Comment on Fox News

János Pach* and Géza Tóth ${ }^{\dagger}$
Rényi Institute, Hungarian Academy of Sciences

Abstract

Does there exist a constant $c>0$ such that any family of n continuous arcs in the plane, any pair of which intersect at most once, has two disjoint subfamilies A and B with $|A|,|B| \geq c n$ with the property that either every element of A intersects all elements of B or no element of A intersects any element of B ? Based on a recent result of Fox, we show that the answer is no if we drop the condition that two arcs can cross at most once.

1 Introduction

It was shown in [4] that any family of n segments in the plane has two disjoint subfamilies A and B, each of size at least constant times n, such that either every element of A intersects all elements of B or no element of A intersects any element of B. In [1], this result was extended to families of algebraic curves with bounded degree at most D, where the corresponding constant depends on D.

More generally, let G be the intersection graph of $n d$-dimensional semialgebraic sets of degree at most D. Then there exist two disjoint subsets $A, B \subset V(G)$ such that $|A|,|B| \geq c(d, D) n$ and one of the following two conditions is satisfied:

1. $a b \in E(G)$ for all $a \in A, b \in B$,

[^0]2. $a b \notin E(G)$ for all $a \in A, b \in B$.

Here $c(d, D)$ is a positive constant depending only on d and D.
It is not completely clear whether the assumption that the sets are semialgebraic can be weakened. For example, a similar result may hold for intersection graphs of plane convex sets. Clearly, the same theorem is false for intersection graphs of three-dimensional convex bodies, because any finite graph can be represented in such a way, and a random graph G with n vertices almost surely does not have $A, B \subset V(G)$ satisfying conditions 1 or 2 with $|A|,|B| \geq c \log n$, if c is large enough.

It would be interesting to analyze intersection graphs of continuous arcs in the plane. (These are often called "string graphs" in the literature [2].) We have been unable to answer the following question even for $k=1$, that is, for pseudo-segments.

Problem 1.1. Is it true that any family of n continuous arcs in the plane, any pair of which intersect at most k times, has two disjoint subfamilies A and B with $|A|,|B| \geq c_{k} n$ such that either every element of A intersects all elements of B or no element of A intersects any element of B ? (Here $c_{k}>0$ is a suitable constant.)

It follows from a beautiful recent result of Jacob Fox [3] (see Theorem 2.2 below) that the answer to the above question is negative if we drop the condition on pairwise intersections.

Proposition 1.2. Fix $\varepsilon \in(0,1)$. For every n, there is a family of n continuous real functions defined on $[0,1]$ such that their intersection graph G has no complete bipartite subgraph with at least $c(\varepsilon) \frac{n}{\log n}$ vertices in each of its vertex classes, and every vertex of G is connected to all but at most n^{ε} other vertices.

Obviously, the last condition implies that G has no two disjoint nonempty sets of vertices A and B with $|A \cup B|>n^{\varepsilon}$ such that no vertex in A is connected to any element of B by an edge.

2 Proof of Proposition 1.2

We need a simple representation lemma.

Lemma 2.1. The elements of every finite partially ordered set $\left(\left\{p_{1}, p_{2}, \ldots\right\},<\right)$ can be represented by continuous real functions f_{1}, f_{2}, \ldots defined on the interval $[0,1]$ such that $f_{i}(x)<f_{j}(x)$ for every x if and only if $p_{i}<p_{j}(i \neq j)$.

Moreover, we can assume that the graphs of any pair of functions f_{i} and f_{j} are either disjoint or have finitely many points in common, at which they properly cross.
Proof. Let $P=\left\{p_{1}, p_{2}, \ldots p_{\ell}\right\}$. We describe a recursive construction with the additional property that for any extension of $(P,<)$ to a total order $p_{k(1)}<p_{k(2)}<\ldots<p_{k(\ell)}$, there exists $x \in[0,1]$ such that $f_{k(1)}(x)<f_{k(2)}(x)<\ldots<f_{k(\ell)}(x)$.

The proof is by induction on the number of elements of P. For $\ell=1$, there is nothing to prove. For $\ell=2$, there are two possibilities. If $p_{1}<p_{2}$, then the functions $f_{1} \equiv 1, f_{2} \equiv 2$ meet the requirements. If p_{1} and p_{2} are incomparable, then let $f_{1}(x)=x, f_{2}(x)=1-x$. Now $(P,<)$ can be extended to a total order in two different ways. Accordingly, $f_{1}(x)<f_{2}(x)$ at $x=0$ and $f_{2}(x)<f_{1}(x)$ at $x=1$.

Let $\ell \geq 3$, and suppose without loss of generality that p_{ℓ} is a minimal element of P. Assume recursively that we have already constructed continuous real functions $f_{1}, f_{2}, \ldots, f_{\ell-1}$ with the required properties representing the elements of the partially ordered set $\left(P \backslash\left\{p_{\ell}\right\},<\right)$. Consider now an extension of $(P,<)$ to a total order $p_{k(1)}<p_{k(2)}<\ldots<p_{k(\ell)}$. Clearly, p_{ℓ} appears in this sequence, i.e., $\ell=k(m)$ for some $1 \leq m \leq \ell$. By our assumption, there exists $x \in[0,1]$ such that

$$
f_{k(1)}(x)<\ldots<f_{k(m-1)}(x)<f_{k(m+1)}(x)<\ldots<f_{k(\ell)}
$$

In fact, there exists a whole interval $I \subset[0,1]$ such that the above inequalities hold for all $x \in I$. Now pick a point $x^{*} \in I$ and a number y^{*} such that $f_{k(m-1)}\left(x^{*}\right)<y^{*}<f_{k(m+1)}\left(x^{*}\right)$, and define

$$
f_{\ell}\left(x^{*}\right):=y^{*} .
$$

Repeating this procedure for every permutation $(k(1), k(2), \ldots, k(\ell))$ for which $p_{k(1)}<p_{k(2)}<\ldots<p_{k(\ell)}$ is an extension of $(P,<)$ to a total order, we define the function f_{ℓ} at finitely many points. (To avoid inconsistencies, we can make sure that we pick a different point x^{*} for each permutation.)

It remains to verify that this partially defined function can be extended to a continuous function $f_{\ell}:[0,1] \rightarrow \mathbf{R}$ meeting the requirements. The following two conditions must be satisfied:

1. if $p_{\ell}<p_{j}$ in $(P,<)$ for some $j \neq \ell$, then $f_{\ell}(x)<f_{j}(x)$ for all $x \in[0,1]$;
2. if p_{ℓ} and p_{j} are incomparable in $(P,<)$ for some $j \neq \ell$, then the graphs of f_{ℓ} and f_{j} cross each other.
Notice that each point $\left(x^{*}, y^{*}\right)$ constructed during the above procedure lies below the lower envelope (pointwise minimum) of the functions $f_{j}(x)$ over all j for which $p_{j}>p_{\ell}$ in $(P,<)$. Pick a point $x_{0} \in[0,1]$ distinct from all previously selected points $x^{*} \in[0,1]$, and let $f_{\ell}\left(x_{0}\right):=y_{0}$ for some

$$
y_{0}<\min _{1 \leq j<\ell} f_{j}\left(x_{0}\right) .
$$

Extend f_{ℓ} to a continuous function on $[0,1]$ whose graph lies strictly below

$$
\min \left\{f_{j}(x): \text { for all } j \text { such that } p_{j}>p_{\ell}\right\} .
$$

Obviously, f_{ℓ} satisfies condition 1 . To see that condition 2 is also satisfied, fix an index j such that p_{ℓ} and p_{j} are incomparable in $(P,<)$. Consider an extension of $(P,<)$ to a total order in which $p_{j}<p_{\ell}$. It follows from our construction that there exists a point $x \in[0,1]$ at which the values $f_{i}(x)$ are in the same total order as the elements $p_{i}(1 \leq i \leq \ell)$. In particular, we have $f_{j}(x)<f_{\ell}(x)$. On the other hand, by definition, $f_{\ell}\left(x_{0}\right)=y_{0}<f_{j}\left(x_{0}\right)$. Therefore, the graphs of f_{ℓ} and f_{j} must cross each other, completing the proof.
Theorem 2.2. (Fox) Fix $\varepsilon \in(0,1)$. For every n, there is a partially ordered set $(P,<)$ of size n with the following two properties. (i) There are no two disjoint subsets $A, B \subset P$ such that $|A|,|B| \geq$ $c(\varepsilon) \frac{n}{\log n}$ and no element of A is comparable to any element of B. (ii) Every element of P is comparable to at most n^{ε} other elements.

To deduce Proposition 1.2, apply Lemma 2.1 to the partially ordered set whose existence is guaranteed by Theorem 2.2. To see that the intersection graph G of the resulting functions meets the requirements, it is enough to notice that two vertices of G are connected by an edge if and only if the corresponding elements of P are incomparable.

References

[1] N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir: Crossing patterns of semi-algebraic sets, Journal of Combinatorial Theory Ser. A, accepted.
[2] P. Brass, W. Moser, and J. Pach: Research Problems in Discrete Geometry, Springer-Verlag, New York, 200.
[3] J. Fox: A bipartite analogue of Dilworth's theorem, manuscript, 2005.
[4] J. Pach and J. Solymosi: Crossing patterns of segments, Journal of Combinatorial Theory Ser. A 96 (2001), 316-325.

[^0]: *Supported by NSF grant CCR-0514079 and grants from NSA, PSC-CUNY, Hungarian Research Foundation, and BSF.
 ${ }^{\dagger}$ Supported by OTKA-T-038397 and OTKA-T-046246.

