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3 Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
geza@renyi.hu

Abstract. Given n red and n blue points in convex position in the plane,
we show that there exists a noncrossing alternating path of length n +
c
√

n
log n

. We disprove a conjecture of Erdős by constructing an example

without any such path of length greater than 4
3
n + c′

√
n.

1 Introduction

It is a basic problem in geometric graph theory to decide which graphs can be
drawn on a given point set with noncrossing straight-line edges. For instance, it
is known that every outerplanar graph (i.e., triangulated cycle) G of n vertices
can be drawn on any set of n points in general position in the plane [GMPP91].
Moreover, if G is a rooted tree, one can find such an embedding even if the image
of the root is specified [IPTT94,T96]. An unsolved problem of this kind is to find
the size of the smallest “universal” set in the plane, on which one can draw every
planar graph of n vertices with noncrossing straight-line edges [dFPP90,CK89].

We obtain many interesting new questions by considering colored point sets;
see [KK04] for a survey. It is a well known mathematics contest problem to prove
that between any set R of n red and any set B of n blue points in general position
in the plane there is a noncrossing matching, i.e., a one-to-one correspondence
between their elements so that the segments connecting the corresponding point
pairs are pairwise disjoint. Moreover, if R and B are separated by a line, one
can also find an alternating Hamilton path, i.e., a noncrossing polygonal path
passing through every element of R ∪ B such that any two consecutive vertices
have opposite colors [AGH97]. If we do not assume that R and B are separated,
then the last statement is known to be false for n ≥ 8, even if R∪B is in convex
position, i.e., its elements form the vertex set of a convex 2n-gon. The following
problem was communicated to the second named author by Erdős around 1989.
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Problem. Determine or estimate the largest number � = �(n) such that, for
every set of n red and n blue points on a circle, there exists a noncrossing alter-
nating path consisting of � vertices.

Of course, the condition that the points are on a circle is equivalent to the
assumption that they are in convex position.

Erdős and others conjectured that the asymptotically extremal configuration
was the following. Suppose n is divisible by four. Cut the circle into four intervals,
and place in them n

2 red, n
4 blue, n

2 red, and 3
4n blue points, respectively. It is easy

to see that in this construction the number of vertices in the longest noncrossing
alternating path is 3

2n + 2. That is, we have �(n) ≤ 3
2n + 2. The main aim of

this note is to disprove Erdős’s conjecture by exhibiting a better construction
in Section 2. A similar construction was found independently and at about the
same time by Abellanas et al. [AGHT03].

From the other direction, it is easy to argue that �(n) ≥ n. Indeed, divide
the circle into two arcs, each containing n points. At least half of the points
belonging to the first arc are of the same color, say, red. Then the second arc
must contain the same number of blue points. Enumerate the red (resp. blue)
points of the first (resp. second) arc in clockwise (resp. counterclockwise) order.
Starting with the first red point on the first arc, and connecting each point
with the next available element of opposite color on the other arc, we obtain
a noncrossing alternating path of length 2�n

2 � ≥ n. In Section 3, we improve
this bound by a term that tends to infinity. Our results can be summarized as
follows.

Theorem 1. There exist constants c, c′ > 0 such that

n + c

√
n

log n
< �(n) <

4
3
n + c′

√
n.

It is an annoying feature of this problem that it is not clear whether the
assumption that the points are in convex position plays any significant role. In
particular, the above argument for finding an alternating path of length n easily
generalizes to arbitrary 2-colored sets, on the other hand, our proof for the lower
bound in Theorem 1 relies heavily on the fact that the points are in convex
position. We conjecture that the upper bound in Theorem 1 is asymptotically
tight, that is,

|�(n) − 4
3
n| = o(n).

See also our Conjecture at the end of the paper.
The problem of covering a set of n red and n blue points with several non-

crossing alternating paths was discussed by Kaneko, Kano, and Suzuki [KKS04].
Alternating Hamiltonian cycles with at most n − 1 crossings were found by
Kaneko, Kano, and Yoshimoto [KKY00]. Their result cannot be improved. Many
other interesting questions about partitioning the plane into a given number of
convex pieces, each containing roughly or exactly the same number of red and
blue points, were studied in [BKS00,BM01,S02]. Analogous questions can be
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asked when we color by red and blue all the
(
n
2

)
segments between n points in

general position in the plane. Furthermore, instead of long alternating paths, we
may be interested in finding long monochromatic ones [KPTV98]. Merino et al.
[MSU05] studied alternating paths in k-colored point sets for k ≥ 3.

2 Upper Bound

Consider a ‘2-equicolored’ set C of 2n points in convex position in the plane.
That is, let half of the elements of C be colored red and half of them blue. An
uninterrupted run (or, in short, run) is a maximal set of consecutive points of C
that have the same color. The length of a run is the number of its elements. We
say that C is a k-configuration if it consists of k red and k blue runs.

A set of pairwise disjoint segments, each of which connects two points of
different colors, is called a matching. The size of a matching is defined as the
total number of points participating in it, that is, twice the number of segments.
A matching is said to be separated if there is a straight-line that intersects the
interior of each of its segments.

Lemma 2.1. Let C be a k-configuration for some k > 0, which has a noncrossing
alternating path of length l. Then C has a separated matching whose size is at
least l − 4k − 1.

Proof. Suppose without loss of generality that all elements of C lie on a circle.
Consider a noncrossing alternating path p of length l. Fix a chord c of the
circle that crosses the first and last segments along p, but does not pass through
any point of C. Let M1 denote the matching consisting of all odd-numbered
segments of p. Clearly, the size of M1 is at least l − 1. Let M2 ⊆ M1 be the set
of all segments in M1 that cross c. By definition, M2 is a separated matching.

To establish the lemma, it is enough to show that the number of elements of
M1 that do not cross c is at most 2k. Let us call these segments outer segments.
For each pair of consecutive points of C that have different colors, pick a point
between them on the circle. Any two consecutive runs of C are separated by
at least one such point, so the number of points we selected is precisely 2k.
Every outer segment s divides the circle into two (closed) arcs. One of them,
I(s), contains both endpoints of c; let the other one be denoted by J(s). Since
s connects two points of different colors, J(s) must contain at least one of the
selected points. On the other hand, both endpoints of the alternating path p
belong to I(s), so J(s) cannot contain the endpoints of any outer segment other
than the endpoints of s. Thus, for any two outer segments, s and s′, J(s) and
J(s′) are disjoint, so the selected points lying in the corresponding arcs J(s) and
J(s′), resp., are different. Hence, the number of outer segments cannot exceed
the total number of selected points, which is 2k. See Fig. 1. �

Represent any k-configuration with runs S1, S2, . . . , S2k by the sequence
(|S1|, |S2|, . . . , |S2k|). We assume that the odd-numbered runs are red and the
even-numbered are blue.
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Fig. 1. J(s) and J(s′) are disjoint.

ss1 3

2ks

2s

s2i+1

s4

Fig. 2. The k-configuration (k n
3k−2

, (2k − 1) n
3k−2

, k n
3k−2

, n
3k−2

, . . . , n
3k−2

).

Lemma 2.2. Let k ≥ 2 and assume that n is divisible by 3k−2. Then the size of
any separated matching in the k-configuration (k n

3k−2 , (2k−1) n
3k−2 , k n

3k−2 , n
3k−2 ,

. . . , n
3k−2 ) is at most 2n 2k−1

3k−2 .

Proof. Let S1, S2, . . . , S2k denote the consecutive runs of the k-configuration
(k n

3k−2 , (2k− 1) n
3k−2 , k n

3k−2 , n
3k−2 , . . . , n

3k−2 ) (see Fig. 2). Let M be a separated
matching. We distinguish five cases, according to the set of runs that are con-
nected to S2 by at least one edge in M .

Case 1: No edge of M has an endpoint in S2.
Then M uses at most n−n 2k−1

3k−2 blue points, so its size is at most 2n−2n 2k−1
3k−2 =

2n k−1
3k−2 < 2n 2k−1

3k−2 .
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Case 2: No edge of M runs between S2 and S1 ∪ S3.
Now the points in S2 can be connected only to the elements of S5, S7, . . . , S2k−1.
Hence, at most n k−2

3k−2 points of S2 are matched and at least n k+1
3k−2 are missed

by M . The size of M is at most 2n − 2n k+1
3k−2 < 2n 2k−2

3k−2 .

Case 3: S2 is connected by an edge of M to both S1 and S3.
Since M is a separated matching, the blue points in S4, S6, . . . , S2k are not
matched, so M uses at most n 2k−1

3k−2 blue points. Thus, the size of M is at most
2n 2k−1

3k−2 .

Case 4: S2 is connected by an edge of M to S1, but not to S3.
Suppose that the size of M exceeds 2n 2k−1

3k−2 . Then M matches more than n k
3k−2

points of S2, so at least one edge of M must connect S2 to a red run different
from S1. Let i > 1 denote the smallest integer such that there is an edge of M

between S2 and S2i+1. Then M matches at most nk+(k−i)
3k−2 = n 2k−i

3k−2 blue points
from S2 and misses the n k−i

3k−2 blue points in S2i+2, S2i+4, . . . , S2k, because M is a

separated matching. Therefore, it does not match at least n (2k−1−(2k−i))+(k−i)
3k−2 =

n k−1
3k−2 blue points, and its size is at most 2n 2k−1

3k−2 .

Case 5: S2 is connected by an edge of M to S3, but not to S1.
By symmetry, the same argument applies as in the previous case. �

Lemma 2.3. For any positive integers k and n ≥ k, there exists a k-configuration
of 2n points with no alternating path longer than 2n 2k−1

3k−2 + 16k.

Proof. The statement is trivial for k = 1, and also for n ≤ 8k. Suppose that
k ≥ 2, and n > 8k. Let n0 ≤ n be the largest integer divisible by 3k − 2. Let
C0 denote a k-configuration consisting of n0 red and n0 blue points, considered
in Lemma 2.2. Add n − n0 red points to S1 and n − n0 blue points to S2, and
denote the resulting k-configuration by C.

We claim that C satisfies the requirement of the lemma. Let p be an alternat-
ing path of length l(p) in C. By Lemma 2.1, there is a separated matching M1 in
C, whose size is l(M1) ≥ l(p)−4k−1. Remove from M1 the 2n−2n0 points that
were added later and all edges in M1 incident to them. We obtain a separated
matching M0 of C0 of size l(M0) ≥ l(M1) − 4(n − n0) ≥ l(M1) − 4(3k − 2) =
l(M1)− 12k+ 8 ≥ l(p)− 16k. By Lemma 2.2, we have l(M0) ≤ 2n0

2k−1
3k−2 , so that

l(p) ≤ 2n 2k−1
3k−2 + 16k. �

The upper bound in Theorem 1 immediately follows from Lemma 2.3. For
any n, set k = �√n	. Applying Lemma 2.3, we obtain a configuration of n red
and n blue points in which the length of any noncrossing alternating path is at
most 2k−1

3k−2 · 2n + 16k < 4n
3 + 20

√
n, as required.

3 Lower Bound

As before, let C be the vertex set of a convex 2n-gon, with n red and n blue
elements. Suppose without loss of generality that the elements of C lie on a
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circle. A set of consecutive vertices of C (of not necessarily the same color) is
said to be an interval. The length of an interval is its cardinality.

Assume that we can find a separated matching M of size 2l, all of whose seg-
ments are crossed by a chord c. Then we can easily construct a noncrossing alter-
nating path of length 2l. To see this, enumerate the segments s1, s2, . . . , sl of M
according to the order of their intersection points with c. Let ri and bi be the red
and blue endpoints of si, respectively. Then p = (r1b1, b1r2, r2b2, . . . , bl−1rl, rlbl)
is a noncrossing alternating path of length 2l.

Therefore, it is sufficient to establish a lower bound on the size of a separated
matching in a k-configuration of 2n points. We divide the proof into two steps.
Lemmas 3.1 and 3.2 provide reasonably good bounds when k is small and when
k is large, respectively. Their combination implies the general lower bound in
Theorem 1.

Lemma 3.1. Let k, m, n be positive integers such that k = 2m divides n. Then
every k-configuration C of 2n points contains a separated matching of size at
least n

(
1 + 1

k(m+1)

)
.

Proof. Let S be the run of length at least n
k . Let I0 denote a monochromatic

interval in S, whose length is precisely n
k . For 1 ≤ i ≤ m+1, let Ii be an interval of

length 2i−1 n
k such that I0, I1, . . . , Im+1 are consecutive in the clockwise direction

(see Fig. 3). These intervals form a partition of the underlying set C consisting
of all 2n vertices. Assume without loss of generality that all elements of I0 are
blue. �

Suppose for contradiction that there is no separated matching whose size is
at least n

(
1 + 1

k(m+1)

)
.

Claim. For every 0 ≤ i ≤ m + 1, the interval Ji = I0 ∪ I1 ∪ . . . ∪ Ii has at least(
2i−1 1

k + 1
2k − i

2k(m+1)

)
n blue points. Moreover, strict inequality holds if i > 0.

Note that Lemma 3.1 immediately follows from the Claim. Indeed, for i =
m + 1, we obtain that there are more than

(
2m 1

k + 1
2k − m+1

2k(m+1)

)
n = n blue

points on the circle, which is a contradiction.

Proof of Claim. We proceed by induction on i. For i = 0, the statement
obviously holds. Assume that for some i ∈ {0, 1, 2, . . . , m}, there are at least(
2i−1 1

k + 1
2k − i

2k(m+1)

)
n blue points in the interval Ji. We show that there are

more than
(
2i−1 1

k − 1
2k(m+1)

)
n blue points in Ii+1.

I5

I4I3
2II1

0I
m+1I
Fig. 3. I0, I1, . . . , Im+1 form a partition of the vertices.
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Suppose this is not the case. Then there are at least l =
(
2i−1 1

k + 1
2k(m+1)

)
n

red points in Ii+1. Since we have 2i−1 1
k + 1

2k − i
2k(m+1) ≥ 2i−1 1

k + 1
2k(m+1) , the

number of blue points in Ji is at least l. Thus, there is a separated matching
of size 2l between the blue points of Ji and the red points of Ii+1. Let M be
the most ‘economical’ such matching of size 2l. That is, if b1, b2, . . . , bs (s ≥ l)
denote the blue points of Ji listed in counterclockwise order and r1, r2, . . . , rt

(t ≥ l) denote the red points of Ii+1 listed in clockwise order, then let M consist
of the segments b1r1, b2r2, . . . , blrl.

Let K denote the interval between bl and rl, oriented clockwise. All blue
points from K not matched by M lie in Ii+1, so their number is at most ub =(
2i−1 1

k − 1
2k(m+1)

)
n. All red points of K not matched by M lie in Ji, so their

number is at most

ur =
(

2i 1
k
−

(
2i−1 1

k
+

1
2k

− i

2k(m + 1)

))
n

=
(

2i−1 1
k
− 1

2k
+

i

2k(m + 1)

)
n.

Using the fact that ub − ur =
(

1
2k − i+1

2k(m+1)

)
n ≥ 0, we obtain that ub ≥ ur.

Let L denote the complement of K in the set C of all points. Clearly, L
has at least n0 = n − l − ub =

(
1 − 2i 1

k

)
n points of each color. Divide L into

two intervals L1, L2, each of length at least n0. Obviously, at least one of the
following two conditions is satisfied:
(a) There are at least n0

2 blue points in L1 and at least n0
2 red points in L2.

(b) There are at least n0
2 red points in L1 and at least n0

2 blue points in L2.

We can assume without loss of generality that (a) is true. Then there exists a
separated matching M ′ of size at least n0 between intervals L1 and L2. The union
of M and M ′ is also a separated matching. (One endpoint of the corresponding
chord lies between the intervals Ji and Ii+1, and the other between L1 and L2.)
The size of M ∪ M ′ is at least

2l + n0 =
(

2i−1 1
k

+
1

2k(m + 1)

)
2n +

(
1 − 2i 1

k

)
n =

(
1 +

1
k(m + 1)

)
n,

which is a contradiction. Hence, our assumption was wrong: there are more than(
2i−1 1

k − 1
2k(m+1)

)
n blue points in Ii+1.

Consequently, the number of blue points in the interval Ji+1 = I0 ∪ I1 ∪ . . .∪
Ii+1 is larger than

(
2i−1 1

k
+

1
2k

− i

2k(m + 1)

)
n +

(
2i−1 1

k
− 1

2k(m + 1)

)
n

=
(

2i 1
k

+
1
2k

− i + 1
2k(m + 1)

)
n,

completing the induction step, the proof of the Claim, and hence the proof of
Lemma 3.1.
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Lemma 3.2. For n ≥ k ≥ 1, every k-configuration of 2n points admits an
alternating path whose length is at least n + k − 1.

Proof. Let v1, v2, . . . , v2n be the vertices of a k-configuration, in clockwise di-
rection. Assume that v1 is red. For any 1 ≤ i < 2n, if vi is red and vi+1 is blue,
then vi and vi+1 are called special vertices. There are 2k special and 2n − 2k
non-special vertices. Moreover, exactly half of the special and exactly half of
the non-special vertices are red, and blue. Let m be the smallest number such
that there are n − k non-special vertices in the set {vi | 1 ≤ i ≤ m}. Assume
that t ≥ �n−k

2 � of them are red. (The other case can be settled analogously.)
Denote those red points by u1, u2, . . . , ut, in clockwise direction. Then the set
{vi | m + 1 ≤ i ≤ 2n} also contains n− k non-special vertices, and t of them are
blue. Denote those blue points by w1, w2, . . . , wt, in counterclockwise direction.

The vertices u1, u2, . . . , ut divide the set {vi | 1 ≤ i ≤ m} into t + 1 intervals
of consecutive vertices, denote them by I0, I1, . . . , It, in clockwise direction. For
0 ≤ 1 ≤ t, if Ii contains some special vertices, denote them by ui,1, ui,2, . . . ui,αi ,
in clockwise direction. Since u1, u2, . . . , ut are non-special, ui,j is red if j is odd,
and blue if j is even.

Similarly, the vertices w1, w2, . . . , wt divide the set {vi | m + 1 ≤ i ≤ 2n}
into t + 1 intervals of consecutive vertices, denote them by J0, J1, . . . , Jt, in
counterclockwise direction. For 0 ≤ 1 ≤ t, if Ji contains some special vertices,
denote them by wi,1, wi,2, . . . wi,βi , also in counterclockwise direction. Now wi,j

is blue if j is odd, and red if j is even.
Finally, consider the following path:

u0,1, u0,2, . . . u0,α0 , u1, w0,1, w0,2, . . . w0,β0 , w1, u1,1, u1,2, . . . u1,α1 , u2,

w1,1, w1,2, . . . w1,β1 , w2, . . . , ut,1, ut,2, . . . ut,(αt−1), wt,1, wt,2, . . . wt,βt .

It is a noncrossing, alternating path of length 2t + 2k− 1 ≥ n− k + 2k− 1 =
n + k − 1. This concludes the proof of the lemma. �

Now we are ready to prove the lower bound in Theorem 1. Suppose that we
have a k-configuration of 2n points. We distinguish two cases. If k ≥ 1

10

√
n

log n ,

then, by Lemma 3.2, there exists an alternating path of length at least n +
1
10

√
n

log n − 1.

We are left with the case k < 1
10

√
n

log n . Let m be the least positive integer

such that k ≤ 2m. Then m < 1+log k. Let n′ = 2m� n
2m 	 ≥ n−2m and choose any

subconfiguration C′ of n′ red and n′ blue points from C. C′ is a k0-configuration
for some k0 ≤ k. So it has a run of length at least n′

k0
≥ n′

k ≥ n′
2m . Now, according

to Lemma 3.1, C has a separated matching (and also an alternating path) whose
size is at least

n′ +
n′

2m(m + 1)
≥ n − 2k +

n

2m+1(m + 1)
≥

n − 2k +
n

4k(log k + 2)
≥ n − 2k +

n

2k log n
≥

n − 1
5

√
n

log n
+

5n

log n

√
log n

n
≥ n + 4

√
n

log n
.
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This completes the proof of the lower bound in Theorem 1.

Conjecture. For any fixed k and large n, every k-configuration of 2n points
admits a separated matching of size at least 2n 2k−1

3k−2 + o(n).
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