
Sliding disks in the planeSergey Bereg1, Adrian Dumitresu2, and J�anos Pah3?1 Computer Siene, University of Texas at DallasP.O. Box 830688, Rihardson, TX 75083, USAbesp�utdallas.edu2 Computer Siene, University of Wisonsin{Milwaukee3200 N. Cramer Street, Milwaukee, WI 53211, USAad�s.uwm.edu3 Courant Institute of Mathematial Sienes251 Merer Street, New York, NY 10012-1185, USApah�ims.nyu.eduAbstrat. Given a pair of start and target on�gurations, eah onsist-ing of n pairwise disjoint disks in the plane, what is the minimum num-ber of moves that suÆe for transforming the start on�guration into thetarget on�guration? In one move a disk slides in the plane without inter-seting any other disk, so that its enter moves along an arbitrary (open)ontinuous urve. We disuss eÆient algorithms for this task and esti-mate their number of moves under di�erent assumptions on disk radii anddisk plaements. For example, with n ongruent disks, 3n2 +O(pn log n)moves always suÆe for transforming the start on�guration into thetarget on�guration; on the other hand, �1 + 115 �n � O(pn) moves aresometimes neessary.1 IntrodutionConsider a set (system) of n pairwise disjoint objets in the plane that needto be brought from a given start (initial) on�guration S into a desired goal(target) on�guration T . The motion planning problem for suh a system isthat of omputing a sequene of objet motions (shedule) that ahieves thistask. Depending on the existene of suh a sequene of motions, we say thatthe problem is feasible or respetively, infeasible. Here we restrit ourselves tosystems of disks with pairwise disjoint interiors, as objets, and moves that slidea disk without interseting any other disk throughout the motion. The disks arenot labeled, therefore if there exist ongruent disks in the system, oupying anyof the target positions with a ongruent disk is allowed.It is easy to see that, for the lass of disks, the problem is always feasible.More generally, it is also feasible for the lass of all onvex objets, using slidingmoves (Theorem 1 below). This old result appears in the work of Fejes T�oth andHeppes [8℄, but it an be traed bak to de Bruijn [5℄; the algorithmi aspets? Supported by NSF grant CCR-00-98246, by an NSA grant, a PSC-CUNY ResearhAward, and grant OTKA-T-032-452 from the Hungarian Siene Foundation.
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of the problem have been studied by Guibas and Yao [9℄. We refer to this set ofmotion rules (moves) as the sliding model. Other reon�guration rules (models)for systems of disks have been examined reently, for example: in [6℄ moves arerestrited so that a disk an only be plaed in a position where it is adjaent to atleast two other disks; in [1℄ moves are translations along a �xed diretion at eahstep. Reon�guration for modular systems ating in a grid-like environment, andwhere moves must maintain onnetivity of the whole system has been reentlyaddressed in [7℄.Theorem 1. Any set of n onvex objets in the plane an be separated via trans-lations all parallel to any given �xed diretion, with eah objet moving one only.If the topmost and bottommost points of eah objet are given (or an be om-puted in O(n logn) time), an ordering of the moves an be omputed in O(n logn)time.The following simple universal algorithm that an be adapted to any set ofn onvex objets performs 2n moves for reon�guration of n disks. In the �rststep (n moves), in dereasing order of the x-oordinates of their enters, slide thedisks initially along a horizontal diretion, one by one to the far right. Note thatno ollisions an our. In the seond step (n moves), bring the disks "bak" totarget positions in inreasing order of the x-oordinates of their enters. (Gen-eral onvex objets need rotations and translations in the seond step). Alreadyfor the lass of disks, one annot do muh better in terms of the number ofmoves (see Theorem 3). For the lass of segments (as objets), it is easy to on-strut examples that require 2n�1 moves for reon�guration, even for ongruentsegments.A move is a target move if it slides a disk to a �nal target position. Otherwise,it is a non-target move. Our lower bounds use the the following argument: if notarget disk oinides with a start disk (so eah disk must move), a shedule withx non-target moves onsists of at least n+ x moves.Our paper is organized as follows. In Setion 2 (Theorem 2), we estimate thenumber of neessary moves for the reon�guration of systems of ongruent disks.In Setion 3 (Theorem 3), we estimate the number of neessary moves for thereon�guration of systems of disks of arbitrary radii.2 Congruent disksWe now onsider reon�guring sets of ongruent disks in the plane. First, weprove the existene of a line biseting the set of enters of the start disks suhthat the strip of width 6 around this line ontains a small number of disks. Aslightly weaker statement guaranteeing the existene of a biseting line that utsthrough few disks was given by by Alon et. al [2℄. We have inluded our almostidential proof for ompleteness.Lemma 1. Let S be a set of n pairwise disjoint unit (radius) disks in the plane.Then there exists a line ` that bisets the enters of the disks suh that the parallel2



strip of width 6 around ` (that is, ` runs in the middle of this strip) ontainsentirely at most O(pn logn) disks.Proof. Set m = 2pn logn where 2 > 0 is a suitable large onstant to be hosenlater. Assume for ontradition that the strip of width w = 6 around eah linebiseting the set of enters of S ontains at least m disks. Set k = dpn= logneand onsider the k biseting lines that form angles i� with the positive diretionof the x-axis (in ounterlokwise order), where i = 0; : : : ; k � 1, and � = �=k.Let Ai be the set of disks ontained (entirely) in the i-strip of width w = 6around the ith biseting line, i = 0; : : : ; k � 1. Clearlyn � jA0 [ : : : Ak�1j � k�1Xi=0 jAij � X0�i<j�k�1 jAi \ Aj j (1)by the inlusion-exlusion formula. By our assumption Pk�1i=0 jAij � km. Thesummand jAi \ Aj j ounts the number of disks ontained in the intersetion ofthe strips i and j. This intersetion is a rhombus whose area isFij = w2sin(j � i)� :Sine the disks are pairwise disjoint,jAi \ Aj j � Fij� :We thus have X0�i<j�k�1 jAi \ Aj j = O0� X0�i<j�k�1 1sin (j � i)�1A :The identity sin� = sin(� � �) yieldsX0�i<j�k�1 1sin (j � i)� � k bk=2Xi=1 1sin i� :For 1 � i � k=2 1sin i� = 1sin i�k = O�ki� :Consequently the seond sum in Equation (1) is bounded as follows:X0�i<j�k�1 jAi \ Aj j = O0�k2 bk=2Xi=1 1i1A = O(k2 log k):3



Let 1 > 0 be an absolute onstant suh thatP0�i<j�k�1 jAi\Aj j � 1 �k2 log k.Sine log k � (logn)=2 for n � 16, and using the above estimates, Equation (1)an be rewritten asn � mk � 1 � k2 log k � 2pn lognr nlogn � 21 nlogn logn2 = (2 � 1)n:Take now 2 = 1 + 2, and obtain n � 2n whih is a ontradition. utTheorem 2. Given a pair of start and target on�gurations S and T , onsistingof n ongruent disks eah, 3n2 +O(pn logn) moves always suÆe for transformingthe start on�guration into the target on�guration. The entire motion an beomputed in O(n3=2(logn)�1=2) time. On the other hand, there exist pairs ofon�gurations that require �1 + 115�n�O(pn) moves for this task.Proof. We start with the upper bound. Let S0 and T 0 be the enters of thestart disks and target disks, respetively, and let ` be the line guaranteed byLemma 1. Without loss of generality we an assume that ` is vertial. Denote bys1 = bn=2 and s2 = dn=2e the number of enters of start disks to the left andto the right of `. Let m = O(pn logn) be the number of start disks ontained inthe vertial strip around `. Denote by t1 and t2 the number of enters of targetdisks to the left and to the right of `, respetively. By symmetry we an assumethat t1 � n=2 � t2.Let R be a region ontaining all start and target disks (e.g., the smallestaxis-aligned retangle that ontains all disks). The algorithm has three steps.All moves in the region R are taken along horizontal lines, i.e., perpendiularlyto the line `.Step 1 Slide to the far right all start disks whose enters are to the right of `and the (other) start disks in the strip, one by one, in dereasing order oftheir x-oordinates (with ties broken arbitrarily). At this point all t2 � n=2target disks whose enters are right of ` are free.Step 2 Using all the s01 � n=2 remaining disks whose enters are to the left of`, in inreasing order of their x-oordinates, we �ll free target positions tothe right of `, in inreasing order of their x-oordinates: eah disk slides �rstto the left, then to the right on a wide ar and to the left again in the end.Note that s01 � n=2 � t2. Now all the target positions whose enters are tothe left of ` are free.Step 3 Move to plae the far away disks: �rst ontinue to �ll target positionswhose enters are to the right of `, in inreasing order of their x-oordinates.When we are done, we �ll target positions whose enters are to the left of `,in dereasing order of their x-oordinates. Note that at this point all targetpositions to the left of ` are \free."The only non-target moves are those done in Step 1 and their number isn=2 +O(pn logn), so the total number of moves is 3n=2 +O(pn logn).4



Algorithm. A trivial implementation of the algorithm examines allk = dpn= logne strip diretions eah in O(n) time, in order to �nd a suit-able one, as desribed in the proof of Lemma 1. After that, O(n logn) time isspent for this diretion for sorting and performing the moves. The resulting timeomplexity is O(n3=2(logn)�1=2).Lower bound. The target on�guration onsists of a set of n densely pakedunit (radius) disks ontained, for example, in a square of side length � 2pn.The disks in the start on�guration enlose the target positions in a ring-likestruture with long \legs." Its design is more ompliated and uses \rigidity"onsiderations as desribed below.A paking C of unit (radius) disks in the plane is said to be stable if eah diskis kept �xed by its neighbors [4℄. More preisely, C is stable if none of its elementsan be translated by any small distane in any diretion without olliding withthe others. It is easy to see that any stable system of (unit) disks in the plane hasin�nitely many elements. K. B�or�ozky [3℄ showed that there exist stable systemsof unit disks with arbitrarily small density.The main building blok used in B�or�ozky's onstrution was a one-wayin�nite \bridge" made up of disks, whih an be de�ned as follows. In Fig. 1,the initial setion of suh a one-way in�nite bridge appears on the left of thevertial line `. Fix an x-y retilinear oordinate system in the plane. Let us start
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Fig. 1. A double bridge and its vertial line of symmetry `. The part left of ` formsthe initial setion of a one-way in�nite bridge.with �ve unit disks entered ata1 = (0; 2 +p3); b1 = (0;p3); 1 = (1; 0); b�1 = �b1; a�1 = �a1;that serve as an \abutment." The bridge will be symmetri about the x-axis, soit is suÆient to desribe the part of the paking in the upper half-plane. Theset of enters of the disks is denoted by C.5



Take a stritly onvex funtion f(x) de�ned for all x � 0 suh that f(0) =2 + p3 and limx!1 f(x) = 2p3. Starting with a1, hoose a series of pointsa2; a3; a4; : : : belonging to the graph of f suh that the distane between anytwo onseutive points satis�esjai � ai+1j = 2 (i = 1; 2; 3; : : : ):All unit disks around these points belong to the paking, so that ai 2 C forevery i. These points will uniquely determine all other elements of C, aordingto the following rules.Let b2 be the point at distane 2 from both 1 and a2, whih lies to the rightof the line 1a2. One b2 is de�ned, let 2 be the point on the x-axis, di�erentfrom 1, whose distane from b2 is 2. In general, if bi and i have already beende�ned, let bi+1 denote the point at distane 2 from both i and ai+1, lying onthe right-hand side of their onneting line, and let i+1 6= i be the (other)point of the x-axis at distane 2 from bi+1. Let C, the set of enters of thedisks forming the bridge, onsist of all points ai; bi; i (i = 1; 2; 3; : : : ) and theirreetions about the x-axis. Note that the points i 2 C lie on the x-axis, sothey are idential with their reetions.We need four properties of this onstrution, whose simple trigonometriproofs an be found in [3℄:1. the distane between any two points in C is at least 2;2. all unit disks around ai; bi; i (i = 2; 3; 4; : : : ) are kept �xed by their neigh-bors;3. all points b2; b3; b4; : : : lie stritly below the line y = p3;4. the x-oordinate of i is smaller than that of ai+1 (i = 1; 2; 3; : : : ).It is not hard to see that the di�erene between the x-oordinates of i and ai+1tends to zero as i tends to in�nity.Next, we slightly modify the above onstrution. Take a small positive " andreplae f(x) by the stritly onvex funtionf"(x) := (1 + ")f(x)� "f(0)whose asymptote is the line y = 2p3 � (2 � p3)". Clearly, f"(0) = f(0). Ifwe arry out the same onstrution as above, nothing hanges before we �rst�nd a point ai that lies below the line y = 2p3. However, if " is suÆientlylarge, sooner or later we get stuk: the onstrution annot be ontinued foreverwithout violating any of the onditions listed above. Let k be the �rst integerfor whih suh an event ours, involving ak; ak+1; bk; or k. By varying " > 0, itan be shown by a simple ase analysis that the onstrution an be realized upto level k so that the di�erene between the x-oordinates of bk and ak is 1. Itfollows that the disk around ak is tangent to the vertial line ` passing throughbk. Remove the rightmost disk entered at k from the set. Thus from the aboveondition, by taking the union of the part of C built so far together with itsreetion about `, we obtain the following:6



Lemma 2. There exist arbitrarily long �nite pakings (\double-bridges") on-sisting of �ve rows of unit disks, symmetri about the oordinate axes, in whihall but eight disks are kept �xed by their neighbors. These eight exeptionaldisks are at the two abutments of the double-bridge and their y-oordinates are�p3;�(2 +p3).Notie that three suh bridges an be onneted at a \juntion" depited inFig. 2 so that the angles between their \long" half-axes of symmetries (orre-sponding to the positive x-axis) are 2�3 . Consequently, using six double-bridgesonneted by six juntions one an enlose an arbitrarily large hexagonal regionH . Let us attah a one-way in�nite bridge to eah of the unused sides of thejuntions. As B�or�ozky pointed out, the resulting paking is stable.
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Fig. 2. Juntion of type 1.Let us refer to the disks in the start (resp. target) on�guration as white(resp. blak) disks. Now �x a large n, and take n white disks. Use O(pn) of themto build six juntions onneted by six double-bridges (as desribed above) toenlose a hexagonal region that an aommodate the n nonoverlapping blakdisks. See also Fig. 3. Divide the remaining white disks into six roughly equalgroups, eah of size n6 � O(pn), and rearrange eah group to form the initialsetion of a one-way in�nite bridge attahed to the unused sides (\ports") of thejuntions. Notie that the number of neessary moves is at least �1 + 130�n �O(pn). To see this, it is enough to observe, that in order to �ll the �rst target,we have to break up the hexagonal ring around the blak disks. That is, we haveto move at least one element of the six double-bridges enlosing H . However,with the exeption of the at most 6� 5 = 30 white disks at the far ends of thetrunated one-way in�nite bridges, every white disk is �xed by its neighbours.7



Eah of these bridges onsists of �ve rows of disks of \length" roughly n30 ; wherethe length of a bridge is the number of disks along its side. Therefore, before weould move any element of the ring around H , we must start at a far end andmove a sequene of roughly n30 white adjaent disks.Instead of enlosing the n blak disks by a hexagon, we an onstrut atriangular ring T around them, onsisting of three double-bridges (see Fig. 3). To
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(a) (b)Fig. 3. Two start on�gurations based on hexagonal and triangular rings.ahieve this, we have to build a juntion of three sides establishing a onnetionbetween the abutments of three bridges suh that the angles between their half-axes of symmetry are 5�6 ; 5�6 ; and �3 . Suh a juntion is shown on Fig. 4. Theonvex hull of the disk enters (for the disks in the juntion) is a pentagonsymmetri with respet to a vertial line passing through the top vertex. Fourout of the �ve enters along eah of the three sides of the pentagon onneted tobridges are ollinear. The disk enters on the other two sides form two slightlyonave hains. The number of neessary moves is at least �1 + 115�n � O(pn)for this seond onstrution. This ompletes the proof of Theorem 2. utRemarks. We believe that our lower bound in Theorem 2 is loser to the truth.Closing the gap between the bounds remains an interesting problem whih seemsto require new ideas.Note that moving out in Step 1 only start disks whose enters are right of `and those disks interseting ` would not neessarily free all targets whose entersare right of `. This is the reason for working with a strip of width 6 around `;in fat imposing a bound on the number of disks ontained in a strip of width4, whih extends three units to the left of ` and one unit to the right of ` wouldbe enough. 8



Bridge 2
Bridge 3

Bridge 1Fig. 4. Juntion of type 2.3 Arbitrary disksFor the reon�guration of systems of arbitrary disks we obtain tight bounds(modulo lower order terms):Theorem 3. Given a pair of start and target on�gurations, onsisting of ndisks of arbitrary radii eah, 2n moves always suÆe for transforming the starton�guration into the target on�guration. The entire motion an be omputedin O(n logn) time. On the other hand, there exist pairs of on�gurations thatrequire 2n� o(n) moves for this task, for every suÆiently large n.Proof. The upper bound is immediate, using the universal reon�guration algo-rithm desribed above. The reursive lower bound onstrution is depited inFigure 6. The basi onstrution in Figure 5 (whih will be repeated reursively)gives a lower bound of � 3n=2: it onsists of a large disk surrounded by n � 1small disks, whose enters form a regular polygon with n� 1 verties (let n beeven). The target on�guration has all small disks inside the original big diskand the large disk somewhere else. No small disk target an be �lled before thelarge disk moves away, that is, before roughly half of the n� 1 small disks moveaway. So about 3n=2 moves in total are neessary.The reursive onstrution is obtained by replaing the small disks around abig one by the "same" onstrution saled (see Figure 6). To make it work wehoose: 1) all disks of distint radii, and 2) the small disks on the last level orreursion have targets inside the big ones they surround (the other disks havetargets somewhere else). Sine all disks have distint radii, one an think of them9



Fig. 5. A simple lower bound onstrution (basi step for the reursive onstrution)for sliding disks of arbitrary radii.as being labeled. If there are k levels in the reursion, about n=2+n=4+� � �+n=2knon-target moves are neessary. The preise alulation follows.
0 0

Fig. 6. Reursive lower bound onstrution for sliding disks of arbitrary radii: m = 2and k = 3.There is one large disk labeled 0, and 2m+1 groups of smaller disks aroundit lose to the verties of a regular (2m+ 1)-gon (m � 1). Let m be �xed, andk be the number of levels in the reursion (m and k will be hosen later). Letn = N(k) be the number of disks in the set, and x = X(k) be the number ofnon-target moves performed (at level k). We haveN(0) = 1; X(0) � 0; N(1) = 2m+ 2; X(1) � m:N(k) and X(k) satisfy the following reurrenes:N(k) = (2m+ 1)N(k � 1) + 1;X(k) � mN(k�1)+(m+1)mN(k�2)+ : : :+(m+1)k�2mN(1)+(m+1)k�1m:10



The �rst reurrene givesN(k) = (2m+ 1)k + : : :+ (2m+ 1) + 1 = (2m+ 1)k+1 � 12m :Plugging this into the inequality for X(k) yieldsX(k) � m k�1Xi=0 (2m+ 1)k�i � 12m (m+ 1)i = 12 k�1Xi=0((2m+ 1)k�i � 1)(m+ 1)i:Using standard manipulations, the above inequality beomesX(k) � (2m+ 1)k+1 � 2(m+ 1)k+1 + 12m :This an be rewritten asX(k) � (2m+ 1)k+1 � 1� 2(m+ 1)k+1 + 22m = n� (m+ 1)k+1 � 1m :Put z = (m+ 1)k+1 � 1m :Then zn = 2 (m+ 1)k+1 � 1(2m+ 1)k+1 � 1 � 2� m+ 12m+ 1�k+1 ! 0; for k !1:Thus n + x � 2n � z = 2n � o(n) and the lower bound follows for n = N(k).The same result arries over for all suÆiently large n. In partiular for m = 1,we get n+ x = 2n�O(nlog3 2) = 2n�O(n0:631). utAknowledgement. The authors thank Jan Siwanowiz for his valuable remarksand for many interesting onversations on the topi.Referenes1. M. Abellanas, F. Hurtado, A. G. Olaverri, D. Rappaport, and J. Tejel, Movingoins. Short version in Abstrats of Japan Conferene on Disrete and Computa-tional Geometry, 2004. Full version submitted to LNCS Proeedings.2. N. Alon, M. Kathalski, and W. R. Pulleyblank, Cutting disjoint disks by straightlines, Disrete & Computational Geometry, 4 (1989), 239{243.3. K. B�or�ozky, �Uber stabile Kreis- und Kugelsysteme (in German), Ann. Univ. Si.Budapest. E�otv�os Set. Math. 7 (1964), 79{82.4. P. Brass, W. O. J. Moser, and J. Pah, Researh Problems in Disrete Geometry,Springer{Verlag, 2005, to appear.5. N. G. de Bruijn, Aufgaben 17 and 18 (in Duth), Nieuw Arhief voor Wiskunde 2(1954), 67. 11
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