
Improving the Crossing Lemmaby �nding more rossings in sparse graphsJ�anos Pah� Rado�s Radoi�i�y G�abor Tardosz G�eza T�othxAbstratTwenty years ago, Ajtai, Chv�atal, Newborn, Szemer�edi,and, independently, Leighton disovered that the ross-ing number of any graph with v verties and e > 4vedges is at least e3=v2, where  > 0 is an absoluteonstant. This result, known as the `Crossing Lemma,'has found many important appliations in disrete andomputational geometry. It is tight up to a multiplia-tive onstant. Here we improve the best known valueof the onstant by showing that the result holds with > 1024=31827 > 0:032. The proof has two new in-gredients, interesting on their own right. We show that(1) if a graph an be drawn in the plane so that everyedge rosses at most 3 others, then its number of edgesannot exeed 5:5(v � 2); and (2) the rossing numberof any graph is at least 73e� 253 (v�2). Both bounds aretight up to an additive onstant (the latter one in therange 4v � e � 5v).1 IntrodutionUnless stated otherwise, the graphs onsidered in thispaper have no loops or parallel edges. The numberof verties and number of edges of a graph G are de-noted by v(G) and e(G), respetively. We say that Gis drawn in the plane if its verties are represented bydistint points and its edges by (possibly interseting)Jordan ars onneting the orresponding point pairs.�City College, CUNY, Courant Institute, NYU, and R�enyi In-stitute, Budapest, supported by NSF grant CCR-00-98246, PSC-CUNY Researh Award 63382-0032, and OTKA T-032452.yMassahusetts Institute of Tehnology, supported by CentralEuropean University, Budapest.zR�enyi Institute, Budapest.xR�enyi Institute, Budapest, supported by OTKA T-038397.

If it leads to no onfusion, in terminology and notationwe make no distintion between the verties of G andthe orresponding points, or between the edges and theorresponding Jordan ars. We always assume that ina drawing (a) no edge passes through a vertex di�er-ent from its endpoints, (b) no three edges ross at thesame point, () any two edges have only a �nite num-ber of interior points in ommon, and at these pointsthey properly ross, i.e., one of the edges passes fromone side of the other edge to the other side (see [P99℄,[P04℄). The rossing number of G, denoted by r(G), isthe minimum number of edge rossings in a drawing ofG satisfying the above onditions.Ajtai, Chv�atal, Newborn, and Szemer�edi [AC82℄ and,independently, Leighton [L83℄ have proved the follow-ing result, whih is usually referred to as the `CrossingLemma.' The rossing number of any graph with v ver-ties and e > 4v edges satis�esr(G) � 164 e3v2 :This result, whih is tight apart from the value of theonstant, has found many appliations in ombinatorialgeometry, onvexity, number theory, and VLSI design(see [L83℄, [Sz95℄, [PS98℄, [ENR00℄, [STT02℄, [PTa02℄).In partiular, it has played a pivotal role in obtaining thebest known upper bound on the number of k-sets [D98℄and lower bound on the number of distint distanesdetermined by n points in the plane [ST01℄, [KT04℄.Aording to a onjeture of Erd}os and Guy [ErG73℄,whih was veri�ed in [PST00℄, as long as e=v !1 ande=v2 ! 0; the limitlimv!1 minv(G) = ve(G) = e r(G)e3=v21
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exists. The best known upper and lower bounds for thisonstant (roughly 0:09 and 1=33:75 � 0:029, resp.) wereobtained in [PTo97℄.All known proofs of the Crossing Lemma are based onthe trivial inequality r(H) � e(H)�(3v(H)�6), whihis an immediate orollary of Euler's Polyhedral Formula(v(H) > 2). Applying this statement indutively to allsmall (and, mostly sparse) subgraphs H � G or to arandomly seleted one, the lemma follows. The mainidea in [PTo97℄ was to obtain stronger inequalities forthe sparse subgraphs H , whih have led to better lowerbounds on the rossing numbers of all graphs G. In thepresent paper we follow the same approah.For k � 0, let ek(v) denote the maximum number ofedges in a graph of v � 2 verties that an be drawnin the plane so that every edge is involved in at most krossings. By Euler's Formula, we have e0(v) = 3(v�2).Pah and T�oth [PTo97℄ proved that ek(v) � (k+3)(v�2), for 0 � k � 3. Moreover, for 0 � k � 2, these boundsare tight for in�nitely many values of v. However, fork = 3, there was a gap between the lower and upperestimates. Our �rst theorem, whose proof is presentedin Setion 2, �lls this gap.Theorem 1. Let G be a graph on v � 3 verties that anbe drawn in the plane so that eah of its edges rossesat most three others. Then we havee(G) � 5:5(v � 2):Consequently, the maximum number of edges over allsuh graphs satis�es e3(v) � 5:5(v � 2); and this boundis tight up to an additive onstant.As we have pointed out before, the inequality e0(v) �3(v� 2) immediately implies that if a graph G of v ver-ties has more than 3(v � 2) edges, then every edge be-yond this threshold ontributes at least one to r(G).Similarly, it follows from inequality e1(v) � 4(v � 2)that, if e(G) � 4(v�2), then every edge beyond 4(v�2)must ontribute an additional rossing to r(G) (i.e., al-together at least two rossings). Summarizing, we ob-tain thatr(G) � (e(G)� 3 (v(G)� 2)) + (e(G)� 4 (v(G)� 2))� 2e(G)� 7 (v(G) � 2)

holds for every graph G. Both omponents of this in-equality are tight, so one might expet that their ombi-nation annot be improved either, at least in the rangewhen e(G) is not muh larger that 4(v � 2). However,this is not the ase, as is shown by our next result,proved in Setion 3.Theorem 2. The rossing number of any graph G withv(G) � 3 verties and e(G) edges satis�esr(G) � 73e(G)� 253 (v(G) � 2):In the worst ase, this bound is tight up to an additiveonstant whenever 4 (v(G)� 2) � e(G) � 5 (v(G)� 2).As an appliation of the above two theorems, in Se-tion 4 we establish the following improved version of theCrossing Lemma.Theorem 3. The rossing number of any graph G sat-is�es r(G) � 131:1 e3(G)v2(G) � 1:06v(G):If e(G) � 10316 v(G), we also haver(G) � 102431827 e3(G)v2(G) :Note for omparison that 1024=31827 � 1=33:08 �0:032.In the last setion, we adapt the ideas of Sz�ekely [Sz95℄to dedue some onsequenes of Theorem 3, inludingan improved version of the Szemer�edi-Trotter theorem[SzT83℄ on the maximum number of inidenes betweenn points and m lines. We also disuss some open prob-lems and make a few onjetures and onluding re-marks.All drawings onsidered in this paper satisfy the on-dition that any pair of edges have at most one point inommon. This may be either an endpoint or a properrossing. It is well known and easy to see that ev-ery drawing of a graph G that minimizes the num-ber of rossings meets this requirement. Thus, in theproof of Theorem 3, we an make this assumption with-out loss of generality. However, it is not so obviouswhether the same restrition an be justi�ed in the2



ase of Theorem 1. Indeed, in [PTo97℄, the bounde(G) � (k+3)(v(G)�2) was proved only for graphs thatan be drawn with at most k � 4 rossings per edge andwhih satisfy this extra ondition. Sine for the proof ofTheorem 3 we need Theorem 1 in its full generality, wehave to establish the following simple statement.
A B
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fFigure 1: Two adjaent edges e and f ross, eah par-tiipating in exatly 4 rossings.Lemma 1.1. Let k � 3, and let G be a graph of vverties that an be drawn in the plane so that eah ofits edges partiipates in at most k rossings.In any drawing with this property that minimizes thetotal number of rossings, every pair of edges have atmost one point in ommon.Proof: Suppose for ontradition that some pair ofedges, e and f , have at least two points in ommon,A and B. At least one of these points, say B, mustbe a proper rossing. First, try to swap the portions ofe and f between A and B, and modify the new draw-ing in small neighborhoods of A and B so as to reduethe number of rossings between the two edges. Clearly,during this proess the number of rossings along anyother edge distint from e and f remains unhanged.The only possible problem that may arise is that af-ter the operation either e or f (say e) will partiipate inmore than k rossings. In this ase, before the operationthere were at least two more rossings inside the portionof f between A and B, than inside the portion of e be-tween A and B. Sine f partiipated in at most threerossings (at most two, not ounting B), we onludethat in the original drawing the portion of e between Aand B ontained no rossing. If this is the ase, insteadof swapping the two portions, replae the portion of f

between A and B by an ar that runs very lose to theportion of e between A and B, without interseting it.2 It is interesting to note that the above argument failsfor k � 4, as shown in Figure 1.2 Proof of Theorem 1The proof goes through a series of lemmas whose proofsare omitted in this extended abstrat. We use indutionon v. For v � 4, the statement is trivial. Let v � 4, andsuppose that the theorem has already been proved forgraphs having fewer than v verties.Let G denote the set of all triples (G;G0;D) whereG is a graph of v verties, D is a drawing of G in theplane suh that every edge of G rosses at most threeothers, and G0 is a planar subgraph of G with V (G0) =V (G) that satis�es the ondition that no two ars inD representing edges of G0 ross eah other. Let G0 �G onsist of all elements (G;G0;D) 2 G for whih thenumber of edges of G is maximum. Finally, let G00 � G0onsist of all elements of G0 for whih the number ofedges of G0 is maximum. Fix a triple (G;G0;D) 2 G00suh that the total number rossings in D along all edgesof G0 is as small as possible. This triple remains �xedthroughout the whole argument. The term fae, unlessexpliitly stated otherwise, refers to a fae of the planardrawing of G0 indued by D. For any fae � (of G0), letj�j denote its number of sides, i.e., the number of edgesof G0 along the boundary of �, where every edge whoseboth sides belong to the interior of � is ounted twie.Notie that j�j � 3 for every fae �, unless G0 onsistsof a single edge, in whih ase v(G) � 4, a ontradition.It follows from the maximality of G0 that every edgee of G that does not belong to G0 (in short, e 2 G �G0) rosses at least one edge of G0. The losed portionbetween an endpoint of e and the nearest rossing ofe with an edge of G0 is alled a half-edge. We orientevery half-edge from its endpoint whih is a vertex ofG (and G0) towards its other end sitting in the interiorof an edge of G0. Clearly, every edge e 2 G � G0 hastwo oriented half-edges. Every half-edge lies in a fae �and ontains at most two rossings with edges of G inits interior. The extension of a half-edge is the edge ofG�G0 it belongs to. The set of half-edges belonging to3



a fae � is denoted by H(�).Lemma 2.1. Let � be a fae of G0, and let g be one ofits sides. Then H(�) annot ontain two non-rossinghalf-edges, both of whih end on g and ross two otheredges of G (that are not neessarily the same).A fae � of G0 is alled simple if its boundary is on-neted and it does not ontain any isolated vertex of G0in its interior.Lemma 2.2. The number of half-edges in any simplefae � satis�es jH(�)j � 3j�j � 6:A simple fae � ofG0 is said to be triangular if j�j = 3,otherwise it is a big fae.By Lemma 2.2, we have jH(�)j � 3, for any triangu-lar fae �. A triangular fae � is alled an i-triangle ifjH(�)j = i (0 � i � 3). A 3-triangle is a 3X-triangle ifone half-edge emanates from eah of its verties. Oth-erwise, it is a 3Y -triangle. Observe that if � is a 3X-triangle, then it has three mutually rossing half-edges,so that their extensions do not have any additional ross-ing and they must end in a fae adjaent to �. Moreover,no other edges of G an enter a 3X-triangle.If � is a 3Y -triangle, then at least two of its half-edgesmust end at the same side. The fae adjaent to � alongthis side is alled the neighbor of �.An edge of G�G0 is said to be perfet if it starts andends in 3-triangles and all the faes it passes throughare triangular. The neighbor 	 of a 3Y -triangle � isalled a strong neighbor if either it is a 0-triangle or itis a 1-triangle and the extension of one of the half-edgesin H(�) ends in 	.Lemma 2.3. Let � be a 3-triangle. If the extensions ofat least two half-edges in H(�) are perfet, then � is a3Y -triangle with a strong neighbor.Suppose that 	 is a simple fae of G0 with j	j = 4 andjH(	)j = 6. As shown on Figure 2, there are seven om-binatorially di�erent possibilities for the arrangement of	 and the half-edges (on the sphere).Lemma 2.4. Let 	 be a simple fae of G0 with j	j = 4and jH(	)j = 6; and suppose that the arrangement of

Figure 2: Seven di�erent types of quadrilateral faes.half-edges in 	 is not homeomorphi with the rightmoston�guration depited in Figure 2. Then we haveE(G) < 5:5 (v(G)� 2) :In view of the last lemma, from now on we may andwill assume that in every simple quadrilateral fae thatontains 6 half-edges, these half-edges form an arrange-ment homeomorphi to the rightmost one depited inFigure 2.We de�ne a bipartite multigraph M = (V1 [ V2; E)with vertex lasses V1 and V2, where V1 is the set of 3-triangles and V2 is the set of all other faes of G0. Foreah vertex (3-triangle) � 2 V1, separately, we add tothe edge set E ofM some edges inident to �, aordingto the following rules.� Rule 0: Connet � to an adjaent triangular fae 	by two parallel edges if 	 is a 0-triangle.� Rule 1: Connet � to any 1-triangle 	 by two par-allel edges if there is an edge of G �G0 that startsin � and ends in 	.� Rule 2: Connet � to any 2-triangle 	 by a singleedge if there is an edge of G � G0 that starts in �and ends in 	.� Rule 3: If the extension e of a half-edge in H(�)passes through or ends in a big fae, we may onnet� by a single edge to the �rst suh big fae alonge. However, we use this last rule only to bring thedegree of � in M up to 2. In partiular, if we haveapplied Rules 0 or 1, for some �, we do not applyRule 3. Similarly, in no ase do we apply Rule 3 forall three half-edges in H(�).4



Notie that, besides Rules 0 and 1, the appliation ofRule 3 an also yield parallel edges if two half-edges inH(�) reah the same big fae. However, we never reatethree parallel edges in M .Let d(�) denote the degree of vertex � in M .Lemma 2.5. For any � 2 V1, we have d(�) � 2.To omplete the proof of Theorem 1, we have to es-timate from above the degrees of the verties belongingto V2 in M . If 	 2 V2 is a 1-triangle or a 2-triangle,we have d(	) � 2. Every 0-triangle 	 is adjaent to atmost three 3-triangles, so its degree satis�es d(	) � 6.The following lemma establishes a bound for big faes.Lemma 2.6. For any big fae 	 2 V2, we have d(	) �2j	j. Moreover, if 	 is a simple quadrilateral fae withsix half-edges forming an arrangement homeomorphi tothe rightmost arrangement depited in Figure 2, we haved(	) � 4.For any fae �, let t(�) and t(�) denote the numberof triangles and diagonals, resp., in a triangulation of�. Thus, if the sum of the number of isolated vertiesof G0 that lie in the interior of � and the number ofonneted omponents of the boundary of � is k, wehave t = j�j+ 2k � 4 and t = j�j+ 3k � 6.We introdue the notation d(�) := �d(�) for � 2 V1,and d(	) := d(	) for 	 2 V2. Let V := V1 [ V2 denotethe set of all faes of G0. Then the fat that the sum ofdegrees of the verties must be the same on both sidesof M , an be expressed by the equationX�2V d(�) = 0:Lemma 2.7. For every fae � 2 V , we havejH(�)j+ 14d(�) � 52t(�) + 2t(�):Now we an easily omplete the proof of Theorem 1.Sine every edge of G �G0 gives rise to two half-edges,we have e(G)� e(G0) = 12 X�2V jH(�)j= 12 X�2V �jH(�)j+ 14d(�)� � 54 X�2V t(�) + X�2V t(�);

where the inequality holds by Lemma 2.7. We obvi-ously have that P�2V t(�) = 2 (v(G) � 2), whih isequal to the total number of faes in any triangulationof G0. In order to obtain suh a triangulation from G0,one needs to add P�2V t(�) edges. Hene, we haveP�2V t(�) = 3(v(G)� 2)� e(G0). Notie that triangu-lating eah fae separately may reate a triangulation ofthe plane ontaining some parallel edges, but this hasno e�et on the number of triangles or the number ofedges. Now the theorem follows by simple alulation:e(G) = e(G0) + (e(G)� e(G0))� e(G0) + 54 � 2 (v(G)� 2) + (3 (v(G)� 2)� e(G0))= 5:5 (v(G) � 2) :This ompletes the proof of the inequality in Theorem1.Proposition 2.8. For every v � 0 (mod 6), v � 12,there exists a graph G with v verties and 5:5(v� 2)� 4edges that an be drawn in the plane so that eah of itsedges rosses at most three others. That is, for thesevalues we have e3(v) � 5:5v � 15.3 Proof of Theorem 2For any graph G drawn in the plane, let Gfree denotethe subgraph of G on the same vertex set, onsisting ofall rossing-free edges. Let 4(Gfree) denote the numberof triangular faes of Gfree, ontaining no vertex of G intheir interiors.Lemma 3.1. Let G be a graph on v(G) � 3 verties,whih is drawn in the plane so that none of its edgesrosses two others. Then the number of edges of G sat-is�es e(G) � 4(v(G)� 2)� 124(Gfree):The proof of LEmma 3.1 is also omitted in this ex-tended abstrat. Instead of Theorem 2, we establish aslightly stronger laim.Lemma 3.2. Let G be a graph on v(G) � 3 verties,whih is drawn in the plane with x(G) rossings. Then5



we havex(G) � 73e(G)� 253 (v(G) � 2) + 234(Gfree):Proof: We use indution on x(G) + v(G). As in theproof of Lemma 3.1, we an assume thatG is 3-onnetedand that Gfree is maximal in the sense that whenever thepoints u and v an be onneted by a Jordan ar withoutrossing any edge of G, the edge uv belongs to Gfree. Wedistinguish four ases.Case 1. G ontains an edge that rosses at least 3other edges.Let a be suh an edge, and letG0 be the subgraph ofGobtained by removing a. Now we have, e(G0) = e(G)�1,x(G0) � x(G) � 3, and 4(Gfree0 ) � 4(Gfree). Applyingthe indution hypothesis to G0, we getx(G) � 3 � 73 (e(G)� 1)� 253 (v(G)� 2) + 234(Gfree);whih implies the statement of the lemma.Case 2. Every edge in G rosses at most one otheredge.Lemma 3.1 yieldse(G) � 4 (v(G)� 2)� 124(Gfree):The statement immediately follows from this inequality,ombined with the easy observation (mentioned in theIntrodution) that x(G) � e(G)� 3 (v(G) � 2).Case 3. There exists an edge e of G that rosses twoother edges, one of whih does not ross any other edgeof G.Let zw be an edge rossing e at point x, whih doesnot partiipate in any other rossing. Let u denote theendpoint of e for whih the piee of e between x and uis rossing-free. Notie that u an be onneted in G byrossing-free Jordan ars to both z and w. Therefore,by the maximality of Gfree, the edges uz and uw mustbelong to Gfree. Let G0 be the subgraph of G obtainedby removing the edge e. We have e(G0) = e(G)� 1 andx(G0) = x(G) � 2. Clearly, Gfree0 ontains zw and alledges in Gfree. By the 3-onnetivity of G, the trian-gle uzw must be a triangular fae of Gfree0 , so that we

have 4(Gfree0 ) � 4(Gfree) + 1. Applying the indutionhypothesis to G0, we obtainx(G) � 73e(G)� 253 (v(G)� 2) + 234(Gfree) + 13 ;whih is better than what we need.Case 4. There exists an edge a of G that rossespreisely two other edges, b and , and eah of theseedges also partiipates in preisely two rossings.Subase 4.1. b and  do not ross eah other.Let G0 be the subgraph of G obtained by removing b.Clearly, we have e(G0) = e(G) � 1, x(G0) = x(G) � 2,and 4(Gfree0 ) � 4(Gfree). Notie that  is an edge ofG0 that rosses two other edges; one of them is a, whihis rossed by no other edge of G0. Thus, we an applyto G0 the last inequality in the analysis of Case 3 toonlude thatx(G)�2 � 73 (e(G)� 1)�253 (v(G)� 2)+234(Gfree)+13 ;whih is preisely what we need.Subase 4.2. b and  ross eah other.The three rossing edges, a, b, and  an be drawnon the sphere in two topologially di�erent ways (seeFigure 3). One of these possibilities is ruled out by theassumption that G is 3-onneted, so the only possibleon�guration is the rightmost one in Figure 3. By themaximality ondition, Gfree must ontain the six dashededges in the �gure. Using again the assumption thatG is 3-onneted, it follows that these six edges form ahexagonal fae � in Gfree, and the only edges of G insidethis fae are a, b, and . Let G0 be the graph obtainedfrom G by removing the edges a, b, , and insertinga new vertex in the interior of �, whih is onnetedto every vertex of � by rossing-free edges. We havev(G0) = v(G) + 1 and x(G0) = x(G) � 3, so that wean apply the indution hypothesis to G0. Obviously,we have e(G0) = e(G) + 3 and 4(Gfree0 ) =4(Gfree)+ 6.Thus, we obtain x(G)� 3� 73 (e(G) + 3)� 253 (v(G) � 1) + 23 �4(Gfree) + 6� ;whih is muh stronger than the inequality in the lemma.26
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Figure 3: Proof of Lemma 3.2: Subase 4.2.The tightness of Theorem 2 is disussed at the end ofthe last setion.4 Proof of Theorem 3Our proof is based on the following onsequene of The-orem 1.Corollary 4.1. The rossing number of any graph G ofat least 3 verties satis�esr(G) � 4e(G)� 1036 (v(G)� 2) :Proof: If G has at most 5 (v(G)� 2) edges, then thestatement diretly follows from Theorem 2. If G hasmore than 5 (v(G) � 2) edges, �x one of its drawingsin whih the number of rossings is minimum. Deletethe edges of G one by one until we obtain a graph G0with 5 (v(G)� 2) edges. At eah stage, delete one of theedges that partiipates in the largest number of rossingsin the urrent drawing. Using the inequality e2(v) �5(v � 2) proved in [PTo97℄ and quoted in Setion 1, atthe time of its removal every edge has at least threerossings. Moreover, by Theorem 1, with the possibleexeption of the at most 12 (v(G)� 2) edges deleted last,every edge has at least four rossings. Thus, the totalnumber of deleted rossings is at least4 (e(G)� 5 (v(G)� 2))� 12 (v(G)� 2)= 4e(G)� 412 (v(G)� 2) :

On the other hand, applying Theorem 2 to G0, weobtain that the number of rossings not removed duringthe algorithm is at leastr(G0) � 103 (v(G) � 2) :Summing up these two estimates, the result follows. 2Now we an easily omplete the proof of Theorem3. Let G be a graph drawn in the plane with r(G)rossings, and suppose that e(G) � 10316 v(G).Construt a random subgraph G0 � G by seletingeah vertex of G independently with probabilityp = 10316 v(G)e(G) � 1;and letting G0 be the subgraph of G indued by theseleted verties. The expeted number of verties ofG0 is E[v(G0)℄ = pv(G). Similarly, E[e(G0)℄ = p2e(G).The expeted number of rossings in the drawing of G0inherited from G is p4r(G), and the expeted value ofthe rossing number of G0 is even smaller.By Corollary 4.1, r(G0) � 5e(G0)� 1036 v(G0) holds forevery G0. (Note that after getting rid of the onstantterm in Corollary 4.1, we do not have to assume anymore that v(G0) � 3; the above inequality is true forevery G0.) Taking expetations, we obtainp4r(G) � E[r(G0)℄ � 4E[e(G0)℄� 1036 E[v(G0)℄= 4p2e(G)� 1036 pv(G):This implies thatr(G) � 102431827 e3(G)v2(G) � 131:1 e3(G)v2(G) ;provided that e(G) � 1036 v(G).To obtain an unonditional lower bound on the ross-ing number of any graph G, we need di�erent estimateswhen e(G) < 1036 v(G). Comparing the bounds in The-orem 2 and in Corollary 4.1 with the trivial estimatesr(G) � 0 and r(G) � e� 3(v(G) � 2), a ase analysisshows that 102431827 e3(G)v2(G) � r(G) � 1:06v(G):7



The maximum is attained for a graph G with e(G) =4(v(G)� 2) and r(G) = v(G) � 2. In onlusion,r(G) � 102431827 e3(G)v2(G) � 1:06v(G)� 131:1e3(G)v2(G)� 1:06v(G)holds for every graph G. This ompletes the proof ofTheorem 3.Remark 4.2. Pah and T�oth [PTo00℄ introdued twovariants of the rossing number. The pairwise rossingnumber (resp. the odd rossing number) of G is de�nedas the minimum number of pairs of non-adjaent edgesthat ross (resp. ross an odd number of times) overall drawings of G. These parameters are at most aslarge as r(G), but one annot rule out the possibilitythat they are always equal to r(G). The original proofsof the Crossing Lemma readily generalize to the newrossing numbers, and it follows that both of them areat least 164 e3(G)v2(G) ; provided that e(G) � 4v(G). We havebeen unable to extend our proof of Theorem 3 to theseparameters.5 Appliations, open problems,remarksEvery improvement of the Crossing Lemma automati-ally leads to improved bounds in all of its appliations.For ompleteness and future referene, we inlude someimmediate orollaries of Theorem 3 with a sketh of om-putations.First, we plug Theorem 3 into Sz�ekely's method [Sz95℄to improve the oeÆient of the main term in the Sze-mer�edi-Trotter theorem [SzT83℄, [CE90℄, [PTo97℄.Corollary 5.1. Given m points and n lines in the Eu-lidean plane, the number of inidenes between them isat most 2:5m2=3n2=3 +m+ n.Proof: We an assume that every line and every pointis involved in at least one inidene, and that n � m, byduality. Sine the statement is true for m = 1, we haveto hek it only for m � 2.De�ne a graph G drawn in the plane suh that thevertex set of G is the given set of m points, and join two

points with an edge drawn as a straight-line segment ifthe two points are onseutive along one of the lines.Let I denote the total number of inidenes betweenthe given m points and n lines. Then v(G) = m ande(G) = I � n. Sine every edge belongs to one of then lines, r(G) � �n2�. Applying Theorem 2 to G, weobtain that 131:1 (I�n)3m2 �1:06m� r(G)� �n2�: Using thatn � m � 2, easy alulation shows thatI � n � 3p15:55m2n2 + 33m3 � 3p15:55n2=3m2=3 +m;whih implies the statement. 2It was shown in [PTo97℄ that Corollary 5.1 does notremain true if we replae the onstant 2:5 by 0:42 .Theorem 3 readily generalizes to multigraphs withbounded edge multipliity, improving the onstant inSz�ekely's result [Sz95℄.Corollary 5.2. Let G be a multigraph with maximumedge multipliity m. Thenr(G) � 131:1 e3(G)mv2(G) � 1:06m2v(G):Proof: De�ne a random simple subgraph G0 of Gas follows. For eah pair of verties v1, v2 of G, lete1; e2; : : : ek be the edges onneting them. With prob-ability 1 � k=m, G0 will not ontain any edge betweenv1 and v2. With probability k=m, G0 ontains preiselyone suh edge, and the probability that this edge is ei is1=m (1 � i � k). Applying Theorem 3 to G0 and takingexpetations, the result follows. 2Next, we state here the improvement of another resultin [PTo97℄.Corollary 5.3. Let G be a graph drawn in the plane sothat every edge is rossed by at most k others, for somek � 1, and every pair of edges have at most one pointin ommon. Thene(G) � 3:95pkv(G):Proof: For k � 2, the result is weaker than the boundsgiven in [PTo97℄. Assume that k � 3, and onsider adrawing of G suh that every edge rosses at most k8



others. Let x denote the number of rossings in thisdrawing. If e(G) < 10316 v(G), then there is nothing toprove. If e(G) � 10316 v(G), then using Theorem 3, weobtain 102431827 e3(G)v2(G) � r(G) � x � e(G)k2 ;and the result follows. 2Reall that ek(v) was de�ned as the maximum num-ber of edges that a graph of v verties an have if itan be drawn in the plane with at most k rossings peredge. We de�ne some other losely related funtions.Let e�k(v) denote the maximum number of edges of agraph of v verties whih has a drawing that satis�esthe above requirement and, in addition, every pair ofits edges meet at most one (either at an endpoint orat a proper rossing). We de�ne ek(v) and e�k(v) analo-gously, with the only di�erene that now the maximumsare taken over all triangle-free graphs with v verties.It was mentioned in the Introdution (see Lemma 1.1)that ek(v) = e�k(v) for 0 � k � 3, and that e�k(v) �(k + 3)(v � 2) for 0 � k � 4 [PTo97℄. For 0 � k � 2;the last inequality is tight for in�nitely many values ofv. Our Theorem 1 shows that this is not the ase fork = 3.Conjeture 5.4. We have ek(v) = e�k(v) for every kand v.Using the proof tehnique of Theorem 1, it is not hardto improve the bound e�4(v) � 7(v�2). In partiular, inthis ase Lemma 2.2 holds with 3(j�j � 2) replaed by4(j�j � 2). Moreover, an easy ase analysis shows thatevery triangular fae � with four half-edges satis�es atleast one of the following two onditions:1. The extension of at least one of the half-edges in �either ends in a triangular fae with fewer than fourhalf-edges, or enters a big fae.2. � is adjaent to an empty triangle.Based on this observation, one an modify the argu-ments in Setion 2 to obtain the upper bound e�4(v) �(7� 19 )v �O(1).Conjeture 5.5. e�4(v) � 6v �O(1).

As for the other two funtions, we have ek(v) = e�k(v)for 0 � k � 3, and e�k(v) � (k+2)(v�2) for 0 � k � 2. If0 � k � 1, these bounds are attained for in�nitely manyvalues of v. These estimates were applied by Czabarkaet al. [CS03℄ to obtain some lower bounds on the so-alled biplanar rossing number of omplete graphs.Given a triangle-free graph drawn in the plane so thatevery edge rosses at most 2 others, an easy ase anal-ysis shows that eah quadrilateral fae that ontainsfour half-edges is adjaent to a fae whih is either non-quadrilateral or does not have four half-edges1. As inthe proof of Theorem 1 (before Lemma 2.5), we an usea properly de�ned bipartite multigraph M to establishthe bound e2(v) � �4� 110� v �O(1):Conjeture 5.6. e2(v) � 3:5v �O(1).The oeÆient 3:5 in the above onjeture annot beimproved as shown by the triangle-free (atually bipar-tite!) graph in Figure 4, whose vertex set is the set ofverties of a 4� v=4 grid.
Figure 4: e2(v) � 3:5v � 16.Let r(v; e) denote the minimal rossing number ofa graph with v � 3 verties and e edges. Clearly, wehave r(v; e) = 0, whenever e � 3(v � 2), and r(v; e) =e�3(v�2) for 3(v�2) � e � 4(v�2). To see that thesevalues are indeed attained by the funtion, onsider thegraph onstruted in [PTo97℄, whih (if v is a multiple of4) an be obtained from a planar graph with v verties,1This statement atually holds under the assumption that Gand G0 are maximal, in the sense desribed at the beginning ofSetion 2.9



2(v � 2) edges, and v � 2 quadrilateral faes, by addingthe diagonals of the faes. If e < 4(v � 2), delete asmany rossing-free edges as neessary.In the next interval, i.e., when 4(v � 2) � e � 5(v �2), Theorem 2 gives tight bound on r(v; e) up to anadditive onstant. To see this, onsider a planar graphwith only pentagonal and quadrilateral faes and add alldiagonals in every fae. If no two faes of the originalplanar graph shared more than a vertex or an edge, forthe resulting graph the (�rst) inequality of Theorem 2holds with equality. For ertain values of v and e, nosuh onstrution exists, but we only lose a onstant.If 5(v � 2) � e � 5:5(v � 2), the best known bound,r(v; e) � 3e� 353 (v� 2), follows from Theorem 2, whilefor e � 5:5(v � 2) the best known bound is either theone in Corollary 4.1 or the one in Theorem 3. We donot believe that any of these bounds are optimal.Conjeture 5.7 r(v; e) � 256 e� 352 (v � 2):Note that, if true, this bound is tight up to an additiveonstant for 5(v�2) � e � 6(v�2). To see this, onsidera planar graph with only pentagonal and hexagonal faesand add all diagonals of all faes. If no two faes ofthe planar graph shared more than a vertex or an edge,the resulting graph shows that Conjeture 5.7 annot beimproved. As a �rst step toward settling this onjeture,we an show the following statement, similar to Lemma3.1.Lemma 5.8 Let G be a graph on v(G) � 3 vertiesdrawn in the plane so that every edge is involved in atmost two rossings. Thene(G) � 5(v(G)� 2)�4(Gfree):Referenes[AC82℄ M. Ajtai, V. Chv�atal, M. Newborn, E. Szemer�edi,Crossing-free subgraphs, Ann. Disrete Mathematis 12 (1982),9{12.[CE90℄ K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, E.Welzl, Combinatorial omplexity bounds for arrangements ofurves and surfaes, Disrete and Computational Geometry 5(1990), 99-160.[CS03℄ E. Czabarka, O. S�ykora, L. Sz�ekely, I. Vrt'o, Bipla-nar rossing numbers I: A Survey of Results and Problems,manusript.
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