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Abstract

Let P be a set of n points in R3 , not all in a common plane. We solve a
problem of Scott (1970) by showing that the connecting lines of P assume at
least 2n− 7 different directions if n is even and at least 2n− 5 if n is odd. The
bound for odd n is sharp.

1 Introduction

According to the Gallai-Sylvester theorem [1, 6], for any set P of finitely many points
in the plane, not all on a line, there exists a line that passes through precisely two
elements of P . Erdős noticed that this result has the following corollary: Every n-
element set P with the above properties, with n ≥ 3, determines at least n connecting
lines [6].

In 1970, Scott [16] raised the following questions: What is the minimum number
of different directions assumed by the connecting lines of (1) n points in the plane,
not all on a line, (2) n points in 3-space, not all on a plane?
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Figure 1: A set with n = 7 points that determines 2n − 5 = 9 directions.

In 1982, after some initial results by Burton and Purdy [3], Ungar [18] solved the
first problem, by verifying Scott’s conjecture that in the plane the above minimum
is equal to 2⌊n/2⌋, for any n > 3. For even n, this result is considerably stronger
than the corollary of the Gallai-Sylvester theorem mentioned above. Ungar’s proof
is a real gem, a brilliant application of the method of allowable sequences invented
by Goodman and Pollack [8], [9]. Moreover, it solves the problem in an elegant
combinatorial setting, for “pseudolines”, as was suggested independently by Goodman
and Pollack and by Cordovil [4]. Interestingly, there is an overwhelming diversity of
extremal configurations, for which equality is attained. Four infinite families and
more than one hundred sporadic configurations were catalogued by Jamison and Hill
[11]. See also [10] for an excellent survey by Jamison, and the monograph of Aigner
and Ziegler [1], where Ungar’s proof and some of its relatives are reproduced.

In lack of a natural ordering of all directions in 3-space, Ungar’s method does
not seem to generalize. This explains why until recently there had not been much
progress concerning Scott’s second question. Scott’s construction of a double pyramid
whose base is a regular polygon with an even number of edges, including the center
of the base (see Figure 1), shows that the number of directions determined by n non-
coplanar points can be as small as 2n− 5 if n is odd. This bound was conjectured to
be tight. Under the additional assumption that no three points of the set are collinear,
Blokhuis and Seress [2] proved that the number of directions determined by n ≥ 6
non-coplanar points in 3-space is at least 7n/4 − 2. Using the same condition, we
have recently succeeded in proving the tight bound 2n− 2 if n is odd and 2n− 3 if n
is even [14].

In the present paper we solve Scott’s second problem in full generality, by removing
the assumption that no three points are collinear.

Theorem 1.1. Every set of n ≥ 6 points in R3 , not all of which are on a plane,
determine at least 2n− 5 different directions if n is odd, and at least 2n− 7 different
directions if n is even. This bound is sharp for every odd n ≥ 7.

The case where n is even is handled by removing one point and applying the bound
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non-convergent convergent

Figure 2: Convergent and non-convergent segments.

for odd n. Therefore, from this point on we assume that n is odd. Nevertheless, we
believe that the bound for even n can be improved. We note that the double-pyramid
construction in Figure 1, without the center, yields an upper bound of 2n − 3 for n
even.

The idea of the proof is outlined in Section 2. A key new ingredient of our
argument is Theorem 3.1, proved in Section 3, which is a far reaching “bipartite”
variant of Ungar’s aforementioned theorem.

Definition 1.2. Two closed segments in Rd are called convergent if (i) they do not
belong to the same line, and (ii) their supporting lines intersect, and the intersection
point does not belong to any of the segments. See Figure 2.

An alternative definition is that two segments are convergent if and only if they
are disjoint and their convex hull is a planar quadrilateral. Two parallel segments that
lie on distinct lines are also considered to be convergent (by regarding their lines to
meet at infinity, or according to the alternative definition). Note also that condition
(ii) rules out pairs of segments with a common endpoint.

Instead of Theorem 1.1, in Section 4 we establish the following significantly
stronger result.

Theorem 1.3. Every set of n ≥ 6 points in R3 , not all of which are on a plane,
determine at least 2n − 5 segments if n is odd, and at least 2n − 7 segments if n is
even, no two of which are convergent. This bound is sharp for every odd n ≥ 7.

We apply Theorem 1.3 in Section 5 to partially settle in the affirmative a conjecture
of Blokhuis and Seress [2], showing (in Theorem 5.1) that any set P of n points inR4 , not contained in a hyperplane and not having three collinear points, determine at
least 3n − 8 different directions, if n is even, and at least 3n− 10 different directions
if n is odd. The bound is sharp for every even n ≥ 8.

Rédei’s monograph on lacunary polynomials [15] was the starting point of many
investigations related to algebraic variants of the above problem. For instance, it
was proved in [15] that if n is a prime, then any set of n points in the affine plane
AG(2, n) determines at least (n + 3)/2 different directions. Lovász and Schrijver
[13] characterized all sets for which equality is attained. In the finite projective
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plane PG(2, N), a set P of n > 4 points, no three of which are collinear, is known
to determine at least n different directions if N is odd and at least n − 1 if N is
even. Equality is attained here if and only if P spans a (properly defined) affinely
regular n-gon (see [7, 12]). The last theorem, due to Wettl [19] answers a question
of Gus Simmons in cryptography. For many similar results and applications in finite
geometry, algebraic number theory, and group theory, consult the survey of Szőnyi
[17].

2 Preliminaries

Let P be a set of n points in R3 such that not all of them lie in a common plane.
Let p0 be an extreme point of P , i.e., a vertex of the convex hull of P . Consider
a supporting plane to P at p0, and translate it to the side that contains P . Let π
denote the resulting plane. Project from p0 all points of P \ {p0} onto π. We obtain
a multiset R of points in π, not all on a line, so that each point is the image of some
points of P . We regard R as a set of weighted points, where the weight w(r) of a
point r ∈ R is the number of points of P \ {p0} that project onto it.1 The sum of the
weights is n − 1. For a subset A ⊆ R, we define w(A) :=

∑

q∈A w(q).

We assume that n is odd, thus w(R) = n − 1 is even. We attempt to partition R
into two subsets R+, R−, so that w(R+) = w(R−) = (n − 1)/2 and all points of R+

lie to the left of every point of R− with respect to some generic coordinate frame in
π, in which no two elements of R have the same x-coordinate.

For the choice of the coordinate frame and the partition, we begin with the fol-
lowing elementary geometric fact.

Lemma 2.1. Let R be a set of non-collinear weighted points in the plane, with a total
even weight m. Let r be any vertex of the convex hull of R whose weight is smaller
than m/2. Then one of the following properties holds:

(i) There exists a partition of R into two subsets, R− and R+, each of overall weight
m/2, whose convex hulls are disjoint and which have a common inner tangent m0

passing through r.

(ii) There exists a point q ∈ R and a partition of R\{q} into two subsets, R−

0 and R+
0 ,

each of overall weight < m/2, so that the convex hulls of R−

0 ∪{q} and R+
0 ∪{q} meet

only at q, which is a common vertex of both hulls, and the line m0 passing through
r and q is an inner common tangent to the two hulls (supporting one of them in the
edge qr).

Proof: See Figure 3. Rotate a directed line ℓ counterclockwise about r, starting with
all the points of R \ {r} lying to the left of ℓ, until the closed halfplane to the right
of ℓ contains for the first time points with overall weight larger than m/2. Let R−

0

1In the preceding paper [14], where it was assumed that no three points of P are collinear, R was
a set, or, rather, the weight of each point was 1.
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Figure 3: The primal construction of R− and R+: Case (i) (left) and Case (ii) (right).

denote the set R0 of points in the open halfplane to the right of ℓ, plus the largest set
of initial points of ℓ ∩ R along ℓ (in their order along ℓ starting at r) whose overall
weight does not exceed m/2 − w(R0).

If the overall weight of R−

0 is exactly m/2, we are in case (i). We define R− := R−

0 ,
and R+ := R \ R−

0 . See Figure 3(i). It is clear that the convex hulls of R+ and R−

are disjoint, and that the final position of ℓ is the desired common inner tangent m0.

If the overall weight of R−

0 is less than m/2, we are in case (ii). Let q be the next
point of ℓ∩R along ℓ, and define R+

0 := R \ (R−

0 ∪ {q}). See Figure 3(ii). It is easily
seen that the properties asserted in (ii) hold, with m0 being the final position of ℓ. �

We apply Lemma 2.1 to our set R ⊂ π, with m = n−1. In case (ii), we split q into
two co-located points q−, q+, and distribute the weight w(q) between them, so that
w(q−) = (n−1)/2−w(R−

0 ) and w(q+) = (n−1)/2−w(R+
0 ). We set R− := R−

0 ∪{q−}
and R+ := R+

0 ∪ {q+}. We refer to q as the central bichromatic point of R.

Let m1 denote the other inner tangent of the convex hulls of R− and R+. In case
(ii), m1 also passes through q and through at least one other point of one of the two
sets. Now choose in π an orthogonal (x, y)-coordinate system whose y-axis is either
a line that strictly separates R− and R+ in case (i), or a line through q that strictly
separates R−

0 and R+
0 in case (ii). We can carry out the construction so that (a)

R+ and R− are to the left and to the right of the y-axis, respectively, (b) r ∈ R−,
and (c) m0 is oriented from r away from the other contact point(s), and the positive
y-direction lies counterclockwise to it. See Figure 3. This still leaves us with some
freedom in fixing the coordinate frame. We will later impose further constraints on
it to facilitate certain steps in our analysis.

The presence of q adds an extra level of complication to the proof. We note that
in the configuration shown in Figure 1, choosing p0 to be any vertex of the hull, say,
the lowest point, the weighted set R has a central bichromatic point q, as shown in
Figure 31(ii). As will follow from our analysis, the bounds in both Themorems 1.1
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Figure 4: The sets P+
h and P−

h . (a) The case where the central bichromatic point q
(if it exists at all) does not lie on ℓ. (b) The case where q exists and lies on ℓ.

and 1.3 improve to 2n − 2, for n odd, when q does not exist.

Let P+ (resp., P−) denote the set of points of P \ {p0} that project from p0 to
points of R+ (resp., R−). Points projecting to q are split between P+ and P−. This
can be best visualized by a plane π0 that separates P+ and P−. If q does not exist, π0

is the plane spanned by p0 and the y-axis in π. If q exists, π0 cuts the line containing
the preimages of q into two pieces, one of which contains w(q+) preimages and the
other contains w(q−) preimages. Without loss of generality, we may assume that the
w(q+) preimages closest to p0 belong to P+. See Figure 4.

Let ℓ be a line in π, and let h be the plane spanned by ℓ and p0. In case (i),
the sets P+

h = P+ ∩ h and P−

h = P− ∩ h are separated in h in such a way, that
the cones with apex p0 spanned by their convex hulls are disjoint (except for p0); see
Figure 4(a). In case (ii), if q ∈ ℓ, then both cones are bounded by the common line
λ connecting p0 to q. See Figure 4(b). In this case, by construction, the first w(q+)
points of (P \ {p0})∩λ (those nearest to p0) belong to P+, and the rest of the points
on λ belong to P−.

Here is a brief overview of the proof of Theorem 1.3. In Section 4, we collect
a set F of mutually non-convergent segments in π whose endpoints belong to R.
With few exceptions, the segments in F connect points of R+ to points of R−. Each
segment f ∈ F gives rise to a set E(f) of pairwise non-convergent segments in 3-
space, determined by P , and lying in the plane h spanned by p0 and f . Each segment
e ∈ E(f) either connects a point of P+

h to a point of P−

h , or connects p0 to some
point in Ph, such that the projection e∗ of e from p0 on the line supporting f , either
fully contains f or is a point, outside the interior of f ; see Figure 4(a). Let E denote
the union of all the sets E(f). Using a fairly intricate analysis based on Theorem 3.1
(stated and proved in Section 3), we show that (a) E contains at least 2n−5 segments
(Section 4.4), and (b) every pair of distinct segments in E are non-convergent and
therefore non-parallel (Section 4.5). Once (a) and (b) are established, Theorems 1.3
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p0

X+ X−

Figure 5: An example where Theorem 3.1 does not hold.

and 1.1 follow, because the directions of the segments in E are all different.

We emphasize once again that Theorem 1.3 is considerably stronger than Theo-
rem 1.1. Besides being of independent interest, we expect this strengthening to be
useful for extending our results to higher dimensions, using induction on the dimen-
sion; see the concluding section for more details.

3 A Bipartite Ungar-type Theorem

A crucial ingredient of our analysis is the following variant of Ungar’s theorem, which
we believe to be of independent interest.

Theorem 3.1. Let X+ and X− be two finite sets of points in the plane, and let p0

be a point in the plane, such that p0 is an extreme point of X+ ∪ X− ∪ {p0}, and
there is a line through p0 that strictly separates X+ and X−. We also assume that
0 < |X−| ≤ |X+| and that the innermost ray from p0 to a point of X+ (forming the
smallest angle with the separating line) contains more than |X+|− |X−| points. Then
one can select at least |X+| + |X−| + 1 pairwise non-convergent segments connecting
points of X+ ∪ {p0} to points of X− ∪ {p0}.

We remark that the “+1” term in the above bound is crucial for our analysis, and
that we may lose this term if the assumption on the points in the innermost ray does
not hold, as is illustrated in Figure 5, where |X+| + |X−| + 1 = 5 but at most four
pairwise non-convergent segments can be selected.

Corollary 3.2. Assume the conditions of Theorem 3.1, with the difference that the
innermost ray from p0 to a point of X+ contains exactly |X+|−|X−| points. Then one
can select at least |X+|+ |X−| pairwise non-convergent segments connecting points of
X+ ∪ {p0} to points of X− ∪ {p0}.

We remark that, in the applications of Theorem 3.1 and Corollary 3.2 in Section 4,
the sets X−, X+ will always be well balanced, so that the innermost ray will always
contain at least |X+| − |X−| points.
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We also note that Ungar’s theorem “almost” follows from Theorem 3.1 and its
corollary. That is, let P be a set of n non-collinear points in the plane, where n is
even. Pick an extreme point p0 of P , and find a line that passes through p0 and
splits P \{p0} into two subsets X+, X− whose sizes are as equal as possible. Suppose
that |X+| ≥ |X−|. Then the innermost ray from p0 to points of X+ must contain
at least |X+| − |X−| points, for otherwise we could have transferred these points to
X− and get a split with a smaller size difference. If the number of points on the
innermost ray is larger than |X+| − |X−|, then Theorem 3.1 applies, and yields at
least |X+| − |X−| + 1 = |P | pairwise non-convergent segments connecting the points
of P , which implies (and is much stronger than) Ungar’s theorem. However, if the
number of points on the innermost ray is equal to |X+|−|X−|, then only Corollary 3.2
can be applied, and it only yields |X+| − |X−| = |P | − 1 pairwise non-convergent
segments connecting the points of P , one shorter of what Ungar’s theorem gives. We
leave it as an open problem to determine whether Ungar’s theorem can always be
deduced from Theorem 3.1 and Corollary 3.2.

Proof of Corollary 3.2: Remove one point from X+ which is not on the innermost
ray from p0 to a point of X+ (note that X+ is not fully contained in that ray, since
|X−| > 0), and apply Theorem 3.1 to the resulting set of points. �
Proof of Theorem 3.1: Fix an (x, y)-coordinate system in the plane. We apply a
standard duality transform that maps a point p = (p1, p2) to the line p∗ with equation
y + p1x + p2 = 0. Vice versa, a non-vertical line l with equation y + l1x + l2 = 0 is
mapped to the point l∗ = (l1, l2). Consequently, any two parallel lines are mapped
into points having the same x-coordinate. It is often convenient to imagine that the
dual picture lies in another, so-called dual, plane, different from the original one,
which is referred to as the primal plane.

The above mapping is incidence and order preserving, in the sense that p lies
above, on, or below ℓ if and only ℓ∗ lies above, on, or below p∗, respectively. The
points of a segment e = ab in the primal plane are mapped to the set of all lines in
the closed double wedge e∗, which is bounded by a∗ and b∗ and does not contain the
vertical direction. All of these lines pass through the point q = a∗∩b∗, which is called
the apex of the double wedge e∗. All double wedges used in this paper are assumed
to be closed, and they never contain the vertical direction.

We call two double wedges convergent if their apices are distinct and the apex of
neither of them is contained in the other. See Figure 6.

It is easy to see that, according to this definition, two non-collinear segments in
the primal plane are convergent if and only if they are mapped to convergent double
wedges.

Without loss of generality, we assume that p0 is the origin, that X+ lies to the
left of the y-axis, that X− lies to its right, and that both sets lie below the x-axis;
see Figure 7(a). The duality maps p0 into the x-axis, which we denote as ℓ0, the
lines connecting p0 to points in X+ (resp., X−) to points on the negative (resp.,
positive) x-axis, and the points of X+ (resp., X−) to positively (resp., negatively)
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Figure 6: Two possible kinds of convergent double wedges.

(a)

ℓ

p0

X+

X−

q1 q2 q3
q′

2q′

3
q′

1

v2

(b)

Λ−Λ+

o

ℓ0 ∈ Λ−

v3

v1

Figure 7: The setup in Theorem 3.1. (a) The primal configuration. (b) The dual
configuration. Since |X+| = 8 and |X−| = 6, we have two excess lines, shown as
dashed.

slopped lines; see Figure 7(b). Let Λ+, Λ− denote the set of lines dual to the points
of X+, X−, respectively, and put Λ = Λ+ ∪ Λ− ∪ {ℓ0}. Enumerate the points dual
to the lines connecting p0 to the points of X+ as q1, . . . , qk in this left-to-right order,
and the points dual to the lines connecting p0 to the points of X− as q′1, . . . , q

′

ℓ in
this right-to-left order; thus q1 is the leftmost point and q′1 is the rightmost. Put
n+ = |Λ+| = |X+|, n− = |Λ−| = |X−|.

We redefine the sets Λ+, Λ− as follows. First we set Λ− := Λ− ∪ {ℓ0}, and then
remove from Λ+ the n+−n− lines that pass through q1 and have the shallowest slopes;
we refer to these lines as excess lines, and denote the set that they comprise by Λe.
Redefine Λ+ := Λ+ \ Λe. We have |Λ−| = |Λ+| + 1 = n− + 1. We note that by an
appropriate choice of the coordinate frame in the duality transform, we may assume
that the slopes of the excess lines are the smallest among all lines in Λ+.

Constructing junctions. We apply an iterative pruning process that constructs
a sequence of vertices (“junctions”) v1, . . . , vm which are intersection points of lines
from Λ− and lines from Λ+, and sets of intermediate vertices (“stations”) between
successive junctions, as well as a set of “termini” to the right of the rightmost junction.
The sequence J of junctions 〈v1, v2, . . . , vk〉 is constructed as follows.
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vi vi+1

Λ+
i

Λ−
i

Figure 8: Constructing the junction vi in J . The dashed lines, two from Λ+ and two
from Λ−, are removed at vi. The next junction vi+1 is also shown.

Step 1: Set i := 1 and Λ+
1 := Λ+, Λ−

1 := Λ−.

Step 2: If Λ+
i = ∅, the construction of J terminates. Otherwise, as guaranteed

by the construction, neither set is empty. Let vi be the leftmost intersection point
between a line in Λ+

i and a line in Λ−

i . Let d+
i (and d−

i ) denote the number of lines
of Λ+

i (and Λ−

i , respectively) incident to vi, and put di := min{d+
i , d−

i }. Define Λ+
i+1

(resp., Λ−

i+1) as the set of lines obtained from Λ+
i (resp., Λ−

i ) by deleting from it the
di lines that are incident to vi and have the largest (resp., smallest) slopes among
those incident lines. (That is, if d+

i = d−

i , then all lines incident to vi are deleted;
otherwise, if, say, d+

i > d−

i , we are left with d+
i − d−

i lines through vi that belong to
Λ+

i and separate the deleted elements of Λ+
i from the deleted elements of Λ−

i . See
Figure 8, where di = d−

i = 2, d+
i = 3, and the dashed lines, two from Λ+

i and two
from Λ−

i , are removed at vi.) Set i := i + 1, and repeat Step 2.

Note that, due to the special structure of the arrangement, we have v1 = q1 and
d1 = 1. See Figure 7(b). Recall also that the excess lines do not participate in the
junction construction process.

It is easy to verify the following properties of this construction.

Claim 3.3. (i) |Λ−

i | = |Λ+
i | + 1, for each i = 1, . . . , k; Λ+

k+1 = ∅ and |Λ−

k+1| = 1.

(ii) For every 1 ≤ i < j ≤ k, the junction vi lies in the left unbounded face fj of
A(Λ+

j ∪ Λ−

j ) which separates Λ+
j and Λ−

j at x = −∞ (and whose rightmost vertex is
vj). vi lies in the interior of fj if d+

i = d−

i ; otherwise it may lie on the boundary of
fj.

(iii)
∑k

i=1 di = |Λ+| = n−. �
Collecting stations. Next, between any two consecutive junctions vi and vi+1, for
1 ≤ i < k, we specify di + di+1 − 1 further vertices of A(Λ+ ∪ Λ−), called stations
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(thus, the excess lines are still kept out of the construction).

Fix an index 1 ≤ i < k, and consider the vertical slab between vi and vi+1. By
Claim 3.3 (ii), vi lies inside or on the boundary of the face fi+1 of A(Λ+

i+1 ∪ Λ−

i+1),
whose rightmost vertex is vi+1. See Figure 9. Hence, the segment e = vivi+1 is
contained in the closure of fi+1. Now at least one of the following two conditions is
satisfied: (a) all the di lines removed from Λ+

i and all the di+1 lines removed from
Λ−

i+1 pass strictly above e, or (b) all the di lines removed from Λ−

i and all the di+1

lines removed from Λ+
i+1 pass strictly below e.

Indeed, if vi lies in the interior of fi+1 then the di+1 lines of Λ+
i+1 (resp., of Λ−

i+1)
that are removed at vi+1 pass strictly below (resp., above) vi. In this case, the validity
of either (a) or (b) follows by considering the position of vi among the lines of Λ+

i ∪Λ−

i

that are removed at vi. If vi lies on the boundary of fi+1 (as shown in Figure 9), then
it has to lie on a line of Λ+

i+1 ∪ Λ−

i+1, say it lies on a line ℓ of Λ+
i+1 (as shown in the

figure). Then all the di+1 lines removed from Λ−

i+1 pass strictly above vi and e. Now
the line ℓ belongs to Λ+

i and passes through vi. Since it was not removed at vi, all the
di lines of Λ+

i that were removed pass strictly above e, by construction, so (a) holds.
If vi lies on a line of Λ−

i+1, a symmetric argument shows that (b) holds.

Assume, by symmetry, that (a) holds. Denote the lines removed from Λ+
i by

ℓ+
1 , . . . , ℓ+

di
, listed according to increasing slopes, and those removed from Λ−

i+1 by
ℓ−1 , . . . , ℓ−di+1

, listed according to decreasing slopes. See Figure 9. Define the set of
stations Si in the vertical slab between vi and vi+1 as the collection of all intersection
points of ℓ+

di
with the lines ℓ−1 , . . . , ℓ−di+1

, and all intersection points of ℓ−di+1
with the

lines ℓ+
1 , . . . , ℓ+

di
. Clearly, we have |Si| = di + di+1 − 1 such points; see Figure 9.

We refer to the grid-like crossing pattern between the lines ℓ+
1 , . . . , ℓ+

di
and the lines

ℓ−1 , . . . , ℓ−di+1
, as the upper grid between vi and vi+1. The collected stations lie on

the “upper rim” of that grid. In complete analogy, when case (b) applies, we collect
stations along the “lower rim” of the lower grid between vi and vi+1.

The description so far matches the one given in [14]. We now describe the new
features of the present collection process. They involve (a) collecting “excess stations”
for the excess lines, and (b) collecting vertices (that we refer to as “termini”) to the
right of vk.

Collecting excess stations. The collection of excess stations proceeds as follows.
As we collect the junctions vi, we maintain a subset Λe

i of ‘surviving’ excess lines. For
each i, the lines in Λe

i satisfy the property that they have passed below or through
each of the junctions v1, . . . , vi. Initially, Λe

1 = Λe, all of whose lines clearly satisfy
this property (they pass through v1). When we reach a new junction vj, we remove
certain lines from Λe

j−1. When an excess line is removed, we associate with it a new
excess station that lies somewhere to the left of vj . Typically, but not always, it will
be a grid vertex between vj−1 and vj. To disambiguate between the two kinds of
stations, we will sometimes refer to the previously constructed stations as standard
stations. The removal of excess lines and the construction of excess stations proceed
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vi+1

vi

ℓ

fi+1

Λ−
i

Λ+
i

ℓ−1

e

ℓ+
2

ℓ−2

ℓ+
1

Figure 9: Collecting stations between vi and vi+1. We have di = di+1 = 2. The
lines removed at vi are drawn as dashed, and those removed at vi+1 are drawn as
dashed-dotted.

according to the following rule:

(i) Our default option is to use the upper grid for collecting intermediate (standard)
stations between vj−1 and vj. Recall that, for this to be possible, all lines of Λ−

incident to vj and removed there have to pass strictly above vj−1, and all lines of Λ+

incident to vj−1 and removed there have to pass strictly above vj . If the first condition
is violated then the shallowest line of Λ− incident to vj and removed there also passes
through vj−1 (by Claim 3.3(ii), it cannot pass below vj−1), and if the second condition
is violated then the shallowest line of Λ+ incident to vj−1 and removed there passes
through or below vj. Thus, if none of the two latter conditions arise, we use the upper
grid.

Assuming this to be the case, we remove each surviving excess line that passes
above vj. The removed excess lines meet the steepest line of Λ− incident to vj at points
that lie along the upper grid and are further to the right of all the other grid points
(and thus to the right of all the standard stations in Sj−1). This latter property is a
consequence of the fact that all these excess lines pass below or through vj−1 and have
slopes smaller than those of the lines of Λ+ that are incident to vj−1; see Figure 10.

In conclusion, each removed excess line is associated with a new upper grid vertex
of the arrangement, and these are the excess stations that we have promised to collect.
We set Λe

j to be the set of surviving excess lines, which still pass through or below vj

(so the invariant continues to hold), and continue the process with j := j + 1.

(ii) Suppose that we have to use the lower grid for collecting intermediate stations
between vj−1 and vj . As just mentioned, the lower grid has to be used either when (a)
vj lies on or above at least one of the dj−1 lines of Λ+ incident to vj−1 and removed
there, or when (b) vj−1 lies on the shallowest of the dj lines of Λ− incident to vj and

12



vj

vj−1

Figure 10: Charging excess lines of Λe
j−1 that pass above vj to excess stations in the

upper grid between vj−1 and vj .

removed there.

In case (a), let ℓ denote the shallowest line in Λ+ through vj−1 that is removed at
vj−1. Refer to Figure 11(a), and note that vj lies on or above ℓ. In this case, each
excess line in Λe

j−1 must pass below vj , because it passes below or through vj−1 and
its slope is smaller than that of ℓ. Hence, in this case we do not remove any excess
line, and thus set Λe

j := Λe
j−1. In particular, the invariant property holds for Λe

j in
this case, and we continue the collection process with j := j + 1.

In case (b), which is depicted in Figure 11(b), let ℓ denote the shallowest line in
Λ− through vj that is removed at vj . ℓ passes also through vj−1. We use the lower
grid to construct excess stations for the excess lines of Λe

j−1 that pass above vj. These
will be the intersection points of these lines with the steepest line of Λ− incident to
vj−1. Because of the slope conditions, these points lie to the left of all the standard
stations between vj−1 and vj. However, if there exists an excess line λ through vj−1,
this procedure will fail to produce an additional excess station for λ. To gain such a
station elsewhere, we observe that j − 1 6= 1 (since ℓ0 is the only line of Λ− through
v1, so that it is deleted there and does not belong to Λ−

2 ), and that we must have used
the upper grid between vj−2 and vj−1. This holds because vj−2 must lie on or below ℓ
and on or above λ. Hence, all the lines of Λ+ incident to vj−2 must pass strictly above
vj−1 (since they have slopes larger than that of λ), and all the lines of Λ− incident to
vj−1 and removed there must pass strictly above vj−2 (since they are all steeper than
ℓ). Note that the number of lines of Λ− through vj−1 is greater than dj−1, because
this set also contains ℓ, which has not been removed at vj−1. Using that extra line,
we can therefore gain one additional intersection point as the required excess station
in the upper grid between vj−2 and vj−1.

However, one such extra grid station may fail to exist if vj−2 also lies on ℓ. Refer
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vj−1

(a)

vj

ℓ

vj−1

(b)

λ

vj ℓ

Figure 11: Using the lower grid between vj−1 and vj .

to Figure 12.

In this case, it is easily seen that, as far as the collection of standard stations goes,
we can use the lower grid between vj−2 and vj−1 instead of the upper grid. Indeed, all
the lines of Λ− incident to vj−2 and removed there pass below vj−1 (because ℓ passes
through vj−1 and is not removed there), and all the lines of Λ+ incident to vj−1 and
removed there pass below vj−2 (because λ passes through vj−1 and below vj−2). If
vj−2 is not incident to an excess line, then all excess lines in Λe

j−2 that pass through
or above vj−1 (including λ) determine excess stations on the lower grid between vj−2

and vj−1. Hence in this case we obtain on the lower grid one additional excess station,
formed by λ, and can therefore quit this process. If vj−2 is incident to an excess line,
we attempt to collect an extra excess station in the upper grid between vj−3 and vj−2,
expoiting, as above, the excess of lines of Λ− at vj−2. Again, this may fail if vj−3 also
lies on ℓ, so we move to the lower grid between vj−3 and vj−2, and we keep applying
this backtracking process until we reach a junction vs that lies strictly below ℓ. This
will happen, if not earlier, when we reach v1, since the only line of Λ− incident to v1

is ℓ0, which is different from ℓ.

To recap, this process creates an excess station for each excess line removed at
vj . Note that if the construction had to backtrack from vj through several preceding
junctions, then ℓ is the shallowest line of Λ−

j that passes through vj . Hence, if back-
tracking will also be required at some later junction vj′, for j′ > j, then the process
will have to terminate at a junction to the right of vj (because no surviving line of
Λ−

j passes through vj). That is, the backtracking processes are independent of each
other, and none of them affects any of the preceding ones.

Collecting termini. Finally, consider the last junction vk and the final set Λe
k of

surviving excess lines. There are dk lines of Λ− as well as dk lines of Λ+ that pass
through vk, and there is another surviving line ℓ of Λ−, which passes through or above
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u
ℓ

vj−3

v

vj−2

w

w′

v′

vj−1

µ

vj

Figure 12: Handling the modified case (b), where ℓ passes through additional vertices
preceding vj−1.

vk. Our goal is to collect dk + |Λe
k| + 1 additional vertices of A(Λ) to the right of vk,

to which we refer as termini.

If ℓ passes above vk, then we obtain on it the distinct intersection points with ℓ0,
with the excess lines in Λe

k, and with the dk lines of Λ+ through vk (it is easy to verify
that all these intersection points are indeed distinct); see Figure 13(a). Altogether,
we collect dk + |Λe

k| + 1 termini.

If ℓ passes through vk (see Figure 13(b)), let ℓ′ denote the steepest line of Λ−

incident to vk. We charge each of the dk+1 lines of Λ− incident to vk to its intersection
with ℓ0. In addition, each excess line in Λe

k, with the exception of the excess line λ0

that passes through vk (if there is such a line), meets ℓ′ at a vertex, and we add these
vertices to the set of collected termini; their x-coordinates are all distinct, and lie to

(a)

vk

ℓ

ℓ0

(b)

ℓ

λ0

vk

ℓ
′

ℓ0

Figure 13: Collecting termini.
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the right of vk and to the left of any point q′j charged by the lines of Λ− incident to
vk. Altogether we collect at least dk + |Λe

k| termini. The only case in which we do not
obtain dk + |Λe

k|+1 termini is when there is an excess line λ0 through vk. In this case
we must have used the upper grid between vk−1 and vk, which is argued as in case
(ii) of the preceding analysis. As above, we can gain an extra excess station in this
upper grid, because the number of lines of Λ− through vk is in fact at least dk + 1.
Again, the same technical difficulty that we faced earlier may arise here as well, when
vk−1 also lies on ℓ. We resolve this exactly as before, backtracking to the left through
junctions vj that lie on ℓ, switch to lower grids between them without decreasing the
number of collected stations, and gaining the desired extra station when we reach a
junction vj that lies strictly below ℓ or that is not incident to an excess line.

In both cases, we have managed to charge an extra terminus for every excess line
left in Λe

k, and an additional terminus for the extra surviving line ℓ of Λ−. Note that
all termini, or all but one, lie to the right of vk.

Adding these termini to the junctions and stations, we obtain, excluding the excess
stations and termini, and recalling that d1 = 1, a total of

(d1 + d2 − 1) + (d2 + d3 − 1) + · · ·+ (dk−1 + dk − 1) + k + (dk + 1) =

1 + 2
k

∑

i=1

di = 2n− + 1

vertices. Hence, since we manage to collect one additional vertex for each excess line,
we obtain a total of 2n− +1+ (n+ −n−) = n+ +n− +1 vertices. Observe that all the
collected vertices are either on ℓ0 or are intersection points of lines of (the original)
Λ+ with lines of (the original) Λ−. In other words, each of the collected vertices
represents a segment in the primal plane, connecting a point of X+ ∪ {p0} to a point
of X− ∪ {p0}.

Let Q denote the set of all collected junctions, stations, and termini. Associate
with each element q ∈ Q the maximal double wedge W (q) (not containing the vertical
line through q), which is bounded by a pair of lines passing through q.

To complete the proof of the theorem, we show that the collected segments are
pairwise non-convergent.

Claim 3.4. The set {W (q) | q ∈ Q} of n double wedges has no two convergent
elements.

Proof: Let u, v ∈ Q with u lying to the left of v. Recalling the definition of convergent
double wedges, we need to show that either u ∈ W (v) or v ∈ W (u). We distinguish
between several cases:

Case A: Both u and v are junctions.

Put u = vi and v = vj , with i < j. Then W (v) is bounded by a line ℓ ∈ Λ+
j and

by a line ℓ′ ∈ Λ−

j . By Claim 3.3(ii), vi lies between these two lines, and thus belongs
to W (v).
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Case B: u is a junction and v is a (standard or excess) station to the left of vk.

Put u = vi and let Sj be the set of stations that contains v, where i ≤ j < k.
Then W (v) is bounded by two lines ℓ, ℓ′, where either ℓ ∈ Λ+

j ∪ Λe
j and ℓ′ ∈ Λ−

j+1 (if
v lies on the upper grid), or ℓ ∈ Λ+

j+1 ∪ Λe
j and ℓ′ ∈ Λ−

j (if v lies on the lower grid).
By construction, we have, in both cases, ℓ ∈ Λ+

j ∪ Λe
j and ℓ′ ∈ Λ−

j . If ℓ ∈ Λ+
j , the

analysis is completed as in Case A. If ℓ ∈ Λe
j, it passes through or below vi, so the

same analysis applies here as well.

Case C: u is a (standard or excess) station to the left of vk and v is a junction or a
station to the left of vk.

Let Si be the set of stations containing u. The arguments in Case A and Case
B imply that vi ∈ W (v). If v is also a station in Si or v = vi+1 then it is easy to
verify, by construction, that W (u) and W (v) are non-convergent (see Figure 9); this
also holds if u and/or v are excess stations. Suppose then that v lies to the right of
vi+1. Consider first the case where u is a standard station. Then both vi and vi+1 lie
in the left wedge of W (v), and u is incident to a line λ that passes through vi and to
a line λ′ that passes through vi+1. If u /∈ W (v) then a boundary line of W (v) must
separate u from vi and vi+1, in which case v ∈ W (u); see Figure 14(a).

Suppose next that u is an excess station on the upper grid between vi and vi+1.
If u /∈ W (v) then u must lie above W (v). In this case u is incident to a line λ (an
excess line) that passes through or below vi and to a line λ′ that passes through vi+1.
As above, it is easily seen that the line through v that bounds the left wedge of W (v)
from above must cross λ to the left of u and λ′ to the right of u and to the left of v,
again implying that v ∈ W (u); see Figure 14(b).

A fully symmetric argument applies when u is an excess station on the corre-
sponding lower grid.

Note that cases B and C also apply to excess stations constructed in the back-
tracking processes, starting either from some junction that precedes vk or from vk

itself.

Case D: u is a junction and v is a terminus to the right of vk.

Refer to Figure 13 to recall the types of termini that we construct. Consider first
the case where v is the intersection point of an excess line λ that passes through or
below vk, with either the line ℓ (in the case depicted in Figure 13(a)), or the line ℓ′

(in the case depicted in Figure 13(b)). By construction, λ passes through or below u
and ℓ or ℓ′ passes through or above u, so u ∈ W (v).

Consider next the case where v is the intersection of ℓ with some line µ in Λ+
k .

Here too it is easily verified that u lies between the two lines, so u ∈ W (v). The same
argument applies to the last possible case, where v is the intersection of ℓ0 with some
line of Λ−

k .

Case E: u is a station and v is a terminus to the right of vk.
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Figure 14: Illustrating Case C of the proof that W (u) and W (v) cannot be convergent.
(a) u is a standard station. (b) u is an excess station on the upper grid.

Let Si be the set of stations containing u. The arguments in Case D imply that
vi, vi+1 ∈ W (v). If u /∈ W (v) then, arguing as in case C, we must have v ∈ W (u).

Case F: Both u and v are termini to the right of vk.

This case follows from a direct inspection of all the possible types of pairs of
termini; see Figure 13.

This completes the proof of the claim, and thus of Theorem 3.1. �
4 Constructing the Sets of Segments F and E in

the Plane π and in 3-Space

Consider the projected set R of non-collinear points in the plane π, as defined in
Section 2, and recall that we assume that its total weight w(R) = n−1 is even. Recall
also that we have partitioned R into two sets, R+ and R−, by some vertical line which
we choose to be the y-axis. Instead of selecting the suitable set of segments F in π, it
will be more convenient to work in the dual plane, using the same duality transform
as in the proof of Theorem 3.1, where segments correspond to double wedges. First,
we will define the apices v of these double wedges W (v), that are vertices in the
arrangement of lines dual to the elements of R, and then we specify the boundary
lines of each W (v), which are the duals of the endpoints of the corresponding segment
f(v) in the ‘primal’ plane π.

The main part of the selection algorithm is an iterative pruning process that col-
lects two types of different crossing points v, so-called junctions and stations, between
the lines dual to the points of R. This process has many aspects similar to the one
discussed in [14], and to the one given in the preceding section, but here the analysis
is considerably more involved, because we have to handle weighted lines, and because
the potential presence of the central bichromatic point q further complicates certain
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steps of the analysis.

After associating each collected vertex v with a certain double wedge W (v) that
has v as an apex, we consider the set F of segments f(v) in the primal plane π that cor-
respond to these double wedges, by duality. Each segment f(v) connects two elements
of R in π, and we show that these segments are pairwise non-convergent. Each seg-
ment f(v) ∈ F spans with p0 a plane h(v) in R3 , and we apply Theorem 3.1 to collect
segments that connect pairs of points of P within h(v). We denote by E(f(v)) = E(v)
(and sometimes also by E(f)) the set of segments in R3 that are spanned by P and
are determined (in this manner) by f(v), and we set E :=

⋃

f∈F E(f).

4.1 Collecting junctions in the dual plane

Denote by L the set of lines dual to the elements of R. By choosing the directions of
the coordinate frame sufficiently generic, we may assume that no two lines in L are
parallel. (In the primal plane π, this would correspond to the requirement that no
two points of R have the same x-coordinate.) Each line ℓ ∈ L has a weight w(ℓ) equal
to the weight of its dual point, so

∑

ℓ∈L w(ℓ) = n−1. Let L+, L− denote respectively
the sets of lines dual to R+ and R−. Since we have assumed in Section 2 that R+

lies to the left of the y-axis and R− lies to its right, it follows that all lines in L−

have negative slopes and all lines in L+ have positive slopes. The central bichromatic
point q, when it exists, is mapped to a horizontal line q∗, which we assume to be the
x-axis. This line appears as two coincident copies, (q+)∗ ∈ L+ and (q−)∗ ∈ L−, with
corresponding weights w(q+), w(q−).

We begin by constructing a sequence J = 〈v1, v2, . . . , vk〉 of vertices of A(L), called
junctions.

Step 1: Set i := 1 and L+
i := L+, L−

i := L−.

Step 2: If L+
i = L−

i = ∅, the construction of J terminates. Otherwise, as we will
see, neither set is empty. Let vi be the leftmost intersection point between a line in
L+

i and a line in L−

i . Let d+
i , d−

i denote the overall weight of those lines of L+
i , L−

i ,
respectively, that are incident to vi, and put di := min{d+

i , d−

i }. Suppose, without
loss of generality, that di = d+

i . Remove from L+
i all its lines incident to vi, and prune

L−

i as follows. Remove as many of the steepest lines of L−

i (those with the smallest
slopes) incident to vi as possible, so that their overall weight ci does not exceed di.
If this weight is equal to di, we are done. Otherwise, we take the next steepest line
ℓ and reduce its weight by di − ci. The line ℓ is not removed from L−

i . Note that
each of the remaining lines of L−

i incident to vi separates the removed lines of L+
i

from the removed lines of L−

i . See Figure 15. Set L+
i+1 and L−

i+1 to be the sets of
surviving weighted lines of L+

i and L−

i , respectively, where the line ℓ, if exists, has its
new reduced weight. Set i := i + 1 and repeat Step 2.

Since m1 is the line with the largest slope connecting a point of R+ and a point
of R−, our duality implies that m∗

1, the dual of m1, is the leftmost intersection point
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Figure 15: Choosing the first junction v1. Lines are labeled with their weight. We
have d1 = 5. The dashed lines, two from L+ and two from L−, are removed, and
the remaining line ℓ has its weight reduced by 2 at v1. The double wedge W (v1) is
shaded. The next junction v2 is also shown.

between a line of L+ and a line of L−. Hence, we have v1 = m∗

1.

If q exists, then v1 = m∗

1 is the leftmost vertex along the line q∗ (see Figure 3(ii)).
At least one of the coincident copies (q+)∗, (q−)∗ of q∗ contributes its full weight to
d1. Consequently, at least one of these copies is removed at v1, which implies that
q∗ belongs from this point on to only one of the sets L+

i , L−

i . In other words, the
presence of q will only affect the construction “at the vicinity” of v1; see below for
details.

As our construction sweeps the dual plane from left to right, we collect junctions
(and stations) whose dual lines rotate clockwise from m1 onwards (see Figure 3).

As in the proof of Theorem 3.1, it is easy to verify the following properties of the
above construction (consult Figure 15):

Claim 4.1. (i) w(L+
i ) = w(L−

i ), for each i = 1, . . . , k.

(ii) For every 1 ≤ i < j ≤ k, the junction vi lies in the left unbounded face fj of
A(L+

j ∪L−

j ) that separates L+
j and L−

j at x = −∞, and whose rightmost vertex is vj.
The point vi lies in the interior of fj if d+

i = d−

i ; otherwise it may lie on the boundary
of fj.

(iii)
∑k

i=1 di = (n − 1)/2. �
(iv) At the time when vi is constructed, the weights of all lines that are removed or
weight-reduced at vi, are equal to their original weights (i.e., before being reduced at
any preceding junction), with the only possible exception of the two shallowest lines
in their respective sets, whose weights could have been earlier reduced.

To see (iv), let ℓ+ be a line of L+
i that is removed at vi and is different from the

shallowest such line ℓ+
a . Then, by property (ii), ℓ+ must pass strictly below each of the
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previously constructed junctions, so it did not participate in any preceding pruning
step. The argument for L−

i is fully symmetric. �
We define, for each 1 ≤ i ≤ k, the set of lines of L+

i (resp., L−

i ) that are incident
to vi and are either removed at vi or have their weight reduced there, by D+

i (resp.,
D−

i ). We also put Di := D+
i ∪ D−

i .

We associate with each junction vi the double wedge W (vi) bounded by the shal-
lowest lines in D+

i and D−

i , respectively. See Figure 15.

4.2 Constructing segments in E from the junctions

In the primal plane π, each junction vj, for j = 1, . . . , k, corresponds to some line v∗

j

in π, which contains projections (from p0) of some points of P . Let h denote the plane
spanned by v∗

j and p0. We apply Theorem 3.1 to a certain subset of P ∩ h, thereby
obtaining a set of pairwise non-convergent segments determined by the points in that
subset.

The presence of the central bichromatic point q may force us to modify the analysis
at v1. We first describe the analysis under the assumption that q does not exist
(we sometimes refer to this situation as the standard case), and then discuss the
modifications needed at v1 when q exists.

The case where q does not exist. Fix an index 1 ≤ i ≤ k. Let ℓ+
1 , . . . , ℓ+

a denote
the lines of D+

i , and let ℓ−1 , . . . , ℓ−b denote the lines of D−

i . We enumerate the lines in
the order of their slopes, so that ℓ+

a and ℓ−b are the innermost (shallowest) lines of D+
i

and D−

i , respectively. Consider the line v∗

i dual to vi, and let h be the plane spanned
by v∗

i and p0. Let X+ (resp., X−) denote the set of points of P \{p0} whose projection
from p0 is one of the duals of ℓ+

1 , . . . , ℓ+
a (resp., ℓ−1 , . . . , ℓ−b ) on π. By construction,

|X+|, |X−| ≥ di; either of |X+| and |X−| may consist of more than di points, in the
case when either L+

i or L−

i has a line whose weight is reduced (at vi or in some earlier
junction). By Claim 4.1(iv), only ℓ+

a and ℓ−b (which are the innermost lines of D+
i and

D−

i ) may have reduced weight. By construction, the sets X+ and X− are separated
by a line in h (consult with Figure 7(a)).

Clearly, |X+| =
∑a

j=1 w(ℓ+
j ) and |X−| =

∑b
j=1 w(ℓ−j ), where the w(ℓ)’s denote

the original weights of the corresponding lines ℓ. We claim that Theorem 3.1 can be
applied to the set X = X+ ∪X− within the plane h. Indeed, assume without loss of
generality that |X+| ≥ |X−|. Since ℓ+

a is either deleted at vi or has its weight reduced
there, it follows that

∑a−1
j=1 w(ℓ+

j ) <
∑b

j=1 w(ℓ−j ). Therefore

|X+| − |X−| =

a
∑

j=1

w(ℓ+
j ) −

b
∑

j=1

w(ℓ−j ) < w(ℓ+
a ).

Theorem 3.1 can thus be applied to the set X = X+∪X− within the plane h, and
it yields a total of at least |X+|+ |X−|+1 pairwise non-convergent segments, each of
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which connects a point of X+∪{p0} to a point of X−∪{p0}. However, there may exist
one segment that has to be excluded because of potential collinearity with segments
generated at other junctions: This is a segment e along the ray from p0 to the dual
of the unique line ℓ among ℓ+

a , ℓ−b whose weight is reduced at vi but which is not
removed there, if such a line exists. (Note that this ray is the innermost among those
rays connecting p0 to points of the corresponding set X+ or X−.) In that case, ℓ will
also contribute weight to another subsequent junction vi′ , where a segment collinear
with e may be generated in the primal plane, and these two segments cannot both be
included in the output set E (whose elements have to be pairwise non-convergent).
Reducing the count due to this potential double counting, we are therefore left with
at least

w(D+
i ) + w(D−

i ) + 1 − ζi =

a
∑

j=1

w(ℓ+
j ) +

b
∑

j=1

w(ℓ−j ) + 1 − ζi

pairwise non-convergent segments, where ζi = 1 if there is a line whose weight has
been reduced at vi but which was not removed there, and ζi = 0 otherwise. Here
w(D+

i ), w(D−

i ) denote the total original weight of these sets.

Handling the central bichromatic point q. As noted, the presence of q may
force us to modify the analysis at the first junction v1, because the dual line q∗ appears
there as two coincident lines (q−)∗ ∈ L−

1 and (q+)∗ ∈ L+
1 . Let d+

0 (resp., d−

0 ) denote
the total weight of all the lines of D+

1 \ {(q+)∗} (resp., of D−

1 \ {(q−)∗}); recall that
at least one of the sets D+

1 , D−

1 includes the respective copy of q∗ with its full weight.
We have d1 = min{d+

0 + w(q+), d−

0 + w(q−)}; assume, without loss of generality, that
d1 = d+

0 + w(q+) ≤ d−

0 + w(q−).

Suppose first that d−

0 ≥ d+
0 + w(q+). Refer to Figure 16. Then (q−)∗ /∈ D−

1 . Let
X− denote the set of all points p ∈ P \{p0} that project to the points dual to the lines
of D−

1 . If D−

1 contains a line ℓ whose weight is only reduced at v1, let b1 > 0 denote
the surviving weight of ℓ. We have |X−| = d1+b1. Let X+ denote the set of all points
p ∈ P \ {p0} that project to the points dual to the lines of D+

1 , including q (with its
full weight w(q) = w(q−) + w(q+)). We have |X+| = d1 + w(q−). If b1 ≤ w(q−), then
|X+| − |X−| = w(q−) − b1 < w(q); the right-hand side is the number of points on
the innermost ray from p0 to the points of X+ (see Figure 16). If b1 > w(q−), then
|X−| − |X+| = b1 − w(q−) < w(ℓ); the right-hand side is the number of points on
the innermost ray from p0 to the points of X−. Hence, in either case, Theorem 3.1 is
applicable to X+ ∪ X− ∪ {p0}, and it yields a set E(v1) of at least

w(D−

1 ) + w(D+
1 \ {q}) + w(q) + 1 = w(D−

1 ) + w(D+
1 ) + w(q−) + 1

pairwise non-convergent segments, where, as above, each line in D−

1 ∪ D+
1 is taken

with its full original weight. Compared with the count in the standard case, we collect
w(q−) additional segments in this case.

Suppose next that d−

0 < d+
0 + w(q+) ≤ d−

0 + w(q−). See Figure 17. In this case,
D−

1 contains (q−)∗ and D+
1 contains (q+)∗. We let X+

0 (resp., X−

0 ) denote the set
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Figure 16: Collecting segments in E(v1) when q exists. Here (q−)∗ 6∈ D−

1 . We have
d1 = 6, |X−| = 7 and |X+| = 9. The lines (q−)∗ and (q+)∗ are coincident, but are
drawn as separate lines for the purpose of illustration.
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Figure 17: Collecting segments in E(v1) when q exists. Here (q−)∗ ∈ D−

1 , d1 = 6,
|X−| = 5, |X+| = 9, and Theorem 3.1 can be applied.
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Figure 18: Collecting segments in E(v1) when q exists. Here (q−)∗ ∈ D−

1 , d1 = 6,
|X−| = 4, |X+| = 9, and |X+| − |X−| = w(q), so only Corollary 3.2 can be applied.
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of all points of P \ {p0} that project to the points dual to the lines of D+
1 \ {(q+)∗}

(resp., the lines of D−

1 \ {(q−)∗}). We have |X+
0 | = d+

0 and |X−

0 | = d−

0 .

First, assume further that d+
0 6= d−

0 , say d+
0 > d−

0 . In this case we set X+ := X+
0

and take X− to be the union of X−

0 with the set of all points of P \ {p0} that project
to q. We have |X−| = d−

0 + w(q) > |X+|, and |X−| − |X+| = d−

0 − d+
0 + w(q) < w(q).

A symmetric argument holds when d+
0 < d−

0 . Hence, Theorem 3.1 is again applicable,
and yields a set E(v1) of at least

d−

0 + d+
0 + w(q) + 1 ≥ w(D+

1 ) + w(D−

1 ) + 1

pairwise non-convergent segments, where, as above, each line in D−

1 ∪ D+
1 is taken

with its full original weight. Here the lower bound is the same as the one yielded in
the standard case.

The final, problematic case arises when d+
0 = d−

0 . See Figure 18. In this case, the
points of P \ {p0} that project to q can be added to either set X−

0 , X+
0 , say we add

them to X−

0 . Then the resulting sets X−, X+ satisfy |X+| = d+
0 , |X−| = d−

0 + w(q),
and |X−| − |X+| = w(q). In this case Theorem 3.1 is not applicable, and we can only
apply Corollary 3.2, to obtain a set E(v1) with at least

d−

0 + d+
0 + w(q) ≥ w(D+

1 ) + w(D−

1 )

pairwise non-convergent segments. That is, we lose one segment in E(v1), as com-
pared with the standard situation. (Note that in this case all lines through v1 are
removed, except perhaps for (q−)∗.)

In addition, as in the standard case, we need to subtract 1 from any of the bounds
obtained above, in case D+

1 or D−

1 has a line whose weight is only reduced at v1, to
accommodate the potential double counting due to collinear segments generated at
subsequent junctions.

The double wedge W (v1) associated with v1 is defined as in the standard case,
except that in some of the above cases it may degenerate to the single line q∗ (it
always has (q−)∗ or (q+)∗ as one of its bounding lines). In this case, we still consider
W (v1) to have its apex at v1. In the primal plane, the corresponding segment f(v1)
degenerates to the singleton point q, but it is still considered to lie along the line v∗

i .

Wrapping up. We repeat this collection process to each of the junctions vi, and
sum up the resulting bounds. This sum can be rearranged as follows. Let ℓ1, . . . , ℓt

denote an enumeration of all the lines in L, and put wj = w(ℓj) (the original weight),
for j = 1, . . . , t. (In case q exists, the lines (q+)∗ and (q−)∗ appear as two separate
lines in this enumeration, with their respective weights.) For each j, let κj denote
the number of junctions vs that are incident to ℓj, such that ℓj ∈ Ds. Observe that if
κj > 1, then in the first κj−1 of these junctions vs, the weight of ℓj is reduced at vs but
ℓj is not removed there. Hence ζs = 1 at each of these junctions vs, and we “blame”
this reduction in the count on ℓj , making its effective weight contribution at vs equal
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L+
i

e

fi+1

L−
i

vi+1
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ℓ+
1
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ℓ−2 ℓ+
2

ℓ−1

Figure 19: Collecting stations (shown highlighted) between vi and vi+1. The dashed
lines are those removed at vi, and the dashed-dotted ones are those removed at vi+1.

to wj −1. ℓj is removed only at the last (i.e., the κj-th) of these junctions. Therefore,
the overall number of segments in E generated at all the junctions v1, . . . , vk is at
least

k +
t

∑

j=1

(κj − 1)(wj − 1) +
t

∑

j=1

wj − ε0 = k + t +
t

∑

j=1

κj(wj − 1) − ε0, (1)

where ε0 = 1 if q exists and the problematic case d−

0 = d+
0 arises at v1, and ε0 = 0 in

all other cases.

4.3 Collecting stations in the dual plane and corresponding
segments in E

In the next step we collect additional vertices, called stations, between pairs of suc-
cessive junctions vj, vj+1. We first handle the standard case, in which either q does
not exist, or q exists and j ≥ 2, and then present a modified analysis for the case
where q exists and j = 1.

The standard case. Fix an index 1 ≤ i < k, and consider the vertical slab between
vi and vi+1. By Claim 4.1(ii), vi lies inside or on the boundary of the face f = fi+1

of A(L+
i+1 ∪ L−

i+1) whose rightmost vertex is vi+1; see Figure 19. Hence, the segment
e = vivi+1 is contained in (the closure of) f . We distinguish two cases:

Case 1: e is contained in the interior of f (except for its right endpoint).

This implies that the lines of D−

i+1 (resp., of D+
i+1) pass strictly above (resp.,

below) e. Moreover, either all the lines of D−

i pass below e, or all the lines of D+
i pass
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u∗ (ℓ+
s )∗ (ℓ−t )∗

σ+
σ−

h

p0

Figure 20: The set E(u) of segments (drawn dashed-dotted) spanned by P that are
determined by a station u.

above e. Suppose, without loss of generality, that the second case arises. Denote the
lines of D+

i by ℓ+
1 , . . . , ℓ+

νi
, ordered according to increasing slope, and those of D−

i+1

by ℓ−1 , . . . , ℓ−νi+1
, ordered according to decreasing slope. See Figure 19 (which depicts

this configuration, even though it illustrates the following Case 2).

Each of the lines ℓ+
s intersects every line ℓ−t in the slab between vi and vi+1, because

ℓ+
s passes through the left endpoint of e, ℓ−t passes through the right endpoint of e, and

they both lie above e. We refer to the points of intersection between these two sets
of lines as the upper grid between vi and vi+1; the lower grid is defined analogously.
Consider the vertices of A(L) where ℓ+

νi
intersects the lines ℓ−1 , . . . , ℓ−νi+1

, and the

vertices where ℓ−νi+1
intersects the lines ℓ+

1 , . . . , ℓ+
νi

. There are νi + νi+1 − 1 distinct
vertices of this kind (see Figure 19), and we let the set of stations Si to consist of all
these vertices. We associate with each station u the double wedge W (u) between the
two lines from D+

i and D−

i+1 that meet at u.

Each station u generates a set E(u) of segments spanned by P in R3 , as follows.
Suppose that u is incident to some line ℓ+

s through vi and to some line ℓ−t through
vi+1 (where either s = νi or t = νi+1). Consider the primal line u∗ dual to u, and
let h denote the plane in 3-space spanned by p0 and u∗. The plane h contains two
segments that connect p0 to the two respective dual points (ℓ+

s )∗, (ℓ−t )∗, both lying
on u∗. The first segment σ+ contains w(ℓ+

s ) points of R+, and the second segment σ−

contains w(ℓ−t ) points of R−. We can easily collect here as many as w(ℓ+
p )+w(ℓ−q )−1

segments into E(u), no two of which are convergent; for example, one can get that
many distinct segments by taking all segments one of whose endpoints is either the
nearest point to p0 on σ+ or the nearest point to p0 on σ−; See Figure 20.

These segments constitute the set E(u). Hence, the total number of segments
that are collected in this manner for all the new stations u is

∣

∣

∣

∣

∣

⋃

u∈Si

E(u)

∣

∣

∣

∣

∣

=

νi+1
∑

t=1

[

w(ℓ+
νi
) + w(ℓ−t ) − 1

]

+

νi−1
∑

s=1

[

w(ℓ+
s ) + w(ℓ−νi+1

) − 1

]

.

Note that the sum
∑νi

s=1 w(ℓ+
s ) is at least di; it may exceed di if it involves a
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non-deleted line with reduced weight, because in the sum we use the full weight of
that line. Similarly,

∑νi+1

t=1 w(ℓ−t ) ≥ di+1. Therefore, the total number of segments
that we collect this way is at least

di + di+1 − 1. (2)

We note that this estimate is rather conservative. In general, if the weights of the
lines are greater than 1 and νi, νi+1 > 1, we get a larger lower bound.

Case 2: e is an edge of f .

In this case, e is contained in a line ℓ which is incident to vi but which was not
removed when vi was constructed (it could have been the one whose weight has been
reduced there). Assume first that ℓ is not the line whose weight has been reduced at
vi. By construction, it then follows that the lines of D−

i pass strictly below e, and
the lines of D+

i pass strictly above e. Now either all the lines of D−

i+1 pass above e,
or all the lines of D+

i+1 pass below e. We can now repeat the preceding arguments,
and obtain, as above, a set Si of stations of A(L) along either the upper or the lower
grid, which generate a total of at least di + di+1 − 1 segments spanned by P , which
are added to E. Figure 19 depicts this case of the analysis.

Suppose next that the line ℓ containing e is the (unique) weight-reduced line at
vi. If ℓ does not belong to Di+1, then the first case of the analysis applies, and yields
the same lower bound of di + di+1 − 1 on the number of collected segments that are
added to E. We thus assume that ℓ does belong to Di+1.

Let ai and ai+1 denote the contribution of ℓ to di and di+1, respectively. That
is, the overall weight of the lines from the same family of ℓ (i.e., L+ or L−) that are
removed at vi (resp., at vi+1) is ci = di − ai (resp., ci+1 = di+1 − ai+1).

Claim 4.2. In this case one can construct stations along either the upper or the lower
grid between vi and vi+1, from which at least

ci + ci+1 = di + di+1 − (ai + ai+1) (3)

new segments can be collected in E (in the same manner as before).

Indeed, suppose, without loss of generality, that ℓ ∈ L+. Then the total weight of
the lines of L− that are incident to vi (resp., to vi+1) is di (resp., di+1), and the total
weight of the lines of L+ that are incident to vi (resp., to vi+1) and are removed there
is ci (resp., ci+1). See Figure 21.

If both ci and ci+1 are 0, the claim is trivial, so assume that, say, ci > 0 (see
Figure 21). In this case, the upper grid between vi and vi+1 exists, and generates,
arguing as above, at least

ci + di+1 − 1 = di + di+1 − ai − 1 ≥ di + di+1 − (ai + ai+1)

new segments in E, as claimed. The case where ci+1 > 0 (and ci = 0) is fully
symmetric, except that in this case we use the lower grid (see Figure 21). This
establishes our claim. �
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Figure 21: Illustrating the proof of Claim 4.2.

We denote by E(Si) the set of segments in E that are constructed from the stations
collected between the two consecutive junctions vi and vi+1.

We have thus showed that |E(Si)| ≥ di+di+1−1, if there is no line that contributes
weight to both junctions. If on the other hand there is a line ℓ that contributes a
weight of ai ≥ 1 to vi and a weight of ai+1 ≥ 1 to vi+1, then |E(Si)| ≥ di + di+1 −
ai − ai+1.

The case where q exists and j = 1. Suppose next that the central bichromatic
point q exists, and consider the construction of S1. If q∗ does not pass through v2,
then the analysis proceeds in essentially the same manner as in the standard case. For
the sake of completeness, we repeat the details. Suppose, without loss of generality,
that q∗ passes below v2. The case where v1v2 is interior to the face f2 is handled in
exactly the same way as above: One can use the lower grid between v1 and v2, and
construct stations that contribute a total of at least d1 + d2 − 1 segments to E; see
Figure 22. The same holds for the case where there is a line (different from q∗) that
passes through both v1 and v2 but it belongs to at most one of the sets D1, D2 (in this
case, one of the upper or lower grids will generate stations with |E(S1)| ≥ d1+d2−1).
Consider then the case where there exists such a line ℓ whose weight has been reduced
at both junctions (it may have been removed at v2). Since the entire L−-weight of q
must have been removed at v1 (because no surviving line of L− can pass below v2),
it follows that ℓ ∈ L+

1 . Again, this case can be handled as in Claim 4.2, and yields at
least d1 +d2 −a1 −a2 in E, according to the preceding notation. In summary, we can
always collect from the stations in S1 at least either d1 + d2 − 1 or d1 + d2 − a1 − a2

segments into E, depending on the cases considered above. (Note that in some of
these cases we may actually gain w(q+) additional segments in E(S1).)
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v2

v1

q∗

Figure 22: Collecting stations in S1 when q∗ passes below v2.

Assume then that q∗ passes through v2. Without loss of generality assume that
(q+)∗ is fully removed at v1. The following cases can arise:

Case 1. (q−)∗ ∈ D−

2 .

Let a1 (resp., a2) denote the weight removed from (q−)∗ at v1 (resp., at v2). (It
is possible that a1 = 0.) We claim that one can collect at least d1 + d2 − (a1 + a2)
segments into E(S1) in either the upper or lower grid between v1 and v2. This is
argued in much the same way as in the case where q does not exist. Specifically, let
c1 = d1 − a1 (resp., c2 = d2 − a2) denote the L−-weight removed at v1 (resp., v2) from
the lines in L− other than (q−)∗.

If both c1 and c2 are 0, then there is nothing to prove. If c1 > 0, then, except
for (q−)∗, all other lines of D−

1 pass strictly below v2, and have total weight at least
c1 = d1 − a1. By assumption, all lines of D+

2 pass strictly below v1, and have total
weight at least d2. Therefore the lower grid between v1 and v2 can be used to produce
at least c1 + d2 − 1 = d1 + d2 − 1 − a1 ≥ d1 + d2 − (a1 + a2) segments in E(S1).

If c1 = 0 and c2 > 0, then, except for (q−)∗, all other lines of D−

2 pass strictly
above v1, and have total weight at least c2 = d2 − a2. As c1 = 0, there are no lines
from L− through v1 other then (q−)∗, and therefore at least one additional line (other
than (q+)∗) of L+ must pass through v1 (or else v1 would not be a vertex of the
arrangement). Therefore, the upper grid between v1 and v2 exists, and we may use it
to collect at least 1 + c2 − 1 = c2 = d2 − a2 = (d1 − a1) + d2 − a2 = d1 + d2 − (a1 + a2)
segments into E(S1).

Case 2. (q−)∗ /∈ D−

2 (but it still passes through v2).

In this case, depicted in Figure 23, the sets D+
2 , D−

2 are both nonempty, and all
lines of D+

2 (resp., D−

2 ) pass strictly below (resp., above) v1; the total weight of either
set is d2. Set w+ = w(q+), w− = w(q−). There must exist either lines of L+ or lines
of L− (other than q∗) that pass through v1 and are removed there. In the former
case, the total removed L+-weight of these lines is d1−w+, and we may use the upper
grid between v1 and v2 (which necessarily exists), to collect at least d1 + d2 −w+ − 1
segments into E(S1). In the latter case, arguing in an essentially symmetric manner,
we may use the lower grid between v1 and v2 (which necessarily exists), to collect
at least d1 + d2 − w−

1 − 1 segments into E(S1), where w−

1 is the weight that (q−)∗
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contributes at v1.

As will follow from the later counting phase, given in Section 4.4, we need to
compensate for the loss of either w+ or w−

1 segments in E(S1), which we do by
including the points on the ray p0q in the set X+ when we construct E(v2), even
though neither (q+)∗ nor (q−)∗ belongs to D2. Before doing so, the size of X+ is
exactly d2, and the size of X− is at least d2; it can be larger if there is a negative
line whose weight is only reduced at v2. We add the points on the ray p0q to X+.
In general, we can apply Theorem 3.1 to the modified sets X−, X+, except when
|X−| = |X+| = d2, in which case we can only apply Corollary 3.2. The modified E(v2)
thus consists of at least w(D+

2 ) + w(D−

2 ) + w(q) + 1 = 2d2 + w(q) + 1 pairwise non-
convergent segments, if |X−| 6= |X+|, or of at least w(D+

2 )+w(D−

2 )+w(q) = 2d2+w(q)
pairwise non-convergent segments, if |X−| = |X+|. In the most pessimistic scenario,
we can only apply Corollary 3.2, whereas, when q was not included, we could have
applied Theorem 3.1 to collect 2d2 + 1 segments in E(v2). We thus gain at least
w(q) − 1 additional segments. However, we may have to subtract 1 extra segment
from the count, because (q−)∗ may contribute weight to a further junction. Thus, in
the worst case, we can only guarantee w(q) − 2 = w+ + w− − 2 additional segments.
In general, these suffice to compensate for the loss of max{w+, w−

1 } a E(S1), unless
min{w+, w−

1 } = 1. In this special case, we lose one segment in our count.

The price that we pay for including q is that the double wedge W (v2) has to shrink,
and be bounded by q∗ and by the shallowest line in D−

2 . However, as we will later
show, in Section 4.5, the collected double wedges will remain pairwise non-convergent.

v1

v2w(q−)

w(q+)

d2 d1 − w+

d2

d1

(q−)∗ = (q+)∗

≥ d1 − w−
1

Figure 23: The problematic case in the construction of S1 in the presence of a central
bichromatic point q: Here d1 = d+

1 , so (q+)∗ is removed at v1. We also assume
that (q−)∗ 6∈ D−

2 . In this case we can only guarantee the generation of at least
d1 +d2−max{w+, w−

1 }−1 segments in E, and we lose max{w+, w−

1 } segments in the
bound.
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Figure 24: Reproducing the primal construction of R− and R+: Case (i) (left) and
Case (ii) (right).

Collecting stations to the left of v1 and to the right of vk. We next define
the last set of stations Sk, which are stations that lie to the right of vk or to the left
of v1. Recall the specific partition of R into R+ and R−, as presented in Section 2.
We will exploit certain features of this partition in the construction of Sk, and will
find it convenient to “flip” between the primal and dual settings as we go. For the
convenience of the reader, we reproduce here Figure 3 as Figure 24.

Claim 4.3. At least one of the following two conditions will be satisfied:

(i) The last junction, vk, is identical to m∗

0, the dual of m0.

(ii) r∗, the dual of r ∈ R−, passes through vk and is the unique element of L−

deleted during the procedure at vk.

Proof: Suppose that during the procedure r∗ is deleted at a junction vj , for some
j ≤ k. Clearly, v∗

j passes through r and at least one point t ∈ R+, whose dual line is
also deleted, or has its weight reduced, at v∗

j .

If, in the primal plane π, v∗

j passes through another point r′ 6= r of R−, then
v∗

j = m0 (otherwise it has to lie clockwise to m0 and then it cannot meet any point of
R+). In this case, in the dual plane there cannot be any intersection point between a
line of L− and a line of L+ to the right of vj , so that j = k. That is, we have v∗

k = m0,
and (i) holds.

Suppose then that, in the primal plane π, v∗

j does not pass through any element
r′ ∈ R− other than r. If j = k, then condition (ii) is satisfied. So we can assume
that j < k and v∗

k 6= m0. Refer to Figure 25). Take any two lines ℓ− ∈ L− and
ℓ+ ∈ L+ in the dual plane that are deleted during the procedure at the last junction
vk. By assumption and construction, we have ℓ∗

−
6= r, and the slope of the segment

ℓ∗+ℓ∗
−
⊂ v∗

k connecting their duals in the primal plane (i.e., the slope of v∗

k) is smaller
than that of the segment tr. We claim that the two segments ℓ∗+ℓ∗

−
⊂ v∗

k and tr ⊂ v∗

j
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Figure 25: The segments tr and ℓ∗+ℓ∗
−

must be convergent.

are convergent. Indeed, since m0 (weakly) separates R+ and R−, the closed segment
ℓ∗+ℓ∗

−
must meet m0, and this must happen at a point to the left of (and above) r,

or else r would not be an extreme point of R (see Figure 25). For a similar reason,
ℓ∗
−

must lie above v∗

j . These facts, together with the slope relationship between v∗

j

and v∗

k, imply that the two segments are convergent. This, in turn, implies that
the double wedges dual to tr and to ℓ∗

−
, ℓ∗+ are convergent. Since W (vk) and W (vj)

are contained in these respective double wedges, they are also convergent. However,
W (vk) is bounded by a line of L+

k and by a line of L−

k , and Claim 4.1(ii) implies that
vj lies between these lines, and hence in W (vk), showing that W (vj) and W (vk) are
non-convergent.2 This contradiction completes the proof of the claim. �

The above argument is valid for any coordinate system whose y-axis strictly sepa-
rates the sets R− and R+, or, in case q exists, passes through q and strictly separates
R−

0 and R+
0 . We specify a coordinate system with this property as follows.

Choose the y-axis to be very close to m0, so that, in the dual plane, the slope of
every line of L passing through m∗

0 has smaller absolute value than the slope of any
other line of L; that is, the x-coordinates of the points of m0∩R have smaller absolute
values than those of any other point of R. See Figures 26(a), 27(a), and 28(a). In
addition, if q exists, we make the y-axis pass through q, as already stated.

Now we are in a position to define the set of stations Sk. The reason for choosing
the specific way of partitioning R, and the coordinate frame, is to force the stations in
Sk to lie to the left of v1, which will be useful when establishing the non-convergence
of the segments in F and in E. With one possible exception, all stations in Sk do
indeed lie to the left of v1.

Pass to the dual plane. The first junction, v1, lies inside or on the boundary of
the face fk of A(L−

k ∪L+
k ), whose rightmost vertex is vk, so that the segment e = v1vk

is contained in the closure of fk. We distinguish the following cases:

2This is a special case of a more general argument, given in Lemma 4.4 below.
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Case A: Suppose first that vk = m∗

0 and that the point c := m0 ∩ m1 does not belong
to R−.

Let ℓ−1 , . . . , ℓ−ν1
and λ−

1 , . . . , λ−

νk
denote the lines of D−

1 and all the lines of L−

k = D−

k ,
respectively, listed in the decreasing order of their slopes. By the special choice of our
coordinate system, each line ℓ−i intersects every line λ−

j to the left of v1. Indeed, all
the lines of L−

k pass above or through v1, by Claim 4.1(ii), but no line passes through
both vk and v1, because such a line is dual to the point m0 ∩ m1, which we have
assumed not to belong to R−. The slope of the primal segment (λ−

j )∗(ℓ−i )∗ is larger
than that of m1, because, by what has just been argued, (λ−

j )∗ ∈ m0 lies below m1

and to the left of (ℓ−i )∗ ∈ m1; see Figure 26(a). Hence the dual intersection point lies
to the left of v1. Define the last set of stations, Sk, as the collection of all intersection
points of ℓ−ν1

with the lines λ−

1 , . . . , λ−

νk
, and all intersection points of λ−

νk
with the

lines ℓ−1 , . . . , ℓ−ν1
. See Figure 26(b). Clearly, we have |Sk| = νk + ν1 − 1 such stations,

all lying to the left of v1. Since the total (original) weight of the lines ℓ−1 , . . . , ℓ−ν1
is

at least d1, and the total (original) weight of the lines λ−

1 , . . . , λ−

νk
is at least dk, it

follows, as in the construction of the other sets of stations, that the stations in Sk

generate in this case at least d1 + dk − 1 segments in E(Sk).

Case B: Suppose next that vk = m∗

0 and that the point c := m0 ∩ m1 does belong to
R−.

Note that if q exists it must coincide with c. We first consider the case where
q does not exist, and then discuss the modifications that are needed when q exists.
The dual line c∗ passes through both v1 and vk. Since we assume for now that q does
not exist, c does not belong to R+. We thus switch to R+, and collect stations using
the dual lines in L+, in a manner similar to that in case A. All lines in D+

k = L+
k

pass strictly below v1, and the lines of D+
1 pass strictly above vk. Arguing exactly

as in case A, let ℓ+
1 , . . . , ℓ+

ν1
and λ+

1 , . . . , λ+
νk

denote the lines of D+
1 and the lines of

D+
k = L+

k , respectively, listed in the increasing order of their slopes. The special
choice of our coordinate system implies that each line ℓ+

i intersects every line λ+
j to

the left of v1. Indeed, the slope of the primal segment (λ+
j )∗(ℓ+

i )∗ is larger than that
of m1, because (λ+

j )∗ ∈ m0 lies above m1 and to the right of (ℓ+
i )∗ ∈ m1. Hence the

dual intersection point lies to the left of v1. In this case we define Sk as the collection
of all intersection points of ℓ+

ν1
with the lines λ+

1 , . . . , λ+
νk

, and all intersection points
of λ+

νk
with the lines ℓ+

1 , . . . , ℓ+
ν1

. Clearly, we have |Sk| = νk + ν1 − 1 such stations, all
lying to the left of v1, and they generate, as above, at least d1 + dk − 1 segments in
E(Sk).

Case C: Suppose finally that vk 6= m∗

0.

In this case, according to Claim 4.3, vk lies on r∗ and νk = 1. Refer to Figure 28.
Again, let ℓ−1 , . . . , ℓ−ν1

denote the lines of D−

1 , listed in the decreasing order of their
slopes. In the dual plane, the line r∗ passes above v1 and, by the choice of the
coordinate system, it intersects every ℓ−i to the left of v1, with the possible exception
of ℓ−1 . The intersection r∗ ∩ ℓ−1 can lie to the right of v1 (and of vk) only if the point
c := m0 ∩m1 belongs to R− and is dual to a line in D−

1 , in which case that line must
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(a) (b)

v1
vk

t∗

λ−
1

λ−
2 = r∗

ℓ−1
ℓ−2

y

t

m1 = v∗1

(ℓ−ν1
)∗

R−

m0 = v∗k

R+

(λ−
νk

)∗

r = (λ−
1 )∗

Figure 26: Case A of the construction of Sk, where vk = m∗

0 and m0 ∩ m1 6∈ R−. (a)
The primal structure. (b) The stations in Sk (highlighted to the left of v1).

be ℓ−1 = c∗. Note that in this case r∗∩ ℓ−1 = r∗∩c∗ is identical to the point m∗

0 dual to
m0, and the choice of the coordinate system implies that this is the rightmost vertex
of A(L) on r∗. We define Sk to be the set of intersection points between the lines
ℓ−1 , . . . , ℓ−ν1

and r∗. Thus, either all points of Sk, or all but one (namely, m∗

0) lie to
the left of v1. Clearly, we have |Sk| = ν1 = νk + ν1 − 1, and, as above, these stations
generate at least d1 + dk − 1 segments in E.

We associate with each station u ∈ Sk the double wedge W (u) formed by the two
lines ℓ−i , λ−

j (or ℓ+
i , λ+

j ) that meet at u.

Constructing Sk when q exists. Suppose now that the central bichromatic point
q exists. Examining the three cases in the construction of Sk, we note that Case A
cannot arise, because in this case the point m0 ∩m1, which has to be equal to q, does
not belong to R−, contradicting the definition of q. In Case C we can proceed exactly
as above, and collect at least d1 + dk − 1 segments in E(Sk). (In fact, since we use
the full weight of q, we get w(q+) additional segments in E(Sk).)

It therefore remains to consider Case B, in which vk = m∗

0 and q = m0 ∩ m1. In
the dual plane, q∗ passes through both v1 = m∗

1 and vk = m∗

0. Suppose, without loss
of generality, that (q+)∗ was removed at v1. See Figure 29.

We consider two subcases. In each of them the analysis becomes simpler if (q−)∗ ∈
D−

k . Moreover, we assume in what follows that k > 2. The case k = 2 will be treated
separately later.

Case 1. Suppose first that D+
1 \ {(q+)∗} is nonempty.

In this case, we use the lower grid, to the left of v1, formed by the lines of D+
1 \

{(q+)∗} and the lines of L+
k (which, by assumption, do not include (q+)∗). Clearly,
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m1 = v∗1
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R−
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ν1

)∗ r

m0 = v∗k

R+

c∗

ℓ+
2

ℓ+
1

λ+
2

λ+
1

r∗
vk

v1

Figure 27: Case B of the construction of Sk, where vk = m∗

0 and c = m0 ∩ m1 ∈ R−.
(a) The primal structure. (b) The stations in Sk (highlighted to the left of v1).

L+
k is not empty. Since D+

1 contains lines other than (q+)∗, the lower grid can indeed
be used. The lines of L+

k contribute the full weight dk, but the lines of D+
1 \ {(q+)∗}

contribute only d1−w+ overall weight, so the grid generates (at least) d1+dk−w+−1
segments in E(Sk).

If (q−)∗ ∈ D−

k , the loss of w+ segments in E(Sk), as compared with the analysis
in the standard case, will be automatically compensated in the construction of E(vk),
since this analysis gains “for free” the weight w+ of (q+)∗ when it handles the line
(q−)∗. The case (q−)∗ /∈ D−

k will be handled shortly.

Case 2. (q+)∗ is the only line in D+
1 .

In this case, the lower grid does not exist, and we have d1 = w+. Clearly, there
must exist lines of L−

1 through v1 other than (q−)∗. Moreover, the line r∗ passes
by construction through vk = m∗

0 (see Figure 27). If (q−)∗ ∈ L−

k , then r∗ must also
belong to L−

k , for otherwise it would have to pass through some preceding junction vj ,
so (q−)∗ would pass below vj, which is impossible for lines of L−

k . If (q−)∗ 6∈ L−

k , then
all the lines of L−

k (which is a nonempty set) pass above v1. Hence we may use in this
case the upper grid, which generates at least d1−w−

1 +dk−w−

k −1 segments in E(Sk),
where w−

1 , w−

k are the weights that (q−)∗ contributes at the respective junctions v1, vk.

If w−

1 = w−

k = 0, we obtain the standard bound d1 + dk − 1.

If w−

1 > 0 and w−

k = 0, we are in a symmetric version of the situation in Case 1
that still needs to be treated. Both versions will be treated together below.

If w−

1 = 0 and w−

k > 0, we automatically compensate for the loss of w−

k segments
in the count, in the construction of E(v1), which, similar to the argument in Case 1,
gives us w(q−) ≥ w−

k extra segments “for free”.

If w−

1 > 0 and w−

k > 0, we interpret the bound in the context of Claim 4.2, except
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Figure 28: Case C of the construction of Sk, where vk 6= m∗

0. (a) The primal structure.
(b) The dual picture.

v1 vk

(q+)∗

(q−)∗

dk

d1 − w+

Figure 29: Constructing Sk in the presence of q∗.

that our bound is 1 smaller than what the Claim guarantees.

It remains to analyze the subcases where (q−)∗ /∈ D−

k , and where we still need to
compensate for the loss of max{w+, w−

1 } segments in E(Sk).

Note that this loss is identical to the potential loss at E(S1), discussed above. We
compensate for it in the same way—by including q in the construction of E(vk). The
same analysis shows that we can always compensate for the loss, unless min{w+, w−} =
1, in which case we lose one segment in the count.

(Note that, for this analysis to work, it is crucial that k > 2. Otherwise we need
to compensate twice for the loss of max{w+, w−

1 } segments, once in E(S1) and once
in E(Sk), but if v2 = vk we can compensate for it only once.)

As in the case of S1, here too we pay the price of replacing W (vk) by the narrower
double wedge bounded by q∗ and by the shallowest lineof the set among D−

k , D+
k to
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which q∗ was not adjoined. Nevertheless, we will show in Section 4.5 that this does
not affect the pairwise non-convergence of the segments in F .

4.4 Counting the Number of Segments in E

The standard case. Let us first consider the standard case, where q does not exist.
Combining the contributions in (2) and (3) with the contribution in (1), we obtain
that E consists of a total of at least

k + t +
t

∑

j=1

κj(wj − 1) + 2
k

∑

i=1

di −
∑

i∈I1

(ai + ai+1) −
∑

i∈I2

1 (4)

segments, where I1 is the set of indices i for which there exists a (unique) line which
contributes to both di and di+1 (or to d1 and dk, for i = k), and I2 is the complemen-
tary set.

Assume first that there is no line that contributes to all the k weights d1, . . . , dk.
Then each line ℓj can contribute to at most κj − 1 pairs of successive weights di, di+1,
and each of the corresponding terms (ai + ai+1) is at most wj. Even if there exists
a line that contributes to all k weights di, it does not affect the construction of
the segments from the stations of Sk, which always produces at least d1 + dk − 1
segments (when q does not exist). That is, we can always pretend that k ∈ I2,
so the analysis proceeds in the same way in this case, too. The remaining pairs of
successive weights contribute −1 to the expression above (in the summation over
i ∈ I2). Therefore, an overestimate of the (absolute value of the) negative terms in
(4) is

∑t
j=1(κj − 1)wj + (k −

∑t
j=1(κj − 1)).

Using the fact that 2
∑k

i=1 di =
∑t

j=1 wj = n− 1, the bound in (4) is greater than
or equal to

k + t +

t
∑

j=1

κj(wj − 1) +

t
∑

j=1

wj − k −
t

∑

j=1

(κj − 1)(wj − 1) = 2

t
∑

j=1

wj = 2n − 2.

The case where q exists. The differences between this case and the standard case
are:

(i) We may lose one segment in E(v1).

(ii) We may lose one segment in E(S1). Even if we do not lose the segment, we may
collect there only d1 + d2 − (a1 + a2) segments, where one of a1, a2 is 0.

(iii) A similar situation may occur for Sk.

(iv) It is possible that (q−)∗ or (q+)∗ contributes weight to all junctions v1, . . . , vk,
which may cause the set I1 to consist of all indices 1, . . . , k, and I2 to be empty.
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Figure 30: The case of only two junctions in the presence of q∗: (a) The dual config-
uration. (b) The primal configuration (in π).

Assume first that the situation in (iv) does not arise. Then the analysis proceeds as
in the standard case, since, as is easily verified, it is not affected by having some of the
ai’s vanish, except that we need to subtract 3 from the overall count, to accommodate
the potential losses in (i)–(iii). Hence, in this case we have |E| ≥ 2n − 5.

If the situation in (iv) arises, say, with (q−)∗ being the line that contributes weight
to all junctions, then

∑

i∈I1
(ai + ai+1) = 2w−, and all lines ℓj 6= (q−)∗ have κj = 1.

The total number of segments in E is therefore at least (without loss of generality,
we assume that (q−)∗ is the t-th line)

k(w− − 1) +

t−1
∑

j=1

(wj − 1) + n − 1 − 2w− + k + t − 3 =

(k − 2)w− + (n − 1) + t − (t − 1) + (n − 1 − w−) − 3 = (k − 3)w− + 2n − 4.

Hence, if k ≥ 3, we have |E| ≥ 2n − 4. (Recall that the count so far actually relied
on the assumption that k ≥ 3.)

It thus remains to consider the case where only two junctions are generated. In
this case, by construction, all the lines of L must pass either through v1 or through
v2; see Figure 30(a). Hence, in the primal plane, all points of R must lie on the lines
m0 and m1, with q lying on both lines; see Figure 30(b).

In this very degenerate case, we construct E explicitly, working in the primal
plane π, as follows. Denote by W+

1 , W−

1 , W+
2 , W−

2 the overall weight of all points of
R+ ∩ m1, R− ∩ m1, R+ ∩ m0, R− ∩ m0, respectively, excluding q in all four cases.

(i) Apply Theorem 3.1 or Corollary 3.2 at m0 and at m1 (or, equivalently, at the
dual junctions m∗

1 = v1 and m∗

0 = v2). To be on the safe side, we assume that only
Corollary 3.2 can be used at either junction, and, as usual, we subtract 1 from the
bound at v1 to allow for potential double counting of a segment. This yields a total
of at least

(W+
1 + W−

1 + w(q) − 1) + (W+
2 + W−

2 + w(q)) =
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Figure 31: (i) The set of Figure 1 with n = 7 points that determines 2n − 5 = 9
directions. (ii) The weighted set R in the primal plane π, obtained by projecting
from p0, with the central bichromatic point q of weight 2. (iii) The dual construction
of junctions and stations. We collect 4 segments in E(v1) (using Corollary 3.2), 3 in
E(v2) (using Corollary 3.2 and subtracting 1), 1 in E(S1), and 1 in E(S2), for a total
of 9 pairwise non-convergent segments.

(W+
1 + W−

1 + W+
2 + W−

2 + w(q)) + w(q) − 1 = (n − 1) + w(q) − 1

segments in E.

(ii) Suppose, without loss of generality, that W−

2 ≤ W+
2 . We then generate segments

in F , in addition to those lying on m0, m1, as shown in Figure 30(b). That is, we
connect the point of R+ ∩ m0 farthest from q to all the points on m1, excluding q,
and connect the two points of R+ ∩ m1, R− ∩ m1 farthest from q to all the points
of R+ ∩ m0. Here it is easy to verify directly that all these segments, including the
segments f(v1) ⊂ m1, f(v2) ⊂ m0 (where the first may degenerate to the singleton
point q, but is still considered to lie along m1), are pairwise non-convergent. The
F -segments that we have constructed are dual to the stations in S1 ∪ S2. The total
number of segments in E that are generated from these stations, in the standard
manner, is at least

(W−

1 + W+
2 − 1) + (W+

1 + W+
2 − 1) ≥ W+

1 + W−

1 + W+
2 + W−

2 − 2 = n− 1−w(q)− 2.

Adding the bounds from (i) and (ii), we get |E| ≥ 2n− 5. We note that the configu-
ration in Figure 31 falls into this case.

4.5 Pairwise Non-convergence of the Collected Segments

To complete the proof, we have to show that no pair of segments in E are convergent.
We first show:

Lemma 4.4. Let Q denote the set of all junctions and stations that we have collected.
For any u, v ∈ Q, the segments f(u) and f(v) associated with these vertices are non-
convergent in the primal plane π.
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Proof: Let us first consider the standard case, where q does not exist. Let u, v ∈ Q
with u lying to the left of v. The property that f(u) and f(v) are non-convergent is
dual to the property that W (u) and W (v) are non-convergent, that is, either u lies
in (the closure of) W (v) or v lies in (the closure of) W (u). We distinguish between
several cases:

Case A: Both u and v are junctions.

Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ℓ ∈ L+
j and

by a line ℓ′ ∈ L−

j . By Claim 4.1(ii), u = vi lies between these two lines, and thus
belongs to W (vj) = W (v).

Case B: u is a junction and v is a station not in Sk.

Put u = vi and let Sj be the set of stations that contains v, where i ≤ j < k. Then
W (v) is bounded by two lines ℓ, ℓ′, where either ℓ ∈ L+

j and ℓ′ ∈ L−

j+1, or ℓ ∈ L+
j+1

and ℓ′ ∈ L−

j . By construction, we have in both cases ℓ ∈ L+
j and ℓ′ ∈ L−

j , and the
analysis is completed as in Case A.

Case C: u is a station not in Sk and v is a junction or a station not in Sk.

Let Si be the set of stations containing u. The arguments in Case A and Case B
imply that vi ∈ W (v). If v is also a station in Si or v = vi+1 then it is clear from the
construction of Si that W (u) and W (v) are non-convergent (see Figure 19). Suppose
then that v lies to the right of vi+1. Then both vi and vi+1 lie in the left wedge of
W (v), and u is incident to a line ℓ that passes through vi and to a line ℓ′ that passes
through vi+1. If u /∈ W (v) then a boundary line of W (v) must separate u from vi and
vi+1, in which case v ∈ W (u); compare with Figure 14(a).

Case D: u is a station in Sk to the left of v1 and v is a junction or station.

If both u and v belong to Sk, then the claim follows easily from the construction
of Sk. We thus suppose that v 6∈ Sk. Then we have v ∈ {vi} ∪ Si ∪ {vi+1}, for some
1 ≤ i < k.

We start with the case vk = m∗

0. Refer to Figure 32. Suppose that u ∈ Sk is the
intersection point of two lines ℓ, λ, passing through v1 and vk, respectively, which,
without loss of generality, we assume to belong to L−. If v is contained in the double
wedge bounded by ℓ and λ, then v ∈ W (u), so W (v) and W (u) are non-convergent.
Otherwise, since u lies to the left of v1, v lies either above λ or below ℓ. If v is above λ,
then it is not a junction, so it must be the crossing point of a line ℓ+ ∈ D+

i and a line
ℓ− ∈ D−

i+1. See Figure 32(a). Both vi and vi+1 lie on or below λ, so the left portion
of the double wedge bounded by ℓ− and ℓ+ contains u. Thus, we have u ∈ W (v).
If, on the other hand, v is below ℓ, as in Figure 32(b), then it is either a junction or
a station, and it is the crossing point of a line ℓ− ∈ L− and a line ℓ+ ∈ L+ which
bound W (v), such that either both ℓ+ and ℓ− are in Di (if v = vi is a junction), or
ℓ− ∈ D−

i and ℓ+ ∈ D+
i+1 (if v ∈ Si is a station). Now ℓ− must pass above (or through)

v1 and hence above u, while ℓ+ must pass below u. Again we can conclude that the
left portion of the double wedge bounded by ℓ− and ℓ+, and thus W (v), contains u.

40



vi

u

v1

ℓ+ℓ−

v

vk
λ

vi+1

ℓ

(a) (b)

ℓ

λ

ℓ+

vk

v

ℓ−

v1

u

Figure 32: The proof that W (u) and W (v) are non-convergent when u is a station to
the left of v1. (a) v lies above W (u). (b) v lies below W (u).

The case where u lies on two lines of L+ is handled in a fully symmetric manner.

If vk 6= m∗

0, the above argument can be repeated verbatim for stations u ∈ Sk to
the left of v1. If v = m∗

0, the sole station to the right of vk, the claim is immediate
from the construction of Sk. Hance, Case D of the Claim holds in either case.

Case E: u is a junction or station not in Sk and v is a station in Sk (to the right of
vk).

Case E can arise only when v = m∗

0 ∈ Sk. Now it is simplest to establish the claim
in the primal plane, by noting that the segment dual to W (v) lies on the line m0, and
that, by construction (since u /∈ Sk), the segment dual to W (u) must connect a point
of R− to a point of R+, and thus must intersect m0, showing that these two segments
are non-convergent.

Consider next the case where the central bichromatic point q exists, which requires
a few modifications in the preceding analysis. First, if both (q−)∗ and (q+)∗ belong
to D1, the double wedge W (v1) degenerates to the single line q∗. (We still consider
it to have v1 as an apex. In the primal plane, the segment f(v1) degenerates to the
singleton point q, but it is still considered to lie along the line v∗

1 .) It is easily verified,
though, by specializing Cases A,B,D,E to this configuration, that W (v1) and any
other wedge W (v) in our collection are still non-convergent.

The presence of q does not affect any other case in the preceding analysis, as long
as we were not forced to include q in the construction of E(v2) or E(vk). Suppose
then that we had to include q in the construction of E(v2) (even though neither (q+)∗

nor (q−)∗ belonged to D2). In Case A, v2 is contained in W (vj) for any j > 2 (the case
where W (vk) was also shrunk will be treated below), so it only remains to consider
the case u = v1, v = v2, which still works, since v1 ∈ q∗, and thus v1 still lies in the
modified W (v2). Case B is not affected by the shrinking of W (v2). In Case C, we
only need to consider the subcase when u ∈ S1, and the property continues to hold
since v2 ∈ W (u). In Case D, we have v2 ∈ W (u), which easily follows from the fact
that v2 ∈ q∗; see Figure 33. Case E is argued as in the standard case.

Suppose finally that we had to include q in the construction of E(vk) (even though
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v1 v2

q∗

u

Figure 33: Case D of the analysis when W (v2) is shrunk: v2 ∈ q∗ lies above ℓ and
below λ and thus v2 ∈ W (u).

neither (q+)∗ nor (q−)∗ belonged to Dk). Recall that this can arise only in Case B of
the construction of Sk, where vk = m∗

0. Now, except for the stations in Sk, for any
other vertex u ∈ Q, f(u) connects a point of R+ and a point of R−, and thus the line
containing f(vk), namely m0, must cross f(u), so f(u) and f(v) are non-convergent.
If u is a station in Sk, then vk ∈ W (u), by construction.

Hence the lemma also holds when q exists. �
Non-convergence of the elements of E. Recall that, for each v ∈ Q, the points of
P that span the segments in E(v) are those points that project to the line containing
f(v) in π, so that their projections are dual to lines in L that either were removed at
v or had their weights reduced there (if v is a junction), or are the two lines incident
to v (if v is a station).

Moreover, each segment e in E(v) has the property that either its projection on
π contains the segment f(v) or it is a point not in the interior of f(v); the latter case
arises when e is contained in a ray emanating from p0, a situation that can arise when
we apply Theorem 3.1 or Corollary 3.2 at one of the junctions v1, . . . , vk.

Let e1 and e2 be two segments in E. For i = 1, 2, let ui denote the vertex in Q
for which ei ∈ E(ui), and set fi = f(ui). It suffices to consider the case u1 6= u2.

The segments f1 and f2 are non-convergent in π. If the projections e∗1, e∗2 on
π from p0 of e1 and e2, respectively, are segments (so that they contain f1 and f2,
respectively), then e∗1 and e∗2 are non-convergent in π, which is easily seen to imply
that e1 and e2 are non-convergent in R3 . If the projections of both e1, e2 are points
on π, then e1 and e2 share p0 as an endpoint and therefore are non-convergent.

We are left with the case in which, without loss of generality, e1 projects from p0

to a point x ∈ π (which is on the line containing f1 but not in the interior of f1),
whereas e2 projects to a segment e′2 containing f2. See Figure 34. The point x may
be assumed to lie on the line containing f2, for otherwise e1 and e2 are non-coplanar,
and therefore non-convergent. If x ∈ e′2 then clearly e1 and e2 are non-convergent,
so we may assume that x /∈ e′2. It follows that x /∈ f2 and since f1 and f2 are non-
convergent, x must be an endpoint of f1 (otherwise f1 and f2 would be convergent,
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Figure 34: Non-convergence of e1 and e2: An impossible configuration.

because the lines on π that contain them meet at x which lies outside both segments).

We claim that this case is impossible. Indeed, we have already noted that if x is
an endpoint of f1, then the vertex u1 dual to f1 must be a junction vi. The line ℓ dual
to x passes through both vertices u1 = vi and u2, and it is the shallowest line in either
D+

i or D−

i . If the central bichromatic point q exists, and u2 is not a station in Sk,
then ℓ cannot be equal to q∗, i.e., x cannot be equal to q, because, by construction,
q must lie inside f2, which is delimited by a point of R+ and a point of R−. Hence,
we may assume, without loss of generality, that ℓ ∈ L+ \ {(q+)∗}. The case where q
exists and u2 is a station in Sk will be considered later.

Case 1: u1 = vi lies to the left of u2.

Since x lies outside f2, the endpoint of f2 nearer to x is dual to a line ℓ′ ∈ L+
i that

passes through u2 and has smaller slope than that of ℓ. (Since u2 is constructed after
u1, the lines that define W (u2) must belong to Li.) But then ℓ′ must pass above vi

which is a contradiction since all the lines in L+
i must pass through or below vi. See

Figure 35(a).

Case 2: u1 = vi lies to the right of u2.

Assume first that u2 is not a station in Sk. Let 1 ≤ j < i be the index such that
either u2 = vj or u2 is a station in Sj . Since x lies outside f2, the R+-endpoint of
f2 (the one nearer to x) is dual to a line ℓ′ ∈ D+

j ∪ D+
j+1, which is shallower than

ℓ (since x lies outside f2). If u2 = vj then ℓ′ ∈ D+
j , and, by construction, ℓ must

have also been removed at vj or at an earlier junction, and thus it cannot be dual to
an endpoint of f1 (because such a point must be the dual of some line in L+

i ). See
Figure 35(b). Hence this case is impossible. Suppose then that u2 is a station in Sj .
Regardless of whether ℓ′ ∈ D+

j or ℓ′ ∈ D+
j+1, since ℓ is steeper than ℓ′, vj+1 lies below

ℓ. Hence, we must have i > j + 1, and, since ℓ ∈ L+
i , we obtain a contradiction to

Claim 4.1(ii); see Figure 35(c).

Finally, assume that u2 is a station in Sk to the left of v1. Suppose first that u2

lies on a line ℓ− ∈ D−

1 and a line λ− ∈ D−

k = L−

k . In this case, ℓ′ = λ− and ℓ passes
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(a) (b) (c)

ℓ = x∗

u1 = vi

ℓ′

u2 = vj

u2

ℓ = x∗

ℓ′

u1 = vi u2

ℓ′

ℓ = x∗
vj vj+1

u1 = vi

Figure 35: Showing the impossibility of the configuration in Figure 34. (a) u1 is to
the left of u2. (b) u2 is a junction to the left of u1. (c) u2 is a station to the left of u1.

(a) (b) (c)

ℓ = x∗

u2

u1 = vi

v1

vk

λ− = ℓ′
ℓ−

u2

v1
vk

u1 = vi
ℓ = x∗

ℓ+
λ+ = ℓ′

u2

v1
vk

u1 = vi

ℓ = x∗

ℓ+ = ℓ′

λ+

Figure 36: Showing the impossibility of the configuration in Figure 34 when u2 is a
station of Sk to the left of v1, and ℓ ∈ L+. (a) u2 is formed by two lines of L−. (b)
u2 is formed by two lines of L+, and ℓ is shallower than both of these lines. (c) u2 is
formed by two lines of L+, and ℓ is steeper than both of these lines.

above v1, which is impossible, since ℓ ∈ L+
1 ; see Figure 36(a). Suppose next that u2

lies on a line ℓ+ ∈ D+
1 and a line λ+ ∈ D+

k = L+
k . Since x lies outside f2, ℓ is not

contained in W (u2). If ℓ is shallower than λ+ (see Figure 36(b)), then ℓ′ = λ+, and
vi lies below λ+ ∈ L+

k , which is impossible. If ℓ is steeper than ℓ+ (see Figure 36(c)),
then ℓ′ = ℓ+, and v1 lies below ℓ, which is impossible, since ℓ ∈ L+

1 . (Note that in all
three cases, ℓ cannot be equal to q∗, because q∗ passes through v1 and ℓ does not.)

All these contradictions show that Case 2 is also impossible.

This establishes the non-convergence of the segments in E, and thus, at long last,
completes the proof of Theorem 1.3. �

As mentioned earlier, we can get a better bound when q does not exist:

Theorem 4.5. Let P be a set of n ≥ 6 non-coplanar points in R3 , such that n is
odd, and there exists an extreme point p0 of P , such that the projection of P from
p0 produces a set R without a central bichromatic point. Then P determines at least
2n − 2 segments, no two of which are convergent.
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This strengthens the bound 2n − 3 in Conjecture 1 of Blokhuis and Seress [?] for
n odd.

5 Extensions and Open Problems

In this section we consider several extensions of our results, prove some of them, and
leave the others as open problems.

The most obvious open problem is to obtain the exact worst-case bound for n
even. Currently there is a small gap between our lower bound 2n − 7 and the best
known construction, which gives 2n − 3 pairwise non-convergent segments.

Theorem 1.3 yields the following extension to four dimensions. It settles Conjec-
ture 9 of Blokhuis and Seress [2] in the affirmative for d = 4 and for even n.

Theorem 5.1. Let P be a set of n points in R4 , not contained in a hyperplane and not
having three collinear points. Then P determines at least 3n − 8 different directions,
if n is even, and at least 3n − 10 different directions if n is odd. The bound is sharp
for every even n ≥ 8.

Proof: Let p0 be the lowest point of P (in the x4-direction). Let H be a horizontal
hyperplane (parallel to the x1x2x3-space) far above all the points of P . By applying a
small rotation to P , we may assume that H is not parallel to any segment determined
by P .

Project the points of P \ {p0} centrally from p0 onto H , and color the projected
images red. For each direction γ determined by P , let Lγ denote the line parallel to
γ and passing through p0. If a direction γ, determined by P , is not obtained through
p0, let bγ denote the intersection point of Lγ with H . Color all such points bγ green.
Clearly, every red or green point on H gives rise to a different direction determined
by P , and all these points are distinct. The number of red points on H is n − 1.

Since P is not contained in a hyperplane, the red points on H are not coplanar.
Therefore, by Theorem 1.3, they determine at least 2(n − 1) − 5 = 2n − 7 pairwise
non-convergent segments, if n− 1 is odd, and at least 2(n− 1)− 7 = 2n− 9 pairwise
non-convergent segments, if n − 1 is even.

We claim that along each line L in H passing through two or more red points
there is a green point that lies outside the convex hull of the red points on L. Indeed,
consider the 2-plane through p0 and L. The direction γ in 4-space, determined by
the two points of P that project to the two extreme red points on L, is not obtained
through p0, and thus yields the desired green point outside the convex hull of the red
points on L. See Figure 37. Therefore, every collection of m pairwise non-convergent
segments determined by the red points on H , gives rise to m distinct green points on
H , formed in the manner just described. No two such green points can coincide, for
that would make the corresponding red segments convergent.
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Figure 37: The green point determined by a red segment in H .

It follows that the number of points on H is at least n− 1 + 2n− 7 = 3n− 8, if n
is even, and at least n − 1 + 2n − 9 = 3n − 10, if n is odd.

We next show that the bound is sharp for even n ≥ 8. The construction extends
the one depicted in Figure 1. Specifically, let P be the set of the vertices of a regular
(n− 4)-gon Q in the x1x2-plane, centered at the origin, and of the four points ±e3 =
(0, 0,±1, 0), ±e4 = (0, 0, 0,±1). It is easy to see that P determines exactly 3n − 8
different directions: n − 4 directions in the x1x2-plane, n − 4 directions obtained by
connecting the vertices of Q to e3, n−4 directions obtained by connecting the vertices
of Q to e4, and 4 directions determined by ±e3, ±e4. �

A grand generalization of Theorem 5.1, still in four dimensions, would be to
establish the following conjecture:

Conjecture A: Any set P of n points in R4 , not contained in a single hyperplane,
determines at least 3n − c pairwise non-convergent segments, for some constant c
(that might be larger than those in the theorem).

This conjecture would imply, by an appropriate extension of the preceding proof,
that any set of n points in R5 , not contained in a hyperplane, and not having three
collinear points, determines at least 4n − (c + 4) different directions.

The final grand challenge is to establish the following conjecture, which strengthen
Conjecture 9 of Blokhuis and Seress [2]:

Conjecture B: Any set P of n points in Rd , for d ≥ 4, not contained in a single
hyperplane, determines at least (d − 1)n − cd pairwise non-convergent segments, for
some constant cd that depends (probably quadratically) on the dimension d.
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