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Abstract

Let r be a fixed positive integer. It is shown that, given any partial orders >1, . . .,
>r on the same n-element set P , there exist disjoint subsets A,B ⊂ P , each with at
least n1−o(1) elements, such that one of the following two conditions is satisfied: (1)
there is an i (1 ≤ i ≤ r) such that every element of A is larger than any element of
B in the partial order >i, or (2) no element of A is comparable with any element of
B in any of the partial orders >1, . . ., >r. As a corollary, we obtain that any family
C of n convex compact sets in the plane has two disjoint subfamilies A,B ⊂ C,
each with at least n1−o(1) members, such that either every member of A intersects
all members of B, or no member of A intersects any member of B.

1 Introduction

A chain in a partially ordered set is a set of pairwise comparable elements and an
antichain is a set of pairwise incomparable elements. Dilworth’s celebrated theorem [4,13]
implies that every partially ordered set on n elements contains a chain of length ` or an
antichain of length dn

`
e. Consequently, one can always find a chain or an antichain of length
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d√ne. Dilworth’s theorem has motivated a great deal of research [14,22] in combinatorics
and has several applications in combinatorial geometry [1,5,9,16,19,21], theoretical computer
science [3,17], and set theory [8].

To prove Ramsey-type results on intersection patterns of convex bodies, Larman et al.
[16] and Pach and Törőcsik [19] introduced four partial orders <1, <2, <3, <4 on the family of
all convex bodies in the plane such that any two disjoint bodies were comparable with respect
to at least one of them, but no two intersecting ones were. Applying Dilworth’s theorem four
times, we obtain that any family of n plane convex bodies has at least n1/5 members that
form a chain with respect to some i or an antichain with respect to all i (1 ≤ i ≤ 4). In the
first case, these sets are pairwise disjoint, in the second case pairwise intersecting. That is,
we have

Theorem 1 [16] Any family of n plane convex bodies has at least n1/5 members that are
either pairwise disjoint or pairwise intersecting.

On the other hand, Károlyi et al. [15] constructed families of n convex sets (straight-
line segments) in the plane with no subfamily consisting of more than than nlog 4/ log 27 ≈ n.41

pairwise intersecting or pairwise disjoint members. The above theorem remains true for
vertically convex bodies, that is, for compact connected sets in the plane with the property
that any straight line parallel to the y-axis of the coordinate system intersects it in an interval
(which may be empty or may consist of one point). In particular, any x-monotone arc, that
is, the graph of any continuous function defined on a subinterval of the x-axis, is vertically
convex.

For a partially ordered set (P, >), we write a ⊥ b if a and b are incomparable. For
subsets A and B of P , we write A > B if a > b for all a ∈ A and b ∈ B. Likewise, we write
A ⊥ B if a ⊥ b for all a ∈ A and b ∈ B.

It was suggested by Erdős et al. [7] that under certain restrictions much stronger
Ramsey-type results may hold if instead of large homogeneous subsets, we want to find large
homogeneous (i.e., complete or empty) bipartite patterns. Indeed, for partially ordered sets,
the first author proved the following bipartite analogue of Dilworth’s theorem.

Theorem 2 [10] Every n-element partially ordered set (P,>) has two subsets A,B ⊂ P
with |A| = |B| ≥ n

4 log2 n
such that A > B or A ⊥ B, provided that n is sufficiently large.

This result is tight up to a constant factor.

The same statement with
√

n
2

in place of n
4 log2 n

immediately follows from Dilworth’s

theorem. Throughout this paper, all logarithms are of base 2.

In Section 2, we establish a generalization of the last theorem to multiple partial orders.
We write a ⊥i b to denote that a and b are incomparable by partial order >i. Accordingly,
for any subsets A, B ⊂ P , we write A ⊥i B if a ⊥i b for all a ∈ A and for all b ∈ B.

Theorem 3 Let r be a fixed positive integer, and let >1, . . . , >r be partial orders on an n-
element set P . Then there are two disjoint subsets A,B ⊂ P , each with at least n

2(1+o(1))(log log n)r

elements, such that either A >i B for at least one i, or A ⊥i B for all 1 ≤ i ≤ r.

Note that a straightforward, repeated application of Dilworth’s theorem establishes
the existence of two much smaller subsets A,B ⊂ P with the above properties (|A|, |B| ≥
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bn1/(r+1)

2
c).

Our next result shows that Theorem 3 is not very far from best possible. It will be
proved in Section 3.

Theorem 4 Let r be a positive integer, and let 0 < ε < 1. There is a constant C(r, ε) > 0
such that for all sufficiently large positive integers n, there are r partial orders <1, . . ., <r

on an n-element set P with the following properties:

1. <1, . . . , <r have a common linear extension.

2. For any v ∈ P and for any i (1 ≤ i ≤ r), the number of elements in P comparable
with v in the partial order <i is at most nε.

3. For any pair of disjoint subsets A,B ⊂ P , each with at least C(r, ε)n (log log n)r−1

(log n)r

elements, there exist x ∈ A, y ∈ B, and i (1 ≤ i ≤ r) such that x <i y or y <i x.

Applying Theorem 3 to the r = 4 partial orders on the family of plane convex bodies,
introduced by Larman et al. [16] and Pach an Törőcsik [19], we immediately obtain the
following

Theorem 5 Any collection of n vertically convex compact sets in the plane has two disjoint
subcollections, A and B, each with at least n

2(1+o(1))(log log n)4
members such that either every

member of A intersects all members of B or every member of A is disjoint from all members
of B.

Based on the construction in [10], Pach and Tóth [18] showed that there is a collection
of n vertically convex sets (x-monotone arcs) in the plane, which contains no subcollections
A and B with the above properties such that |A|, |B| ≥ c n

log n
, where c is a constant. This is

a simple consequence of the second statement of Theorem 2 and the next lemma. Together
they show that Theorem 5 is also not far from being best possible.

Lemma 6 The elements of every partially ordered set ({1, 2, . . . , n},≺) can be represented
by continuous real functions f1, f2, . . . , fn defined on the interval [0, 1] such that fi(x) < fj(x)
for every x if and only if i ≺ j (i 6= j).

In Section 4, we give a very short proof of Lemma 6 and make some concluding remarks.

2 Proof of Theorem 3

We need a simple technical lemma.

Lemma 7 Let S = S1 ∪ . . . ∪ Sm be a partition of a set S with |Si| = ` for 1 ≤ i ≤ m, and
let A and B be disjoint subsets of S of the same size. For 1 ≤ i ≤ m, let Ai = A ∩ Si and
Bi = B ∩ Si. Then there is a partition of the set {1, . . . , m} into two parts, I1 and I2, such
that

∑

i∈I1

|Ai| ≥ |A| − `

2
and

∑

i∈I2

|Bi| ≥ |A| − `

2
.

3



Proof: Define two subsets J1 and J2 of the index set by J1 = {i : |Ai| ≥ |Bi|} and
J2 = {i : |Bi| ≥ |Ai|}. Since ∑

i∈J1

|Ai|+
∑

i∈J2

|Bi| ≥ |A|,

we have that
∑

i∈J1
|Ai| ≥ |A|

2
or

∑
i∈J2

|Bi| ≥ |A|
2

holds. Suppose without loss of generality

that
∑

i∈J1
|Ai| ≥ |A|

2
. Since each Ai has at most ` elements, there exists a subset I1 ⊂ J1

satisfying
|A| − `

2
≤ ∑

i∈I1

|Ai| < |A|+ `

2
.

Letting I2 := {1, 2, . . . , m} \ I1, we have

∑

i∈I2

|Bi| = |A| − ∑

i∈I1

|Bi| ≥ |A| − ∑

i∈I1

|Ai| > |A| − `

2
,

which proves the lemma. 2

Now we are in a position to formulate a general statement for “monotone” families of
graphs.

Theorem 8 Let F1, . . ., Fr be families of graphs that are closed by taking induced subgraphs,
and let fi(n) be a monotonically increasing function such that for every graph G ∈ Fi on
n vertices, either G or the complement of G contains a complete bipartite subgraph with at
least n

fi(n)
vertices in each of its classes (i = 1, . . . , r).

Given any graphs G1 ∈ F1, . . . , Gr ∈ Fr on the same vertex set V , there exist disjoint
subsets V1, V2 ⊂ V with min(|V1|, |V2|) ≥ n

f(n)
, where

log f(n) =
r∏

i=1

(dlog fi(n)e+ 2) ,

such that one of the following two conditions is satisfied: (1) there is an i (1 ≤ i ≤ r) such
that in Gi every element of V1 is adjacent to every element of V2, or (2) in G1 ∪ . . . ∪ Gr,
no element of V1 is adjacent to any element of V2.

Proof: For r = 1, the theorem is trivially true. The general statement follows from the
special case r = 2 by a straightforward induction argument.

Let k = 2 + dlog f2(n)e. By recursively iterating the definition of f1(n) on k levels,
we obtain that either G1 contains a complete bipartite graph Km,m with m ≥ n

f1(n)k (in

which case we are done), or there are 2k subsets S1, . . . , S2k of V with |Si| = d n
f1(n)k e for

1 ≤ i ≤ 2k such that there are no edges in G1 between Si and Sj for 1 ≤ i < j ≤ 2k. Let

S = S1 ∪ . . .∪ S2k . We are also done in the case when Km,m with m ≥ |S|
f2(n)

is a subgraph of
the vertices induced by S in G2, since

|S|
f2(n)

≥ 2kn

f2(n)f1(n)k
≥ n

f1(n)k
≥ n

2log f1(n)(dlog f2(n)e+2)
.
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Thus, we may assume that there are disjoint subsets A and B of S with |A| = |B| > |S|
f2(n)

such that no vertex of A is adjacent to a vertex of B in G2. Let Ai = A∩Si and Bi = B ∩Si

for 1 ≤ i ≤ 2k. Applying Lemma 7, we obtain a partition of {1, . . . , 2k} into subsets I1 and
I2 such that

min


∑

i∈I1

|Ai|,
∑

i∈I2

|Bi|

 >

|A| − |S1|
2

≥ |S|
2f2(n)

− |S1|
2
≥ |S1| ≥ n

f1(n)k
,

and no element of V1 =
⋃

i∈I1 Ai is adjacent to any element of V2 =
⋃

i∈I2 Bi in Gi for
i ∈ {1, 2}. To complete the proof, we note that

log2

(
n

min(|V1|, |V2|)

)
≥ k log2 f1(n) = (dlog2 f2(n)e+ 2) log2 f1(n).

2

Now we are in a position to complete the proof of Theorem 3. One can associate with
any set partially ordered set (P, <) a comparability graph, whose vertex set is P and two
vertices are connected by an edge if and only if one is larger than the other in the ordering.

Apply Theorem 8 to the families Fi of comparability graphs with respect to the partial
orderings <i defined on all subsets of the underlying set P (i = 1, . . . , r). In view of The-
orem 2, these families of graphs satisfy the conditions in the theorem with fi(n) = 4 log n.
Thus, we can conclude that there are two disjoint subsets A,B ⊂ P , each with at least

n
2(1+o(1))(log log n)r elements, such that either there exists an i (1 ≤ i ≤ r) such that every el-
ement of A is comparable to all elements of B with respect to <i, or no element of A is
comparable to any element of B with respect to any partial ordering <i. In the latter case,
we are done. In the former case, it is enough to refer to the following simple observation from
[10].

Lemma 9 Suppose that the comparability graph of a partially ordered set (P,<) contains a
complete bipartite subgraph with m vertices in each of its classes. Then there are two subsets
A,B ⊂ P with |A| = |B| ≥ m

2
such that A > B.

3 Construction

The aim of this section is to prove Theorem 4. The proof is by induction on r, based
on Lemma 10 with appropriately chosen parameters.

The height h(x) of an element x of a poset P is the length of the longest chain with
largest element x. For a subset S of a partially ordered set (P, <), let

D(S, h) = {p : p ∈ P, h(p) ≥ h and p ≤ s for at least one element s ∈ S},

and
U(S, h) = {p : p ∈ P, h(p) ≤ h and p ≥ s for at least one element s ∈ S}.
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For a positive integer a and for a graph G on the vertex set V = {1, . . . , m}, define the
poset P (a,G) on the ground set {(j, l): 1 ≤ j ≤ a and 1 ≤ l ≤ m} by setting (j1, l1) < (j2, l2)
whenever j2 = j1 + 1 and (l1, l2) is an edge of G. Let Pj(a,G) = {(j, l): 1 ≤ l ≤ m}, that is,
Pj(a,G) is the set of elements of P (a,G) of height j.

The neighborhood N(S) of a set S of vertices consists of those vertices that are adjacent
to at least one vertex in S. A graph G = (V,E) is an ε-expander if for every subset S ∈ V

with |S| ≤ |V |
2

satisfies |N(S)| ≥ (1 + ε)|S|.
Lemma 10 Let a, d, and ∆ be positive integers and G = (V, E) be a δ-expander graph with
|V | > 2d, maximum degree ∆, and such that for any two subsets V1, V2 ⊂ V of size at least
d, there is an edge between a vertex of V1 and a vertex of V2.

Then every element of P (a,G) is comparable with at most ∆a−1
∆−1

other elements of

P (a,G), and if A and B are subsets of P (a,G) such that |A| = |B| > 4(1+δ)
δ

d and every
element of A is incomparable with every element of B, then there is a j such that

|A ∩ Pj(a,G)| ≥ |A|
4

and |B ∩ Pj(a, G)| ≥ |B|
4

.

Proof: The proof of the fact that every element of P (a,G) is comparable with at most ∆a−1
∆−1

elements follows by a straightforward counting argument that can be found in [10].

Suppose that A and B are subsets of P (a,G) such that |A| = |B| > 4(1+δ)
δ

d and every
element of A is incomparable with every element of B. We note that there is a j0 and there
are subsets A′ ⊂ A and B′ ⊂ B with |A′| = |B′| ≥ |B|

2
such that either h(x) ≥ j0 ≥ h(y)

for all x ∈ A′ and y ∈ B′, or h(x) ≤ j0 ≤ h(y) for all x ∈ A′ and y ∈ B′. Without loss of
generality, we may assume that h(x) ≤ j0 ≤ h(y) for all x ∈ A′ and y ∈ B′.

Assume for contradiction that |A′ ∩ Pj0(a,G)| < |A|
4

or |B′ ∩ Pj0(a,G)| < |B|
4

. Without

loss of generality, we may assume that |B′ ∩ Pj0(a,G)| < |B|
4

.

Since every element of A is incomparable with all elements of B, we know that every
element of D(B, j0 + 1) is incomparable with every element of U(A, j0). Using the fact that
G is a δ-expander, we have

|D(B, j0 + 1) ∩ Ph(a,G)| ≥ min((1 + δ)|D(B, j0 + 1) ∩ Ph+1(a, G)|, |V |
2

),

for every h ≥ j0 + 1. Therefore, either

|V |
2
≤ |Pj0+1(a, G) ∩D(B, j0 + 1)|

holds, or

|B|
4
≤ |B′| − |B′ ∩ Pj0(a,G)| ≤ |D(B, j0 + 1)| = ∑

1≤i≤a−j0

|Pj0+i(a,G) ∩D(B, j0 + 1)|
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≤ ∑

1≤i≤a−j0

(1 + δ)i−1|Pj0+1(a, G) ∩D(B, j0 + 1)| ≤ 1 + δ

δ
|Pj0+1(a,G) ∩D(B, j0 + 1)|.

Similarly, we have
|V |
2
≤ |Pj0+1(a, G) ∩ U(A, j0)|,

or
|A|
4
≤ 1 + δ

δ
|Pj0+1(a,G) ∩ U(A, j0)|.

Let V1 ⊂ V be defined by V1 = {l : l ∈ V and (j0, l) ∈ U(A, j0)}, and let V2 ⊂ V
be defined by V2 = {l : l ∈ V and (j0 + 1, l) ∈ D(B, j0 + 1)}. Notice that there are no

edges between elements of V1 and elements of V2 and min(V1, V2) ≥ min( |V |
2

, δ
4(1+δ)

|A|). This

contradicts the assumptions that |V | > 2d, |A| = |B| > 4(1+δ)
δ

d, and there is an edge between
any pair of subsets of V of size at least d. 2

Proof of Theorem 4: We prove Theorem 4 by induction on r. The case r = 1 was
handled in the paper [10]. Our induction hypothesis is that for r > 1 and 0 < ε < 1 there is a
constant C(r− 1, ε) such that for every sufficiently large positive integer m, there is a set V
on m elements and there are r − 1 partial orders <1, . . ., <r−1 on V with the property that
for any i ≤ r− 1, no element of V is comparable with mε other elements of V by <i, and for
any pair A,B ⊂ V of disjoint subsets with |A| = |B| > C(r− 1, ε)m(log m)1−r(log log m)r−2,
there is an index j ≤ r− 1 and elements x ∈ A and y ∈ B such that either x <j y or y <j x.

It is an easy computational exercise to show that G(m, (log m)2r/m) has, with proba-
bility tending to 1 as m →∞, the following three properties:

(1) G(m, (log n)2r/m) is a 1/2-expander graph.
(2) G(m, (log m)2r/m) has maximum degree less than (log m)4r.
(3) For any pair A,B of disjoint subsets of the vertex set of G(m, (log m)2r/m), each of

cardinality greater than m/(log m)r, there is an edge between a vertex of A and a
vertex of B.

Let n be a sufficiently large positive integer. Let a = b ε log n
4r log log n

c and m = dn/ae. Let

G = (V, E) be a graph on m vertices satisfying properties (1)-(3) above. Let P consist of the
am elements of P (a,G), and let <r be the partial order on P (a,G). By Lemma 10, every
element of P (a,G) is comparable with at most ((log m)4r)a < nε other elements of P (a,G).
Also by Lemma 10, if A and B are subsets of P with |A| = |B| > 20

3
m/(log m)r such that

every element of A is incomparable with every element of B with respect to <r, then there
is j ≤ a such that |Pj(a, G) ∩ A| ≥ |A|

4
and |Pj(a,G) ∩B| ≥ |B|

4
.

Let ≺1, . . ., ≺r−1 be partial orders on the set V such that for each i ≤ r−1, no element
of V is comparable with mε other elements of V by partial order ≺i, and for each pair A

and B of disjoint subsets of V with |A| = |B| > C(r − 1, ε)m(log log m)r−2

(log m)r−1 , there is j ≤ r − 1
and there are elements x ∈ A and y ∈ B such that either x ≺j y or y ≺j x.

Define the partial orders <1, . . ., <r−1 on the set P by (j1, l1) <i (j2, l2) if and only if
j1 = j2 and l1 ≺i l2. So for each i ≤ r− 1, no element of P is comparable with mε < nε other
elements of P by <i.
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Let C(r, ε) = 32r
ε

C(r − 1, ε). Assume for contradiction that there exist disjoint subsets

A,B ⊂ P with |A| = |B| > C(r, ε)n (log log n)r−1

(log n)r such that every element of A is incomparable

with every element of B by the partial orders <1, . . ., <r. By Lemma 2 (as explained above),

it follows that there are disjoint subsets V1, V2 ⊂ V with |V1| = |V2| ≥ |A|
4

such that every
element of V1 is incomparable with every element of V2 by the partial orders ≺1, . . ., ≺r−1.
By the induction hypothesis, for n sufficiently large, we have

|V1| ≤ C(r − 1, ε)m
(log log m)r−2

(log m)r−1
< C(r − 1, ε)dn/ae(log log n)r−2

(log n)r−1

≤ 8r

ε
C(r − 1, ε)n

(log log n)r−1

(log n)r
≤ |A|

4
≤ |V1|,

a contradiction. 2

4 Concluding remarks

Short proof of Lemma 6. Let ({1, 2, . . . , n},≺) be a partial order, and let Π denote the
set consisting of all of its extensions π(1) ≺ π(2) ≺ . . . ≺ π(n) to a total order. Clearly, every
element of Π is a permutation of the numbers 1, 2, . . . , n. Let π1, π2, . . . , πm be an arbitrary
labelling of the elements of Π. Assign to each πk a distinct point xk of the interval [0, 1], so
that

0 = x1 < x2 < . . . < xm = 1.

For each i (1 ≤ i ≤ n), define a continuous, piecewise linear function fi(x), as follows. For
any k (1 ≤ k ≤ m), set fi(xk) = π−1

k (i), and let fi(x) change linearly over the interval
[xk, xk+1] for k < m.

Obviously, whenever i ≺ j for some i 6= j, we have that π−1
k (i) ≺ π−1

k (j) for every k,
and hence fi(x) < fj(x) for all x ∈ [0, 1]. On the other hand, if i and j are incomparable
with respect to the ordering ≺, we find that there are indices k and k′ (1 ≤ k 6= k′ ≤ m)
such that fi(xk) < fj(xk) and fi(xk) > fj(xk′), therefore, by continuity, the graphs of fi and
fj must cross at least once in the interval (xk, xk′). This completes the proof of Lemma 6. 2

This proof also works using any collection of linear extensions whose intersection is
the partial order. The dimension of a partial order is the minimum number of linear exten-
sions whose intersection is the partial order. It is clear then that the minimum number of
breakpoints needed for the construction with polygonal paths is the dimension of the partial
order.

Intersection graphs of curves. As was noted before, we cannot expect that there always
exist sets A and B with at least a positive constant times n members, satisfying the properties
required in Theorem 5. On the other hand, it is possible that this holds for families of convex
bodies in the plane. To prove such a statement, one probably needs to explore the geometric
structure of such families; a straightforward application of a combinatorial result for multiple
partial orders will not suffice.
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The first steps in this direction are made in a subsequent paper by the authors and C.
Tóth [12]. By “filling out” every member of a family of vertically convex bodies in the plane
with a sufficiently fine x-monotone curve, one can obtain a family of x-monotone curves with
the same intersection graph. Thus, instead of intersection graphs vertically convex bodies,
we may restrict our attention to intersection graphs of x-monotone curves. It is proved in [12]
that there exists a positive constant c such that if G is the intersection graph of a family of
n x-monotone curves in the plane, then either G contains a complete bipartite graph with at
least cn

log n
vertices in each of its classes, or the complement of G contains a complete bipartite

graph with at least cn vertices in each of its classes. Hence, it follows that the same is true
for intersection graphs of vertically convex bodies in the plane. This result is tight up to a
constant factor [19].

An arrangement of pseudosegments is a family of continuous arcs in the plane such
that any pair intersect at most once. In [12], Theorem 8 is applied to establish the following
result: There is a constant c > 0 with the property that if G is the intersection graph of an
arrangement of n > 1 pseudosegments, each of which crosses a fixed line precisely once, then
either G or its complement contains a complete bipartite graph with at least cn vertices
in each of its classes. (It is very likely that here the condition that every pseudosegment
intersects a given line precisely once can be dropped.) The last result implies that there is a
positive constant c such that the intersection graph of any arrangement of n pseudosegments
contains a complete subgraph or an independent set of size at least nc.

Higher dimensions. In three- and higher dimensional spaces, there are no nontrivial, gen-
eral Ramsey-type theorems for families of convex bodies. This is due to the fact that every
finite graph can be obtained as the intersection graph of convex bodies in R3 (see, e.g., Tietze
[20]). However, for families of “fat” convex bodies, one can establish some nontrivial results
of this type. A convex body S in Rd is called K-fat if there are d-dimensional balls B1 and
B2 with B1 ⊂ S ⊂ B2 such that the ratio of the radius of B2 to the radius of B1 is at most
K. In [11], it is proved that for every K and d, there is a positive constant ε = ε(K, d) such
that for any family of n K-fat convex bodies in Rd, either there is a point contained in at
least εn members of the family, or the complement of the intersection graph of these bodies
has a complete bipartite graph with at least εn vertices in each of its classes. Consequently,
there is a positive constant c = c(K, d) such that the intersection graph of any arrangement
of n K-fat convex bodies in Rd contains a complete subgraph or an independent set of size
at least nc.

Erdős-Hajnal-type results. We say that a class of graphs G has the Erdős–Hajnal property
if it is closed under taking induced subgraphs and there exists an ε > 0 such that every
member G ∈ G has either a complete subgraph or an independent set of size at least |V (G)|ε.
According to a well known conjecture of Erdős and Hajnal [6], for any graph H, the class
of graphs containing no induced subgraph isomorphic to H has the Erdős–Hajnal property.
The combinatorial core of the proof of Theorem 1 in [16] is the following simple statement:
For every ε > 0 and for every positive integer r, there is a δ = δ(ε, r) > 0 such that, if
Fi (1 ≤ i ≤ r) are families of graphs that have the Erdős–Hajnal property with exponent
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ε > 0, then the class of all graphs that can be obtained as ∪1≤i≤rFi for some Fi ∈ Fi (1 ≤
i ≤ r), also has the Erdős–Hajnal property, with the exponent δ. Moreover, for any such
graph F = ∪1≤i≤rFi, there is a subset U ⊂ V (F ) with |U | ≥ |V (F )|δ such that U induces
either a complete subgraph in some Fi or an independent set in all Fis (and hence in F ). It
is easy to see that here δ(ε, r) can be taken to be εr.

We say that a class of graphs has the strong Erdős–Hajnal property if it is closed under
taking induced subgraphs and there exists an ε > 0 such that for every member G ∈ G that
has at least two vertices, either G or its complement G has a complete bipartite subgraph
with at least ε|V (G)| vertices in each of its classes. It was shown in [2] that the strong
Erdős–Hajnal property implies the Erdős–Hajnal property.

Theorem 8 has the following immediate corollary that can be regarded as a bipartite
version of the above statement from [16].

Corollary 11 For every ε > 0 and for every positive integer r, there is a γ = γ(ε, r) > 0
such that, if Fi (1 ≤ i ≤ r) are families of graphs that have the strong Erdős–Hajnal property
with parameter ε > 0, then the class of all graphs that can be obtained as ∪1≤i≤rFi for some
Fi ∈ Fi (1 ≤ i ≤ r), also has the Erdős–Hajnal property, with the parameter γ.

Moreover, for any such graph F = ∪1≤i≤rFi, there are disjoint subsets U1, U2 ⊂ V (F )
with |U1|, |U2| ≥ γ|V (F )| such that either there is an index i (1 ≤ i ≤ r) such that every
vertex of U1 is adjacent to every vertex of U2 in Fi, or no vertex of U1 is adjacent to any
vertex of U2 in F .

By Theorem 8, γ(ε, r) can be taken to be 2−(3+log 1
ε )

r

.

5 Acknowledgements

The authors would like to thank Rados Radoičić and Csaba Tóth for interesting dis-
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