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Abstract. Given a pair of start and target configurations, each consist-
ing of n pairwise disjoint disks in the plane, what is the minimum num-
ber of moves that suffice for transforming the start configuration into the
target configuration? In one move a disk slides in the plane without inter-
secting any other disk, so that its center moves along an arbitrary (open)
continuous curve. We discuss efficient algorithms for this task and esti-
mate their number of moves under different assumptions on disk radii and
disk placements. For example, with n congruent disks, 2 + O(y/nlog n)
moves always suffice for transforming the start configuration into the
target configuration; on the other hand, (1+ :£)n — O(y/n) moves are
sometimes necessary.
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1 Introduction

Consider a set (system) of n pairwise disjoint objects in the plane that need
to be brought from a given start (initial) configuration S into a desired goal
(target) configuration T. The motion planning problem for such a system is
that of computing a sequence of object motions (schedule) that achieves this
task. Depending on the existence of such a sequence of motions, we say that
the problem is feasible or respectively, infeasible. Here we restrict ourselves to
systems of disks with pairwise disjoint interiors, as objects, and moves that slide
a disk without intersecting any other disk throughout the motion. The disks are
not labeled, therefore if there exist congruent disks in the system, occupying any
of the target positions with a congruent disk is allowed.

It is easy to see that, for the class of disks, the problem is always feasible.
More generally, it is also feasible for the class of all convex objects, using sliding
moves (Theorem 1 below). This old result appears in the work of Fejes Téth and
Heppes [8], but it can be traced back to de Bruijn [5]; the algorithmic aspects
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of the problem have been studied by Guibas and Yao [9]. We refer to this set of
motion rules (moves) as the sliding model. Other reconfiguration rules (models)
for systems of disks have been examined recently, for example: in [6] moves are
restricted so that a disk can only be placed in a position where it is adjacent to at
least two other disks; in [1] moves are translations along a fixed direction at each
step. Reconfiguration for modular systems acting in a grid-like environment, and

where moves must maintain connectivity of the whole system has been recently
addressed in [7].

Theorem 1. Any set of n convex objects in the plane can be separated via trans-
lations all parallel to any given fized direction, with each object moving once only.
If the topmost and bottommost points of each object are given (or can be com-
puted in O(nlogn) time), an ordering of the moves can be computed in O(nlogn)
time.

The following simple universal algorithm that can be adapted to any set of
n convex objects performs 2n moves for reconfiguration of n disks. In the first
step (n moves), in decreasing order of the z-coordinates of their centers, slide the
disks initially along a horizontal direction, one by one to the far right. Note that
no collisions can occur. In the second step (n moves), bring the disks ”back” to
target positions in increasing order of the z-coordinates of their centers. (Gen-
eral convex objects need rotations and translations in the second step). Already
for the class of disks, one cannot do much better in terms of the number of
moves (see Theorem 3). For the class of segments (as objects), it is easy to con-
struct examples that require 2n — 1 moves for reconfiguration, even for congruent
segments.

A move is a target move if it slides a disk to a final target position. Otherwise,
it is a non-target move. Our lower bounds use the the following argument: if no
target disk coincides with a start disk (so each disk must move), a schedule with
x non-target moves consists of at least n + x moves.

Our paper is organized as follows. In Section 2 (Theorem 2), we estimate the
number of necessary moves for the reconfiguration of systems of congruent disks.
In Section 3 (Theorem 3), we estimate the number of necessary moves for the

reconfiguration of systems of disks of arbitrary radii.

2 Congruent disks

We now consider reconfiguring sets of congruent disks in the plane. First, we
prove the existence of a line bisecting the set of centers of the start disks such
that the strip of width 6 around this line contains a small number of disks. A
slightly weaker statement guaranteeing the existence of a bisecting line that cuts
through few disks was given by by Alon et. al [2]. We have included our almost
identical proof for completeness.

Lemma 1. Let S be a set of n pairwise disjoint unit (radius) disks in the plane.
Then there exists a line £ that bisects the centers of the disks such that the parallel



strip of width 6 around ¢ (that is, £ runs in the middle of this strip) contains
entirely at most O(y/nlogn) disks.

Proof. Set m = ca/nlogn where ¢; > 0 is a suitable large constant to be chosen
later. Assume for contradiction that the strip of width w = 6 around each line
bisecting the set of centers of S contains at least m disks. Set k = [y/n/logn]
and consider the k bisecting lines that form angles i6 with the positive direction
of the z-axis (in counterclockwise order), where ¢ =0,... ,k — 1, and § = 7 /k.

Let A; be the set of disks contained (entirely) in the i-strip of width w = 6
around the ith bisecting line, s = 0,... ,k — 1. Clearly

k—1
n> Ao U. A 2 A= Y AN A4 (1)
i=0 0<i<j<k—1
by the inclusion-exclusion formula. By our assumption Zi':ol |A;| > km. The

summand |A; N A;| counts the number of disks contained in the intersection of
the strips 4 and j. This intersection is a rhombus whose area is

Since the disks are pairwise disjoint,
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We thus have
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The identity sin a = sin(m — a) yields
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For 1 <i<k/2
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Consequently the second sum in Equation (1) is bounded as follows:
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Let ¢; > 0 be an absolute constant such that ZO<i<j<k71 |4;iNA;| < e1-k*logk.
Since log k < (logn)/2 for n > 16, and using the above estimates, Equation (1)
can be rewritten as

[ n 1
ankfcl-lflongcm/nlogn IL*QC " Ogn:(qfcl)n,
ogn

! logn 2
Take now c3 = ¢; + 2, and obtain n > 2n which is a contradiction. O

Theorem 2. Given a pair of start and target configurations S and T, consisting
of n congruent disks each, 3.7”+O(\/W) moves always suffice for transforming
the start configuration into the target configuration. The entire motion can be
computed in O(n?*/?>(logn)~'/?) time. On the other hand, there exist pairs of
configurations that require (1 + 11—5) n — O(y/n) moves for this task.

Proof. We start with the upper bound. Let S’ and 7" be the centers of the
start disks and target disks, respectively, and let £ be the line guaranteed by
Lemma 1. Without loss of generality we can assume that £ is vertical. Denote by
s1 = |n/2] and sy = [n/2] the number of centers of start disks to the left and
to the right of £. Let m = O(y/nlogn) be the number of start disks contained in
the vertical strip around /. Denote by ¢; and ¢, the number of centers of target
disks to the left and to the right of £, respectively. By symmetry we can assume
that t; < n/2 < ts.

Let R be a region containing all start and target disks (e.g., the smallest
axis-aligned rectangle that contains all disks). The algorithm has three steps.
All moves in the region R are taken along horizontal lines, i.e., perpendicularly
to the line £.

STEP 1 Slide to the far right all start disks whose centers are to the right of £
and the (other) start disks in the strip, one by one, in decreasing order of
their z-coordinates (with ties broken arbitrarily). At this point all 5 > n/2
target disks whose centers are right of £ are free.

STEP 2 Using all the s} < n/2 remaining disks whose centers are to the left of
¢, in increasing order of their z-coordinates, we fill free target positions to
the right of £, in increasing order of their z-coordinates: each disk slides first
to the left, then to the right on a wide arc and to the left again in the end.
Note that sj < n/2 < t,. Now all the target positions whose centers are to
the left of £ are free.

STEP 3 Move to place the far away disks: first continue to fill target positions
whose centers are to the right of £, in increasing order of their z-coordinates.
When we are done, we fill target positions whose centers are to the left of £,
in decreasing order of their z-coordinates. Note that at this point all target
positions to the left of ¢ are “free.”

The only non-target moves are those done in STEP 1 and their number is
n/2 4+ O(y/nlogn), so the total number of moves is 3n/2 + O(v/nlogn).



Algorithm. A trivial implementation of the algorithm examines all
k = [y/n/logn] strip directions each in O(n) time, in order to find a suit-
able one, as described in the proof of Lemma 1. After that, O(nlogn) time is
spent for this direction for sorting and performing the moves. The resulting time
complexity is O(n?/?(logn)~'/?).

Lower bound. The target configuration consists of a set of n densely packed
unit (radius) disks contained, for example, in a square of side length =~ 2,/n.
The disks in the start configuration enclose the target positions in a ring-like
structure with long “legs.” Its design is more complicated and uses “rigidity”
considerations as described below.

A packing C of unit (radius) disks in the plane is said to be stable if each disk
is kept fixed by its neighbors [4]. More precisely, C is stable if none of its elements
can be translated by any small distance in any direction without colliding with
the others. It is easy to see that any stable system of (unit) disks in the plane has
infinitely many elements. K. Boroczky [3] showed that there exist stable systems
of unit disks with arbitrarily small density.

The main building block used in Boéroczky’s construction was a one-way
infinite “bridge” made up of disks, which can be defined as follows. In Fig. 1,
the initial section of such a one-way infinite bridge appears on the left of the
vertical line /. Fix an z-y rectilinear coordinate system in the plane. Let us start

Fig. 1. A double bridge and its vertical line of symmetry £. The part left of ¢ forms
the initial section of a one-way infinite bridge.

with five unit disks centered at
a1 = (0,2+v3),b1 = (0,v3),c1 = (1,0).b] = ~by, af = —ay,
that serve as an “abutment.” The bridge will be symmetric about the z-axis, so

it is sufficient to describe the part of the packing in the upper half-plane. The
set, of centers of the disks is denoted by C.



Take a strictly convex function f(z) defined for all > 0 such that f(0) =
2 + /3 and lim, . f(z) = 2V/3. Starting with a;, choose a series of points
as,as, ay, ... belonging to the graph of f such that the distance between any
two consecutive points satisfies

|aifai+1\:2 (12112,31)

All unit disks around these points belong to the packing, so that a; € C for
every i. These points will uniquely determine all other elements of C, according
to the following rules.

Let b2 be the point at distance 2 from both ¢; and as, which lies to the right
of the line cjay. Once by is defined, let ¢; be the point on the z-axis, different
from ¢y, whose distance from by is 2. In general, if b; and ¢; have already been
defined, let b; 1 denote the point at distance 2 from both ¢; and a;41, lying on
the right-hand side of their connecting line, and let ¢;4+1 # ¢; be the (other)
point of the z-axis at distance 2 from b;;;. Let C, the set of centers of the
disks forming the bridge, consist of all points a;, b;,¢; (1 =1,2,3,...) and their
reflections about the z-axis. Note that the points ¢; € C lie on the z-axis, so
they are identical with their reflections.

We need four properties of this construction, whose simple trigonometric
proofs can be found in [3]:

1. the distance between any two points in C is at least 2;

2. all unit disks around a;, b;,¢; (i = 2,3,4,...) are kept fixed by their neigh-
bors;

3. all points by, bg, by, ... lie strictly below the line y = /3;

4. the z-coordinate of ¢; is smaller than that of a;41 (i =1,2,3,...).

It is not hard to see that the difference between the z-coordinates of ¢; and a;41
tends to zero as i tends to infinity.

Next, we slightly modify the above construction. Take a small positive € and
replace f(z) by the strictly convex function

fe(w) == (1+&)f(z) —ef(0)

whose asymptote is the line y = 2v/3 — (2 — v/3)e. Clearly, f.(0) = f(0). If
we carry out the same construction as above, nothing changes before we first
find a point a; that lies below the line y = 2v/3. However, if ¢ is sufficiently
large, sooner or later we get stuck: the construction cannot be continued forever
without violating any of the conditions listed above. Let k be the first integer
for which such an event occurs, involving ay, ag41, bk, or ¢i. By varying e > 0, it
can be shown by a simple case analysis that the construction can be realized up
to level k so that the difference between the z-coordinates of by and ay is 1. It
follows that the disk around ay is tangent to the vertical line ¢ passing through
b,. Remove the rightmost disk centered at ¢ from the set. Thus from the above
condition, by taking the union of the part of C' built so far together with its
reflection about ¢, we obtain the following:



Lemma 2. There exist arbitrarily long finite packings (“double-bridges”) con-
sisting of five rows of unit disks, symmetric about the coordinate axes, in which
all but eight disks are kept fixed by their neighbors. These eight exceptional
disks are at the two abutments of the double-bridge and their y-coordinates are

V3, +£(2+V3).

Notice that three such bridges can be connected at a “junction” depicted in

Fig. 2 so that the angles between their “long” half-axes of symmetries (corre-
sponding to the positive z-axis) are %’T Consequently, using six double-bridges
connected by six junctions one can enclose an arbitrarily large hexagonal region
H. Let us attach a one-way infinite bridge to each of the unused sides of the

junctions. As Boroczky pointed out, the resulting packing is stable.

) Bridge 3
Bridge 2

Bridge 1
Fig. 2. Junction of type 1.

Let us refer to the disks in the start (resp. target) configuration as white
(resp. black) disks. Now fix a large n, and take n white disks. Use O(y/n) of them
to build six junctions connected by six double-bridges (as described above) to
enclose a hexagonal region that can accommodate the n nonoverlapping black
disks. See also Fig. 3. Divide the remaining white disks into six roughly equal
groups, each of size § — O(y/n), and rearrange each group to form the initial
section of a one-way infinite bridge attached to the unused sides (“ports”) of the
junctions. Notice that the number of necessary moves is at least (1 + 31—0) n —
O(y/n). To see this, it is enough to observe, that in order to fill the first target,
we have to break up the hexagonal ring around the black disks. That is, we have
to move at least one element of the six double-bridges enclosing H. However,
with the exception of the at most 6 x 5 = 30 white disks at the far ends of the

truncated one-way infinite bridges, every white disk is fixed by its neighbours.



Each of these bridges consists of five rows of disks of “length” roughly 5, where
the length of a bridge is the number of disks along its side. Therefore, before we
could move any element of the ring around H, we must start at a far end and
move a sequence of roughly =t white adjacent disks.

Instead of enclosing the n black disks by a hexagon, we can construct a
triangular ring 7" around them, consisting of three double-bridges (see Fig. 3). To

junctions —
of type 2

N

<— double bridges
¥~ double bridges

? —
junctions

of type 1 . . .
<« One-way infinite one-way infinite

bridges bridges
(a) (b)

Fig. 3. Two start configurations based on hexagonal and triangular rings.

achieve this, we have to build a junction of three sides establishing a connection
between the abutments of three bridges such that the angles between their half-
axes of symmetry are %’T, 57”, and %. Such a junction is shown on Fig. 4. The
convex hull of the disk centers (for the disks in the junction) is a pentagon
symmetric with respect to a vertical line passing through the top vertex. Four
out of the five centers along each of the three sides of the pentagon connected to
bridges are collinear. The disk centers on the other two sides form two slightly
concave chains. The number of necessary moves is at least (1 + %) n — O0(y/n)
for this second construction. This completes the proof of Theorem 2. O

Remarks. We believe that our lower bound in Theorem 2 is closer to the truth.
Closing the gap between the bounds remains an interesting problem which seems
to require new ideas.

Note that moving out in STEP 1 only start disks whose centers are right of £
and those disks intersecting ¢ would not necessarily free all targets whose centers
are right of £. This is the reason for working with a strip of width 6 around /;
in fact imposing a bound on the number of disks contained in a strip of width
4, which extends three units to the left of £ and one unit to the right of £ would
be enough.



Bridge 3

Bridge 1

Fig. 4. Junction of type 2.

3 Arbitrary disks

For the reconfiguration of systems of arbitrary disks we obtain tight bounds
(modulo lower order terms):

Theorem 3. Given a pair of start and target configurations, consisting of n
disks of arbitrary radii each, 2n moves always suffice for transforming the start
configuration into the target configuration. The entire motion can be computed
in O(nlogn) time. On the other hand, there exist pairs of configurations that
require 2n — o(n) moves for this task, for every sufficiently large n.

Proof. The upper bound is immediate, using the universal reconfiguration algo-
rithm described above. The recursive lower bound construction is depicted in
Figure 6. The basic construction in Figure 5 (which will be repeated recursively)
gives a lower bound of ~ 3n/2: it consists of a large disk surrounded by n — 1
small disks, whose centers form a regular polygon with n — 1 vertices (let n be
even). The target configuration has all small disks inside the original big disk
and the large disk somewhere else. No small disk target can be filled before the
large disk moves away, that is, before roughly half of the n — 1 small disks move
away. So about 3n/2 moves in total are necessary.

The recursive construction is obtained by replacing the small disks around a
big one by the ”same” construction scaled (see Figure 6). To make it work we
choose: 1) all disks of distinct radii, and 2) the small disks on the last level or
recursion have targets inside the big ones they surround (the other disks have
targets somewhere else). Since all disks have distinct radii, one can think of them



Fig. 5. A simple lower bound construction (basic step for the recursive construction)
for sliding disks of arbitrary radii.

as being labeled. If there are k levels in the recursion, about n/2+n/4+ - -+n/2*
non-target moves are necessary. The precise calculation follows.

OQO
a@o a@o
OQ Qo

OQO oﬁo . .
“rr W W
o o5 o o ) (] ) @

Fig. 6. Recursive lower bound construction for sliding disks of arbitrary radii: m = 2
and k = 3.

There is one large disk labeled 0, and 2m + 1 groups of smaller disks around
it close to the vertices of a regular (2m + 1)-gon (m > 1). Let m be fixed, and
k be the number of levels in the recursion (m and k will be chosen later). Let
n = N(k) be the number of disks in the set, and = X (k) be the number of
non-target moves performed (at level k). We have

N@O)=1, X(0)>0, N1)=2m+2, X(1)>m.
N (k) and X (k) satisfy the following recurrences:
N(k)=2m+1)N(k—-1)+1,

X (k) >mN(k—1)+m+1)mN(E—-2)+...+(m+1)"2mN(1)+ (m+1)F?
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The first recurrence gives

2 1k+171
N(k):(2m+1)’“+...+(2m+1)+1:%.

Plugging this into the inequality for X (k) yields

1o ki ' k—1 ' '
Xk >mS %(m +1) == S (@m+ 1) ) m+ 1)

i=0 i=0

N | =

Using standard manipulations, the above inequality becomes

(2m 4+ DFF —2(m + 1) 1

X (k) >
( ) - 2m
This can be rewritten as
X(h) (2m 4+ 1)FF1 — 1 —2(m + 1)k 42 (m + 1)1 -1
=n— —F .
- 2m m
Put
~(m+ 1R 1
= -~ .
Then

_ (m+ Dk < <m+1

k+1
g — 0, for k — oc.
n CEmr UM 1= \2m 1 1) o >

Thus n +z > 2n — z = 2n — o(n) and the lower bound follows for n = N (k).
The same result carries over for all sufficiently large n. In particular for m = 1,

we get n +z = 2n — O(nlog3 2) — 9 — O(n0.631)_
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