£, 1w, 8)) + e[ Dp fu(y, &) — D fu (G, £), )1 - &
| where vy} =p(y) — X5, 8. (11)

Proof. By definition _

%i(u(r), £ = g;[ﬁpm(u(r), &) — Hu@p), &), ).
Using Dﬁ#(ﬁ(u, £), 8) = DJpiu o (iE(, £)) and J(u) = J(&(;:L, g)), we obtain
%i{u(t), 8) = D, (0, 8) 5 — DIy oy (B) 6 + & [ Dy Fy(ut, £) — Dy F (i1, £), £)1 2.
Equation (1) and the definition of H,; yield

b=Xg (u)+ePlu)—eXg,(1,8) — X5 ().

Using the identity DJy(, (ﬁ)ﬁ = (i, n(x, £)} and the fact that all functions and vector
fields involved are G, invariant, c.q. G, equivariant on M, we see that (11) holds. O

Now we are ready to prove that the curve i(u{t), £} is a good approximation for the
solution u(t), if u(Q) is near {g - #((0), &) | g € Gu}).
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Proposition 13. Let u(t) be a solution of the dissipative Hamiltonian system (1). If ¢ is
sufficiently small and the initial condition u(0) is such that p(u(0), #(1(0),£)) = O(g),
then there exists an e-independent constant C such that

p@(®), B(p(2), 8)) < Ce™ p(u(0), Z(u(0), ) + £ € ¢~ minixer

Jor all t > Q. Again, this is equivalent to the following: If L(1(0), &) = O(£2) then there
exists an g-independent constant C such that :

L), &) < Ce ™ L(u(0), &) + &2 C e~ 2 mint.p)

forallt > 0.

Proof. Let u(r) be a solution of the dissipative Hamﬂtoman system (1). If ¢ is sufficiently

small and the initial condition u(0) satisfies L(u(O) g) = O(e?) then theze is some T > 0

such that u() € U and L(u(t), &) < e ™M@ for 0 < ¢t < T. Define y(£) = $u(t), &)

for 0 <7< T. Lemma 12 states that

1-d . _— 1, . . .

- E;L(u(t), g} = Dh,(y, &) v(y) — ;(u, (i, €} + [Dpfuly. 8) — Dy fuGie, €), )] 2.
(12)

We expand Di,(F(u, £), 8) v(y) — 12, nu, )) in terms of 3y = y — §(u, &).
We can write

Dhu(y, £)00) — i, 7, ) = (D (. &) = D5, ) v(y) — (D)
—Djy(5)) P} — Diy(¥ Xy, (v, 8) — X 7.,

using the identity Dﬁ# (¥, &) = Dj,(9), its corollary
e Djy(3) Xy, (5. 8) = D () (X;,(5) — X5, GN =0

and the momentum evolution equation i = &£Dj(y)#(y). The bound [X; (3,2) —
-:-res(i, €}le = O(r (¥, ¢)|) and hypothesis (H8.2) imply that

1 _ .
v(y) — A0y + cres(y. 8)) S (8 — X G dle + OUr(y, &)
. .

= Olks(et)([8y | + 17 — ¥l + I (3. &) .
Hypotheses (H5.1), (H7), and (HS8.2) imply that

. N 1
(Dh,(y, e} — Dh,(3, s))(p(y) - Erescv, 8))
- 1 _
= (Dh,(y) — Dh,(3)) (p(y) - EreS(y, a))

+o(ekf(er> (1891417 =50+ élﬁ%—-il) lam)
S =280 (3) — hu(F) — Dhu(3)6y)
+O(akf(st) (lc?ylﬂ + 15— ¥l +§EIP’;§! +i(et)(ee™ + ISyIuJ) iéylu) .
Hypotheses (H5) and (H8) yield
i (y) — ku(§) — DR, (5)Sy

= h,(y) -k, (5) = Djs(7)8y + e fu(y, €) = fu(§. €) = Dfu(F. £)67)
= L(u, &) + O((eks (e1) + 7)) I8yI2) |
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and

(Djy () — DjpN PO + | D)Xy, (v, 8) — Xp, (5, )]
= OO0 18y AP e + 18Y1y + |F — Flu + 7).
Substituting these estimates into (12), we see that

éa%-f,(u(r), £) € =28 L, &) + i (en) 8y, + rafet)187[3 (13)
where

K1(z) = Oks () |P5yl + Ir G, )1 + (e (x) + In))e™™)
and

#2(7) = Olks (z) +x(2) + [n]) .

Togetber with lemma 11 and (H6), this inequality implies that there exists an integrable
function &;{t) such that

dil;f,(u(:), )< —288Lu, &) +&2ki(et)e™™ \JLu, &) +eky(st) L, 6).

Integration of this expression gives the statement of the lemma for 0 € ¢t € T. But from
this estimate we can conclude that for ¢ sufficiently small T = co. O

Using proposition 13, it is easy to prove the curve #(u (1)) is also a good approximation
for a solution u(2), which starts in a neighbourhood of the MRE,

Proof of theorem 4, Let u(#) be z solution of the perturbed system (1) and let p(t) =
J(u(t)). Hypothesis (H8) implies that d(i (g, &), £{u)) = O(|r{F), £)D.

If L{u(®)) = 0(82), then p(u(0), #(u(0))) = O(s); hence the triangle inequality
implies that p(«(0), (,u.(O), £)) = O(g). Applying proposmon 13, we see that

p{“(z)v a(ﬂ‘(t), 8)) = 0(5 e“mm(ulﬁ,'lst)

for all ¢ 2 0. The triangle inequality now yields p(u(t), #(1(t))) = O(g e~ TneHEry,
Although we have suppressed this fact in our notation, one should realize that the curve
#(e(t)) passes through a finite number of charts {¢;,24), i = 1,..., N, Thus we can find
real numbers 0 = # < ... < Iy such that t € [t;, 4] implies that #(u()) € U; and
(Gum - (@) NU; 5 @. The orbital distance p from u(f) to &(u(t)) can be estimated in
each time interval using the argument given above. This completes the proof. a

5. A rigid body with dissipation

As an application of the previcus general theory, we consider a simple mechanical system
consisting of a spherical rigid body placed in a rotational symmetric potential field. The
position of the centre of mass is denoted by ¢ € R?* and the rotation of the body around
its centre of mass is denoted by A € SO(3). The potential is given by a smooth
function V(3 |¢(%). Furthermore, there is a dissipative perturbation that acts on the body.
We will specify this dissipation later.

The configuration manifold is @ = SO(3) x R?, hence TQ = @ x so(3) x R?. We
will identify so(3) with R? using the following identification. Given { € R?, let ¢ denote
the skew matrix satisfying £ y = ¢ x y for all y € R%. Let A € SO(3), then

8A € THSO(3) =50(3) & ppepe[fA = ASG].



Relative equilibria in Hamiltonian systems 1105

This implies that the phase space M = T*0 = SO0(3) x B* x R* x R®. We will denote an
element of M by u = (A, ¢; 11, p) and identify T, M with R'2, The Poisson structure is

0 0 1 0
0 0 0 1
=1 _1 o @1 o
0 -1 0 0

The Hamiltonian for the rigid body in the rotational symmeiric potential field is
1 1 1
H =—n 2 - 2 vi - 2
@ = o NP+ o pf + (2|q| )
with Hamiltonian vector field
P~ 1 1 ' :
Xg)={—-AIl, —p: 0,-V' [ =lg)* : 4
a () ( P (zlql_) q) (14)

n
We assume that V'(x) is strictly positive for all non-negative values of x. The symmetry
group for this system is G = SO(3) x SO(3), where the action of g = (R;, R2) € G on
(A, g) € Qs g- (A g) = (RIAR], Rigq), with the induced action

g-u=(RAR], Rig: RoI1, Rip) ' (15)

on M = T*Q. The infinitesimal generator (¢, @) : M — T M associated to an algebra
element (, ) cg=R}* xR is

E dpma) = (AT —w, & xg; 0 x 1§ x p).

‘The momentum map J : M — g* = RB? x B? associated to the G action is

S Jw)y=(g x p+ AL, -11). (16)
We consider the G-equivariant dissipative perturbation
P() = —3(0,¢; 211, p) —o(g X p— ATL,O)p(w). a7n

The first component of the perturbation consists of uniform damping in the (g, p)-variables
and friction in IT. The o-component is an infinitesimal spatial rotation about 4 x p — ATl
The dynamical equation for this dissipatively perturbed Hamiltonian system is

(4= Afi—e(0+0(F%FA~AT))
' 1
i=Xyg()+ePw or q=;P—5(§‘¥+“(‘-’xP—A”)X‘3) as)

I =0—¢g(ll +00)
L p=-V'(3lgP) g —s(3p+0(g x p— ATD) x p).

5.1. The hypotheses

First we check the hypotheses on the relative equilibria of the unperturbed Hamiltonjan
system. The first observation is the existence of a stable family of relative equilibria. In
general, this family is defined on a subset of g*. We shall show below that there exists a
relative equilibrium with momentum (u, v) if and only if there exists a positive number ¥
satisfying the equation

dmBVI(E@ = (-2 ' (19)
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To satisfy hypothesis (H2), we need to set conditions on gjpe that guarantee that the relative
equilibria with momentum values in gy bhave trivial isotropy. Therefore we define the
G-invariant subset gfor of g* by

Bime = {1 V) €07 | Teso [4m B2 V/(E) = (Il — uD* # 0 # |ulvl]} -

Let = (1, v) € gypg- Let A(u.) be an element of SO(3) satisfying & - Av = —l,u,llvl and
‘ x(u.) > 0 be a solution of (19). Finally, let g(u) € R3 be a vector of length 42:: in the
plane orthogonal to w. Define

fg=-v  and ) = L;}%‘ (k%) (20)

It is an immediate consequence of (19) and (20} that the lengths of p and 4 satisfy the
relation

|52 =2mEV(E) = m31°V'(131%/2) . 1)
Straightforward calculations show that J(#(x)) = p and DH (&} = DJg(,(id), with

sz - 1 __I_‘_’_[_ [,u,| 2mi
Ew =G, o) = 5 — ((1 M)n, (1 Bl )u) @2)

This implies that #(p) = (A(p,) g(p), l'I(p,) p()) is a relative equilibrium with
generator &‘(,u.) (See, for example, Abraham and Marsden 1978.)

Equzvanance implies that any element of the G ,-orbit of #(u) is a relative equilibrium
with the same generator. In other words, for every ¢,0 € R, u(py; 9,0) =
(exp(p 1), expl@ v)) * iz{p) is a relative equilibrium with generator é‘(p:) given by (22).
Hence MRE, is the G orbit of #(y) and the hypotheses (FH1) is satisfied.

Tt is an immediate consequence of (15) that if z = (A, g; 11, p) is fixed by any non-
trivial element of the symmetry group, then g and p must be parailel, which implies that
J@) = (All, —11) & gype- Hence all elements of gipr are regular values of J and
the hypothesis (H2} that relative equilibria taking momentum values in gp have trivial
isotropy holds.

We now specify a condition on the potential V which guarantees that the relative
equilibria with momentum in gler are stable. Specifically, if the function x2V'(x)
is monotone increasing, then the relative equilibria uy; ¢, 0) are orbltally stable for
all ¢,# € R. Note that this implies that |Jp| — Jv|]] = 14 x pl increases monotonically
with |g]|.

Lemma 4. [f
4 [.rz Vi)l =x(x V_”(x) +2V'x) >0 (23)

for all positive x, then the relative equilibria it (,u., @, @) are G#-orbztally stable. In particular,
D*H, (i) is positive semi~definite on Ty M, with kernel g, - i.

Proof. Let p be an element of gyre and set i = i(y; @, 8) for some choice of ¢ and 6.
(Note that if # is stable, then equivariance implies that any point in the Gu-orbu: of i is
also stable.)

To prove orbital stability of #, it is sufficient to show that D? H, (i) is definite on
the orthogonal complement S(#) to gy - & in ker [DJ(i)]. We can explicitly describe the
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basis with respect to which the restriction of D*H, (i) to § (it} diagonalizes. The second
variation of the energy—momentum function is written in block matrix form as

‘ —ATE - DPexp(O)(AT -, AT )T 0 ATE 0
D*H,(u) = U VE©1+Vixlgeqg 0 &
= —ATE 0 1 o

0 ~£ 0 Li

(24)

where exp : so(3) ~ SO(3) denotes the exponential map. The identity —ATE .
D2%exp(0)(¢, M = (ATE x ¢) - (IT x 1) implies that D?Hy (@) (wi, v;) = &;jhilvii?, where

2(XV"(xYy+2V(X)) = =
A. = — o v = 01 ; 0; -
! 1+ mV'(%) =0 2
1 _ - -
do=—+V(E v2 = (0, p; 0,9)
m 25)
Ay = —— |l v ] vy = (AT4,0:0, —ALD (
m (2 (L+ ) + )
|V  we=(ATp, AM:0,0).

T 2mE(1+ VR) + DRIV

This can be seen by strawhtforward calculations involving repeated use of the equlhbnum
relations.

All of the eigenvalues except A; are guaranteed to be positive, since the equilibrium
conditions imply that V’'(X) is positive. Since S(i) = span {1, v2, U3, v4}, the restriction
of D?H, (it} to &(i) is positive-definite, and # is orbitally stable, if (23) helds. O

Lemma 14 shows that hypothesis (H3) is satisfied.. Orbital stability of the relative
equilibrinm # implies that the functional L(x) = H(u) — H{i(J(x))) is a measure for
the orbital distance between u and #(J(x)}). The functional L depends on the variables IT
and A only through the momentum J(«)}. Specifically, let J(u) = p = (1, v) € gl and
let & be a relative equilibrium with momentum “. Theri MN=—y _*1'1 and thus

Lw) = E(lplz — 5P + Vigl?/2) — V(téﬁ/z)

=5 1P+ Vgl ~ V(D) - V'),

Given a solution u#(z} of the dynamical systezﬁ (18), we define the projected curve in
the family of relative equilibriz as follows. Define u(t) = J(u(t)) and write ey = #(0).
Solving the differential equations for 4 and v, we find that

w1y = e~ (R() po, vo) . _
where R(1y =explo(e™ ~ Dug — 2 AOMI(O)]) € SO3). (26)
Let Ag be some element in SO(3) such that g - Agvg = —|tol|ve|. Let ug be some unit

vector perpendicular to py and let ¥(¢) satisfy the relation (19) for g = p(t) and v = v(7).
We define the curve i : RT — MRE of relative equilibria by

e~ (|teol — [vol) 5 uo) _

27
V2E () pof @

u(t) = (R(2), 1d) (ﬂo, V2E(@) uo: —vi2),
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The expression (26) for the momentum map implies that {u(#)] = e™** ],u |. Thus
if J(u(t)) is initially in the subset gy, of g*, then J(u(#)) stays in this subset for all
positive times ¢, but e, = 0 & grpe- If we consider the evolution of the eigenvalues (25),
we see that A3 and A4 decay to zero as f — ©0. Thus we are indeed in the case in which we
need a scaled metric to describe the behaviour of the Lyapunov function. Since ju(f)| — 0,
%(¢) tnust converge either to zero or to an extremum of the function V. We have assumed
that V’ is positive on R¥; hence ¥ — 0 as ¢t — oq.

If equation (23) is satisfied, then it follows from the implicit definition {19) of ¥ and
the relation {21) between (7| and [p[ that .

lé(&)l = O(Iy,_ll/Z) = O(e‘er/Z) and Iﬁ(ﬁ)i = O([&Ilﬂ) = O(e—s:ﬂ)
as - 00. (23)

Specifically, if c‘, = m mingg; <z V'(x) and Ci=m maxggz<z@ V'(x) (with ¢y and Cy
positive), then
1 g7 1 |52
—— g — and ey § —m—— <K C
[l =il ~ ev TS M= T
Thus limy—co #((t)) = (A, 0;0,0) for some An € SO(3). Furthermore, by
differentiating the relation (19) with respect to ¢, we obtain
—2¢& V/(¥) ' EVIE)
SIvmTive W Th e W= e i vie
The estimate x = O(|)) follows from the expression (19); hence c(u(r)) = O(e™).
Differentiation of the expression (22) gives

= - I3 jv] 7 x
= mew- (7 (- g exm ).

Hence we conclude that || = O{ee™*') and (H4) is satisfied.

Equation (25) implies_that two of the eigenvalues (A3 and As) of the restricted second
variation of the energy—momentum function are of order || as it —» 0, while the other two
are of order one. Thus, while the energy—momentum function can be used as a Lyapunov
function, the estimates obtained using this function become increasingly weak as u — 0.
Specifically, if we define the orbital distance functional -

dy(u,w’) = minllg-q —¢'*+1g- p— PP+ 1A x A'viE/pi

gEG.u-

f
x

29

on Mu, then Lyapunov stability arguments involving H,L yield cq(u(r)) &, m(u(t) u(u(r)))
< L(u(t)) only if cx(p) = O(p|) as g — O.

While we cannot sharpen this estimate, in the sense of finding a better-behaved function
¢, We can replace the estimate with a more informative one by choosing a different distance
function. The distance function 4, takes equally into account the influence of all of the
components of u. However, |g(u)| and |p(u)l are of order |u]'/? as 4 — 0. Thus,
we would need d,(u, &) = O([ul""’) to show that the relative distances [q — §|/1§| and
lp — 2l/1p] (assume that i is opnmal!y rotated) are even bounded as p# —> 0. However, the
orbital distance between A and A does not tend towards zero with . We can explicitly
integrate the differential equation for A, obtaining A (1) = R(t)A(O)exE( e "”v(O)) where
R(t) is given by (26). Thus |Av x Avl/jv|? is time independent. Therefore we define a
weighted distance functional that progressively discounts A as o — 0. (It does not seem
reasonable to expect much better control than this—in the limit ¢ = 0, the momentum
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isotropy subgroup is the full group G, so the limiting equilibrium is only stable modulo
arbitrary rotations.)

Definition 15. Let ¢ : M - R'? be a chart map such that ¢(A. q:T1, p) =
(@(A), g; I1, p) for some chart map © on the appropriate neighbourhood of A in S0(3),
e.g. O(A) = exp~ (AT A) on a neighbourhood of some matrix Ay, and define the map
B, :R12 = RI2 py

Bu(p(A, q: T0, p)) = (I/?©(A). ¢; v[™V*IL, p).
Define the weighted distance functional d on M w by

P u)=llg—gP+1p—pFl+av x AWP/WP  uw eM,.
Then d and | | are compatible.

Note that since [v(r}| decreases with time, any function that does not depend on the

component of y corresponding to the A variable on the original manifold is differentiable,

Lipschitz continuous, etc with respect to {f, if it has that property with respect to the

standard Euclidean metric. B T
We now check hypothesis (H5). We can write &, as the sum: h, = b, +k, for

. 1 -
hy(y) = %Ipl2 +V(Ugl?/2) =) -g x p
and
hu(y) = —IHI2 (ATE(IL) w()) - I1

where A € SO(3) is the rotational component of ¢~'(y). Note that hu is the energy—
momentum function of the point mass system with potential V', while hlu is the energy-
momentum function of the spherical free rigid body. The function h is smooth and
independent of #; hence h e LC! 2Dy, R) for any £. Inspection of the expression for h
and the A and [T components of (24) ‘show that

Dh,(9.4; 11, P)(J)’t,a)’z,tsJ’s) = (V|71 2Dk, (8, ; T1/Iv], p)(snayl, B,8y,, B,6ys)
< Y201 e ByaluSysl

for some constant C; and all (6, g; T, p) € D,, where d(u) = +/Tvl, since i‘iu is smooth
with respect to the Euchdean norm. Hence h € LC2 (D,_“ E: Cy feorr(u)) for some constant

C if corr(y) = -

The second variation of the momentum map satisfies
D*j(6,q; L, )@y, 8y) = Dj(8, ¢ T1/Iv], p)(Budy. Budy) = O(I18¥1)

for all 3y e R® and all (8,4; 11, p) € Dy. “Thus § € LC) (’.Du, g It follows lmmedlately
from the expression (14) that X, € LC (Dﬂ, R).

The vector field p satisfies
lp(yl) - P(J’z)l,u |y[ 3’2!& + IP_\'] (ijlﬂl_n}(yl)) - ]Pj'z (ij]nl_u) ()’E))'E

+ Py, (Xj[A]TII-Azﬂg.D) (J’Z)HE
= Oyt — yaly)

for v, y2 € D#, since the orthogonal prOJectlons Py and the vector field X Jm 0 A€
Lipschitz continuous with respect to | |,. Hence p € LC° 2Dy, R?"), as required, and (HS 1)
is satisfied.
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The condition (H5.2) follows immediately from the definition of the Hamiltonian and
equation (25). A straightforward calculation shows that for §=G.weg
IVuds O = 172 (Ded )&, p x & I/2ATE ~ ), § x QP = VIE - M

where Dyj(y) € L(R?, R?) is determined by the refationship Dy j(y)dﬁ = (DO~N8)s0)1I,
and

_( 1=@G4+pp) /vl — DeimDei ) /WP —A
M) = ( Tt )
I we set ¢j(u) =- minyep, Amin(y) and Cj(g) = maXyep, Amax(y), Where Agin(y)
(respectwely Amax (¥)) denotes the minimum (respecuwly maximum) eigenvalue of M(y),
and ¢; = mmgﬁ(g(t)) ci(), C; = max, gy G (1) then

¢ VI ER 'S IV, eI, < G5 vl 1P

for all y € Dy and all ¢ € (u(r)). Note that ¢; > 0 becausc |q|,/]u|”2 and Ip[/]vl“’2
are bounded away from zero. Furthermore, D33V Jey) = [V M(y)§. Altogether this
implies '

JLJIV IV de i < IDIGVufe (P < —;’_\/lvnvﬁjg(ﬂlﬁ.
NG
The infinitesimal generator X, (y) satisfies

X5 N, = V| €, @) - (M) + diag(Def(») Dof )7, ~Ded ) Ds i (7)) ¢, @)”

so that ¢; |v]JEf* < X, (3)|2 and the condition (H5.3) is satisfied for corr(u) = /vl
Hence we conclude that (H57 is satisfied.

To verify (H6), we differentiate the equations for the relative equilibria & with respect
to time, obtaining

i = s0 QATIC) — 1, O)p () -% (o, —gq; 2ef, (2.9 + ff_;) ﬁ) . (30)
Comparing (30) with the expression (17) for the perturbation P, we see that

1 x _ . _
IBS@, 3) = E (‘9 -+ i:) (Os _q; 0’ P) - EP}'(XJ(;Q)()’)) = Xf&()’) (31-)
where ' _
¢ = 20(A — A@DTIE)) =20 (A() — A
and

- fu) =—~%e) @, p) — Jga )

for c(u) as given in (29). Because c(u) = O(lu)), ]r(y, sjg—oosfmm) S:mllarly,
PP = Oelp]'/?). Hence we can conchude that (H6) is satisfied for o = —J and
Mt)y=¢T )

Next we consider the dissipation coefficient. The energy—-momentum function k, &
LC? (’D#, RR); hence (H7A) is not valid and we must work directly with hypothesis (H7)
Flrst we show that the contribution of the rotational components of the dissipation and the
residual is neglible. We see that

. 1 1 _ I T
Py - ;ret‘v(y, g} + 5(0, g—q;:0,p—p)~ SBs¥| = Py (X0, (0)) — Py X G
. 23

" = Oz lcom(w)) .
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The bound £ = |(A — A)v| = O(|v|'?|y — ¥],) and the Lipschitz continuity of Dh,
imply that a

1
(Dhy(y) ~ Dhy(5) (ﬁ(y) ~ —res(3, s))

= (Dhy(3) — Dhyu(3)) (—~<o 543 0,8p) + P;y)
+OIyls + 15 = FIIYL) . o G

We make use of the decomposition h& = ﬁg_ + fvz_#_, estimating the ferms associated to
ﬁE and A o separately. Applying Taylor's theorem to ﬁ& yields
() — hu () = Dhy(M3y = 1 D*h, (5)@y, 8y) + O(18y13) (33)
and ‘

T P ~. 1 —_ - 1 » 1 ~ _ L.
(Dhy(y) — Dhy(G) (—5(0, 9—g: 2 p=-p)+ - 5-3’) - EDzh&(y) (8y,38y)

1 ~ - PO z — iy
+= D’y ()G, 89) + OB + IPFI)ly = Fluldrly) . (9
The telationship D%, (3)(y.8y) = D ¢(¥)8y implies that
D*hy ()5, 89) = D*hy()(3, (0, 39: 0, 8p)) = Dj;(5)(0, 843 0, 5p) .
The estimate Dy (780 = O(86{T1]) = O{|v|"/%|5y|,) leads to the bound

Dj; (F)(0, 8g; 0,8p) = Djs(7)8y + O (|§| |”|”2|53’|y.) = O(,_f_.' (1'% + 153’@'53"&) :
We now bound the contribution of the function ﬁg using the estimates

v - 1 v
Fu(3) = Fp(5) + —(Dhu(y) — DE NP3 < 1§ - (Do (y) = Dod(FN5|
= O(IvIV2i£118y),.) ' S (35)

and _ .
Dk, ($)8y = (Dhy(5) — Dhy(F)8y = O(F — Fuldyly) . (36)
Combining (32)<36), we see that '

1
(Dhyu(y) = Dhy(5) (ﬁ(y) — —res(, s)) + By () — hu(F) — Dhu(3)6y

= O(e™ (ge™/% + [8y,) 18y1,)
and hence (H7) holds for 8 = — and x(z) = xpe™ " for some constant Ko- .
Finally, we turn to the techmcal hypotheses (H8). The function fﬂ does not pull back
toa G, invariant function on M, due to the algebra element (¢, 0). “Hence we drop that
term and set .

fu(y) = ~c(p)(g, p) = F. (1) ,
which is invariant under the full group action. Furthermore, res(¥, &) = X fu ) —6X),, (F)
. Because |t| = O(ge™), we have EIX;(,;[,,()’)lu = O(eir(y, &£)]), so condition (H8.1)
is satisfied. Clearly f, € LC! o (D R; c(i)) and Xf € LC“(DM,TR12 ¢(p)). Because
e feomr(u) = O(1), this 1mphes that (H8.2a) lS satisfied for kf(r) = c(,u(r/e))
@(e~"). Straightforward calculanons show that c(u(r)) = Ofelp|). Thus “(H8.2¢) is
satisfied.
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Lyap{ult))
0.025¢

0.02 Figure X. Square root of the scaled Lya-
punov function e%/2 /L (ul7)} against the
a.015 absolute value of the momentum |u(f)|.
We started at a relative equilibrivm with
001 [ ] =1 and |v] = §. We have depicted
the evolation for £ = 0.02, 0.04, 0.08 and
‘ 0.16. Note the ratio Z of the e-vafues that
0.005 comes into the picture. Furthermore, there
is a striking period doubling if & is divided
0 - = U by 2. We do not have a good explanation

0.2 0.4 06 0.8 1 for this phenomenon yet,

' 5.2. Approximation with relative equilibria’

Having verified all of the hypotheses, we can apply theorem 4 to show that the curve (27)
of relative equilibria is'a good approximation of the curve u(¢) if (0} is sufficiently close
to the relative equilibrium #(0). In figure 1 we have illustrated this theorem by depicting
the value of /e L{u(t)) against |u(t)] as it follows from numerical simulations for various
values of ¢ and with an injtial condition being a relative equilibrium.

Theorem 16. Let u(r) be a solution of the perturbed system (18) with potential V satisfying
(23), initial condition w(0) such that L(u(0), &) = O(?) for sufficiently small ¢ and
w(0) € grrg- Then L(u(t), &) = O(? ™), for all t 2 0. Hence if we let (Gop (2}, Pope(2))
denvte the optimal G (,') -rotation of (G(1), pC)), then '

[A(I)U' X A(:)U]/lvlz O(E) 1q(f) —_ é;opt(t)i = O(s e—EI/Z)
[P() ~ Do) = O(ee™/%).

Note that the relative distances |g(r) — Gop(t)|/ [qop,(t)[ and |p(t) -~ popt(rjl /| Pope ()| are of
order £. As was indicated previously, IA(t)v(r} x A/ |v({)|* = constant = O(g).
Hence the estimate for A(t) is sharp.
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