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t. Given a pair of start and target 
on�gurations, ea
h 
onsist-ing of n pairwise disjoint disks in the plane, what is the minimum num-ber of moves that suÆ
e for transforming the start 
on�guration into thetarget 
on�guration? In one move a disk slides in the plane without inter-se
ting any other disk, so that its 
enter moves along an arbitrary (open)
ontinuous 
urve. We dis
uss eÆ
ient algorithms for this task and esti-mate their number of moves under di�erent assumptions on disk radii anddisk pla
ements. For example, with n 
ongruent disks, 3n2 +O(pn log n)moves always suÆ
e for transforming the start 
on�guration into thetarget 
on�guration; on the other hand, �1 + 115 �n � O(pn) moves aresometimes ne
essary.1 Introdu
tionConsider a set (system) of n pairwise disjoint obje
ts in the plane that needto be brought from a given start (initial) 
on�guration S into a desired goal(target) 
on�guration T . The motion planning problem for su
h a system isthat of 
omputing a sequen
e of obje
t motions (s
hedule) that a
hieves thistask. Depending on the existen
e of su
h a sequen
e of motions, we say thatthe problem is feasible or respe
tively, infeasible. Here we restri
t ourselves tosystems of disks with pairwise disjoint interiors, as obje
ts, and moves that slidea disk without interse
ting any other disk throughout the motion. The disks arenot labeled, therefore if there exist 
ongruent disks in the system, o

upying anyof the target positions with a 
ongruent disk is allowed.It is easy to see that, for the 
lass of disks, the problem is always feasible.More generally, it is also feasible for the 
lass of all 
onvex obje
ts, using slidingmoves (Theorem 1 below). This old result appears in the work of Fejes T�oth andHeppes [8℄, but it 
an be tra
ed ba
k to de Bruijn [5℄; the algorithmi
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of the problem have been studied by Guibas and Yao [9℄. We refer to this set ofmotion rules (moves) as the sliding model. Other re
on�guration rules (models)for systems of disks have been examined re
ently, for example: in [6℄ moves arerestri
ted so that a disk 
an only be pla
ed in a position where it is adja
ent to atleast two other disks; in [1℄ moves are translations along a �xed dire
tion at ea
hstep. Re
on�guration for modular systems a
ting in a grid-like environment, andwhere moves must maintain 
onne
tivity of the whole system has been re
entlyaddressed in [7℄.Theorem 1. Any set of n 
onvex obje
ts in the plane 
an be separated via trans-lations all parallel to any given �xed dire
tion, with ea
h obje
t moving on
e only.If the topmost and bottommost points of ea
h obje
t are given (or 
an be 
om-puted in O(n logn) time), an ordering of the moves 
an be 
omputed in O(n logn)time.The following simple universal algorithm that 
an be adapted to any set ofn 
onvex obje
ts performs 2n moves for re
on�guration of n disks. In the �rststep (n moves), in de
reasing order of the x-
oordinates of their 
enters, slide thedisks initially along a horizontal dire
tion, one by one to the far right. Note thatno 
ollisions 
an o

ur. In the se
ond step (n moves), bring the disks "ba
k" totarget positions in in
reasing order of the x-
oordinates of their 
enters. (Gen-eral 
onvex obje
ts need rotations and translations in the se
ond step). Alreadyfor the 
lass of disks, one 
annot do mu
h better in terms of the number ofmoves (see Theorem 3). For the 
lass of segments (as obje
ts), it is easy to 
on-stru
t examples that require 2n�1 moves for re
on�guration, even for 
ongruentsegments.A move is a target move if it slides a disk to a �nal target position. Otherwise,it is a non-target move. Our lower bounds use the the following argument: if notarget disk 
oin
ides with a start disk (so ea
h disk must move), a s
hedule withx non-target moves 
onsists of at least n+ x moves.Our paper is organized as follows. In Se
tion 2 (Theorem 2), we estimate thenumber of ne
essary moves for the re
on�guration of systems of 
ongruent disks.In Se
tion 3 (Theorem 3), we estimate the number of ne
essary moves for there
on�guration of systems of disks of arbitrary radii.2 Congruent disksWe now 
onsider re
on�guring sets of 
ongruent disks in the plane. First, weprove the existen
e of a line bise
ting the set of 
enters of the start disks su
hthat the strip of width 6 around this line 
ontains a small number of disks. Aslightly weaker statement guaranteeing the existen
e of a bise
ting line that 
utsthrough few disks was given by by Alon et. al [2℄. We have in
luded our almostidenti
al proof for 
ompleteness.Lemma 1. Let S be a set of n pairwise disjoint unit (radius) disks in the plane.Then there exists a line ` that bise
ts the 
enters of the disks su
h that the parallel2



strip of width 6 around ` (that is, ` runs in the middle of this strip) 
ontainsentirely at most O(pn logn) disks.Proof. Set m = 
2pn logn where 
2 > 0 is a suitable large 
onstant to be 
hosenlater. Assume for 
ontradi
tion that the strip of width w = 6 around ea
h linebise
ting the set of 
enters of S 
ontains at least m disks. Set k = dpn= logneand 
onsider the k bise
ting lines that form angles i� with the positive dire
tionof the x-axis (in 
ounter
lo
kwise order), where i = 0; : : : ; k � 1, and � = �=k.Let Ai be the set of disks 
ontained (entirely) in the i-strip of width w = 6around the ith bise
ting line, i = 0; : : : ; k � 1. Clearlyn � jA0 [ : : : Ak�1j � k�1Xi=0 jAij � X0�i<j�k�1 jAi \ Aj j (1)by the in
lusion-ex
lusion formula. By our assumption Pk�1i=0 jAij � km. Thesummand jAi \ Aj j 
ounts the number of disks 
ontained in the interse
tion ofthe strips i and j. This interse
tion is a rhombus whose area isFij = w2sin(j � i)� :Sin
e the disks are pairwise disjoint,jAi \ Aj j � Fij� :We thus have X0�i<j�k�1 jAi \ Aj j = O0� X0�i<j�k�1 1sin (j � i)�1A :The identity sin� = sin(� � �) yieldsX0�i<j�k�1 1sin (j � i)� � k bk=2
Xi=1 1sin i� :For 1 � i � k=2 1sin i� = 1sin i�k = O�ki� :Consequently the se
ond sum in Equation (1) is bounded as follows:X0�i<j�k�1 jAi \ Aj j = O0�k2 bk=2
Xi=1 1i1A = O(k2 log k):3



Let 
1 > 0 be an absolute 
onstant su
h thatP0�i<j�k�1 jAi\Aj j � 
1 �k2 log k.Sin
e log k � (logn)=2 for n � 16, and using the above estimates, Equation (1)
an be rewritten asn � mk � 
1 � k2 log k � 
2pn lognr nlogn � 2
1 nlogn logn2 = (
2 � 
1)n:Take now 
2 = 
1 + 2, and obtain n � 2n whi
h is a 
ontradi
tion. utTheorem 2. Given a pair of start and target 
on�gurations S and T , 
onsistingof n 
ongruent disks ea
h, 3n2 +O(pn logn) moves always suÆ
e for transformingthe start 
on�guration into the target 
on�guration. The entire motion 
an be
omputed in O(n3=2(logn)�1=2) time. On the other hand, there exist pairs of
on�gurations that require �1 + 115�n�O(pn) moves for this task.Proof. We start with the upper bound. Let S0 and T 0 be the 
enters of thestart disks and target disks, respe
tively, and let ` be the line guaranteed byLemma 1. Without loss of generality we 
an assume that ` is verti
al. Denote bys1 = bn=2
 and s2 = dn=2e the number of 
enters of start disks to the left andto the right of `. Let m = O(pn logn) be the number of start disks 
ontained inthe verti
al strip around `. Denote by t1 and t2 the number of 
enters of targetdisks to the left and to the right of `, respe
tively. By symmetry we 
an assumethat t1 � n=2 � t2.Let R be a region 
ontaining all start and target disks (e.g., the smallestaxis-aligned re
tangle that 
ontains all disks). The algorithm has three steps.All moves in the region R are taken along horizontal lines, i.e., perpendi
ularlyto the line `.Step 1 Slide to the far right all start disks whose 
enters are to the right of `and the (other) start disks in the strip, one by one, in de
reasing order oftheir x-
oordinates (with ties broken arbitrarily). At this point all t2 � n=2target disks whose 
enters are right of ` are free.Step 2 Using all the s01 � n=2 remaining disks whose 
enters are to the left of`, in in
reasing order of their x-
oordinates, we �ll free target positions tothe right of `, in in
reasing order of their x-
oordinates: ea
h disk slides �rstto the left, then to the right on a wide ar
 and to the left again in the end.Note that s01 � n=2 � t2. Now all the target positions whose 
enters are tothe left of ` are free.Step 3 Move to pla
e the far away disks: �rst 
ontinue to �ll target positionswhose 
enters are to the right of `, in in
reasing order of their x-
oordinates.When we are done, we �ll target positions whose 
enters are to the left of `,in de
reasing order of their x-
oordinates. Note that at this point all targetpositions to the left of ` are \free."The only non-target moves are those done in Step 1 and their number isn=2 +O(pn logn), so the total number of moves is 3n=2 +O(pn logn).4



Algorithm. A trivial implementation of the algorithm examines allk = dpn= logne strip dire
tions ea
h in O(n) time, in order to �nd a suit-able one, as des
ribed in the proof of Lemma 1. After that, O(n logn) time isspent for this dire
tion for sorting and performing the moves. The resulting time
omplexity is O(n3=2(logn)�1=2).Lower bound. The target 
on�guration 
onsists of a set of n densely pa
kedunit (radius) disks 
ontained, for example, in a square of side length � 2pn.The disks in the start 
on�guration en
lose the target positions in a ring-likestru
ture with long \legs." Its design is more 
ompli
ated and uses \rigidity"
onsiderations as des
ribed below.A pa
king C of unit (radius) disks in the plane is said to be stable if ea
h diskis kept �xed by its neighbors [4℄. More pre
isely, C is stable if none of its elements
an be translated by any small distan
e in any dire
tion without 
olliding withthe others. It is easy to see that any stable system of (unit) disks in the plane hasin�nitely many elements. K. B�or�o
zky [3℄ showed that there exist stable systemsof unit disks with arbitrarily small density.The main building blo
k used in B�or�o
zky's 
onstru
tion was a one-wayin�nite \bridge" made up of disks, whi
h 
an be de�ned as follows. In Fig. 1,the initial se
tion of su
h a one-way in�nite bridge appears on the left of theverti
al line `. Fix an x-y re
tilinear 
oordinate system in the plane. Let us start
O

Y

X

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4

b∗
1

a∗

1

ℓ

Fig. 1. A double bridge and its verti
al line of symmetry `. The part left of ` formsthe initial se
tion of a one-way in�nite bridge.with �ve unit disks 
entered ata1 = (0; 2 +p3); b1 = (0;p3); 
1 = (1; 0); b�1 = �b1; a�1 = �a1;that serve as an \abutment." The bridge will be symmetri
 about the x-axis, soit is suÆ
ient to des
ribe the part of the pa
king in the upper half-plane. Theset of 
enters of the disks is denoted by C.5



Take a stri
tly 
onvex fun
tion f(x) de�ned for all x � 0 su
h that f(0) =2 + p3 and limx!1 f(x) = 2p3. Starting with a1, 
hoose a series of pointsa2; a3; a4; : : : belonging to the graph of f su
h that the distan
e between anytwo 
onse
utive points satis�esjai � ai+1j = 2 (i = 1; 2; 3; : : : ):All unit disks around these points belong to the pa
king, so that ai 2 C forevery i. These points will uniquely determine all other elements of C, a

ordingto the following rules.Let b2 be the point at distan
e 2 from both 
1 and a2, whi
h lies to the rightof the line 
1a2. On
e b2 is de�ned, let 
2 be the point on the x-axis, di�erentfrom 
1, whose distan
e from b2 is 2. In general, if bi and 
i have already beende�ned, let bi+1 denote the point at distan
e 2 from both 
i and ai+1, lying onthe right-hand side of their 
onne
ting line, and let 
i+1 6= 
i be the (other)point of the x-axis at distan
e 2 from bi+1. Let C, the set of 
enters of thedisks forming the bridge, 
onsist of all points ai; bi; 
i (i = 1; 2; 3; : : : ) and theirre
e
tions about the x-axis. Note that the points 
i 2 C lie on the x-axis, sothey are identi
al with their re
e
tions.We need four properties of this 
onstru
tion, whose simple trigonometri
proofs 
an be found in [3℄:1. the distan
e between any two points in C is at least 2;2. all unit disks around ai; bi; 
i (i = 2; 3; 4; : : : ) are kept �xed by their neigh-bors;3. all points b2; b3; b4; : : : lie stri
tly below the line y = p3;4. the x-
oordinate of 
i is smaller than that of ai+1 (i = 1; 2; 3; : : : ).It is not hard to see that the di�eren
e between the x-
oordinates of 
i and ai+1tends to zero as i tends to in�nity.Next, we slightly modify the above 
onstru
tion. Take a small positive " andrepla
e f(x) by the stri
tly 
onvex fun
tionf"(x) := (1 + ")f(x)� "f(0)whose asymptote is the line y = 2p3 � (2 � p3)". Clearly, f"(0) = f(0). Ifwe 
arry out the same 
onstru
tion as above, nothing 
hanges before we �rst�nd a point ai that lies below the line y = 2p3. However, if " is suÆ
ientlylarge, sooner or later we get stu
k: the 
onstru
tion 
annot be 
ontinued foreverwithout violating any of the 
onditions listed above. Let k be the �rst integerfor whi
h su
h an event o

urs, involving ak; ak+1; bk; or 
k. By varying " > 0, it
an be shown by a simple 
ase analysis that the 
onstru
tion 
an be realized upto level k so that the di�eren
e between the x-
oordinates of bk and ak is 1. Itfollows that the disk around ak is tangent to the verti
al line ` passing throughbk. Remove the rightmost disk 
entered at 
k from the set. Thus from the above
ondition, by taking the union of the part of C built so far together with itsre
e
tion about `, we obtain the following:6



Lemma 2. There exist arbitrarily long �nite pa
kings (\double-bridges") 
on-sisting of �ve rows of unit disks, symmetri
 about the 
oordinate axes, in whi
hall but eight disks are kept �xed by their neighbors. These eight ex
eptionaldisks are at the two abutments of the double-bridge and their y-
oordinates are�p3;�(2 +p3).Noti
e that three su
h bridges 
an be 
onne
ted at a \jun
tion" depi
ted inFig. 2 so that the angles between their \long" half-axes of symmetries (
orre-sponding to the positive x-axis) are 2�3 . Consequently, using six double-bridges
onne
ted by six jun
tions one 
an en
lose an arbitrarily large hexagonal regionH . Let us atta
h a one-way in�nite bridge to ea
h of the unused sides of thejun
tions. As B�or�o
zky pointed out, the resulting pa
king is stable.

Bridge 1

Bridge 2
Bridge 3

Fig. 2. Jun
tion of type 1.Let us refer to the disks in the start (resp. target) 
on�guration as white(resp. bla
k) disks. Now �x a large n, and take n white disks. Use O(pn) of themto build six jun
tions 
onne
ted by six double-bridges (as des
ribed above) toen
lose a hexagonal region that 
an a

ommodate the n nonoverlapping bla
kdisks. See also Fig. 3. Divide the remaining white disks into six roughly equalgroups, ea
h of size n6 � O(pn), and rearrange ea
h group to form the initialse
tion of a one-way in�nite bridge atta
hed to the unused sides (\ports") of thejun
tions. Noti
e that the number of ne
essary moves is at least �1 + 130�n �O(pn). To see this, it is enough to observe, that in order to �ll the �rst target,we have to break up the hexagonal ring around the bla
k disks. That is, we haveto move at least one element of the six double-bridges en
losing H . However,with the ex
eption of the at most 6� 5 = 30 white disks at the far ends of thetrun
ated one-way in�nite bridges, every white disk is �xed by its neighbours.7



Ea
h of these bridges 
onsists of �ve rows of disks of \length" roughly n30 ; wherethe length of a bridge is the number of disks along its side. Therefore, before we
ould move any element of the ring around H , we must start at a far end andmove a sequen
e of roughly n30 white adja
ent disks.Instead of en
losing the n bla
k disks by a hexagon, we 
an 
onstru
t atriangular ring T around them, 
onsisting of three double-bridges (see Fig. 3). To
H

junctions
of type 1

double bridges

one-way infinite
bridges

T

double bridges

one-way infinite
bridges

junctions
of type 2

(a) (b)Fig. 3. Two start 
on�gurations based on hexagonal and triangular rings.a
hieve this, we have to build a jun
tion of three sides establishing a 
onne
tionbetween the abutments of three bridges su
h that the angles between their half-axes of symmetry are 5�6 ; 5�6 ; and �3 . Su
h a jun
tion is shown on Fig. 4. The
onvex hull of the disk 
enters (for the disks in the jun
tion) is a pentagonsymmetri
 with respe
t to a verti
al line passing through the top vertex. Fourout of the �ve 
enters along ea
h of the three sides of the pentagon 
onne
ted tobridges are 
ollinear. The disk 
enters on the other two sides form two slightly
on
ave 
hains. The number of ne
essary moves is at least �1 + 115�n � O(pn)for this se
ond 
onstru
tion. This 
ompletes the proof of Theorem 2. utRemarks. We believe that our lower bound in Theorem 2 is 
loser to the truth.Closing the gap between the bounds remains an interesting problem whi
h seemsto require new ideas.Note that moving out in Step 1 only start disks whose 
enters are right of `and those disks interse
ting ` would not ne
essarily free all targets whose 
entersare right of `. This is the reason for working with a strip of width 6 around `;in fa
t imposing a bound on the number of disks 
ontained in a strip of width4, whi
h extends three units to the left of ` and one unit to the right of ` wouldbe enough. 8



Bridge 2
Bridge 3

Bridge 1Fig. 4. Jun
tion of type 2.3 Arbitrary disksFor the re
on�guration of systems of arbitrary disks we obtain tight bounds(modulo lower order terms):Theorem 3. Given a pair of start and target 
on�gurations, 
onsisting of ndisks of arbitrary radii ea
h, 2n moves always suÆ
e for transforming the start
on�guration into the target 
on�guration. The entire motion 
an be 
omputedin O(n logn) time. On the other hand, there exist pairs of 
on�gurations thatrequire 2n� o(n) moves for this task, for every suÆ
iently large n.Proof. The upper bound is immediate, using the universal re
on�guration algo-rithm des
ribed above. The re
ursive lower bound 
onstru
tion is depi
ted inFigure 6. The basi
 
onstru
tion in Figure 5 (whi
h will be repeated re
ursively)gives a lower bound of � 3n=2: it 
onsists of a large disk surrounded by n � 1small disks, whose 
enters form a regular polygon with n� 1 verti
es (let n beeven). The target 
on�guration has all small disks inside the original big diskand the large disk somewhere else. No small disk target 
an be �lled before thelarge disk moves away, that is, before roughly half of the n� 1 small disks moveaway. So about 3n=2 moves in total are ne
essary.The re
ursive 
onstru
tion is obtained by repla
ing the small disks around abig one by the "same" 
onstru
tion s
aled (see Figure 6). To make it work we
hoose: 1) all disks of distin
t radii, and 2) the small disks on the last level orre
ursion have targets inside the big ones they surround (the other disks havetargets somewhere else). Sin
e all disks have distin
t radii, one 
an think of them9



Fig. 5. A simple lower bound 
onstru
tion (basi
 step for the re
ursive 
onstru
tion)for sliding disks of arbitrary radii.as being labeled. If there are k levels in the re
ursion, about n=2+n=4+� � �+n=2knon-target moves are ne
essary. The pre
ise 
al
ulation follows.
0 0

Fig. 6. Re
ursive lower bound 
onstru
tion for sliding disks of arbitrary radii: m = 2and k = 3.There is one large disk labeled 0, and 2m+1 groups of smaller disks aroundit 
lose to the verti
es of a regular (2m+ 1)-gon (m � 1). Let m be �xed, andk be the number of levels in the re
ursion (m and k will be 
hosen later). Letn = N(k) be the number of disks in the set, and x = X(k) be the number ofnon-target moves performed (at level k). We haveN(0) = 1; X(0) � 0; N(1) = 2m+ 2; X(1) � m:N(k) and X(k) satisfy the following re
urren
es:N(k) = (2m+ 1)N(k � 1) + 1;X(k) � mN(k�1)+(m+1)mN(k�2)+ : : :+(m+1)k�2mN(1)+(m+1)k�1m:10



The �rst re
urren
e givesN(k) = (2m+ 1)k + : : :+ (2m+ 1) + 1 = (2m+ 1)k+1 � 12m :Plugging this into the inequality for X(k) yieldsX(k) � m k�1Xi=0 (2m+ 1)k�i � 12m (m+ 1)i = 12 k�1Xi=0((2m+ 1)k�i � 1)(m+ 1)i:Using standard manipulations, the above inequality be
omesX(k) � (2m+ 1)k+1 � 2(m+ 1)k+1 + 12m :This 
an be rewritten asX(k) � (2m+ 1)k+1 � 1� 2(m+ 1)k+1 + 22m = n� (m+ 1)k+1 � 1m :Put z = (m+ 1)k+1 � 1m :Then zn = 2 (m+ 1)k+1 � 1(2m+ 1)k+1 � 1 � 2� m+ 12m+ 1�k+1 ! 0; for k !1:Thus n + x � 2n � z = 2n � o(n) and the lower bound follows for n = N(k).The same result 
arries over for all suÆ
iently large n. In parti
ular for m = 1,we get n+ x = 2n�O(nlog3 2) = 2n�O(n0:631). utA
knowledgement. The authors thank Jan Siwanowi
z for his valuable remarksand for many interesting 
onversations on the topi
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