
Design Flow of Dynamically-Allocated Data Types in Embedded Applications
Based on Elitist Evolutionary Computation Optimization

José L. Risco-Martı́n, David Atienza, J. Ignacio Hidalgo and Juan Lanchares
Department of Computer Architecture and Automation

Complutense University of Madrid
C/Prof. José Garcı́a Santesmases, s/n, 28040 Madrid, Spain

{jlrisco,datienza,hidalgo,julandan}@dacya.ucm.es

Abstract

New multimedia embedded applications are increasingly
dynamic, and rely on Dynamically-allocated Data Types
(DDTs) to store their data. The optimization of DDTs for
each target embedded system is a time-consuming process
due to the large design space of possible DDTs implementa-
tions. Thus, suitable exploration methods for embedded de-
sign metrics (memory accesses, memory usage and power
consumption) need to be developed. This paper presents a
design flow to tackle the optimization of DDTs in multime-
dia applications. By profiling of the original desktop ap-
plication and using evolutionary algorithms, the proposed
approach is able to find solutions 1584× faster than other
state-of-the-art heuristics in an automated way. Moreover,
we study the use of elitist Multi-Objective Evolutionary Al-
gorithms (MOEAs) to explore DDT implementations, which
offer 75% more optimal solutions to the system designer for
the implementation of the final embedded application. To
this end, we analyze the quality of the solutions by compar-
ing three MOEAS and other optimization heuristics. Our
results in two object-oriented multimedia embedded appli-
cations show that elitist MOEAs (NSGA-II and SPEA2) of-
fer better solutions than simple non-elitist schemes (VEGA)
and alternative well-known optimization heuristics.

1. Introduction

Latest multimedia embedded devices are enhancing their
capabilities and are currently able to run applications re-
served to powerful desktop computers few years ago (e.g.,
3D games, video players). As a result, one of the most im-
portant problems designers face nowadays is the integration
of a great amount of applications coming from the general-
purpose domain in a compact and highly-constrained de-
vice. One major task of this porting process is the optimiza-

tion of the dynamic memory subsystem. Thus, the designer
must choose among a number of possible dynamically-
allocated data structures or Dynamic Data Types (DDTs)
implementations [1] (dynamic arrays, linked lists, etc.) the
best one in each case, according to the specific restrictions
for each target device and typical embedded design metrics,
such as memory accesses, memory usage and energy con-
sumption.

This task is typically performed using a pseudo-
exhaustive evaluation of the design space of DDTs, includ-
ing multiple executions of the application, to attain a Pareto
front [6], which tries to cover all the optimal implemen-
tation points for the aforementioned required design met-
rics. The construction of this Pareto front is a very time-
consuming process, sometimes even unaffordable [6], [15].

This paper presents a design flow by means of which
multimedia desktop applications can be optimized by min-
imizing memory accesses, memory usage and power con-
sumption for the particular hardware architecture of each
target embedded system. To this end, our design space is
formed by a very large number of multi-level DDTs pro-
posed in the literature [21][6]. Our proposed design flow
includes: (1) an automatic exploration composed by three
independent phases, i.e., profiling, parameters estimation
and optimization, (2) a 3-objective fitness function defined
to minimize memory accesses, memory usage and energy
consumption, and (3) the exploitation of a fast optimiza-
tion method using elitist Multi-Objective Evolutionary Al-
gorithms (MOEAs) [7], which offers more optimal alterna-
tives to the system designer than other optimization heuris-
tics and non-elitist evolutionary computation methods. In
order to validate the proposed methodology, we applied our
desing flow in two real-life dynamic embedded applications
using six algorithms. Three traditional heuristics, namely
breadth-first-search, depth-first-search and branch&bound,
and three representative MOEAs, namely Vector Evaluated
Genetic Algorithm (VEGA) [17], Non-dominated Sorting

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147945371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Genetic Algorithm II (NSGA-II) [8], and Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [22]. On the one hand,
our experiments show that evolutionary algorithms can
achieve significant speed-ups compared to other traditional
heuristics (up to 1584× faster in the case of VDrift and
1560× faster in the case of a 3D Physics engine). On the
other hand, the quality of the solutions found by elitist al-
gorithms is quite better than those found by the non-elitists
ones. In addition, elitist algorithms offer 75% more optimal
solutions.

The rest of the paper is organized as follows. Section
2 reviews the work related to memory optimizations for
embedded systems. In Section 3, we present our multi-
objective design process. For self-contained purposes, a
brief background on multi-objective optimization and evo-
lutionary algorithms is given in Section 4. Section 5 de-
tails our experimental setup. In Section 6, we discuss the
obtained results in two real-life embedded applications. Fi-
nally, Section 7 summarizes the main conclusions of this
paper.

2. Related Work

Up today extensive work has been performed in the field
of embedded memory subsystem optimization. [15] and [3]
include a thorough survey of static data and memory opti-
mization techniques for embedded systems. In [4] and [21],
authors have explored a coordinated data and computation
reordering for array-based data structures in multimedia ap-
plications. They use a linear time algorithm reducing the
memory subsystems needs by 50%. Nevertheless, they are
not suitable for exploration of complex DDTs employed in
modern multimedia applications.

Regarding dynamic embedded software, suitable access
methods, power-aware DDT transformations and pruning
strategies based on heuristics have started to be proposed for
multimedia systems [21][15]. However, these approaches
require the development of efficient pruning function costs
and fully manual optimizations [6]; otherwise they are not
able to capture the evaluation of inter-dependencies of mul-
tiple DDTs implementations operating together, as our pro-
posed method using evolutionary computation achieves.
Also, in [2] it has already been outline the potential use
of non-elitist MOEAs for dynamic memory optimizations.
Nevertheless, this work only performed an initial analysis of
one type of MOEA and does not provide a complete analy-
sis of trade-offs between different technologies of MOEAs,
as we perform in this paper.

Also, according to the characteristics of certain parts of
multimedia applications, several transformations for DDTs
and design methodologies [4][21] have been proposed for
static data profiling and optimization considering static
memory access patterns to physical memories. In this con-

text, the use of MOEA-based optimization has been applied
to solve linear and non-linear problems by exploring all re-
gions of the state space in parallel. Thus, it is possible
to perform optimizations in non-convex regular functions,
and also to select the order of algorithmic transformations
in concrete types of source codes [14][15]. However, such
techniques are not applicable in DDT implementations, due
to the unpredictable nature at compile-time of the stored
data.

3. DDTs Multi-Objective Optimization Flow

A DDT is a software abstraction by means of which we
can manipulate and access data. The implementation of a
DDT has two main components. First, it has storage aspects
that determine how data memory is allocated and freed at
run-time and how this memory is tracked. Second, it in-
cludes an access component, which can refer to two differ-
ent basic access patterns: sequential or iterator-based and
random access.

Figure 1. Code before and after the explo-
ration of Dynamic Data Types

Figure 1 shows an example of a DDTs exploration. The
initial code contains two variables, v1 and v2, instanti-
ated as vector and list, respectively. After the exploration
process, one candidate solution gives v1 to be instantiated
as Singly-Linked List (SLL) and v2 as Doubly-Linked List
of Arrays (DLLAR). Such instantiation policy tries to min-
imize memory accesses, memory usage and energy con-
sumption of the final application. It is important to stress
that it is unmanageable for the designer to get a totally com-
plete exploration of all the possible DDT implementation
combinations using the traditional way for real-life complex
applications. For example, in the case of the 3D Physics en-
gine, we optimized memory accesses, memory usage and

2

power consumption for more than 3000 variables.
In general, the application to optimize contains a set of

n variables ({V }) which are candidates to be instantiated
as a certain DDT from the set of possible implementation
of DDTs library ({D}) (we used those presented in [2][6]).
Thus, the goal of our optimization flow is to obtain a set of
pairs (variable, DDT) or (�v, �d), vi ∈ {V }, di ∈ {D}, 1 ≤
i ≤ n, such that minimizes three objectives: memory ac-
cesses, memory usage and energy consumption. Additional
constraints, such as minimum and maximum values for all
three objectives may be defined.

The proposed design flow uses three different phases to
perform the automatic exploration of DDTs using MOEAs.
Figure 2 shows the different phases required to perform the
overall DDTs optimization. In the first phase, we generate
an initial profiling of the iterator-based access methods to
the different DDTs used in the application. In the second
phase, using this detailed report of the accesses, we extract
all the information needed by the optimization phase. Fi-
nally, an exploration of the design space of DDTs imple-
mentation is performed using the exploration algorithm se-
lected.

Next, we describe the three phases of our flow in detail.

3.1. Profiling

Table 1. DDT library
DDT Description
AR Array
AR(P) Array of pointers
SLL Singly-linked list
DLL Doubly-linked list
SLL(O) Singly-linked list with roving pointer
DLL(O) Doubly-linked list with roving pointer
SLL(AR) Singly-linked list of arrays
DLL(AR) Doubly-linked list of arrays
SLL(ARO) Singly-linked list of arrays and roving pointer
DLL(ARO) Doubly-linked list of arrays and roving pointer

In a first pre-characterization phase the equations to eval-
uate the behavior of DDT implementations by means of pa-
rameters such as the number of sequential accesses, random
accesses , average size , etc., must be defined. In our case
we have used the classification and equations defined in [2].
Table 1 lists such DDTs.

Next, we obtain a profiling report of the application
where the following information is logged: accessing of an
element, addition of an element, removal of an element,
the clearing of the container, iterator operations such as
pre-increment or dereference, constructor, destructor, copy
constructor and swap operation. To this end, we replace

all the candidate variables in the application by our vector
DDT implementation, which logs all the needed informa-
tion. Such replacement is done automatically, where the
designer may choose the variables to include in the opti-
mization.

Figure 3. Example of profiling report and pa-
rameters estimation

The left side of Figure 3 shows an illustrative example
on how the profiling report logs all the variables selected in
the original application. The report shows two entries, la-
beled as LOG CONSTRUCT BEGIN, where two variables
are instantiated and identified as VariableId 1 and 2. Such
entries state that the variables will contain elements of size
12 and 32 Bytes, respectively. Another entry, labeled as
LOG ADD BEGIN, shows that an element is added to the
variable 1, at index 0. The last entry shows that an iterator
accesses to a element stored in variable 2, and located at the
address 0x85b7290.

3.2. Parameters estimation

In the following phase, we extract all information needed
from the profiling report. The purpose is to evaluate the fit-
ness of a candidate solution �v, �d in the DDT exploration,
using parameters such as the number of candidate variables
(Count in Figure 3), number of elements stored in the DDT
in the worst case (Ne(�v, �d)), average of the number of ele-
ments stored (Nve(�v, �d)), size of the elements (Te(�v, �d), in
bytes), size of the pointers (Tref , in bytes), number of read
accesses (Nr(�v, �d)), number of write accesses (Nw(�v, �d))
and cache misses (Npa(�v, �d)). All the parameters are ob-
tained using the information logged in the profiling report
and the analytical characterization. We have developed a
tool called Profile Analyzer, which automates all the pro-
cess. The right side of Figure 3 depicts an illustrative exam-
ple on how the Profile Analyzer saves such parameters in an
external file, used by the optimization phase.

3

Figure 2. Proposed Embedded application design flow

3.3. Optimization

The last phase is the optimization process. It takes as in-
put the parameters obtained in the previous phase and min-
imizes three objectives: memory accesses (MA), memory
usage (MU) and energy (E), defined by equation 1, where
Hw represents the effect that hardware parameters (mem-
ory architecture, CPU power, line sizes, memory access
time, etc.) have on the optimization, and (�v, �d) represents
one candidate solution.

MA(�v, �d) = fMA(Ne, Nve, Nr, Nw)

MU(�v, �d) = fMU (Te, Tref , Ne) (1)

E(�v, �d) = fE(Nr, Nw, Npa, Hw)

Memory accesses of the system fMA is given by the fol-
lowing equation:

fMA ∝ Ne × (Nr + Nw) + Nve (2)

The exact form of equation 2 depends on each DDT se-
lected in (�v, �d). It takes into account the number of random
and sequential accesses to the elements stored in the DDT,
as well as the number of creations and destructions of the
variable.

Memory usage fMU is given by the following equation:

fMU ∝ Tref + Ne × (Tref + Te) (3)

As in equation 2, the exact form of equation 3 depends on
each DDT selected. It calculates the ammount of memory
used by each element stored in the DDT.

Finally, energy equation of the system is given by the
following equation:

fE = tex × CPUpow +
(Nr + Nw) × (1 − Npa) × CaccE +
(Nr + Nw) × Npa × CaccE × ClineS +
(Nr + Nw) × Npa × DRAMaccP ×(

DRAMaccT +
ClineS

DRAMbandW

)
(4)

where tex is the system’s total execution time, CPUpow is
the total processor power excluding the cache power, CaccE

is the cache access energ, ClineS is the cache line size,
DRAMaccP is the active power consumed by the DRAM,
DRAMaccT is the DRAM latency time, and DRAMbandW

is the bandwidth of the DRAM.
There exist four components in the energy equation 4.

The first term tex×CPUpow calculates the processor energy
given that execution time takes tex amount of time. The
second term, (Nr + Nw) × (1 − Npa) × CaccE calculates
the amount of energy consumed by the cache. The third
term, (Nr + Nw) × Npa × CaccE × ClineS calculates the
energy cost of writing to cache for each cache miss. The last
term, calculates the energy cost of the DRAM to service all
the cache misses.

Units for time variables in the equations are in seconds,
bandwidth is in Bytes/sec., cache line size is in Bytes, power
variable is in Watts, and energy unit is in Joules.

These equations are used by the optimization algorithm
to evaluate que fitness of the solutions found in the ex-
ploration proccess. When the optimization process ends,
it gives the DDT instantiation policy, i.e., which variable
should be instantiated by which DDT. We also obtain the

4

gain on memory accesses, memory usage and energy con-
sumption.

4. Multi-Objective Evolutionary Algorithms

Multi-objective optimization aims at simultaneously op-
timizing several contradictory objectives. For such kind of
problems, it does not exist a single optimal solution, and
some compromises have to be made. Thus, without any
loss of generality, we can assume the following N-objective
minimization problem:

Minimize �z = (f1(�x), f2(�x), . . . fN (�x))
subject to �x ∈ S (5)

where �z is the objective vector with N objectives to be min-
imized, �x is the decision vector, and S ⊂ �m is the feasible
region in the decision space. A solution �x ∈ S is said to
dominate another solution �y ∈ S (denoted as �x ≺ �y) if the
following two conditions are satisfied.

fi (�x) ≤ fi (�y) , ∀i ∈ {1, 2, . . . , N}
fi (�x) < fi (�y) , ∃i ∈ {1, 2, . . . , N} (6)

A decision vector �x ∈ S is called Pareto-optimal if there
does not exist another �y ∈ S that dominates it. An objective
vector is called Pareto-optimal if the corresponding decision
vector is Pareto-optimal.

The non-dominated set of the entire feasible search space
S is the Pareto-optimal set (POS). The Pareto-optimal set in
the objective space is called Pareto-optimal front (POF) of
the multi-objective problem at hand: it represents the best
possible compromises with respect to the contradictory ob-
jectives.

A Multi-objective optimization problem is solved, when
all its POS is found. MOEAs directly search for the whole
POF, in contrast to classical optimization methods, that
generally find one of the Pareto optimal solutions. Thus,
MOEAs allow decision makers to choose one of the Pareto
solutions with more complete information [7].

Up to date, many MOEAs have been developed. Gen-
erally speaking, they can be classified into two broad cat-
egories: non-elitist and elitist, also called first and second
generation evolutionary algorithms. With the elitist ap-
proach, MOEAs store in an external set the best solutions
of each generation. This set will then be a part of the next
generation. Thus, the best individuals in each generation are
always preserved, and this helps the algorithm to get close
to its POF. Algorithms such as PESA-II [5], MOMGA-II
[24], NSGA-II and SPEA2 are examples of this category.
In contrast, the non-elitist approach does not guarantee pre-
serving the set of best individuals for the next generation
[23]. Examples of this category include MOGA [9], HLGA
[10], NPGA [12] and VEGA.

For the purpose of this research, we have imple-
mented three popular MOEAs, called VEGA, NSGA-II and
SPEA2. VEGA was selected as a very optimized exam-
ple of non-elitist MOEAs, where the concept of POF is not
directly incorporated into the selection mechanism of this
algorithm. NSGA-II and SPEA2 were utilized as two rep-
resentative elitist-based MOEAs.

5. Experimental methodology

In this section we describe the experimental setup used to
validate our design flow and the use of elitist MOEAs while
optimizing two real-life dynamic embedded applications.

5.1. HW/SW Specification

Figure 4. System architecture

The model of the embedded system architecture con-
sisted of a processor with an instruction cache, a data cache,
and embedded DRAM as main memory. The data cache
uses a write-through strategy. The system architecture is
illustrated in Figure 4.

Table 2. System specification
Processor Energy 168mW, 100MHz
Embedded DRAM 100MHz
Energy 19.5 mW
Latency 19.5 ns
Bandwidth 50MB/s

To analyze the effect of MOEAs on embedded system’s
memory accesses, memory usage and energy consumption,
we utilized processor energy from [4], and the access time
and energy values for caches of 32KB and embedded 16MB
DRAM main memory from [19] and [11], respectively. The
processor and memory specifications are summarized in Ta-
ble 2.

In this paper, we apply our design flow to two represen-
tative multimedia embedded applications. The first bench-
mark is VDrift, which is a driving simulation game [20].

5

The game includes 19 tracks, 28 cars, artificial intelligence
players, networked multiplayer mode, etc. We logged 49
variables in its source code. The second benchmark is a
3D Physics Engine for elastic and deformable bodies [13],
which is a 3D engine that displays the interaction of non-
rigid bodies. It includes 3128 dynamic variables in its
source code for which we select the optimal DDT imple-
mentation.

5.2. Quality of solutions

To compare the quality of the solutions offered by differ-
ent MOEAs, we need to evaluate the obtained set of non-
dominated solutions considering: (1) Convergence to POF.
(2) Diversity on POF. Since the size of possible DDT imple-
mentations is large and it is not possible to cover the exact
set of the POF, we compare the obtained Pareto Front (PF)
with each other. In this direction, we select the following
metrics to evaluate the performance of our approach.

Coverage (C): We use the coverage metric [23] to mea-
sure convergence. Let PF ′, PF ′′ be two sets of non-
dominated solutions. The coverage metric can be defined
as follows:

C(PF ′, PF ′′) =
|p′′ ∈ PF ′′; ∃p′ ∈ PF ′ : p′≺p′′|

|PF ′′| (7)

where if C(PF ′, PF ′′) > C(PF ′′, PF ′), the rate of dom-
inated solutions in PF ′ is higher than in PF ′′.

Spread (D): A spread metric (D) determines in each ob-
jective space the maximum range represented by the non-
dominated solutions. It was introduced by Ranjithan [16].
A higher value of the spread metric indicates a better per-
formance. It is defined as:

D =

√∑m
i=1

(
max|PF |

j=1 fi(xj) − min|PF |
j=1 fi(xj)

)2

xj ∈ PF, j = 1, 2, . . . , |PF | (8)

where m is the number of objectives.
Spacing (S): Schott proposed a metric which allows to

measure the distribution of vectors throughout PF [18]. It is
defined as:

S =
√

1
|PF |

∑|PF |
j=1

(
dj − d̄

)2

dj = minxk∈PF∧k �=j

∑m
i=1 |fi(xj) − fi(xk)| (9)

where m is the number of objectives, and d̄ is the mean of
all dj . A zero value for this metric means that all members
of PF are equidistantly spaced.

We compare the obtained sets of non-dominated solu-
tions by means of the above three criteria.

5.3. Coding a solution

In order to apply a MOEA correctly we need to define
a genetic representation of the design space of all possible
DDT implementations alternatives. Moreover, to be able to
cover all possible inter-dependencies of DDT implementa-
tions for different dynamic variables of an application, we
must guarantee that all the individuals represent real and
feasible solutions to the problem and ensure that the search
space is covered in a continuous and optimal way [7].

Table 3. Example of an individual
d1 d2 d3 . . . dn dj ∈ {D}
v1 v2 v3 . . . vn vj ∈ {V }

Table 3 shows the representation of a chromosome.
Genes are represented in the first row (gray shaded cells).
Each of the chromosomes represents the set of DDT that
should be used to instantiate all the corresponding variables
in the application from Table 1. For example, the second
variable v2 ∈ {V } will be instantiated by d2 ∈ {D}. A
chromosome contains n genes, where n is the number of
the variables logged in the application, n = size({V }). We
may use an integer to represent the values of a gene, and the
constraint a gene must satisfy is:

1 ≤ dj ≤ size({D}) (10)

Consequently, if an application contains n variables,
each individual (chromosome) has to be constituted by n
integer fields (i.e., n genes). Our current implementation of
the exploration framework optimizes up to 3128 variables
using variations of the 10 possible DDTs contained in Ta-
ble 1 for each of them; Thus, it can cover large real-life
dynamic embedded applications.

To compare the performance of evolutionary algorithms,
all parameters are set equally. After different tests, we have
fixed them to the values indicated in Table 4. The number of
non-dominated solutions to preserve between generations is
set to the initial population size in the elitist algorithms.

Table 4. Parameters for evolutionary algo-
rithms.

Parameter VDrift Physics
Population size 100 200
Number of generations 2000 4000
Probability of crossover 0.80 0.80
Probability of mutation 0.01 0.01

6

Figure 5. Overall results for different design metrics coming from various sets of DDTs for Physics
(logarithmic scale)

6. Experimental results

In this Section we apply our design flow to VDrift
and Physics, using state-of-the-art pruning and optimization
methods for DDT implementations presented in [21][6][2],
and two elitist MOEAs, NSGA-II and SPEA2.

First, we have tested the exploration speed by comparing
six exploration methods. The results obtained are shown in
Table 5, where the time measured starts from the profiling
report in Figure 2. In the case of breadth-first, depth-first
and branch&bound explorations we used a weighted sum
of the three objectives as the fitness function. All exper-
iments were executed in an AMD Sempron 3600+ 2GHz,
with 1GB DDR memory.

Table 5. Time to explore DDT implementa-
tions for VDrift and Physics using six explo-
ration algorithms.

DDTs exploration method VDrift Physics
Breadth-First search 22 hours 13 days
Depth-First search 8 minutes 5 days
Branch&Bound search 62 seconds 3 hours

VEGA 50 seconds 12 minutes
NSGA-II 64 seconds 17 minutes
SPEA2 159 seconds 25 minutes

The results in Table 5 outline that the exploration process
with evolutionary algorithms is much faster than using other
heuristics, namely, more than 1584× faster (50 seconds vs

22 hours) for VDrift and 1560× (12 minutes vs 13 days) for
Physics.

For comparison reasons we present in Figure 5 the re-
sults of the optimization process that our methodology per-
forms in the case of Physics. In this case, the set of DDTs
was successively implemented using AR, ARP, SLL, etc.
All the three objectives have been normalized to the AR
DDT and represented in logarithmic scale. Since breadth-
first, depth-first and branch&bound exploration methods of-
fer the same solution, these results are grouped and labeled
as BDB in Figure 5. In the case of evolutionary algorithms,
the set of solutions obtained is averaged. The figure shows
the achieved level of optimization and final gains after ap-
plying the proposed design flow shown in Figure 2. Fur-
thermore, as this figure indicates, evolutionary algorithms
offered the best compromise among objectives.

Finally, we show that although VEGA is faster than both
NSGA-II and SPEA2 (30% faster than NSGA-II and 55%
faster than SPEA2), elitist algorithms offer more alterna-
tives to the system designer. In addition, the quality of
the solutions found by elitist algorithms is quite better than
those found by VEGA. Such quality is measured in terms of
coverage, spread and spacing. These values are calculated
by averaging results of 10 trials.

Figure 6 depicts the Pareto-front obtained in the best
population of both applications. With respect to VDrift, this
figure shows that both NSGA-II and SPEA2 offer the same
number of non-dominated individuals and 61% more than
VEGA. In the case of Physics, NSGA-II and SPEA2 of-
fer the same optimal solutions. In addition, both NSGA-II
and SPEA2 offer 92% more optimal solutions than VEGA.
Thus, elitist algorithms cover better the set of possible opti-
mal solutions than non-elitist ones.

7

60
65

70
75

80

80

82

84

86

88
280

285

290

295

300

305

Memory Accesses (x108)

VDrift (VEGA)

Memory Usage (in MB)

E
ne

rg
y

(x
10

−
1 J

)

60
70

80
90

100
110

50

100

150

200
260

280

300

320

340

360

Memory Accesses (x108)

VDrift (NSGA−II)

Memory Footprint (in MB)

E
ne

rg
y

(x
10

−
1 J

)

60
70

80
90

100
110

80

100

120

140

160
270

275

280

285

290

Memory Accesses (x108)

VDrift (SPEA2)

Memory Footprint (in MB)

E
ne

rg
y

(x
10

−
1 J

)

405

410

415

420

4300

4400

4500

4600

4700
8.9

8.91

8.92

8.93

8.94

8.95

x 10
4

Memory Accesses (x108)

Physics (VEGA)

Memory Footprint (in MB)

E
ne

rg
y

(x
10

−
1 J

)

370
380

390
400

410

3600

3800

4000

4200

4400
8.83

8.84

8.85

8.86

8.87

x 10
4

Memory Accesses (x108)

Physics (NSGA−II)

Memory Footprint (in MB)

E
ne

rg
y

(x
10

−
1 J

)

370
380

390
400

410

3500

4000

4500

5000
8.835

8.84

8.845

8.85

8.855

8.86

8.865

x 10
4

Memory Accesses (x108)

Physics (SPEA2)

Memory Footprint (in MB)

E
ne

rg
y

(x
10

−
1 J

)

Figure 6. 3D Pareto-fronts obtained for VDrift and Physics using VEGA, NSGA-II and SPEA2. Elitist
algorithms offer more alternatives to the system designer.

Table 6. Coverage metric for VDrift/Physics.
VDrift VEGA NSGA-II SPEA2
VEGA – 0.034 0.005

NSGA-II 0.132 – 0.369
SPEA2 0.023 0.215 –

Physics VEGA NSGA-II SPEA2
VEGA – 0.000 0.000

NSGA-II 1.000 – 0.462
SPEA2 1.000 0.002 –

Regarding convergence comparisons, Table 6 shows
that the coverage values of NSGA-II are better than
VEGA or SPEA2 in both cases (e.g., for Physics
C(NSGA2, V EGA) > C(V EGA, NSGA2) is 1 > 0,
and C(NSGA2, SPEA2) > C(SPEA2, NSGA2) is
0.462 > 0.002). Thus, NSGA-II offers more optimal al-
ternatives to the system designer for the implementation of
the final embedded application. The situation is different for
spread and spacing metrics, where NSGA-II does not obtain
the best performance in all cases. Table 7 shows the spread
and spacing for the three algorithms and both VDrift and
Physics applications. Regarding VDrift the larger spread is
found by NSGA-II (52% better, on average), and the best
spacing by SPEA2 (22% better), whereas in the case of
Physics SPEA2 obtains the larger spread (53% better) and

Table 7. Spread and spacing for the three evo-
lutionary algorithms and two applications.

VDrift Physics
Spread δ2 Spread δ2

VEGA 1.47E-01 2.23E-03 8.32E-02 1.85E-03
NSGA-II 7.12E-01 1.25E-04 1.26E-01 2.95E-04
SPEA2 5.42E-01 7.73E-04 2.21E-01 3.35E-04

Spacing δ2 Spacing δ2

VEGA 1.72E-02 9.57E-05 1.11E-02 7.58E-05
NSGA-II 2.18E-02 4.94E-05 1.91E-03 2.40E-07
SPEA2 1.60E-02 2.47E-06 2.82E-03 2.34E-07

the lower spacing is found by NSGA-II (64% better). Thus,
we can conclude from our experiments that NSGA-II of-
fers the larger coverage, whereas SPEA2 offers the better
spread for large-scale explorations. However, the computa-
tional time needed to run SPEA2 is always larger.

7. Conclusions

New multimedia embedded applications are increasingly
dynamic, and rely on DDTs to store their data. The selec-
tion of optimal DDT implementations for each variable in a
particular target embedded system is a very time-consuming

8

process due to the large design space of possible DDTs im-
plementations. In this paper we have proposed a frame-
work to design optimized multimedia applications for a tar-
get embedded system. To validate our design flow, we have
optimized two real-life multimedia applications using four
exploration methods used in the literature (breadth-first,
depth-first, branch&bound and VEGA). Moreover, we have
included two elitist evolutionary algorithms to offer more
alternatives to the system designer (NSGA-II and SPEA2).
Comparing all the six algorithms, results show that evolu-
tionary algorithms are able to find solutions 1584× faster
that traditional heuristics. Comparing evolutionary algo-
rithms, the obtained results show that VEGA is 30% quicker
than the other two, but NSGA-II and SPEA2 achieve better
results (75% on average) regarding covering of the design
space of solutions. We have also automated all the design
process. Thus, the designer only needs to select the set of
variables to optimize in the application.

References

[1] J. L. Antonakos and K. C. Mansfield. Practical Data Struc-
tures using C/C++. Prentice Hall, 1999.

[2] D. Atienza, et al. Optimization of dynamic data structures in
multimedia embedded systems using evolutionary computa-
tion. In SCOPES ’07: Proceedingsof the 10th international
workshop on Software & compilers for embedded systems,
pages 31–40, New York, NY, USA, 2007. ACM.

[3] L. Benini and G. de Micheli. System-level power optimiza-
tion: techniques and tools. ACM Trans. Des. Autom. Elec-
tron. Syst., 5(2):115–192, 2000.

[4] F. Catthoor, et al. Data access and storage management
for embedded programmable processors. Kluwer Academic
Publishers, 2002.

[5] D. W. Corne, et al. Pesa-ii: Region-based selection in evo-
lutionary multiobjective optimization. In L. Spector, et al,
editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2001), pages 283–290, San
Francisco, California, USA, 7-11 2001. Morgan Kaufmann.

[6] E. G. Daylight, et al. Memory-access-aware data structure
transformations for embedded software with dynamic data
accesses. IEEE Transactions on VLSI Systems, 12:269–280,
2004.

[7] K. Deb. Multiobjective Optimization using Evolutionary Al-
gorithms. John Wiley and Son Ltd., 2001.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197,
2002.

[9] C. M. Fonseca and P. J. Fleming. Genetic algorithms for
multiobjective optimization: Formulation discussion and
generalization. In Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA 1993), pages
416–423, 1993.

[10] P. Hajela and C. Y. Lin. Genetic search strategies in multi-
criterion optimal design. Structural Opt., 4:99–107, 1992.

[11] K. Hardee, et al. A 0.6v 205MHz 19.5ns tRC 16Mb em-
bedded DRAM. In IEEE International Solid-State Circuits
Conference (ISSCC), 2004.

[12] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched
pareto genetic algorithm for multiobjective optimization. In
Proceedings of the First IEEE Conference on Evolutionary
Computation, volume 1 of IEEE World Congress on Com-
putational Intelligence, pages 82–87, 1994.

[13] L. Kharevych and R. Khan. 3D physics engine
for elastic and deformable bodies. Available at
http://www.cs.umd.edu/Honors/reports/kharevych.html,
2002. University of Maryland, College Park.

[14] Z. Michalewicz. Genetic Algorithms + data structures =
Evolution Programs. Springer-Verlag, 1996.

[15] P. R. Panda, et al. Data and memory optimization techniques
for embedded systems. ACM Trans. Des. Autom. Electron.
Syst., 6(2):149–206, 2001.

[16] S. R. Ranjithan, S. K. Chetan, and H. K. Dakshima. Con-
straint Method-Based Evolutionary Algorithm (CMEA) for
Multiobjective Optimization. In E. Zitzler, et al, edi-
tors, First International Conference on Evolutionary Multi-
Criterion Optimization, pages 299–313. Springer-Verlag.
Lecture Notes in Computer Science No. 1993, 2001.

[17] J. D. Schaffer. Multiple objective optimization with vec-
tor evaluated genetic algorithms. In Genetic Algorithms and
their Applications: Proceedings of the First International
Conference on Genetic Algorithms, pages 93–100, Hillsdale,
New Jersey, 1985.

[18] J. R. Schott. Fault Tolerant Design Using Single and Multi-
criteria Genetic Algorithm Optimization. PhD thesis, De-
partment of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1995.

[19] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated
cache timing, power, and area model. Technical Report
2001/2, Compaq Computer Corporation, 2001.

[20] Sourceforge. Vdrift racing simulator. Available at
http://sourceforge.net/projects/vdrift.

[21] S. Wuytack, F. Catthoor, and H. De Man. Transforming set
data types to power optimal data structures. IEEE Transac-
tions on Computer-Aided Design, 15(6):619–629, 1996.

[22] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the strength pareto evolutionary algorithm for multiobjective
optimization. In Proceedings of the Evolutionary Methods
for Design, Optimization and Control with Application to
Industrial Problems, pages 95–100, Barcelona, Spain, 2002.

[23] E. Zitzler and L. Thiele. Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto
approach. IEEE Transactions on Evolutionary Computing,
3(4):257–271, 1998.

[24] J. B. Zydallis, D. A. van Veldhuizen, and G. B. Lamont.
A statistical comparison of multiobjective evolutionary al-
gorithms including the momga-ii. In E. Zitzler, et al, edi-
tors, First International Conference on Evolutionary Multi-
Criterion Optimization, pages 226–240, 2001.

9

