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ABSTRACT
New multimedia embedded applications are increasingly dy-
namic, and rely on Dynamically-allocated Data Types (DDTs)
to store their data. The optimization of DDTs for each tar-
get embedded system is a time-consuming process due to the
large design space of possible DDTs implementations. Thus,
suitable exploration methods for embedded design metrics
(memory accesses, memory usage and power consumption)
need to be developed. In this work we present a detailed
analysis of the characteristics of different types of Multi-
Objective Evolutionary Algorithms (MOEAs) to tackle the
optimization of DDTs in multimedia applications and com-
pare them with other state-of-the-art heuristics. Our results
with state-of-the-art MOEAs in two object-oriented multi-
media embedded applications show that more sophisticated
MOEAs (SPEA2 and NSGA-II) offer better solutions than
simple schemes (VEGA). Moreover, the suitable sophisti-
cated scheme varies according to the available exploration
time, namely, NSGA-II outperforms SPEA2 in the first set
of solutions (300-500 generations), while SPEA2 offers bet-
ter solutions afterwards.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Real-time and
embedded systems; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, Search—Heuristic methods

General Terms
Design, Performance

Keywords
Multi-Objective Optimization, Pareto Optimal Front, Evo-
lutionary Computation, Embedded Systems Design

1. INTRODUCTION
Latest multimedia embedded devices are enhancing its

capabilities and are currently able to run applications re-
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served to powerful desktop computers few years ago (e.g.,
3D games, video players). As a result, one of the most im-
portant problems designers face nowadays is the integration
of a great amount of applications coming from the general-
purpose domain in a compact and highly-constrained device.
One major task of this porting process is the optimization of
the dynamic memory subsystem. Thus, the designer must
choose among a number of possible dynamically-allocated
data structures or Dynamic Data Types (DDTs) implemen-
tations [1] (dynamic arrays, linked lists, etc.) the best one in
each case, according to the specific restrictions of the target
device and typical embedded design metrics, such as mem-
ory accesses, memory usage and energy consumption [2].

This task is typically performed using a pseudo-exhaustive
evaluation of the design space of DDTs, including multiple
executions of the application, to attain a Pareto’s front [5],
which tries to cover all the optimal implementation points
for the aforementioned required design metrics. The con-
struction of this Pareto’s front is a very time-consuming
process, sometimes even unaffordable [5], [12].

In this paper we analyze the potential benefits of the
different state-of-the-art Multi-Objective Evolutionary Algo-
rithms (MOEAs) [6] to explore the design space of DDT
implementation. Our experiments in two real-life dynamic
embedded applications using three representative MOEAs,
namely Vector Evaluated Genetic Algorithm (VEGA) [14],
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [19] and
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [7],
show that they can achieve significant speed-ups (up to 12000×
faster in the case of VDrift and 3800× faster in the case of a
3D Physics engine) with respect to other traditional heuris-
tics to achieve optimal DDT implementations for multiple
metrics. Furthermore, our results indicate that the selection
of the most suitable type of MOEA depends on the design
constraints and devoted exploration time.

The rest of the paper is organized as follows. Section 2
reviews the work related to memory optimizations for em-
bedded systems. In Section 3, we present our multi-objective
optimization process. A description of the three representa-
tive MOEAs algorithms used in this work is given in Section
4. Section 5 details our experimental setup. In Section 6, we
discuss the obtained results in two real-life embedded appli-
cations. Finally, Section 7 summarizes the main conclusions
of this paper.

2. RELATED WORK
Up today extensive work has been performed in the field

of embedded memory subsystem optimization. [12] and [3]
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include a thorough survey of static data and memory opti-
mization techniques for embedded systems. In [4] and [18],
authors have explored a coordinated data and computation
reordering for array-based data structures in multimedia ap-
plications. They use a linear time algorithm reducing the
memory subsystems needs by 50%. Nevertheless, they are
not suitable for exploration of complex DDTs employed in
modern multimedia applications.

Regarding dynamic embedded software, suitable access
methods, power-aware DDT transformations and pruning
strategies based on heuristics have started to be proposed for
multimedia systems [18][12]. However, these approaches re-
quire the development of efficient pruning function costs and
fully manual optimizations [5]; otherwise they are not able
to capture the evaluation of inter-dependencies of multiple
DDTs implementations operating together, as our proposed
method using evolutionary computation achieves. Also, in
[2] it has already been outline the potential use of MOEAs
for dynamic memory optimizations. Nevertheless, this work
only performed an initial analysis of one type of MOEA and
does not provide a complete analysis of trade-offs between
different technologies of MOEAs, as we perform in this pa-
per.

Also, according to the characteristics of certain parts of
multimedia applications, several transformations for DDTs
and design methodologies [4][18] have been proposed for
static data profiling and optimization considering static mem-
ory access patterns to physical memories. In this context,
the use of MOEA-based optimization has been applied to
solve linear and non-linear problems by exploring all regions
of the state space in parallel. Thus, it is possible to perform
optimizations in non-convex regular functions, and also to
select the order of algorithmic transformations in concrete
types of source codes [11][12]. However, such techniques are
not applicable in DDT implementations, due to the unpre-
dictable nature at compile-time of the stored data.

3. THE DYNAMIC DATA TYPES EXPLO-
RATION PROBLEM

A DDT is a software abstraction by means of which we can
manipulate and access data. The implementation of a DDT
has two main components. First, it has storage aspects that
determine how data memory is allocated and freed at run-
time and how this memory is tracked. Second, it includes
an access component, which can refer to two different basic
access patterns: sequential or iterator-based and random
access.

Figure 1 shows an example of a DDTs exploration. The
initial code contains two variables, v1 and v2, instantiated as
vector and list, respectively. After the exploration process,
one candidate solution gives v1 to be instantiated as Single
Linked List (SLL) and v2 as Double Linked List of Arrays
(DLLAR). Such instantiation policy tries to minimize mem-
ory accesses, memory usage and energy consumption of the
final application. It is important to stress that it is unman-
ageable for the designer to get a totally complete exploration
of all the possible DDT implementation combinations using
the traditional way for real-life complex applications. For
example, in the case of the 3D Physics engine, we optimized
memory accesses, memory usage and power consumption for
more than 3000 variables.

In general terms, the application to optimize contains a set

Figure 1: Code before and after the exploration of
Dynamic Data Types

of m variables ({V }) which are candidates to be instantiated
as a certain DDT from the set of possible implementation
of DDTs library ({D}) presented in [2][5]. Thus, the goal
of our optimization flow is to obtain a set of pairs (variable,

DDT) or (�v, �d), vi ∈ {V }, di ∈ {D}, 1 ≤ i ≤ m, such that
minimizes three objectives: memory accesses, memory usage
and energy consumption. Additional constraints, such as
minimum and maximum values for all three objectives may
be defined.

The proposed optimization framework uses three different
phases to perform the automatic exploration of DDTs using
MOEAs. Figure 2 shows the different phases required to
perform the overall DDTs optimization. In the first phase,
we generate an initial profiling of the iterator-based access
methods to the different DDTs used in the application. In
the second phase, using this detailed report of the accesses,
we extract all the information needed by the optimization
phase. Finally, an exploration of the design space of DDTs
implementation is performed using the genetic algorithm se-
lected (NSGA-II, SPEA2 or VEGA).

Next, we describe the three phases of our flow in detail.

3.1 Profiling

Table 1: DDT library
DDT Description
AR Array
AR(P) Array of pointers
SLL Single linked list
DLL Double linked list
SLL(O) Single linked list with roving pointer
DLL(O) Double linked list with roving pointer
SLL(AR) Single linked list of arrays
DLL(AR) Double linked list of arrays
SLL(ARO) Single linked list of arrays and roving pointer
DLL(ARO) Double linked list of arrays and roving pointer

In a first pre-characterization phase we define the equa-
tions to evaluate the behavior of DDT implementations by
means of parameters such as the number of sequential ac-
cesses, random accesses , average size , etc. In our case
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Figure 2: DDTs optimization flow

we have classified the DDT implementations in basic DDT
and multi-layer implementations relevant for embedded mul-
timedia applications. Table 1 contains the DDTs imple-
mented [2].

Next, we obtain a profiling report of the application where
the following information is logged: accessing of an element,
addition of an element, removal of an element, the clearing of
the container, iterator operations such as pre-increment or
dereference, constructor, destructor, copy constructor and
swap operation. To this end, we replace all the candidate
variables in the application by our vector DDT implemen-
tation, which logs all the needed information. Such replace-
ment is done automatically, where the designer may choose
the variables to include in the optimization.

The left side of Figure 3 shows an illustrative example
on how the profiling report logs all the variables selected in
the original application. The report shows two entries, la-
beled as LOG CONSTRUCT BEGIN, where two variables
are instantiated and identified as VariableId 1 and 2. Such
entries state that the variables will contain elements of size
12 and 32 Bytes, respectively. Another entry, labeled as
LOG ADD BEGIN, shows that an element is added to the
variable 1, at index 0. The last entry shows that an iterator
accesses to a element stored in variable 2, and located at the
address 0x85b7290.

3.2 Parameters estimation
In the following phase, we extract all information needed

from the profiling report. The purpose is to measure the

Figure 3: Example of profiling report and parame-
ters estimation

quality of a candidate solution �v, �d in the DDT exploration,
using parameters such as the number of candidate variables
(Count in Figure 3), number of elements stored in the DDT

in the worst case (Ne(�v, �d)), average of the number of ele-

ments stored (Nve(�v, �d)), size of the elements (Te(�v, �d), in
bytes), size of the pointers (Tref , in bytes), number of read

accesses (Nr(�v, �d)), number of write accesses (Nw(�v, �d)) and

cache misses (Npa(�v, �d)). All the parameters except the last
one are obtained with just the information logged in the
profiling report and the analytical characterization. Cache
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misses are obtained by means of simulation, generating mem-
ory traces from the profiling report and the DDT library, us-
ing them as input for the Dinero IV cache simulator [8] for
the particular memory configuration of the target embedded
system. We have developed a tool called Profile Analyzer,
which automates all the process. The right side of Figure
3 depicts an illustrative example on how the Profile Ana-
lyzer saves such parameters in an external file, used by the
optimization phase.

3.3 Optimization
The last phase is the optimization process. It takes as

input the parameters obtained in the previous phase and
minimizes three objectives: memory accesses (MA), mem-
ory usage (MU) and energy (E), defined by equation 1,
where Hw represents the effect that hardware parameters
(memory architecture, CPU power, line sizes, memory ac-

cess time, etc.) have on the optimization, and (�v, �d) repre-
sents one candidate solution.

MA(�v, �d) = fMA(Ne, Nve, Nr, Nw)

MU(�v, �d) = fMU (Te, T ref,Ne, Nve) (1)

E(�v, �d) = fE(Nr, Nw, Npa,Hw)

In equation 1, fMA and fMU were taken from [2]. Energy
equation of the system is given by the following equation:

fE = tex × CPUpow +

(Nr + Nw) × (1 − Npa) × CaccE +

(Nr + Nw) × Npa × CaccE × ClineS +

(Nr + Nw) × Npa × DRAMaccP ×(
DRAMaccT +

ClineS

DRAMbandW

)
(2)

where,

• tex is the system’s total execution time.

• CPUpow is the total processor power excluding the
cache power.

• CaccE is the cache access energy.

• ClineS is the cache line size.

• DRAMaccP is the active power consumed by the DRAM.

• DRAMaccT is the DRAM latency time.

• DRAMbandW is the bandwidth of the DRAM.

There exist four components in the energy equation 2.
The first term tex×CPUpow calculates the processor energy
given that execution time takes tex amount of time. The
second term, (Nr + Nw) × (1 − Npa) ×CaccE calculates the
amount of energy consumed by the cache. The third term,
(Nr + Nw) × Npa × CaccE × ClineS calculates the energy
cost of writing to cache for each cache miss. The last term,
calculates the energy cost of the DRAM to service all the
cache misses.

The equation for calculating the system’s total execution
time tex is given by:

tex = (Nr + Nw) × (1 − Npa) × CaccT +

(Nr + Nw) × Npa × DRAMaccT +

(Nr + Nw) × Npa × ClineS

DRAMbandW
+

Tbus (3)

where CaccT is the access time of the cache.
There exist four components in the system’s execution

time shown in equation 3. The first term (Nr + Nw) ×
(1 − Npa) × CaccT is for calculating the amount of time
taken for the processor to access the cache. The second
term (Nr + Nw)×Npa ×DRAMaccT calculates the amount
of time required for the DRAM to respond to each cache
miss. The third term calculates the amount of time taken
to fill a cache line on each cache miss. The bus communi-
cation time cost is supposed to be constant (Tbus). As the
bus communication time is expected to be similar to other
systems, such decision will not adversely affect the final re-
sults.

Units for time variables in the equations are in seconds,
bandwidth is in Bytes/sec., cache line size is in Bytes, power
variable is in Watts, and energy unit is in Joules.

To explore this multi-objective optimization problem, we
have implemented three popular MOEAs, called VEGA,
SPEA2 and NSGA-II. VEGA belongs to the so-called first
generation multi-objective evolutionary algorithms and SPEA2
and NSGA-II belong to the second generation. They are dis-
cussed next.

When the optimization process ends, it gives the DDT
instantiation policy, i.e., which variable should be instanti-
ated by which DDT. We also obtain the gain on memory
accesses, memory usage and energy consumption.

4. SELECTION OF MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHMS

Multi-objective optimization aims at simultaneously op-
timizing several contradictory objectives. For such kind of
problems, there does not exist a single optimal solution, and
some compromises have to be made. We can assume the fol-
lowing N-objective minimization problem:

Minimize �z = (f1(�x), f2(�x), . . . fN (�x))

subject to �x ∈ S (4)

where �z is the objective vector with N objectives to be min-
imized, �x is the decision vector, and S ⊂ �m is the feasible
region in the decision space. A solution �x ∈ S is said to
dominate another solution �y ∈ S (denoted as �x ≺ �y) if the
following two conditions are satisfied.

fi (�x) ≤ fi (�y) ,∀i ∈ {1, 2, . . . , N}
fi (�x) < fi (�y) ,∃i ∈ {1, 2, . . . , N} (5)

A decision vector �x ∈ S is called Pareto-optimal if there
does not exist another �y ∈ S that dominates it. An ob-
jective vector is called Pareto-optimal if the corresponding
decision vector is Pareto-optimal. The non-dominated set
of the entire feasible search space S is the Pareto-optimal
set (POS). The Pareto-optimal set in the objective space
is called Pareto-optimal front (POF) of the multi-objective
problem at hand: it represents the best possible compro-
mises with respect to the contradictory objectives.
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A Multi-objective optimization problem is solved, when
all its POS is found. Classical optimization methods gener-
ally find one of the Pareto optimal solutions by making the
initial optimization problem single-objective. Unlike clas-
sical methods, MOEAs directly search for the whole POF,
allowing decision makers to choose one of the Pareto solu-
tions with more complete information [6].

Up to date, many MOEAs have been developed. Gen-
erally speaking, they can be classified into two broad cate-
gories: non-elitism and elitism, also called first and second
generation evolutionary algorithms. With the elitism ap-
proach, MOEAs store in an external set the best solutions
of each generation. This set will then be a part of the next
generation. Thus, the best individuals in each generation are
always preserved, and this helps the algorithm to get close to
its POF. Algorithms such as PEAS II, MOMGA II, NSGA-
II and SPEA2 are examples of this category. In contrast, the
non-elitism approach does not guarantee preserving the set
of best individuals for the next generation [20]. Examples of
this category include MOGA, HLGA, NPGA and VEGA.

For the purpose of this research, three representative al-
gorithms have been selected to cover the different technolo-
gies of evolutionary computation when comparisons are per-
formed. VEGA [20] was selected as a very optimized exam-
ple of non-elitist MOEAs, where the the concept of POF
is not directly incorporated into the selection mechanism of
this algorithm. SPEA2 and NSGA-II were selected as two
representative elitist-based MOEA [19][7].

5. EXPERIMENTAL METHODOLOGY
In this section we describe the complete method applied

to compare the different type of MOEAs while optimizing
two real-life dynamic embedded applications.

5.1 Embedded System HW/SW Specification

Figure 4: System architecture

The model of the embedded system architecture consisted
of a processor with an instruction cache, a data cache, and
embedded DRAM as main memory. The data cache uses
a write-through strategy. The system architecture is illus-
trated in Figure 4.

Table 2: System specification
Processor Energy 168mW, 100MHz
Embedded DRAM 100MHz
Energy 19.5 mW
Latency 19.5 ns
Bandwidth 50MB/s

To analyze the effect of MOEAs on embedded system’s
memory accesses, memory usage and energy consumption,
we utilized processor energy from [4], and the access time
and energy values for caches of 32KB and embedded 16MB
DRAM main memory from [16] and [9], respectively. The
processor and memory specification is described in Table 2.

In this paper, we apply MOEAs to two multimedia em-
bedded applications. The first benchmark is VDrift, which
is a driving simulation game. The game includes 19 tracks,
28 cars, AI players, networked multiplayer mode, etc. [17].
We logged 49 variables in its source code. The second bench-
mark is a 3D Physics Engine for elastic and deformable bod-
ies [10], which is a 3D engine that displays the interaction
of non-rigid bodies. It includes 3128 dynamic variables in
its source code for which we select the optimal DDT imple-
mentation.

5.2 Performance Metrics
To compare the performance of different MOEAs, we need

to evaluate the obtained set of non-dominated solutions con-
sidering: (1) Convergence to POF. (2) Diversity on POF.
Since the size of possible DDT implementations is large and
it is not possible to cover the exact set of the POF, we com-
pare the obtained Pareto Front (PF) with each other. In
this direction, we select the following metrics to evaluate
the performance of our approach.

Coverage (C): We use the coverage metric [20] to mea-
sure convergence. Let PF ′, PF ′′ be two sets of non-dominated
solutions. The coverage metric can be defined as follows:

C(PF ′, PF ′′) =
|p′′ ∈ PF ′′;∃p′ ∈ PF ′ : p′≺p′′|

|PF ′′| (6)

The value C(PF ′, PF ′′) = 1 means that all points in
PF ′′ are dominated by or equal to points in PF ′. On the
other hand, C(PF ′, PF ′′) = 0 means that no solutions in
PF ′′ are covered by the set PF ′. Both C(PF ′, PF ′′) and
C(PF ′′, PF ′), have to be considered, since C(PF ′, PF ′′) is
not necessary equal to C(PF ′′, PF ′). If C(PF ′, PF ′′) >
C(PF ′′, PF ′), the rate of dominated solutions in PF ′′ is
higher than in PF ′.

Spread (D): A spread metric (D) determines in each
objective space the maximum range represented by the non-
dominated solutions. It was introduced by Ranjithan [13].
A higher value of the spread metric indicates a better per-
formance. It is defined as:

D =

√∑N
i=1

(
max

|PF |
j=1 fi(xj) − min

|PF |
j=1 fi(xj)

)2

xj ∈ PF, j = 1, 2, . . . , |PF | (7)

where N is the number of objectives.
Spacing (S): Schott proposed a metric which allows to

measure the distribution of vectors throughout PF [15]. It
is defined as:

S =
√

1
|PF |

∑|PF |
j=1

(
dj − d̄

)2

dj = minxk∈PF∧k �=j

∑N
i=1 |fi(xj) − fi(xk)| (8)

where N is the number of objectives, and d̄ is the mean of
all dj . A zero value for this metric means that all members
of PF are equidistantly spaced.
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We compare the obtained sets of non-dominated solutions
by means of the above three criteria.

5.3 Coding a solution
In order to apply a MOEA correctly we need to define

a genetic representation of the design space of all possible
DDT implementations alternatives. Moreover, to be able to
cover all possible inter-dependencies of DDT implementa-
tions for different dynamic variables of an application, we
must guarantee that all the individuals represent real and
feasible solutions to the problem and ensure that the search
space is covered in a continuous and optimal way [6].

Table 3: Example of an individual
d1 d2 d3 . . . dm dj ∈ {D}
v1 v2 v3 . . . vm vj ∈ {V }

Table 3 shows the representation of a chromosome. Genes
are represented in the first row (gray shaded cells). Each
of the chromosomes represents the set of DDT that should
be used to instantiate all the corresponding variables in the
application from Table 1. For example, the second variable
v2 ∈ {V } will be instantiated by d2 ∈ {D}. A chromosome
contains m genes, where m is the number of the variables
logged in the application, m = size({V }). We may use an
integer to represent the values of a gene, and the constraint
a gene must satisfy is:

1 ≤ dj ≤ size({D}) (9)

Consequently, if an application contains m variables, each
individual (chromosome) has to be constituted by m inte-
ger fields (i.e., m genes). Our current implementation of
the exploration framework optimizes up to 3128 variables
using variations of the 10 possible DDTs contained in Table
1 for each of them; Thus, it can cover large real-life dynamic
embedded applications.

To compare the performance of three algorithms, all pa-
rameters are set equally. After different tests, we have fixed
them to the values indicated in Table 4. The number of
non-dominated solutions to preserve between generations is
set to the initial population size in the elitism algorithms.

Table 4: Parameters for all three algorithms.
Parameter VDrift Physics
Population size 100 200
Number of generations 2000 4000
Probability of crossover 0.80 0.80
Probability of mutation 0.01 0.01

6. EXPERIMENTAL RESULTS
We have explored DDTs for VDrift and Physics with each

of the three algorithms proposed (VEGA, SPEA2 and NSGA-
II). The coverage, spread and the spacing values are calcu-
lated by averaging results of 10 trials.

Figure 5 depicts the Pareto-front (non-dominated individ-
uals) obtained in the best population of both applications.
With respect to VDrift, this figure shows that both NSGA-II

and SPEA2 offer the same number of non-dominated indi-
viduals and 61% more than VEGA. In the case of Physics,
NSGA-II and SPEA2 offer the same optimal solutions. In
addition, both NSGA-II and SPEA2 offer 92% more optimal
solutions than VEGA. Thus, elitism algorithms cover better
the set of possible optimal solutions than non-elitism ones.

Table 5: Coverage metric for VDrift/Physics.
VDrift VEGA SPEA2 NSGA-II
VEGA – 0.005 0.034
SPEA2 0.023 – 0.215

NSGA-II 0.132 0.369 –

Physics VEGA SPEA2 NSGA-II
VEGA – 0.000 0.000
SPEA2 1.000 – 0.002

NSGA-II 1.000 0.462 –

Regarding convergence comparisons, Table 5 shows that
the coverage values of NSGA-II are better than VEGA or
SPEA2 in both cases (e.g., for Physics C(NSGA2, V EGA) >
C(V EGA, NSGA2) is 1 > 0, and C(NSGA2, SPEA2) >
C(SPEA2, NSGA2) is 0.462 > 0.002). Thus, NSGA-II of-
fers more optimal alternatives to the system designer for the
implementation of the final embedded application.

Table 6: Spread and spacing for the three algorithms
and two applications.

VDrift Physics

Spread δ2 Spread δ2

VEGA 1.47E-01 2.23E-03 8.32E-02 1.85E-03
SPEA2 5.42E-01 7.73E-04 2.21E-01 3.35E-04

NSGA-II 7.12E-01 1.25E-04 1.26E-01 2.95E-04

Spacing δ2 Spacing δ2

VEGA 1.72E-02 9.57E-05 1.11E-02 7.58E-05
SPEA2 1.60E-02 2.47E-06 2.82E-03 2.34E-07

NSGA-II 2.18E-02 4.94E-05 1.91E-03 2.40E-07

The situation is different for spread and spacing metrics,
where NSGA-II does not obtain the best performance in
all cases. Table 6 shows the spread and spacing for the
three algorithms and both VDrift and Physics applications.
Regarding VDrift the larger spread is found by NSGA-II
(52% better, on average), and the best spacing by SPEA2
(22% better), whereas in the case of Physics SPEA2 obtains
the larger spread (53% better) and the lower spacing is found
by NSGA-II (64% better).

It has been well established in the MOEA literature that
although SPEA2 produces a better distribution compared to
NSGA-II, the computational time needed to run SPEA2 is
larger. We may conclude from our experiments that NSGA-
II offers the larger coverage, whereas SPEA2 offers the better
spread for large-scale explorations.

For comparison reasons we present Figure 6 to illustrate
the optimization process that our methodology performs.
In this test, the set of DDTs was successively implemented
using SLL, DLL, etc. All the three objectives have been
normalized. Thus, in the end, compared to the combination
proposed by our framework.
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Figure 5: 3D Pareto-fronts obtained for VDrift and Physics using NSGA-II, SPEA2 and VEGA.
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Figure 6: Overall results for different design metrics coming from various sets of DDTs for both applications.

Figure 6 shows clearly the achieved level of optimization
and final gains after applying the proposed optimization
flow.

In a second set of experiments we have tested the explo-
ration speed in comparison to different alternative methods.
The results obtained for both applications for the different
tested exploration methods are shown in Table 7. First,
we have compared with an exhaustive exploration. Sec-
ond, as Table 7 depicts, we have also compared our algo-
rithm with state-of-the-art pruning and optimization meth-
ods for DDT implementations presented in [18][5]. In these
cases several function costs, and breath-first, deep-first and
branch&bound exploration heuristics are used to minimize
overall memory accesses, memory usage and energy con-
sumption in embedded multimedia applications. All exper-
iments were executed in an AMD Sempron 3600+ 2GHz,
with 1GB DDR memory.

The results in Table 7 outline that the exploration pro-

cess with our method is much faster than using directly the
implementations of DDTs or other heuristics, namely, more
than 12000× faster (50 seconds vs 7 days) for VDrift and
3800× (12 minutes vs 32 days) for Physics, due to the larger
spread of solutions found in each generation in MOEAs.
Note that MOEAs are faster because of the combinatorial
complexity involved. There are 1049 and 103128 feasible so-
lutions (10 DDTs for 49 and 3128 variables) in the case of
VDrift and Physics, respectively.

7. CONCLUSIONS
New multimedia embedded applications are increasingly

dynamic, and rely on DDTs to store their data. The selec-
tion of optimal DDT implementations for each variable in a
particular target embedded system is a very time-consuming
process due to the large design space of possible DDTs im-
plementations. In this paper we have analyzed the behavior
of MOEAs for the exploration of DDT implementations in
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Table 7: Time to explore DDT implementations for
VDrift and Physics using different exhaustive and
heuristic-based methods versus VEGA, SPEA2 and
NSGA-II.

DDTs exploration method VDrift Physics
Breadth-First exploration 22 hours 13 days
Deep-First exploration 8 minutes 5 days
Branch&Bound exploration 62 seconds 3 hours
Other VEGA impl. [2] 3 minutes 1 hour

VEGA 50 seconds 12 minutes
NSGA-II 64 seconds 17 minutes
SPEA2 159 seconds 25 minutes

multimedia embedded applications. We have evaluated rep-
resentative algorithms of elitism and non-elitism MOEAs
(VEGA, NSGA-II and SPEA2) and compare them with other
heuristics to optimize the DDT implementations on two real-
life multimedia embedded applications. The obtained re-
sults show that VEGA is 30% quicker than the other two,
but SPEA2 and NSGA-II achieve better results (75% on av-
erage) regarding covering of the design space of solutions.
Moreover, MOEAs can prune the design space in a more
effective way than other heuristics, since MOEAs directly
search for the whole Pareto Optimal Front, and generate
faster a complete range of multi-objetive optimal solutions
according to each concrete user-defined constraints (i.e., mem-
ory accesses, memory usage and/or power consumption).
We have also automated all the optimization process, where
the designer must select only the set of variables to optimize
in the application.
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