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Abstract

In the near future, portable embedded devices must run multimedia and wireless network applications
with enormous computational performance (1-40GOPS) requirements at a low energy consumption
(0.1–2W). In these applications, the dynamic memory subsystem is currently one of the main sources of
power consumption and its inappropriate management can severely affect the performance of the whole
system. Within this context, the construction and power evaluation of custom memory managers is one of
the most difficult parts for an efficient mapping of such dynamic applications on low-power embedded
systems. In this paper, we present a new system-level approach to model complex dynamic memory
managers integrating detailed power profiling information. This approach allows to obtain power
consumption estimates, memory footprint and memory access values to refine the dynamic memory
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management of the system in an early stage of the design flow and to easily explore the large search space of
memory manager implementations.
r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last decade, the design gap between the top line digital signal processors (DSPs)
and general-purpose processors has decreased. The innovations introduced in DSPs designed
exclusively for performance are now implemented on DSPs targeted for hand-held devices
where power consumption is a crucial design priority, both at the hardware and software design
side. In the past, most implementations that were ported to these embedded platforms stayed
mainly in the classic domain of signal processing and actively avoided algorithms that employ
dynamic memory (DM from now on). Recently, with the emerging market of new portable
devices that integrate multiple services such as multimedia and wireless network communica-
tions, the need to efficiently use DM in embedded low-power systems has arisen. New
consumer applications (e.g. 3D video applications) are now mixed signal and control dominated.
They must rely on DM for a very significant part of their functionality due to the inherent
unpredictability of the input data, which heavily influences global performance and memory
footprint of the system. Designing them using static worst-case memory footprint solutions
would lead to a too high overhead in memory footprint and power consumption for these
systems [1].
In addition, power consumption has become a real issue in overall system design (both

embedded and general-purpose) due to circuit reliability and packaging costs [2]. Thus,
optimization in general (and especially for embedded systems) has three goals that cannot be
seen independently: memory footprint, power consumptions and performance.
Since the DM subsystem heavily influences performance and is a very important source of

power consumption and memory footprint, flexible system-level implementation and evaluation
mechanisms for these three factors must be available at an early stage of the design flow for
embedded systems. Unfortunately, general approaches that integrate all of them do not exist
presently at this level of abstraction for the DM managers implementation involved.
Current implementations of DM managers can provide a reasonable level of performance for

general-purpose systems [3]. However, these implementations do not consider power consumption
or other limitations of target embedded platforms where these DM managers must run on. Thus,
these general-purpose DM managers implementations are never optimal for the final target
platform and produce large power and performance penalties. Consequently, system designers
currently face the need to manually optimize the implementations of the initial DMmanagers on a
case-per-case basis. This has to happen without detailed profiling of which parts within the DM
managers implementations (e.g. internal data structures or links between the memory blocks) are
the most critical parts (e.g. in power consumption) for the system. Moreover, adding new
implementations of (complex) custom DM managers often prove to be a very programming-
intensive and error-prone task that consumes a very significant part of the time spent in system
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integration of DM management mechanisms (even if standardized languages such as C or C++
offer considerable support).
In this paper, we present a new high-level programming and profiling approach (based on

abstract derived classes or mixins [4] in C++) to implement complex custom DM managers from
its basic parts (e.g. de/allocation strategies, order within pools, splitting, coalescing, etc.) [3] in a
modular way and to evaluate their power consumption at system-level. This approach can be used
to effectively obtain early design flow estimates and implementation trade-offs for system
developers. Moreover, the versatility of the C++ language allows to insert this new principle of
extensive modular library inside real current embedded operating systems (OS), e.g. RTEMS [5],
without the code size overhead found in other approaches that optimize managers in C code based
on profiling [6,7]. This will be shown more in detail in Section 4 with our experimental results.
The remainder of the paper is organized as follows. In Section 2, we describe some related

work. In Section 3 we present the proposed construction method for DM managers and the
necessary profile framework to obtain detailed power consumption estimations. In Section 3.3 we
explain the power estimation technique used within our high-level approach. In Section 4, we
shortly introduce our drivers and present the experimental results obtained. Finally, in Section 5
we draw our conclusions.
2. Related work

Currently the basis of an efficient DM management in a general-context are already well
established. In the software community much literature is available about DM management
implementations and policies to be used in general-purpose systems [3]. In memory management
for embedded systems [8], the DM is usually partitioned into fixed blocks to store the dynamic
data. Then, the free blocks are placed in a single linked list [8] due to performance constraints with
a simple (but fast) fit strategy, e.g. first fit or next fit [3]. Also, in recent real-time operating system
synthesis approach for embedded systems [5], dynamic allocation is supported with custom DM
managers based on region allocators [9] for the specific platform features.
Another recent method to refine the DM subsystem is to simulate the system with different

customizable memory managers and infrastructures. In [7], a memory manager that allows to
define multiple regions in memory with different disciplines for each of them is presented.
However, this approach cannot be extended with new functionality and is limited to a small set of
user-defined functions for memory de/allocation. Also, in [6], a C++ framework where you can
partially redefine some functionality (e.g. malloc() function) of the DM subsystem has been
proposed, but it does not consider changes in the implementation structure of DM managers.
Also, [10] outlines an infrastructure to improve performance of general-purpose managers.
However, its definition for performance exploration of general-purpose DM managers restricts its
flexibility to isolate and explore the influence of basic implementation parts of custom DM
managers (e.g. fit algorithms [3]) for other metrics (e.g. power consumption).
Regarding profiling of the DM subsystem, work can be found to estimate power consumption

based on software instead of at a circuit-level. Most of it uses an instruction-level analysis [11], but
more recently research has been developed for assembly code and a higher abstraction level [2].
Nevertheless, current methods do not yet include run-time profiling analysis and hence are not
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sufficient for modern dynamic multimedia and network applications. In addition, due to large
scale integration systems, several analytical and abstract power estimation models at the
architecture-level have received more attention lately [12]. However, they do not focus on the DM
hierarchy of the system and the power consumed by DM managers at the software level.
3. Construction and profiling of modular low-power dynamic memory managers

The search space of DM manager implementations is very broad and we need to cover it in a
flexible and extensible way. Therefore, we use a C++ approach which combines abstract derived
classes or mixins [4] with template C++ classes [13]. In the remainder of the text, we use the
definition of mixins as used in [4]: a method of specifying extensions of a class without defining up-
front which class exactly it extends. This approach allows easy and flexible modelling and
refinement of layered DM managers, as we already mentioned in Section 2. This will be illustrated
now more concretely.
In Fig. 1 we show the basic concepts used in this approach. In the first example of Fig. 1, a

subclass of SuperClass is declared with SuperClass itself being a template argument and
consequently also the subclass is defined. Then, MyMixin class is reusable for one or more parent
classes that will be specified in the different instantiations of MyMixin class. In the second
example of Fig. 1, another class is defined (i.e. MyClass), where the template argument is not
used as a parent class, but instead as internal private data members. In our approach, as we show
in the following sections, the first concept is used to refine the functionality of the custom DM
managers and the second one is used to specify its main components, e.g. heaps, data structures,
etc. As a result of this very modular approach, we can combine both concepts to build very
customized DM managers starting from their basic structures (e.g. data structures, fit algorithms,
etc.) and later on add detailed profiling for each of these basic structures. In conventional
Fig. 1. Parametrized Inheritance used with mixins in C++.



ARTICLE IN PRESS

D. Atienza et al. / INTEGRATION, the VLSI journal 39 (2006) 113–130 117
approaches [3,6,10] this kind of modelling and detailed profiling of basic structures of DM
managers is not possible. The main reason is that in such approaches the DM managers are built
as complex software engineering modules where all the different components (e.g. fit algorithms,
data structures) are combined and deeply embedded in their implementations. Thus, only a
limited number of variations in the final implementation can be explored by the designer due to
the time-consuming effort of reprogramming their global structures.

3.1. Constructing modular dynamic memory managers with profile support

Using the previously explained concepts of abstract derived and template C++ classes, we have
redefined the library proposed in [10] and integrated our own profile framework (see Section 3.2
for a detailed description of this framework) to be able to explore and profile power consumption,
memory footprint and memory accesses in the basic construction categories we distinguish for
DM managers. These categories are the following: creating block structures, pool division based
on different criterion, fit algorithms, order of the blocks within the pools (address, size, etc.),
coalescing (or merging blocks) and splitting blocks [1]. In Fig. 2 we show an example of the
construction of a DM manager with basic blocks and how our profile framework can be added to
any part of it with a fine granularity. First, the basic heaps of the manager and the basic allocation
blocks requested to the system are defined (class BasicHeap in Fig. 2). Second, the two basic
data structures to test within the manager, i.e. double linked lists (DLList) and binary trees
Fig. 2. Example of custom memory manager with profiling objects.
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(BTTree) are implemented. Third, they are instantiated for the basic sizes to use in the DM
manager. Then, the profile objects (see Section 3.2 for more details about their use) to obtain the
necessary information about power consumption, memory footprint and memory accesses are
created. Finally, the DM manager is created as a combined structure of two different segregated
lists [3], which are formed by different dynamic data structures inside (DLList or BTTree) and
different allocation policies (best fit or first fit) [3].
As Fig. 3 shows, we can build custom DM managers from its basic blocks and obtain power

estimations from them in a much more flexible way than the structure proposed in [10]. For
example, if due to the characteristics of the final system it is necessary to combine two different
allocation strategies from two different general-purpose managers in the same global manager,
using [10] we would need to create both DM managers and combine them later as independent
heaps because a great part of the structure of each DM manager is fixed. On the contrary, our
approach allows to create a global DM manager using just a single heap. This global manager
would by composed by several intermediate layers that define a very customized and flexible
implementation structure including the two different allocation strategies in the same heap. This
example is depicted in Fig. 3. Thus, we can merge the two allocation heaps saving memory
footprint because the memory can be reused for both. Also, our final structure is simpler to
compose because parts of the maintenance data structures can be shared and accessed
simultaneously (e.g. pointers of the memory blocks). Hence, the number of memory accesses
and eventual power consumption of the DM manager are reduced (as shown in Section 4, Fig. 8
with ObstLea). Finally, note that any modification in the implementation structure of the heap
only requires to substitute a very limited number of layers. Therefore, the programming effort to
do it is reduced heavily.

3.2. Structured run-time profile framework

Apart from simplifying the effort of exhaustively covering the implementation space of DM
management, the presence of multiple layers in the DM managers also gives a lot of flexibility to
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Fig. 3. Example of the structure of a custom DM manager. On the left, built with the approach proposed in [10] where

the layers are really interdependent. On the right, our own approach.
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profile their characteristics at different levels, e.g. memory accesses of each implementation layer
in the internal structure, as Fig. 3 indicates. This detailed profiling is required for a suitable
optimization (e.g. for power consumption) of the DM manager since small changes in the
implementation of some layers can completely change the global results of the DMmanager in the
system, even if most of the implementation structure remains the same. For example, as we
explain in our case studies in Section 4, a LIFO reuse strategy of the blocks can produce
completely different results compared to a FIFO reuse strategy. However, this detailed profiling at
the level of the individual layers in the DM manager requires a new system-level profiling
framework that is flexible enough to handle all kinds of combinations between the layers. Since
more than one layer can constitute the part of the manager to measure, the profiling information
must be grouped and cannot be collected at one layer only. Therefore, we have integrated a
similar approach to the one proposed in [14] for complex dynamic data types. As Figs. 3 and 2 (i.e.
_profile *prof1, *prof2, *profileGlobal) depict, it consists of an objects-oriented
profiling framework where independent objects are attached in a hierarchical way to profile each
part of the DM managers. This way the profiling information is decoupled from the
implementation class hierarchy of the DM managers, which provides more versatility to attach
the profile objects to any subpart of the implementation of the managers and thus acquire
accurate run-time information on memory accesses, memory footprint, timing information and
method calls that can be stored. Finally, we can use this stored profiled information to obtain
power model estimates for the DM managers using a realistic model of the underlying memory
hierarchy in a post-execution phase. As a result of the whole process, the application runs at its
normal speed and the total evaluation time for one DM manager is reduced from several hours of
simulation in typical cycle-accurate simulations to few minutes including the post-execution
power estimation phase (see more details about it in Section 3.3).

3.3. Validated power model and post-execution power estimation phase

In the post-execution phase we estimate the power consumption of the system based on the
stored profiling information, which contains the necessary information about memory accesses
(i.e. read or write), maximal value of memory footprint consumed during execution and memory
addresses of each access to the data types. We have observed that the most important part of the
power consumed in DM management of the system (almost 80%) in these new multimedia
applications really depends on the amount of memory accesses [1] and the total amount of
memory footprint required by the system. In fact, the operations performed by the DM manager
are very simple (e.g. check values or follow pointers) and the power consumption is mainly
determined by memory accesses rather than the computation power. Thus, for this post-execution
phase, in order to use the profiling information acquired by our profile framework (see Section 3.2
for more details), we have to accurately model the power consumed on the on-chip (i.e. SRAM)
and off-chip (i.e. SDRAM) memories.
On the one hand, regarding the on-chip memories we use an updated version of the CACTI

model [15], which is a complete energy/delay/area model for embedded SRAMs that depends
on memory footprint factors (e.g. size, internal structure or leaks) and factors originated by
memory accesses (e.g. number of accesses or technology node used). It has two main advan-
tages. First, a clear hierarchy is present in the modelling of the different memory components



ARTICLE IN PRESS

Fig. 4. Multi-banked SDRAM architecture.

Table 1

Energy consumption parameters for off-chip SDRAMs (:13mm tech.)

Eprecharge=activate 14000 pJ/miss

Eread=write 2000 pJ/access

Pstby (for each bank) 30mW

Table 2

Profiling values for different memory managers in the Deficit Round Robin application for a stream of 1,00,000 packets

Memory Memory Memory Energy (mJ) Execution

manager accesses usage (B) :13mm tech time (s)

SegFitSLL FIFO 2:00� 106 2.09� 106 13.28� 106 115.04

(on-chip values) 0:25� 106 16.38� 103 49.60� 103 —

Total 2:25� 106 2.09� 106 13.33� 106 115.04

Kings+LIFOSLL 1:25� 106 2.09� 106 8.32� 106 64.25

(on-chip values) 0:15� 106 16.38� 103 31.00� 103 —

Total 1:40� 106 2.09� 106 8.32� 106 64.25

Kings+FIFODLL 1:75� 106 2.09� 106 11.62� 106 135.63

(on-chip values) 0:22� 106 16.38� 103 43.40� 103 —

Total 1:97� 106 2.09� 106 11.66� 106 135.63

D. Atienza et al. / INTEGRATION, the VLSI journal 39 (2006) 113–130120
at four different levels. The second main advantage of CACTI is the fact that it is scalable to
different technology nodes. For the results shown in Figs. 5, 8, and Table 2, we use the :13mm
technology node.
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On the other hand, regarding the off-chip memories, we use a simplified SDRAM memory
model. A simplified view of a typical multi-banked SDRAM architecture is shown in Fig. 4.
Fetching or storing data in an SDRAM involves three memory operations. An activation
operation decodes the row address, selects the appropriate bank and moves a page/row to the
page buffer of the corresponding bank. After a page is opened, a read/write operation moves data
to/from the output pins of the SDRAM. Only one bank can use the output pins at the time. When
the next read/write accesses hit in the same page, the memory controller does not need to activate
the page again (a page hit). However, when another page is needed (a page miss), precharging the
bank is needed first. Only thereafter the new page can be activated and the data can be read. All
these previous features are included in our power estimation model and to this end the energy
parameters have been derived from a power estimation tool of Micron 32Mb/64Mb mobile
SDRAM [16]. They are shown in Table 1.
Using the previous explained energy consumption parameters about SDRAMs, our

power model decomposes the energy consumption of off-chip memories in a static and a
dynamic part, as indicated in the formulas below. First, the static energy consumption is due to
the standby power of the SDRAM. In our model we consider that the memory is always in
standby mode (i.e. Pstby) when it is not accessing data. Therefore, we calculate a worst-case
estimation by considering that 4 banks exist (average value in most SDRAMS [16] of the sizes
we consider, e.g. 64Mbits) and it is multiplied by the total execution time spent by the appli-
cation (i.e. tstby). Second, the dynamic energy consumption is calculated considering the
amount of memory accesses captured by our profile framework to the scratchpad memories and
multiplied by the energy indicated in Table 1 for read/write operations (Eread=write) in case of a
page hit. In case it is a page miss, which is decided by checking in our stored profiling the
addresses of each two consecutive memory accesses, we add the energy value of precharging/
activating the new bank ðEprecharge=activateÞ to the energy spent in the access/write of the page buffer
(Eread=write). Thus, the energy consumption of the SDRAM is computed with the following
formula:

EtotalSDRAM ¼ Estatic þ Edynamic;

Estatic ¼ 4:Pstby:tstby;

Edynamic ¼ Npa:Epa þNrw:Erw;

where Epa is the energy of a precharge/activation, Erw; the energy of a read/write, tstby; the
execution time (or standby) of application, Npa; the number of precharge and activations of
banks, Nrw; the number of reads and writes in application.
Note that any other additional mode of SDRAM memories (i.e. clock-suspend or power down

mode [16]) could be added later to the model (and static formula) thanks to our timing
information of the stored profiling in case we need to have a finer-grained power consumption
estimation. Moreover, any other model for a specific memory hierarchy can be used just by
replacing the aforementioned power modules in the tools. Finally, in order to validate the results
(e.g. memory accesses or memory footprint) of our high-level approach, we have used a complete
cycle-accurate simulation platform [17]. This simulation platform is briefly described in Section 4,
together with our experimental results.
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4. Case studies and experimental results

We have applied the proposed method to three case studies that represent different modern
multimedia and network application domains: the first case study is part of a new 3D image
reconstruction system, the second one is a 3D rendering system based on scalable meshes and the
third one is a scheduling algorithm from the network domain. All the results shown are average
values after a set of 10 simulations for each application and DM manager implementation. The
obtained results (e.g. execution time, power consumption estimations) were all very similar with
variations of less than 2%.

4.1. Method applied to a new 3D image reconstruction system

The first case study forms one of the sub-algorithms of a 3D reconstruction algorithm [18] that
works like 3D perception in living beings, where the relative displacement between several 2D
projections is used to reconstruct the third dimension. The software module used as our driver
application heavily uses DM and is one of the basic building blocks in many current 3D vision
algorithms: feature selection and matching. It has been extracted from the original code of the 3D
image reconstruction system (see [19] for the full code of the algorithm with 1.75 million lines of
high-level C++), and creates the mathematical abstraction from the related frames that is used in
the global algorithm. This implementation matches corners [18] detected in two subsequent
frames. The operations done on the images are particularly memory intensive, e.g. each image
with a resolution of 640� 480 uses over 1Mb, and the accesses of the algorithm (in the order of
millions of accesses) to the images are randomized. Thus, classic image access optimizations as
row-dominated accesses versus column-wise accesses are not relevant to reduce the memory
footprint, memory accesses and power consumption values.
For this case study, we have implemented and profiled several DM managers starting from a

general-purpose one and refining its implementation using our approach. First of all, we have
implemented one of the fastest general-purpose managers, i.e. Kingsley DM manager [3]
(KingsLayered in Fig. 5). But it has a considerable fragmentation due to its use of power-of-
two segregated-fit lists [3]. A graphical representation of its implementation structure with our
layered-approach is shown in Fig. 6. As Fig. 5 shows, its memory footprint is larger than any
other DM manager in our experiments, but its total execution time is faster than the new region-
semantic managers [3] frequently found in current embedded systems, i.e. RegAlloc in Fig. 5.
After implementing and profiling these two generic DM managers, we have observed that most

of the accesses in Kingsley occur in just few of the ‘‘bins’’ (or memory pools of the heap) [3], due
to the limited range of data type sizes used in the application [14]. Therefore, we try to reduce its
memory waste by modifying its design with our layers and by limiting the number of bins to the
actual sizes used in the application (5 main sizes), as Fig. 6 shows at the top in its right graph. This
variation is the most significant change in its internal structure and allows to define the custom
manager marked as KLimit in Fig. 5. We can see that its improvement is already significant in
energy dissipated per matching process of two frames. Then, we try to improve its structure even
further with our layered approach. Thus, the bins that produce most of the accesses (the bins for
allocation sizes of 16 bytes with the maintenance information of the manager and the data types
of blocks of 16 kbytes) are easily separated using our infrastructure of layers from the global heap
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used in the manager. They are now handled in a different and small heap (57 kbytes) that is placed
permanently in the scratchpad, as Fig. 6 indicates at the bottom in its right graph. This custom
DMmanager, which is optimized according to the final memory hierarchy, is depicted on the right
side of Fig. 6 and marked as KHierarchy in Fig. 5.
Fig. 5. Profiling results of different DM managers (normalized to Kingsley, i.e. KingsLayered) in the 3D Image

Reconstruction System per each matching process of two frames.

Initial Kingsley DM Manager 
(KingsLayered)
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   First 
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 Header-block 
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Fig. 6. On the left, initial implementation structure of Kingsley DMmanager with our approach. On the right, our final

refined version of it, i.e. KHierarc, with the main changes indicated in bold.
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The latter figure shows that KHierarchy DM manager has increased its total amount of
memory accesses and total memory footprint compared to KLimit, but most of the accesses of
the manager are now in the on-chip scratchpad memory (i.e. 95%). Also note that the increase in
memory footprint is mainly due to data copied between the different levels of the memory
hierarchy and this increase is not really significant comparing it with the accesses saved to the off-
chip memory. Hence, we can observe that the total energy dissipation and execution time of this
custom memory manager have decreased enormously compared to the other ones in Fig. 5.

4.2. Method applied to a network scheduling application

The third case study presented is the Deficit Round Robin (DRR) application taken from the
NetBench benchmarking suite [20]. It is a scheduling algorithm implemented in many routers
today. In the DRR algorithm, the scheduler visits each internal non-empty queue, increments the
variable deficit by the value quantum and determines the number of bytes in the packet at the
head of the queue. If the variable deficit is less than the size of the packet at the head of the queue,
then the scheduler moves on to service the next queue. If the size of the packet at the head of the
queue is less than or equal to the variable deficit, then the variable deficit is reduced by the number
of bytes in the packet and the packet is transmitted on the output port. The scheduler continues
this process, starting from the first queue each time a packet is transmitted. If a queue has no more
packets, it is destroyed. The arriving packets are queued to the appropriate node and if no such
exists then it is created. The DRR application was profiled in our results for an input trace of
1,00,000 packets.
For this case study, using our approach to evaluate different versions of the same basic

structure in the memory manager, we have implemented and profiled managers of the basic
segregated fit scheme, both general-purpose and custom DM managers. All of them are power-of-
two segregated-fit lists [3], without coalescing or splitting services due to the hard real-time
constraints of this network application. As in the previous case studies, for speed purposes we
have considered as our basis the structure of the general-purpose Kingsley manager, but we have
implemented two different variations of it. One uses a LIFO single linked freelist (King-
s+LIFOSLL in Table 2) and the other one a FIFO double linked freelist (Kings+LIFODLL in
Table 2). Finally, we have also designed a faster custom memory manager than Kingsley with
FIFO double linked lists as a FIFO single linked list structure with segregated fit algorithm
(SegFitSLL FIFO in Table 2). It shows that not only the global policy of the manager is
important, but also a careful study of the ideal structure of reuse, data types, etc. inside the
managers. The results obtained are shown in Table 2. Note that Table 2 is divided in the energy
contribution of the off-chip memories and on-chip memories (i.e. lines labelled as on-chip
values) for each DM manager to the total. We consider in this case that an on-chip scratchpad
memory of 16 kbytes is available for all the DM managers.
In addition, we have tested several region [9] and stack-like managers [3], but they are not

appropriate for this specific application since they would require huge amounts of memory (over
200Mbytes) due to the special dynamic nature of the DRR algorithm (being executed for a long
period with allocated packages that can remain alive for a long time). Thus, these kind of
managers that require to know an upper bound value for the initial request of allocated memory
for each region cannot be really used.
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As Table 2 indicates, the memory footprint is the same for the managers because they are all
power-of-two segregated-fit lists with the same internal organization. However, as we have
previously mentioned, it can be seen that by implementing a different allocation reuse scheme (e.g.
FIFO and LIFO) we can gain considerably on performance and memory power consumption.
The best performance is achieved by the manager with Kingsley basis and a LIFO single linked
list structure. It is faster than the custom FIFO SLL segregated fit because it combines both
organization schemes. Also, it is better than the LIFO structure because it can be updated faster
than the FIFO organization, and in fact this pattern is less used by the router. Finally, it has also
the lowest power consumption, because it has the least memory accesses. This is mainly due to the
fact that its data structures can be updated using less memory accesses than the others considering
the run-time access pattern observed with our profiling. In fact, when one packet has arrived to a
certain queue of the router, more packets are likely to arrive in a short period of time to the same
queue (and very often with the same size). Thus, the FIFO implementation achieves the best
results in power consumption by increasing locality in memory references more than the any other
solution.
As we have already mentioned in Section 3.2, we validate the system-level values obtained with

our approach (i.e. Table 2) by integrating and simulating our C++ library in a complete System-
On-Chip cycle-accurate simulation platform [17]. This simulation platform is described in
SystemC [21], which provides the advantage of describing both hardware and software in a
common language, namely C++. From the hardware point of view, this simulation platform first
uses an instruction set processor that is a cycle-accurate ARM core written in C++ called
SWARM [22]. It is integrated in the platform using a SystemC wrapper that creates a standard
interface between this processor and the memory hierarchy. Instead of the ARM also other
instruction set simulators could have been used after the appropriate integration work. Then, the
simulation platform includes two memory hierarchies: an on-chip software controlled or
scratchpad memory, and an off-chip main memory also written in SystemC. A global description
of the whole simulation platform is shown in Fig. 7. From the software point of view, this
simulation platform includes a complete port of an embedded OS, RTEMS [5] that allows to
integrate in it our C++ library of layers to create custom DMmanagers. Hence, we can execute the
DRR application on this simulation platform to verify that the values obtained with our system-
level approach are accurate enough.
After the simulation with the ported version of our library in the cycle-accurate simulation

platform, the results obtained only slightly vary from our high-level estimations: less than 6% on
(on-chip)

SystemC wrapper

SWARM

SCRATCHPAD

CORE BUS Main Memory
(off-chip)

in SystemC

Fig. 7. Overview of the simulation platform used to validate our high-level approach.
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average after a set of 10 simulations for each of the managers shown in Table 2. Moreover, the
values obtained in the simulation platform scale in the same way for all the DM managers. Thus,
the relative ranking and the conclusions achieved using our high-level approach about the features
of each memory manager are perfectly valid, and the designer can estimate their behavior without
a very time-consuming effort in tedious cycle-accurate simulations. In this example, our high-level
system simulations and power consumption estimations took us 45min in total whereas the
cycle-accurate simulations 22 hours in a Pentium III at 800MHz with 265Mb and running GNU/
Linux 2.4.20.
Finally, to evaluate the speed up of the implementation and refinement process of DM

managers, we want to remark that the DM managers for this application constitute around 400
lines of C++ code each and took us approximately one week to build them, obtain detailed
profiling of their basic components and eventually refine their implementations. Each allocator is
composed out of 5 layers and because all of them are variations of segregated fit algorithms, 2
layers were reused in each implementation.

4.3. Method applied to a 3D rendering system

The third case study is the 3D rendering module [23] of a whole 3D video system application.
This module belongs to the new category of 3D algorithms with scalable meshes [24] to adapt the
quality of each object displayed on the screen according to the position of the user watching at
them at each moment on time to (e.g. Quality of Service systems [24]). For simplification
purposes, we consider the scenario where only one object must be rendered on the screen while the
user is moving the camera around it. This object is internally represented by vertices and faces (or
triangles) that need to be dynamically stored due to the uncertainty at compile time of the features
of the objects to render. First, those vertices are traversed in the first three phases of the whole
visualization process, i.e. modelview transformation, lighting process and canonical view
transformation [23]. Finally, the system processes the faces of the objects in the next three
phases (i.e. clipping, viewport mapping and rasterization [23]) of the visualization process to show
the final object with the appropriate resolution on the screen.
In this case, due to the variable memory sizes of the system, we have implemented and tested

with our approach one of the best general-purpose DM managers (in terms of the combination of
speed and memory footprint) [3,10], i.e. Lea Allocator v2.7.2 [3]. This is a hybrid allocator for
general-purpose software design with different behavior for different object sizes. For small
objects it uses some kind of quick lists [3], for medium-sized objects it performs approximate best-
fit allocation [3] and for large objects it uses dedicated memory (allocated directly with the
mmap() function). Apart from it, we have also used Kingsley [3] to compare both in memory
footprint, memory accesses and total energy consumption figures. In addition, we have also
implemented and profiled a well-known custom DM manager optimized for a stack-like DM
behavior, i.e. Obstacks [3]. As Fig. 8 shows, the Lea Allocator (LeaLeayered) obtains average
values for a certain trade-off in performance and memory footprint. However, its energy
dissipation is very high due to the additional accesses for the complex maintenance structure of
this manager. In addition, Fig. 8 indicates that Kingsley suffers from high fragmentation penalty,
but produces a lot less accesses. As a result, although they show completely different
characteristics, both managers are close in their final figures for power consumption. Also, due
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to the stack-like application behavior with the triangles, Obstacks has a lower amount of accesses
but its behavior cannot be exploited in the final phases of the rendering process because the faces
are used all independently in a disordered pattern and they are required to be freed separately.
Thus, Obstacks suffers from high penalty in memory accesses and energy dissipation per frame in
these last three phases of the algorithm. Therefore, its final values are not as good as expected.
Nevertheless, these results suggests the convenience of a custom DM manager that combines

the behaviour of Obstacks with Lea in the last three phases. We have used our approach to build
it in a fast way (3 or 4 weeks, approximately) and it is marked as ObstLea in Fig. 8. This figure
shows that this new manager accomplishes very good overall results.
In addition, our own DM manager designs have a similar execution time (differences of less

than 10% on average in total execution time) compared to the original (manually designed)
versions of Obstacks and Lea, but we observe a clear improvement in design complexity on our
side. We have around 700 lines of C++ code for our version of the Lea Allocator instead of more
than 20,000 lines of C code as in the original Lea implementation, and 400 lines of C++ code for
our version of Obstacks compared to 2500 lines approximately of its state-of-the-art library
implementation.
5. Conclusions

Embedded devices have improved their capabilities in the last years, making it feasible to map
very complex and dynamic applications (e.g. multimedia and wireless network) in portable
devices. Such applications have grown lately in complexity- and demand-intensive DM
requirements that must be heavily optimized (i.e. memory footprint, power and memory use)
for an efficient mapping on current low-power embedded devices. System-level exploration and
refinement methodologies have started to be proposed to consistently perform that refinement.
Within this context, the manual exploration and optimization of the DM manager implementa-
tion is one of the most time-consuming and programming-intensive parts. In this paper we have
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presented a new system-level approach to characterize custom DM managers with an integrated
power and memory footprint profiling method. This approach largely simplifies the complex
engineering process of designing and profiling several implementation candidates, allowing the
developers to cover a vast part of the implementation space (e.g. different strategies of the heap,
internal blocks of the allocators, etc.) with a minimal programming and modelling effort.
Furthermore, we have shown in our case studies that the profiling results obtained for power
consumption, memory accesses and memory footprint are close to those obtained with real values
obtained using much more time-consuming cycle-accurate simulations. They show the same
relative ranking. Finally, it has been also shown how our approach can be integrated in a real
current embedded operating system and that the instantiation process of this easy-to-compose
approach leaves more freedom to new compilers for an efficient binary optimization, e.g. method
in-lining. This results in managers that run as fast as their equivalent monolithic manually refined
managers, but without the difficulties for maintenance that these last ones imply due to their
complex code.
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