
Diretions in Combinatorial GeometryJ�anos Pah�Courant Institute, New York Universityand Hungarian Aademy of Sienespah�ims.nyu.edu By indiretions �nd diretions out.(William Shakespeare: Hamlet)AbstratThis mini-survey onentrates on some reent developments in ombinatorial geometryrelated to the distribution of diretions determined by a �nite point set. It is based onthe material of my invited address at the Jahrestagung der Deutshen MathematikerVereinigung in Rostok on September 19, 2003.1 Introdution, apology, diretions, inidenesI would not dare to hazard any judgment or predition onerning the most importantdiretions of researh in ombinatorial geometry. During the past ouple of deades thesubjet has gone through a growth spurt that is far from being over. It it very diÆult toidentify the most important trends. Many of the hanges have been stimulated by the \ge-ometrization" of other parts of mathematis and by the theoretial and pratial demandsof omputer siene and industry (inluding omputer graphis, robotis, omputer-aideddesign).I will onentrate on a few open problems in disrete geometry related to the oneptof \diretion", used as a tehnial term. The diretion determined by a pair of pointsp1 = (x1; y1) and p2 = (x2; y2) in the (aÆne or Eulidean) plane is the ratio y2�y1x2�x1 , thatis, the slope of the line p1p2. Two pairs determine the same diretion if the orrespondingratios oinide.We get another possible interpretation of this onept, by ompleting the plane witha \line at in�nity," `1; and saying that two point pairs determine the same diretion if�Supported by NSF grant CR-00-98246, a PSC-CUNY Researh Award, grants from OTKA and BSF.1
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their onneting lines interset `1 at the same point. In this latter ontext, it is apparentthat the diretions determined by a point set depend only on the struture of inidenesbetween points and the lines. Problems of this type have been extensively investigated eversine Eulid proposed his system of axioms based entirely on these notions. Although theparallel postulate was srutinized for well over two thousand years, and by the end of thenineteenth entury projetive geometry had beome one of the most developed mathematialdisiplines, a number of exiting simple questions onerning inidenes were ompletelyoverlooked. One suh question that Eulid would have ertainly liked was asked by Sylvester[46℄ in 1893: is it true that any �nite set P of points, not all in a line, determines at leastone ordinary line, that is, a line passing through preisely two elements of P ? Forty yearslater the question was redisovered by Erd}os and shortly thereafter answered by Gallai [25℄.Sylvester{Gallai theorem. Every nonollinear set of n points in the plane determinesan ordinary line.In fat, the minimum number of ordinary lines determined by suh a point set is knownto be at least d 613ne, for n > 7, but the onjetured minimum is d12ne, if n is suÆientlylarge [15℄, [13℄, [8℄.

Fig. 1. Sets of 16 and 18 points with 8 and 9 ordinary linesErd}os pointed out the following immediate orollary of the Sylvester{Gallai theorem.Corollary 1.1. Any set of n nonollinear points in the plane determines at least n distintonneting lines. Equality is attained if and only if all but one of the points are ollinear.We an argue by indution. The orollary is trivially true for n = 3. Suppose that we havealready veri�ed it for (n � 1)-element sets, where n > 3. Consider a nonollinear set P ofn points. Let pq be an ordinary line, p; q 2 P . At least one of the sets P n fpg or P n fqg isnot ollinear. Applying the indution hypothesis to this set, we onlude that it determines2



at least n� 1 onneting lines, and all of them are di�erent from pq. The ases of equalityan be obtained by a similar argument.The question naturally arises: an the orollary be strengthened to guarantee the ex-istene of n onneting lines with distint slopes? The answer is yes if n is even, as wasonjetured by Sott [44℄ in 1970 and proved by Ungar [49℄ twelve years later.Ungar theorem. The minimum number of di�erent diretions assumed by the onnetinglines of n � 4 nonollinear points in the plane is 2bn=2.In ontrast to Corollary 1.1, here there is an overwhelming diversity of extremal on�g-urations, for whih equality is attained. Four in�nite families and more than one hundredsporadi on�gurations were atalogued by Jamison and Hill [35℄ (see also [34℄ for an exel-lent survey).The main diÆulty in studying the distribution of diretions determined by a �nitepoint set is that, although the problem is invariant under aÆne transformations of theplane, it seems likely that one has to analyze the algebrai relations between the slopes ofthe onneting lines. This would \smuggle" some metri elements into our investigations|and perhaps Eulid would be not so enthusiasti about suh a development. We mentionsome algebrai aspets of these problems in Setion 4 of this paper.Ungar's brilliant proof uses the method of allowable sequenes, invented by Goodmanand Pollak [26℄, [27℄, for oding the angular information by a sequene of permutations.This enables him to translate the problem into a ombinatorial one, and solve it in an elegantand muh more general setting, for \pseudolines." This approah, suggested independentlyby Goodman and Pollak and by Cordovil [12℄, is outlined at the beginning of Setion 2. Inthe rest of the setion, we disuss a number of generalizations of Ungar's theorem, inludinga reent three-dimensional version, found by Pinhasi, Sharir, and myself [39℄, [40℄. Setion3 ontains some related results and open problems on repeated angles.Over the years Erd}os [19℄ raised a number of innoent looking questions on inidenesbetween points and lines (or other urves) that turned out to be notoriously diÆult. Oneof the �rst signi�ant aomplishments in this respet was the proof of the following resultonjetured by Erd}os.Szemer�edi{Trotter theorem [47℄. The maximum number of inidenes n points and llines in the plane is O(n2=3l2=3 + n + l). The order of magnitude of this bound annot beimproved.The Szemer�edi{Trotter theorem is one of the very few asymptotially tight results inthis �eld. One may wonder why suh a \natural" question on inidenes did not our toanyone, say, in the nineteenth entury? I believe that the explanation is simple: no matterhow natural these problems may sound today, they must have appeared quite \exoti"3



to \mainstream" mathematiians a hundred years ago, before ombinatorial optimizationbeame a separate subjet.In the past two deades researh in this �eld has gained onsiderable momentum. TheSzemer�edi{Trotter theorem has found several appliations in additive number theory [16℄,[17℄, [45℄, in Fourier analysis [32℄, [33℄, and in measure theory [2℄, [5℄, [51℄. It is also relatedto Kakeya's problem [50℄: A Kakeya set (or Besiovith set) is a subset of Rd that ontainsa unit segment in every diretion. Besiovith was the �rst to onstrut suh sets with zeromeasure. Kakeya's problem is to deide whether the Hausdor� dimension of a Kakeya setis always at least d. The planar version of this question was answered in the aÆrmative byDavies [14℄ and, in a stronger form, by C�ordoba [12℄ and by Bourgain [6℄. For d � 3, thisis a major unsolved problem.2 Allowable sequenes, Ungar-type theoremsFix a nonollinear set P of n points in the plane suh that no two points have the samex-oordinate. Label the elements of P by 1; 2; : : : ; n in the order of inreasing x-oordinates.Following Goodman and Pollak [26℄, [27℄, we de�ne a irular sequene of permutations.We take a horizontal line ` and start turning it in the ounterlokwise diretion. In eahposition, we reord the order of the orthogonal projetions of the elements of P into `.The original order is represented by the permutation � = 12 : : : n. As we turn `, hangesour in this permutation if and only if ` passes through a position perpendiular to oneof the slopes determined by two (or more) points of P . In suh a ase, we obtain a newpermutation �0 that an be obtained from � by \ipping" some of its substrings: namelythose orresponding to subsets of elements lying on parallel lines orthogonal to `. Thus, aswe turn ` through 180 degrees, the number of hanges in the permutation will be equal tothe number of di�erent slopes determined by point pairs in P . Finally, we end up with thepermutation n; n� 1; n� 2; : : : ; 1: If we ontinue turning `, we obtain the same sequene ofpermutations as before, exept that now eah of them is reversed. After a full turn, we getbak � = 12 : : : n.Ungar's idea was the following. Suppose n is even, and mark the middle of eah permu-tation by an imaginary barrier separating the �rst n2 elements from the last n2 . To estimatethe number of permutations in the sequene, Ungar �rst lassi�ed the \moves" transformingone permutation into the next one. If a move involves ipping a string ontaining (resp.touhing) the barrier, he alled it a rossing (resp. touhing) move. If a move is neitherrossing nor touhing, it is alled ordinary. The basi observation is that between any tworossing moves there must be a touhing one. Indeed, in a rossing move the order of thetwo elements on opposite sides of the barrier will hange, and if the next nonordinary moveis again a rossing move, then the order of these two elements would hange bak. However,4



as we turn ` through 180 degrees, the order of any two points an (and must) reverse onlyone. Another elegant argument allows us to give a lower bound on the number of ordinarymoves between a touhing move and a rossing move, leading to a proof of Ungar's theorem.In fat, the proof applies to a more general situation. Suppose that we have a sequeneof permutations starting with 1; 2; : : : ; n and ending with n; n� 1; : : : ; 1, with the propertythat the order of any two elements hanges preisely one. In eah move" we are allowedto ip a olletion of nonoverlapping proper subsegments of the permutation. A sequeneof permutations satisfying this ondition is alled an allowable sequene. It follows that thelength of any allowable sequene on n elements is at least 2bn2 .Sott [44℄ also onjetured that in three-dimensional spae the minimum number ofdi�erent diretions assumed by the onneting lines of n points, not all in a plane, is2n � O(1). For instane, if n is odd, onsider the set obtained from the vertex set of aregular (n � 3)-gon Pn�3 (or from any other entrally symmetri extremal on�gurationfor Ungar's theorem) by adding its enter  and two other points whose midpoint is  andwhose onneting line is orthogonal to the plane of Pn�3.
Fig. 2. n nonoplanar points in 3-spae with 2n� 5 diretionsAt �rst glane it appears that Ungar's approah is doomed to fail in higher dimensions,beause it is based on the linear (or rather the irular) ordering of all ritial diretions.This may well be the ase in higher dimensions. However, somewhat surprizingly, Sott'sthree-dimensional onjeture an be settled by reduing it to a planar statement, whih isa far-reahing generalization of Ungar's theorem.Theorem 2.1 [40℄. Any nonoplanar set of n � 6 points in R3 determines at least 2n� 5di�erent diretions if n is odd and at least 2n � 7 di�erent diretions if n is even. Thisbound is sharp for every odd n.Ungar's theorem an be rephrased as follows: from all losed segments whose endpointsbelong to a nonollinear set of n points in the plane, one an always selet at least 2bn=2suh that no two of them are parallel. To formulate our generalization of Ungar's result,we need to relax the ondition of two segments being parallel.5



Two losed segments in the plane (or in Rd) are alled onvergent if(1) they do not belong to the same line, and(2) their supporting lines interset, and their intersetion point does not belong to eitherof the segments.An alternative de�nition is that two segments are onvergent if and only if they are dis-joint and their onvex hull is a nondegenerate planar quadrilateral. (Two parallel segmentsthat lie on distint lines are also onsidered onvergent, by regarding their lines to meet atin�nity.)Theorem 2.2 [39℄. From all losed segments determined by a set of n nonollinear pointsin the plane, one an always selet at least 2bn=2 pairwise nononvergent ones, lying indistint lines.It is easier to handle the d-dimensional problems (d � 4) under the assumption that nothree points of the set are ollinear. For this ase, Blokhuis and Seress [4℄ onjetured thatany set of n points determines at least (d � 1)n � d(d � 2) distint diretions. For d = 4,this onjeture was veri�ed in [40℄ up to an additive onstant. Perhaps asymptotially thesame bound holds under the weaker assumption that not all of the points lie in the samehyperplane.Ungar's theorem states that every nonollinear point set in the plane determines manydiretions. Dira [15℄ asked whether one an always �nd a point belonging to at least roughlyn2 onneting lines of distint slopes.Dira's onjeture. There is a onstant  suh that any set P of n points, not all on aline, has an element inident to at least n2 �  lines spanned by P .Putting the same number of points on two lines shows that this bound, if true, is asymp-totially tight. Many small examples listed by Gr�unbaum [28℄ show that the onjeture isfalse with  = 0. An in�nite family of ounterexamples was onstruted by Felsner (personalommuniation). The \weak Dira onjeture," �rst proved by Bek [3℄, states that thereexists � > 0 suh that one an always �nd a point inident to at least �n lines spanned byP . This statement also follows from the Szemer�edi{Trotter theorem (see Setion 1).Aording to a beautiful result of Motzkin [37℄, Rabin, and Chakerian [10℄, any setof n nonollinear points in the plane, olored with two olors, red and green, determinesa monohromati line. Motzkin and Gr�unbaum [29℄ initiated the investigation of biasedolorings, i.e., olorings without monohromati red lines. Their motivation was to justifythe intuitive feeling that if there are many red points in suh a oloring and not all of themare ollinear, then the number of green points must also be rather large. Denoting the setsof red and green points by R and G, respetively, it is a hallenging unsolved question todeide whether the \surplus" jRj � jGj of the oloring an be arbitrarily large. We do not6



know any example where this quantity exeeds six [30℄. It is another important ingredient ofthe proof of Theorem 2.1 that under some speial restritions the surplus is indeed bounded.The problem of biased olorings was redisovered by Erd}os and Purdy [22℄, who for-mulated it as follows. What is the smallest number m(n) of points neessary to represent(i.e., stab) all lines spanned by n nonollinear points in the plane, if the generating pointsannot be used? An 
(n) lower bound follows imediately from the weak Dira onjeture.3 Repeated anglesIn an important paper [18℄ published in the Amerian Mathematial Monthly, Erd Hosasked the following twin questions. Consider a set P of n points in the plane (or in ahigher-dimensional spae).(1) At most how many point pairs fp; qg � P an determine the same distane?(2) At least how many distint distanes must be determined by the point pairs in P ?In the same spirit, one an raise a number of interesting questions for triples of points. Thisline of researh was initiated by Erd}os and Purdy [20℄, [21℄.(1') At most how many triples (p; q; r) � P an determine the same angle?(2') At least how many distint angles must be determined by triples of points in P ?Conerning question (1'), Pah and Sharir [41℄ proved the following result.Theorem 3.1. For any  2 (0; �), there are at most O(n2 logn) triples among n points inthe plane that determine angle . Moreover, this order of magnitude is attained for a denseset of angles.We do not know whether this order of magnitude an indeed be reahed for every . Inthree-dimensional spae, Apfelbaum and Sharir [1℄ showed that among n points the sameangle an our at most O(n 73 ) times and that for right angles this bound an be attained.In this ase, it is not even lear whether there exists any other angle for whih the boundis asymptotially tight.Purdy [42℄ notied that in four-dimensional spae the right angle an our �(n3) times,sine the points px = (os x; sinx; 0; 0), qy = (1; 0; y; 0), and rz = (�1; 0; 0; z) always deter-mine a right angle at px. For all other angles, there is an upper bound of O(n 52�(n)), where�(n) is an extremely slowly growing funtion related to the inverse Akermann funtion[1℄. However, the best known lower bound for angles di�erent from �2 is the same as in theplane: 
(n2) and 
(n2 log n) for some speial values.In spaes of dimensions six and higher, any given angle an be represented by �(n3)triples taken from an n-element set. Aording to a well known onstrution of Lenz (seee.g. [8℄, [38℄), the number of mutually ongruent triangles with an angle  an be 
(n3).The analogous statement in �ve-dimensional spae is not known to be true.7



Problem 3.2. Can every angle 0 <  < � di�erent from �2 our 
(n3) times among npoints in �ve-dimensional spae?Almost nothing is known about problem (2').Corr�adi{Erd}os{Hajnal onjeture [23℄. Given n points in the plane, not all on a line,they always determine at least n� 2 distint angles in [0; �).The number of distint angles determined by a regular n-gon is preisely n�2, but thereare several other on�gurations for whih the onjetured lower bound is tight. It easilyfollows from the \weak Dira onjeture" (mentioned in the previous setion) that there isa onstant  > 0 suh that any nonollinear set of n points in the plane determines at leastn distint angles.
Fig. 2. Sets of n points with n� 2 distint angles4 Finite planes, algebrai aspetsSo far most of the results onerning diretions, slopes, angles, and inidenes have beenestablished using ombinatorial arguments. But the use of ertain algebrai tools may turnout to be inevitable.The following lassial result, whih is a far-reahing generalization of Corollary 1.1, anbe obtained by an elegant appliation of the so-alled \linear algebra method." This wasthe starting point of many investigations in the theory of blok designs and �nite projetiveplanes.De Bruijn{Erd}os theorem [9℄. Let L = fL1; L2; : : :g be a family of proper subsets of ann-element set with the property that eah pair fp; qg � P belongs to preisely one memberof L. Then we have jLj � n with equality if and only if (1) one of the sets ontains all butone elements of P and the others are two-element sets ontaining the remaining element;or (2) L is the system of lines of a �nite projetive plane de�ned on P .R�edei [43℄ used launary polynomials to prove an analogue of Ungar's theorem for �niteaÆne planes. 8



R�edei{Megyesi theorem. Let p be an odd prime. Then any nonollinear set of p pointsin the aÆne plane AG(2; p) determines at least p+32 di�erent diretions.R�edei's analysis was ompleted by Lov�asz and Shrijver [36℄, who haraterized theextremal on�gurations. These onsiderations turned out to be intimately related to thestruture of bloking sets in �nite projetive planes. (A bloking set is a set of pointsinterseting every line.) See [48℄, for a survey.As we have mentioned in Setion 1, the Szemer�edi{Trotter theorem has some exitingnumber-theoreti onsequenes.Erd}os{Szemer�edi theorem [24℄. There exists " > 0 suh that for any set A of n realseither the set of sums A+A = fa+b j a; b 2 Ag or the set of produts A �A = fab j a; b 2 Aghas at least 
(n1+") elements.The best known value of " (roughly 311 ) was established by Solymosi [45℄, but it isonjetured that the theorem remains true for every " < 1.The following elegant argument due to Elekes [16℄ proves that the result holds with " = 14 .Apply the Szemer�edi{Trotter theorem to the set of points P = (A+A)� (A �A) � R2 andto the set L of n2 lines of the form y = a(x � b), where a; b 2 A. Observe that the liney = a(x�b) passes through at least n elements of P , namely, all points of the form (+b; a)for  2 A. Therefore, the number of inidenes between the elements of P and L is at leastn3. On the other hand, this quantity is at most O(jP j2=3jLj2=3+ jP j+ jLj) = O(jP j2=3n4=3+jP j + n2). Comparing these two bounds, we obtain jP j = jA + Aj � jA � Aj = 
(n5=2); asrequired.Aording to the above results, any �nite subset A of the �eld of real numbers is veryfar from being losed either under addition or under multipliation. The same question anbe asked for other �elds F . If F has a sub�eld A, then we annot expet suh a result.However, for �nite �elds F of prime order, we have the following.Bourgain{Katz{Tao theorem [7℄. Let F be a �nite �eld of prime order. For any Æ > 0,there exists " = "(Æ) > 0 suh that, whenever jF jÆ < jAj < jF j1�Æ ; we havemaxfjA +Aj; jA �Ajg = 
(jAj1+"):The proof is based on the following Szemer�edi{Trotter-type result. Let F 2 = F � F bea �nite �eld plane, where F = Z=pZ and p is a prime. For any 0 < � < 2, there exists" = "(�) > 0 suh that the number of inidenes between n � p� points and l � p� lines inF 2 is at most O(n 32�").
9
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