
Dire
tions in Combinatorial GeometryJ�anos Pa
h�Courant Institute, New York Universityand Hungarian A
ademy of S
ien
espa
h�
ims.nyu.edu By indire
tions �nd dire
tions out.(William Shakespeare: Hamlet)Abstra
tThis mini-survey 
on
entrates on some re
ent developments in 
ombinatorial geometryrelated to the distribution of dire
tions determined by a �nite point set. It is based onthe material of my invited address at the Jahrestagung der Deuts
hen MathematikerVereinigung in Rosto
k on September 19, 2003.1 Introdu
tion, apology, dire
tions, in
iden
esI would not dare to hazard any judgment or predi
tion 
on
erning the most importantdire
tions of resear
h in 
ombinatorial geometry. During the past 
ouple of de
ades thesubje
t has gone through a growth spurt that is far from being over. It it very diÆ
ult toidentify the most important trends. Many of the 
hanges have been stimulated by the \ge-ometrization" of other parts of mathemati
s and by the theoreti
al and pra
ti
al demandsof 
omputer s
ien
e and industry (in
luding 
omputer graphi
s, roboti
s, 
omputer-aideddesign).I will 
on
entrate on a few open problems in dis
rete geometry related to the 
on
eptof \dire
tion", used as a te
hni
al term. The dire
tion determined by a pair of pointsp1 = (x1; y1) and p2 = (x2; y2) in the (aÆne or Eu
lidean) plane is the ratio y2�y1x2�x1 , thatis, the slope of the line p1p2. Two pairs determine the same dire
tion if the 
orrespondingratios 
oin
ide.We get another possible interpretation of this 
on
ept, by 
ompleting the plane witha \line at in�nity," `1; and saying that two point pairs determine the same dire
tion if�Supported by NSF grant CR-00-98246, a PSC-CUNY Resear
h Award, grants from OTKA and BSF.1
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their 
onne
ting lines interse
t `1 at the same point. In this latter 
ontext, it is apparentthat the dire
tions determined by a point set depend only on the stru
ture of in
iden
esbetween points and the lines. Problems of this type have been extensively investigated eversin
e Eu
lid proposed his system of axioms based entirely on these notions. Although theparallel postulate was s
rutinized for well over two thousand years, and by the end of thenineteenth 
entury proje
tive geometry had be
ome one of the most developed mathemati
aldis
iplines, a number of ex
iting simple questions 
on
erning in
iden
es were 
ompletelyoverlooked. One su
h question that Eu
lid would have 
ertainly liked was asked by Sylvester[46℄ in 1893: is it true that any �nite set P of points, not all in a line, determines at leastone ordinary line, that is, a line passing through pre
isely two elements of P ? Forty yearslater the question was redis
overed by Erd}os and shortly thereafter answered by Gallai [25℄.Sylvester{Gallai theorem. Every non
ollinear set of n points in the plane determinesan ordinary line.In fa
t, the minimum number of ordinary lines determined by su
h a point set is knownto be at least d 613ne, for n > 7, but the 
onje
tured minimum is d12ne, if n is suÆ
ientlylarge [15℄, [13℄, [8℄.

Fig. 1. Sets of 16 and 18 points with 8 and 9 ordinary linesErd}os pointed out the following immediate 
orollary of the Sylvester{Gallai theorem.Corollary 1.1. Any set of n non
ollinear points in the plane determines at least n distin
t
onne
ting lines. Equality is attained if and only if all but one of the points are 
ollinear.We 
an argue by indu
tion. The 
orollary is trivially true for n = 3. Suppose that we havealready veri�ed it for (n � 1)-element sets, where n > 3. Consider a non
ollinear set P ofn points. Let pq be an ordinary line, p; q 2 P . At least one of the sets P n fpg or P n fqg isnot 
ollinear. Applying the indu
tion hypothesis to this set, we 
on
lude that it determines2



at least n� 1 
onne
ting lines, and all of them are di�erent from pq. The 
ases of equality
an be obtained by a similar argument.The question naturally arises: 
an the 
orollary be strengthened to guarantee the ex-isten
e of n 
onne
ting lines with distin
t slopes? The answer is yes if n is even, as was
onje
tured by S
ott [44℄ in 1970 and proved by Ungar [49℄ twelve years later.Ungar theorem. The minimum number of di�erent dire
tions assumed by the 
onne
tinglines of n � 4 non
ollinear points in the plane is 2bn=2
.In 
ontrast to Corollary 1.1, here there is an overwhelming diversity of extremal 
on�g-urations, for whi
h equality is attained. Four in�nite families and more than one hundredsporadi
 
on�gurations were 
atalogued by Jamison and Hill [35℄ (see also [34℄ for an ex
el-lent survey).The main diÆ
ulty in studying the distribution of dire
tions determined by a �nitepoint set is that, although the problem is invariant under aÆne transformations of theplane, it seems likely that one has to analyze the algebrai
 relations between the slopes ofthe 
onne
ting lines. This would \smuggle" some metri
 elements into our investigations|and perhaps Eu
lid would be not so enthusiasti
 about su
h a development. We mentionsome algebrai
 aspe
ts of these problems in Se
tion 4 of this paper.Ungar's brilliant proof uses the method of allowable sequen
es, invented by Goodmanand Polla
k [26℄, [27℄, for 
oding the angular information by a sequen
e of permutations.This enables him to translate the problem into a 
ombinatorial one, and solve it in an elegantand mu
h more general setting, for \pseudolines." This approa
h, suggested independentlyby Goodman and Polla
k and by Cordovil [12℄, is outlined at the beginning of Se
tion 2. Inthe rest of the se
tion, we dis
uss a number of generalizations of Ungar's theorem, in
ludinga re
ent three-dimensional version, found by Pin
hasi, Sharir, and myself [39℄, [40℄. Se
tion3 
ontains some related results and open problems on repeated angles.Over the years Erd}os [19℄ raised a number of inno
ent looking questions on in
iden
esbetween points and lines (or other 
urves) that turned out to be notoriously diÆ
ult. Oneof the �rst signi�
ant a

omplishments in this respe
t was the proof of the following result
onje
tured by Erd}os.Szemer�edi{Trotter theorem [47℄. The maximum number of in
iden
es n points and llines in the plane is O(n2=3l2=3 + n + l). The order of magnitude of this bound 
annot beimproved.The Szemer�edi{Trotter theorem is one of the very few asymptoti
ally tight results inthis �eld. One may wonder why su
h a \natural" question on in
iden
es did not o

ur toanyone, say, in the nineteenth 
entury? I believe that the explanation is simple: no matterhow natural these problems may sound today, they must have appeared quite \exoti
"3



to \mainstream" mathemati
ians a hundred years ago, before 
ombinatorial optimizationbe
ame a separate subje
t.In the past two de
ades resear
h in this �eld has gained 
onsiderable momentum. TheSzemer�edi{Trotter theorem has found several appli
ations in additive number theory [16℄,[17℄, [45℄, in Fourier analysis [32℄, [33℄, and in measure theory [2℄, [5℄, [51℄. It is also relatedto Kakeya's problem [50℄: A Kakeya set (or Besi
ovit
h set) is a subset of Rd that 
ontainsa unit segment in every dire
tion. Besi
ovit
h was the �rst to 
onstru
t su
h sets with zeromeasure. Kakeya's problem is to de
ide whether the Hausdor� dimension of a Kakeya setis always at least d. The planar version of this question was answered in the aÆrmative byDavies [14℄ and, in a stronger form, by C�ordoba [12℄ and by Bourgain [6℄. For d � 3, thisis a major unsolved problem.2 Allowable sequen
es, Ungar-type theoremsFix a non
ollinear set P of n points in the plane su
h that no two points have the samex-
oordinate. Label the elements of P by 1; 2; : : : ; n in the order of in
reasing x-
oordinates.Following Goodman and Polla
k [26℄, [27℄, we de�ne a 
ir
ular sequen
e of permutations.We take a horizontal line ` and start turning it in the 
ounter
lo
kwise dire
tion. In ea
hposition, we re
ord the order of the orthogonal proje
tions of the elements of P into `.The original order is represented by the permutation � = 12 : : : n. As we turn `, 
hangeso

ur in this permutation if and only if ` passes through a position perpendi
ular to oneof the slopes determined by two (or more) points of P . In su
h a 
ase, we obtain a newpermutation �0 that 
an be obtained from � by \
ipping" some of its substrings: namelythose 
orresponding to subsets of elements lying on parallel lines orthogonal to `. Thus, aswe turn ` through 180 degrees, the number of 
hanges in the permutation will be equal tothe number of di�erent slopes determined by point pairs in P . Finally, we end up with thepermutation n; n� 1; n� 2; : : : ; 1: If we 
ontinue turning `, we obtain the same sequen
e ofpermutations as before, ex
ept that now ea
h of them is reversed. After a full turn, we getba
k � = 12 : : : n.Ungar's idea was the following. Suppose n is even, and mark the middle of ea
h permu-tation by an imaginary barrier separating the �rst n2 elements from the last n2 . To estimatethe number of permutations in the sequen
e, Ungar �rst 
lassi�ed the \moves" transformingone permutation into the next one. If a move involves 
ipping a string 
ontaining (resp.tou
hing) the barrier, he 
alled it a 
rossing (resp. tou
hing) move. If a move is neither
rossing nor tou
hing, it is 
alled ordinary. The basi
 observation is that between any two
rossing moves there must be a tou
hing one. Indeed, in a 
rossing move the order of thetwo elements on opposite sides of the barrier will 
hange, and if the next nonordinary moveis again a 
rossing move, then the order of these two elements would 
hange ba
k. However,4



as we turn ` through 180 degrees, the order of any two points 
an (and must) reverse onlyon
e. Another elegant argument allows us to give a lower bound on the number of ordinarymoves between a tou
hing move and a 
rossing move, leading to a proof of Ungar's theorem.In fa
t, the proof applies to a more general situation. Suppose that we have a sequen
eof permutations starting with 1; 2; : : : ; n and ending with n; n� 1; : : : ; 1, with the propertythat the order of any two elements 
hanges pre
isely on
e. In ea
h move" we are allowedto 
ip a 
olle
tion of nonoverlapping proper subsegments of the permutation. A sequen
eof permutations satisfying this 
ondition is 
alled an allowable sequen
e. It follows that thelength of any allowable sequen
e on n elements is at least 2bn2 
.S
ott [44℄ also 
onje
tured that in three-dimensional spa
e the minimum number ofdi�erent dire
tions assumed by the 
onne
ting lines of n points, not all in a plane, is2n � O(1). For instan
e, if n is odd, 
onsider the set obtained from the vertex set of aregular (n � 3)-gon Pn�3 (or from any other 
entrally symmetri
 extremal 
on�gurationfor Ungar's theorem) by adding its 
enter 
 and two other points whose midpoint is 
 andwhose 
onne
ting line is orthogonal to the plane of Pn�3.
Fig. 2. n non
oplanar points in 3-spa
e with 2n� 5 dire
tionsAt �rst glan
e it appears that Ungar's approa
h is doomed to fail in higher dimensions,be
ause it is based on the linear (or rather the 
ir
ular) ordering of all 
riti
al dire
tions.This may well be the 
ase in higher dimensions. However, somewhat surprizingly, S
ott'sthree-dimensional 
onje
ture 
an be settled by redu
ing it to a planar statement, whi
h isa far-rea
hing generalization of Ungar's theorem.Theorem 2.1 [40℄. Any non
oplanar set of n � 6 points in R3 determines at least 2n� 5di�erent dire
tions if n is odd and at least 2n � 7 di�erent dire
tions if n is even. Thisbound is sharp for every odd n.Ungar's theorem 
an be rephrased as follows: from all 
losed segments whose endpointsbelong to a non
ollinear set of n points in the plane, one 
an always sele
t at least 2bn=2
su
h that no two of them are parallel. To formulate our generalization of Ungar's result,we need to relax the 
ondition of two segments being parallel.5



Two 
losed segments in the plane (or in Rd) are 
alled 
onvergent if(1) they do not belong to the same line, and(2) their supporting lines interse
t, and their interse
tion point does not belong to eitherof the segments.An alternative de�nition is that two segments are 
onvergent if and only if they are dis-joint and their 
onvex hull is a nondegenerate planar quadrilateral. (Two parallel segmentsthat lie on distin
t lines are also 
onsidered 
onvergent, by regarding their lines to meet atin�nity.)Theorem 2.2 [39℄. From all 
losed segments determined by a set of n non
ollinear pointsin the plane, one 
an always sele
t at least 2bn=2
 pairwise non
onvergent ones, lying indistin
t lines.It is easier to handle the d-dimensional problems (d � 4) under the assumption that nothree points of the set are 
ollinear. For this 
ase, Blokhuis and Seress [4℄ 
onje
tured thatany set of n points determines at least (d � 1)n � d(d � 2) distin
t dire
tions. For d = 4,this 
onje
ture was veri�ed in [40℄ up to an additive 
onstant. Perhaps asymptoti
ally thesame bound holds under the weaker assumption that not all of the points lie in the samehyperplane.Ungar's theorem states that every non
ollinear point set in the plane determines manydire
tions. Dira
 [15℄ asked whether one 
an always �nd a point belonging to at least roughlyn2 
onne
ting lines of distin
t slopes.Dira
's 
onje
ture. There is a 
onstant 
 su
h that any set P of n points, not all on aline, has an element in
ident to at least n2 � 
 lines spanned by P .Putting the same number of points on two lines shows that this bound, if true, is asymp-toti
ally tight. Many small examples listed by Gr�unbaum [28℄ show that the 
onje
ture isfalse with 
 = 0. An in�nite family of 
ounterexamples was 
onstru
ted by Felsner (personal
ommuni
ation). The \weak Dira
 
onje
ture," �rst proved by Be
k [3℄, states that thereexists � > 0 su
h that one 
an always �nd a point in
ident to at least �n lines spanned byP . This statement also follows from the Szemer�edi{Trotter theorem (see Se
tion 1).A

ording to a beautiful result of Motzkin [37℄, Rabin, and Chakerian [10℄, any setof n non
ollinear points in the plane, 
olored with two 
olors, red and green, determinesa mono
hromati
 line. Motzkin and Gr�unbaum [29℄ initiated the investigation of biased
olorings, i.e., 
olorings without mono
hromati
 red lines. Their motivation was to justifythe intuitive feeling that if there are many red points in su
h a 
oloring and not all of themare 
ollinear, then the number of green points must also be rather large. Denoting the setsof red and green points by R and G, respe
tively, it is a 
hallenging unsolved question tode
ide whether the \surplus" jRj � jGj of the 
oloring 
an be arbitrarily large. We do not6



know any example where this quantity ex
eeds six [30℄. It is another important ingredient ofthe proof of Theorem 2.1 that under some spe
ial restri
tions the surplus is indeed bounded.The problem of biased 
olorings was redis
overed by Erd}os and Purdy [22℄, who for-mulated it as follows. What is the smallest number m(n) of points ne
essary to represent(i.e., stab) all lines spanned by n non
ollinear points in the plane, if the generating points
annot be used? An 
(n) lower bound follows imediately from the weak Dira
 
onje
ture.3 Repeated anglesIn an important paper [18℄ published in the Ameri
an Mathemati
al Monthly, Erd Hosasked the following twin questions. Consider a set P of n points in the plane (or in ahigher-dimensional spa
e).(1) At most how many point pairs fp; qg � P 
an determine the same distan
e?(2) At least how many distin
t distan
es must be determined by the point pairs in P ?In the same spirit, one 
an raise a number of interesting questions for triples of points. Thisline of resear
h was initiated by Erd}os and Purdy [20℄, [21℄.(1') At most how many triples (p; q; r) � P 
an determine the same angle?(2') At least how many distin
t angles must be determined by triples of points in P ?Con
erning question (1'), Pa
h and Sharir [41℄ proved the following result.Theorem 3.1. For any 
 2 (0; �), there are at most O(n2 logn) triples among n points inthe plane that determine angle 
. Moreover, this order of magnitude is attained for a denseset of angles.We do not know whether this order of magnitude 
an indeed be rea
hed for every 
. Inthree-dimensional spa
e, Apfelbaum and Sharir [1℄ showed that among n points the sameangle 
an o

ur at most O(n 73 ) times and that for right angles this bound 
an be attained.In this 
ase, it is not even 
lear whether there exists any other angle for whi
h the boundis asymptoti
ally tight.Purdy [42℄ noti
ed that in four-dimensional spa
e the right angle 
an o

ur �(n3) times,sin
e the points px = (
os x; sinx; 0; 0), qy = (1; 0; y; 0), and rz = (�1; 0; 0; z) always deter-mine a right angle at px. For all other angles, there is an upper bound of O(n 52�(n)), where�(n) is an extremely slowly growing fun
tion related to the inverse A
kermann fun
tion[1℄. However, the best known lower bound for angles di�erent from �2 is the same as in theplane: 
(n2) and 
(n2 log n) for some spe
ial values.In spa
es of dimensions six and higher, any given angle 
an be represented by �(n3)triples taken from an n-element set. A

ording to a well known 
onstru
tion of Lenz (seee.g. [8℄, [38℄), the number of mutually 
ongruent triangles with an angle 
 
an be 
(n3).The analogous statement in �ve-dimensional spa
e is not known to be true.7



Problem 3.2. Can every angle 0 < 
 < � di�erent from �2 o

ur 
(n3) times among npoints in �ve-dimensional spa
e?Almost nothing is known about problem (2').Corr�adi{Erd}os{Hajnal 
onje
ture [23℄. Given n points in the plane, not all on a line,they always determine at least n� 2 distin
t angles in [0; �).The number of distin
t angles determined by a regular n-gon is pre
isely n�2, but thereare several other 
on�gurations for whi
h the 
onje
tured lower bound is tight. It easilyfollows from the \weak Dira
 
onje
ture" (mentioned in the previous se
tion) that there isa 
onstant 
 > 0 su
h that any non
ollinear set of n points in the plane determines at least
n distin
t angles.
Fig. 2. Sets of n points with n� 2 distin
t angles4 Finite planes, algebrai
 aspe
tsSo far most of the results 
on
erning dire
tions, slopes, angles, and in
iden
es have beenestablished using 
ombinatorial arguments. But the use of 
ertain algebrai
 tools may turnout to be inevitable.The following 
lassi
al result, whi
h is a far-rea
hing generalization of Corollary 1.1, 
anbe obtained by an elegant appli
ation of the so-
alled \linear algebra method." This wasthe starting point of many investigations in the theory of blo
k designs and �nite proje
tiveplanes.De Bruijn{Erd}os theorem [9℄. Let L = fL1; L2; : : :g be a family of proper subsets of ann-element set with the property that ea
h pair fp; qg � P belongs to pre
isely one memberof L. Then we have jLj � n with equality if and only if (1) one of the sets 
ontains all butone elements of P and the others are two-element sets 
ontaining the remaining element;or (2) L is the system of lines of a �nite proje
tive plane de�ned on P .R�edei [43℄ used la
unary polynomials to prove an analogue of Ungar's theorem for �niteaÆne planes. 8



R�edei{Megyesi theorem. Let p be an odd prime. Then any non
ollinear set of p pointsin the aÆne plane AG(2; p) determines at least p+32 di�erent dire
tions.R�edei's analysis was 
ompleted by Lov�asz and S
hrijver [36℄, who 
hara
terized theextremal 
on�gurations. These 
onsiderations turned out to be intimately related to thestru
ture of blo
king sets in �nite proje
tive planes. (A blo
king set is a set of pointsinterse
ting every line.) See [48℄, for a survey.As we have mentioned in Se
tion 1, the Szemer�edi{Trotter theorem has some ex
itingnumber-theoreti
 
onsequen
es.Erd}os{Szemer�edi theorem [24℄. There exists " > 0 su
h that for any set A of n realseither the set of sums A+A = fa+b j a; b 2 Ag or the set of produ
ts A �A = fab j a; b 2 Aghas at least 
(n1+") elements.The best known value of " (roughly 311 ) was established by Solymosi [45℄, but it is
onje
tured that the theorem remains true for every " < 1.The following elegant argument due to Elekes [16℄ proves that the result holds with " = 14 .Apply the Szemer�edi{Trotter theorem to the set of points P = (A+A)� (A �A) � R2 andto the set L of n2 lines of the form y = a(x � b), where a; b 2 A. Observe that the liney = a(x�b) passes through at least n elements of P , namely, all points of the form (
+b; a
)for 
 2 A. Therefore, the number of in
iden
es between the elements of P and L is at leastn3. On the other hand, this quantity is at most O(jP j2=3jLj2=3+ jP j+ jLj) = O(jP j2=3n4=3+jP j + n2). Comparing these two bounds, we obtain jP j = jA + Aj � jA � Aj = 
(n5=2); asrequired.A

ording to the above results, any �nite subset A of the �eld of real numbers is veryfar from being 
losed either under addition or under multipli
ation. The same question 
anbe asked for other �elds F . If F has a sub�eld A, then we 
annot expe
t su
h a result.However, for �nite �elds F of prime order, we have the following.Bourgain{Katz{Tao theorem [7℄. Let F be a �nite �eld of prime order. For any Æ > 0,there exists " = "(Æ) > 0 su
h that, whenever jF jÆ < jAj < jF j1�Æ ; we havemaxfjA +Aj; jA �Ajg = 
(jAj1+"):The proof is based on the following Szemer�edi{Trotter-type result. Let F 2 = F � F bea �nite �eld plane, where F = Z=pZ and p is a prime. For any 0 < � < 2, there exists" = "(�) > 0 su
h that the number of in
iden
es between n � p� points and l � p� lines inF 2 is at most O(n 32�").
9



Referen
es[1℄ R. Apfelbaum and M. Sharir, Repeated angles in three and four dimensions, SIAM J.Dis
rete Math., to appear.[2℄ G. Arutyunyants and A. Iosevi
h, Fal
oner 
onje
ture, spheri
al averages and dis
reteanalogs, in: Towards a Theory of Geometri
 Graphs (J. Pa
h, ed.), ContemporaryMathemati
s 342, Amer. Math. So
., Providen
e, 2004, 15{23.[3℄ J. Be
k, On the latti
e property of the plane and some problems of Dira
, Motzkin andErd}os in 
ombinatorial geometry, Combinatori
a 3 (1983), 281{297.[4℄ A. Blokhuis and �A. Seress, The number of dire
tions determined by points in thethree-dimensional eu
lidean spa
e, Dis
rete Comput. Geom. 28 (2002), 491{494.[5℄ J. Bourgain, Hausdor� dimension and distan
e sets, Israel J. Math. 87 (1994), 193{201.[6℄ J. Bourgain, On the dimension of Kakeya sets and related maximal inequalities, Geom.Fun
t. Anal. 9 (1999), 256{282.[7℄ J. Bourgain, N. H. Katz, and T. Tao, A sum-produ
t estimate in �nite �elds, andappli
ations, Geometri
 and Fun
tional Analysis 14 (2004), 27{57.[8℄ P. Bra�, W. Moser, and J. Pa
h, Resear
h Problems in Dis
rete Geometry, Springer,New York, 2005.[9℄ N.G. de Bruijn and P. Erd}os, On a 
ombinatorial problem, Nederl. Akad. Wetens
h.,Pro
. 51 (1948), 1277{1279 (= Indagationes Math. 10 (1948), 421{423.[10℄ G.D. Chakerian, Sylvester's problem on 
ollinear points and a relative, Amer. Math.Monthly 77 (1970), 164{167.[11℄ A. C�ordoba, The Kakeya maximal fun
tion and the spheri
al summation multipliers,Amer. J. Math. 99 (1977), 1{22.[12℄ R. Cordovil, The dire
tions determined by n points in the plane, a matroidal general-ization, Dis
rete Math. 43 (1983), 131{137.[13℄ J. Csima and E.T. Sawyer, There exist 6n=13 ordinary points, Dis
rete Comput. Geom.9 (1993), 187{202.[14℄ R.O. Davies, Some remarks on the Kakeya problem, Pro
. Cambridge Philos. So
. 69(1971), 417{421. 10



[15℄ G.A. Dira
, Collinearity properties of sets of points, Quarterly J. Math. 2 (1951),221{227.[16℄ G. Elekes, Sums versus produ
ts in algebra, number theory and Erd}os geometry, in:Paul Erd}os and His Mathemati
s, II (Budapest, 1999), Bolyai So
. Math. Stud. 11,J�anos Bolyai Math. So
., Budapest, 2002, 241{290.[17℄ G. Elekes, M. Nathanson, and I. Z. Ruzsa, Convexity and sumsets, J. Number Theory83 (2000), 194{201.[18℄ P. Erd}os, On sets of distan
es of n points, Amer. Math. Monthly 53 (1946), 248{250.[19℄ P. Erd}os, On some problems of elementary and 
ombinatorial geometry, Ann. Mat.Pura Appl. (4) 103 (1975), 99{108.[20℄ P. Erd}os and G. Purdy, Some extremal problems in geometry, J. Combinat. Theory,Ser. A 10 (1971), 246{252.[21℄ P. Erd}os and G. Purdy, Some extremal problems in geometry IV (Pro
. 7th Southeast-ern Conf. Combinatori
s, Graph Theory, and Computing), Congressus Numerantium17 (1976), 307{322.[22℄ P. Erd}os and G. Purdy, Some 
ombinatorial problems in the plane, J. CombinatorialTheory, Ser. A 25 (1978), 205{210.[23℄ P. Erd}os and G. Purdy, Extremal problems in 
ombinatorial geometry, in: Handbookof Combinatori
s, Vol. 1, R.L. Graham et al., eds., Elsevier 1995, 809{874.[24℄ P. Erd}os and E. Szemer�edi, On sums and produ
ts of integers, in: Studies in PureMathemati
s, To the Memory of Paul Tur�an (P. Erd}os et al., eds.), Akad�emiai Kiad�o,Budapest and Birkh�auser Verlag, Basel, 1983, 213{218.[25℄ T. Gallai (alias T. Gr�unwald), Solution to Problem 4065, Amer. Math. Monthly 51(1944), 169{171.[26℄ J.E. Goodman and R. Polla
k, A 
ombinatorial perspe
tive on some problems in ge-ometry, Congr. Numer. 32 (1981), 383{394.[27℄ J.E. Goodman and R. Polla
k, Allowable sequen
es and order types in dis
rete and
omputational geometry, in: New Trends in Dis
rete and Computational Geometry (J.Pa
h, ed.), Algorithms Combin. 10, Springer, Berlin, 1993, 103{134.[28℄ B. Gr�unbaum, Arrangements and Spreads, CBMS Regional Conferen
e Series in Math-emati
s, No. 10, AMS 1972, reprinted 1980.11



[29℄ B. Gr�unbaum, Arrangements of 
olored lines, Abstra
t 720-50-5, Noti
es Amer. Math.So
. 22 (1975), A-200.[30℄ B. Gr�unbaum, Mono
hromati
 interse
tion points in families of 
olored lines, Geombi-natori
s IX (1999), 3{9.[31℄ S. Hofmann and A. Iosevi
h, Cir
ular averages and Fal
oner-Erd}os distan
e 
onje
turein the plane for random metri
s, submitted.[32℄ A. Iosevi
h, Curvature, 
ombinatori
s, and the Fourier transform, Noti
es of the Amer.Math. So
. 48 (2001), 577{583.[33℄ A. Iosevi
h, N.H. Katz, and S. Pedersen, Fourier basis and a distan
e problem of Erd}os,Math. Res. Letters 6 (1999), 251{255.[34℄ R.E. Jamison, Survey of the slope problem, in: Dis
rete Geometry and Convexity, Ann.New York A
ad. S
i. 440, New York A
ad. S
i., New York, 1985, 34{51.[35℄ R.E. Jamison and D. Hill, A 
atalogue of sporadi
 slope-
riti
al 
on�gurations. in: Pro-
eedings of the Fourteenth Southeastern Conferen
e on Combinatori
s, Graph Theoryand Computing (Bo
a Raton, Fla., 1983), Congr. Numer. 40 (1983), 101{125.[36℄ L. Lov�asz and A. S
hrijver, Remarks on a theorem of R�edei, Studia S
i. Math. Hungar.16 (1983), 449{454.[37℄ T.S. Motzkin, Nonmixed 
onne
ting lines, Abstra
t 67T 605, Noti
es Amer. Math. So
.14 (1967), 837.[38℄ J. Pa
h and P.K. Agarwal, Combinatorial Geometry, Wiley Inters
ien
e, New York,1995.[39℄ J. Pa
h, R. Pin
hasi, and M. Sharir, On the number of dire
tions determined by athree-dimensional points set, J. Combin. Theory Ser. A 108 (2004), 1{16.[40℄ J. Pa
h, R. Pin
hasi, and M. Sharir, Solution of S
ott's problem on the number of di-re
tions determined by a point set in 3-spa
e, 20th ACM Symp. on Comput. Geometry,ACM Press, New York, 2004, 76{85.[41℄ J. Pa
h and M. Sharir, Repeated angles in the plane and related problems, J. Combin.Theory, Ser. A 59 (1992), 12{22.[42℄ G. Purdy, Repeated angles in E4, Dis
rete Comput. Geom. 3 (1988), 73{75.12



[43℄ L. R�edei, L�u
kenhafte Polynome �uber endli
hen K�orpern, Birkh�auser Verlag, Basel,1970.[44℄ P.R. S
ott, On the sets of dire
tions determined by n points, Amer. Math. Monthly 77(1970), 502{505.[45℄ J. Solymosi, On the number of sums and produ
ts, Bull. London Math. So
., to appear.[46℄ J.J. Sylvester, Mathemati
al question 11851, Edu
ational Times 46, No. 383, 156,Mar
h 1, 1893.[47℄ E. Szemer�edi and W.T. Trotter, Extremal problems in dis
rete geometry, Combinator-i
a 3 (1983), 381{392.[48℄ T. Sz}onyi, Around R�edei's theorem, Dis
rete Math. 208-209 (1999), 557{575.[49℄ P. Ungar, 2N non
ollinear points determine at least 2N dire
tions, J. Combin. Theory,Ser. A 33 (1982), 343{347.[50℄ T. Wol�, Re
ent work related to the Kakeya problem, in: Prospe
ts in Mathemati
s(Prin
eton, NJ, 1996), Amer. Math. So
., Providen
e, RI, 1999, 129{162.[51℄ T. Wol�, De
ay of 
ir
ular means of Fourier transforms of measures, Internat. Mathe-mati
s Res. Noti
es 10 (1999), 547{567.

13


