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By indirections find directions out.
(William Shakespeare: Hamlet)

Abstract

This mini-survey concentrates on some recent developments in combinatorial geometry
related to the distribution of directions determined by a finite point set. It is based on
the material of my invited address at the Jahrestagung der Deutschen Mathematiker
Vereinigung in Rostock on September 19, 2003.

1 Introduction, apology, directions, incidences

I would not dare to hazard any judgment or prediction concerning the most important
directions of research in combinatorial geometry. During the past couple of decades the
subject has gone through a growth spurt that is far from being over. It it very difficult to
identify the most important trends. Many of the changes have been stimulated by the “ge-
ometrization” of other parts of mathematics and by the theoretical and practical demands
of computer science and industry (including computer graphics, robotics, computer-aided
design).

I will concentrate on a few open problems in discrete geometry related to the concept
of “direction”, used as a technical term. The direction determined by a pair of points
p1 = (z1,y1) and py = (z2,y2) in the (affine or Euclidean) plane is the ratio 2% that

To—T1 "’
is, the slope of the line p1ps. Two pairs determine the same direction if the corresponding

ratios coincide.
We get another possible interpretation of this concept, by completing the plane with
a “line at infinity,” /., and saying that two point pairs determine the same direction if
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their connecting lines intersect £, at the same point. In this latter context, it is apparent
that the directions determined by a point set depend only on the structure of incidences
between points and the lines. Problems of this type have been extensively investigated ever
since FEuclid proposed his system of axioms based entirely on these notions. Although the
parallel postulate was scrutinized for well over two thousand years, and by the end of the
nineteenth century projective geometry had become one of the most developed mathematical
disciplines, a number of exciting simple questions concerning incidences were completely
overlooked. One such question that Euclid would have certainly liked was asked by Sylvester
[46] in 1893: is it true that any finite set P of points, not all in a line, determines at least
one ordinary line, that is, a line passing through precisely two elements of P? Forty years
later the question was rediscovered by Erdds and shortly thereafter answered by Gallai [25].

Sylvester—Gallai theorem. FEvery noncollinear set of n points in the plane determines
an ordinary line.

In fact, the minimum number of ordinary lines determined by such a point set is known
to be at least [%n}, for n > 7, but the conjectured minimum is [%n], if n is sufficiently
large [15], [13], [8].

Fig. 1. Sets of 16 and 18 points with 8 and 9 ordinary lines

Erdés pointed out the following immediate corollary of the Sylvester Gallai theorem.

Corollary 1.1. Any set of n noncollinear points in the plane determines at least n distinct
connecting lines. Equality is attained if and only if all but one of the points are collinear.

We can argue by induction. The corollary is trivially true for n = 3. Suppose that we have
already verified it for (n — 1)-element sets, where n > 3. Consider a noncollinear set P of
n points. Let pg be an ordinary line, p,q € P. At least one of the sets P\ {p} or P\ {q} is
not collinear. Applying the induction hypothesis to this set, we conclude that it determines



at least n — 1 connecting lines, and all of them are different from pq. The cases of equality
can be obtained by a similar argument.

The question naturally arises: can the corollary be strengthened to guarantee the ex-
istence of n connecting lines with distinct slopes? The answer is yes if n is even, as was
conjectured by Scott [44] in 1970 and proved by Ungar [49] twelve years later.

Ungar theorem. The minimum number of different directions assumed by the connecting
lines of n > 4 noncollinear points in the plane is 2|n/2].

In contrast to Corollary 1.1, here there is an overwhelming diversity of extremal config-
urations, for which equality is attained. Four infinite families and more than one hundred
sporadic configurations were catalogued by Jamison and Hill [35] (see also [34] for an excel-
lent survey).

The main difficulty in studying the distribution of directions determined by a finite
point set is that, although the problem is invariant under affine transformations of the
plane, it seems likely that one has to analyze the algebraic relations between the slopes of
the connecting lines. This would “smuggle” some metric elements into our investigations—
and perhaps Euclid would be not so enthusiastic about such a development. We mention
some algebraic aspects of these problems in Section 4 of this paper.

Ungar’s brilliant proof uses the method of allowable sequences, invented by Goodman
and Pollack [26], [27], for coding the angular information by a sequence of permutations.
This enables him to translate the problem into a combinatorial one, and solve it in an elegant
and much more general setting, for “pseudolines.” This approach, suggested independently
by Goodman and Pollack and by Cordovil [12], is outlined at the beginning of Section 2. In
the rest of the section, we discuss a number of generalizations of Ungar’s theorem, including
a recent three-dimensional version, found by Pinchasi, Sharir, and myself [39], [40]. Section
3 contains some related results and open problems on repeated angles.

Over the years Erdés [19] raised a number of innocent looking questions on incidences
between points and lines (or other curves) that turned out to be notoriously difficult. One
of the first significant accomplishments in this respect was the proof of the following result
conjectured by Erdos.

Szemerédi—Trotter theorem [47]. The mazimum number of incidences n points and |
lines in the plane is O(n2/3l2/3 + n+1). The order of magnitude of this bound cannot be
improved.

The Szemerédi-Trotter theorem is one of the very few asymptotically tight results in
this field. One may wonder why such a “natural” question on incidences did not occur to
anyone, say, in the nineteenth century? I believe that the explanation is simple: no matter
how natural these problems may sound today, they must have appeared quite “exotic”



to “mainstream” mathematicians a hundred years ago, before combinatorial optimization
became a separate subject.

In the past two decades research in this field has gained considerable momentum. The
Szemerédi-Trotter theorem has found several applications in additive number theory [16],
[17], [45], in Fourier analysis [32], [33], and in measure theory [2], [5], [61]. It is also related
to Kakeya’s problem [50]: A Kakeya set (or Besicovitch set) is a subset of R? that contains
a unit segment in every direction. Besicovitch was the first to construct such sets with zero
measure. Kakeya’s problem is to decide whether the Hausdorff dimension of a Kakeya set
is always at least d. The planar version of this question was answered in the affirmative by
Davies [14] and, in a stronger form, by Cérdoba [12] and by Bourgain [6]. For d > 3, this
is a major unsolved problem.

2 Allowable sequences, Ungar-type theorems

Fix a noncollinear set P of n points in the plane such that no two points have the same
z-coordinate. Label the elements of P by 1,2, ..., n in the order of increasing x-coordinates.
Following Goodman and Pollack [26], [27], we define a circular sequence of permutations.
We take a horizontal line ¢ and start turning it in the counterclockwise direction. In each
position, we record the order of the orthogonal projections of the elements of P into 4.
The original order is represented by the permutation 7 = 12...n. As we turn ¢, changes
occur in this permutation if and only if £ passes through a position perpendicular to one
of the slopes determined by two (or more) points of P. In such a case, we obtain a new
permutation 7’ that can be obtained from 7 by “flipping” some of its substrings: namely
those corresponding to subsets of elements lying on parallel lines orthogonal to £. Thus, as
we turn ¢ through 180 degrees, the number of changes in the permutation will be equal to
the number of different slopes determined by point pairs in P. Finally, we end up with the
permutation n,n —1,n —2,...,1. If we continue turning ¢, we obtain the same sequence of
permutations as before, except that now each of them is reversed. After a full turn, we get
back m =12...n.

Ungar’s idea was the following. Suppose n is even, and mark the middle of each permu-
tation by an imaginary barrier separating the first 5 elements from the last . To estimate
the number of permutations in the sequence, Ungar first classified the “moves” transforming
one permutation into the next one. If a move involves flipping a string containing (resp.
touching) the barrier, he called it a crossing (resp. touching) move. If a move is neither
crossing nor touching, it is called ordinary. The basic observation is that between any two
crossing moves there must be a touching one. Indeed, in a crossing move the order of the
two elements on opposite sides of the barrier will change, and if the next nonordinary move
is again a crossing move, then the order of these two elements would change back. However,



as we turn £ through 180 degrees, the order of any two points can (and must) reverse only
once. Another elegant argument allows us to give a lower bound on the number of ordinary
moves between a touching move and a crossing move, leading to a proof of Ungar’s theorem.
In fact, the proof applies to a more general situation. Suppose that we have a sequence
of permutations starting with 1,2, ..., n and ending with n,n —1,...,1, with the property
that the order of any two elements changes precisely once. In each move” we are allowed
to flip a collection of nonoverlapping proper subsegments of the permutation. A sequence
of permutations satisfying this condition is called an allowable sequence. It follows that the
length of any allowable sequence on n elements is at least 2|3 ].

Scott [44] also conjectured that in three-dimensional space the minimum number of
different directions assumed by the connecting lines of m points, not all in a plane, is
2n — O(1). For instance, if n is odd, consider the set obtained from the vertex set of a
regular (n — 3)-gon P,_3 (or from any other centrally symmetric extremal configuration
for Ungar’s theorem) by adding its center ¢ and two other points whose midpoint is ¢ and
whose connecting line is orthogonal to the plane of P, 3.

Fig. 2. n noncoplanar points in 3-space with 2n — 5 directions

At first glance it appears that Ungar’s approach is doomed to fail in higher dimensions,
because it is based on the linear (or rather the circular) ordering of all critical directions.
This may well be the case in higher dimensions. However, somewhat surprizingly, Scott’s
three-dimensional conjecture can be settled by reducing it to a planar statement, which is
a far-reaching generalization of Ungar’s theorem.

Theorem 2.1 [40]. Any noncoplanar set of n > 6 points in R3 determines at least 2n — 5
different directions if n is odd and at least 2n — 7 different directions if n is even. This
bound is sharp for every odd n.

Ungar’s theorem can be rephrased as follows: from all closed segments whose endpoints
belong to a noncollinear set of n points in the plane, one can always select at least 2|n /2]
such that no two of them are parallel. To formulate our generalization of Ungar’s result,
we need to relax the condition of two segments being parallel.



Two closed segments in the plane (or in R%) are called convergent if

(1) they do not belong to the same line, and

(2) their supporting lines intersect, and their intersection point does not belong to either
of the segments.

An alternative definition is that two segments are convergent if and only if they are dis-
joint and their convex hull is a nondegenerate planar quadrilateral. (Two parallel segments
that lie on distinct lines are also considered convergent, by regarding their lines to meet at
infinity.)

Theorem 2.2 [39]. From all closed segments determined by a set of n noncollinear points
in the plane, one can always select at least 2|n/2] pairwise nonconvergent ones, lying in
distinct lines.

It is easier to handle the d-dimensional problems (d > 4) under the assumption that no
three points of the set are collinear. For this case, Blokhuis and Seress [4] conjectured that
any set of n points determines at least (d — 1)n — d(d — 2) distinct directions. For d = 4,
this conjecture was verified in [40] up to an additive constant. Perhaps asymptotically the
same bound holds under the weaker assumption that not all of the points lie in the same
hyperplane.

Ungar’s theorem states that every noncollinear point set in the plane determines many
directions. Dirac [15] asked whether one can always find a point belonging to at least roughly

5 connecting lines of distinct slopes.

Dirac’s conjecture. There is a constant ¢ such that any set P of n points, not all on a
line, has an element incident to at least 5 — c lines spanned by P.

Putting the same number of points on two lines shows that this bound, if true, is asymp-
totically tight. Many small examples listed by Griinbaum [28] show that the conjecture is
false with ¢ = 0. An infinite family of counterexamples was constructed by Felsner (personal
communication). The “weak Dirac conjecture,” first proved by Beck [3], states that there
exists € > 0 such that one can always find a point incident to at least en lines spanned by
P. This statement also follows from the Szemerédi Trotter theorem (see Section 1).

According to a beautiful result of Motzkin [37], Rabin, and Chakerian [10], any set
of m noncollinear points in the plane, colored with two colors, red and green, determines
a monochromatic line. Motzkin and Griinbaum [29] initiated the investigation of biased
colorings, i.e., colorings without monochromatic red lines. Their motivation was to justify
the intuitive feeling that if there are many red points in such a coloring and not all of them
are collinear, then the number of green points must also be rather large. Denoting the sets
of red and green points by R and G, respectively, it is a challenging unsolved question to
decide whether the “surplus” |R| — |G| of the coloring can be arbitrarily large. We do not



know any example where this quantity exceeds six [30]. It is another important ingredient of
the proof of Theorem 2.1 that under some special restrictions the surplus is indeed bounded.

The problem of biased colorings was rediscovered by Erdds and Purdy [22], who for-
mulated it as follows. What is the smallest number m(n) of points necessary to represent
(i.e., stab) all lines spanned by n noncollinear points in the plane, if the generating points
cannot be used? An (n) lower bound follows imediately from the weak Dirac conjecture.

3 Repeated angles

In an important paper [18] published in the American Mathematical Monthly, Erd Hos
asked the following twin questions. Consider a set P of n points in the plane (or in a
higher-dimensional space).

(1) At most how many point pairs {p,q} C P can determine the same distance?

(2) At least how many distinct distances must be determined by the point pairs in P?
In the same spirit, one can raise a number of interesting questions for ¢riples of points. This
line of research was initiated by Erdés and Purdy [20], [21].

(1) At most how many triples (p,q,r) C P can determine the same angle?

(27) At least how many distinct angles must be determined by triples of points in P?

Concerning question (1’), Pach and Sharir [41] proved the following result.

Theorem 3.1. For any v € (0,7), there are at most O(n?logn) triples among n points in
the plane that determine angle v. Moreover, this order of magnitude is attained for a dense
set of angles.

We do not know whether this order of magnitude can indeed be reached for every ~. In
three-dimensional space, Apfelbaum and Sharir [1] showed that among n points the same
angle can occur at most O(n%) times and that for right angles this bound can be attained.
In this case, it is not even clear whether there exists any other angle for which the bound
is asymptotically tight.

Purdy [42] noticed that in four-dimensional space the right angle can occur ©(n?) times,
since the points p, = (cos z,sinz,0,0), ¢, = (1,0,4,0), and r, = (—1,0,0, z) always deter-
mine a right angle at p,. For all other angles, there is an upper bound of O(n%ﬂ(n)), where
B(n) is an extremely slowly growing function related to the inverse Ackermann function
[1]. However, the best known lower bound for angles different from 7 is the same as in the
plane: Q(n?) and Q(n?logn) for some special values.

In spaces of dimensions six and higher, any given angle can be represented by ©(n?)
triples taken from an n-element set. According to a well known construction of Lenz (see
e.g. [8], [38]), the number of mutually congruent triangles with an angle v can be Q(n?).
The analogous statement in five-dimensional space is not known to be true.



Problem 3.2. Can every angle 0 < v < 7 different from T occur Q(n®) times among n

2
points in five-dimensional space?
Almost nothing is known about problem (2’).

Corradi-Erdés—Hajnal conjecture [23]. Given n points in the plane, not all on a line,
they always determine at least n — 2 distinct angles in [0, ).

The number of distinct angles determined by a regular n-gon is precisely n —2, but there
are several other configurations for which the conjectured lower bound is tight. It easily
follows from the “weak Dirac conjecture” (mentioned in the previous section) that there is
a constant ¢ > 0 such that any noncollinear set of n points in the plane determines at least
cn distinct angles.

Fig. 2. Sets of n points with n — 2 distinct angles

4 Finite planes, algebraic aspects

So far most of the results concerning directions, slopes, angles, and incidences have been
established using combinatorial arguments. But the use of certain algebraic tools may turn
out to be inevitable.

The following classical result, which is a far-reaching generalization of Corollary 1.1, can
be obtained by an elegant application of the so-called “linear algebra method.” This was
the starting point of many investigations in the theory of block designs and finite projective
planes.

De Bruijn—Erdés theorem [9]. Let £L = {Ly, Lo, ...} be a family of proper subsets of an
n-element set with the property that each pair {p,q} C P belongs to precisely one member
of L. Then we have |L| > n with equality if and only if (1) one of the sets contains all but
one elements of P and the others are two-element sets containing the remaining element;
or (2) L is the system of lines of a finite projective plane defined on P.

Rédei [43] used lacunary polynomials to prove an analogue of Ungar’s theorem for finite
affine planes.



Rédei—Megyesi theorem. Let p be an odd prime. Then any noncollinear set of p points
in the affine plane AG(2,p) determines at least p%?’ different directions.

Rédei’s analysis was completed by Lovédsz and Schrijver [36], who characterized the
extremal configurations. These considerations turned out to be intimately related to the
structure of blocking sets in finite projective planes. (A blocking set is a set of points
intersecting every line.) See [48], for a survey.

As we have mentioned in Section 1, the Szemerédi Trotter theorem has some exciting
number-theoretic consequences.

Erd6és—Szemerédi theorem [24]. There exists € > 0 such that for any set A of n reals
either the set of sums A+A = {a+b| a,b€ A} or the set of products A-A = {ab | a,b € A}
has at least Q(n'*¢) elements.

The best known value of £ (roughly ) was established by Solymosi [45], but it is
conjectured that the theorem remains true for every e < 1.

The following elegant argument due to Elekes [16] proves that the result holds with e = %.
Apply the Szemerédi-Trotter theorem to the set of points P = (A + A) x (A- A) C R? and
to the set £ of n? lines of the form y = a(z — b), where a,b € A. Observe that the line
y = a(x—b) passes through at least n elements of P, namely, all points of the form (¢+b, ac)
for ¢ € A. Therefore, the number of incidences between the elements of P and L is at least
n3. On the other hand, this quantity is at most O(|P|*/3|L|?/3 +|P|+|L]) = O(|P|*/3*n*/3 +
|P| + n?). Comparing these two bounds, we obtain |P| = |A + A| x |[A - A| = Q(n®/?), as
required.

According to the above results, any finite subset A of the field of real numbers is very
far from being closed either under addition or under multiplication. The same question can
be asked for other fields F'. If F' has a subfield A, then we cannot expect such a result.
However, for finite fields F' of prime order, we have the following.

Bourgain—Katz—Tao theorem [7]. Let F' be a finite field of prime order. For any § > 0,
there exists € = €(0) > 0 such that, whenever |F|° < |A| < |F|'~?, we have

max{|A + A|,|]A - A} = Q(|A]'T9).

The proof is based on the following Szemerédi-Trotter-type result. Let F2 = F' x F be
a finite field plane, where F' = Z/pZ and p is a prime. For any 0 < « < 2, there exists
e = £(a) > 0 such that the number of incidences between n < p® points and [ < p® lines in
F? is at most O(n%%).
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