
A Scalable, Sound, Eventually-Complete

Algorithm for Deadlock Immunity

Horatiu Jula and George Candea

EPFL – Swiss Federal Institute of Technology, Lausanne, Switzerland

Abstract. We introduce the concept of deadlock immunity—a program’s
ability to avoid all deadlocks that match patterns of deadlocks expe-
rienced in the past. We present here an algorithm for enabling large
software systems to automatically acquire such immunity without any
programmer assistance. We prove that the algorithm is sound and com-
plete with respect to the immunity property. We implemented the algo-
rithm as a tool for Java programs, and measurements show it introduces
only modest performance overhead in real, large applications like JBoss.
Deadlock immunity is as useful as complete freedom from deadlocks in
many practical cases, so we see the present algorithm as a pragmatic
step toward ridding complex concurrent programs of their deadlocks.

1 Introduction

Writing concurrent software is a challenging task, because it requires careful rea-
soning about complex interactions between concurrently-running threads. Pro-
grammers consider concurrency bugs to be some of the most insidious. An im-
portant category of such bugs result in deadlocks—situations in which a set of
threads cannot make forward progress because each thread is waiting to acquire
a lock held by another thread in that set. Avoiding the introduction of dead-
lock bugs during development is challenging, because large software systems are
developed by multiple teams totaling hundreds to thousands of programmers.
Testing is not a panacea either, because exercising all possible execution paths
and thread interleavings is still infeasible for large programs; the result is that
deadlock bugs do slip into most large production software. Unfortunately, de-
bugging deadlocks is tedious, because they are hard to reproduce and diagnose.

We expect deadlocks to become more frequent, as multi-core CPUs lead to
higher degrees of concurrency and encourage new software systems to be increas-
ingly more parallel. There have been proposals for making concurrent program-
ming easier, such as transactional memory [6], but issues concerning I/O and
long-running operations still make it difficult to provide atomicity transparently
(ironically, several transactional memory implementations resort to locking for
implementing efficient transactions and can thus lead to application deadlocks).
We believe that locks will continue being a primary vehicle for synchronization
in multi-threaded applications.

Several approaches detect and prevent the introduction of deadlocks before
a program runs, by using various forms of static analysis [4, 3, 16, 7]. These

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147945355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approaches typically aim to find deadlock bugs in the source code and either
let the programmer fix them, or automatically instrument the application with
new locks that introduce serialization in the deadlock-prone code. The challenge
faced by static approaches is that they either generate many false positives (i.e.,
wrongly identify deadlock bugs) and burden programmers with sifting through
the reports to pick out the true bugs, or they do not scale to large applications
due to resource consumption that is exponential in the size of the analyzed pro-
gram. In fact, false positives vs. scalability appears to be an essential tradeoff in
static techniques for finding deadlocks.

Dynamic approaches [5, 2, 17, 15, 12] often face a different challenge: false
negatives. Since they rely exclusively on runtime information from the present
execution (e.g., a lock trace), deadlocks may still occur, because they cannot
be predicted. In fact, the pure version of the deadlock avoidance problem is
generally undecidable, because it can be reduced to the halting problem [9]1. One
way to simplify the problem and circumvent undecidability is to save deadlock
information that persists across executions, and leverage this knowledge to avoid
solely the already-encountered deadlocks.

Our proposed approach detects deadlocks at runtime and saves the contexts
in which they occurred, in order to avoid the contexts in future runs. This con-
stitutes achieving “immunity” against the corresponding deadlocks. To avoid
previously-seen deadlocks we employ program steering [10] and automatically
change the scheduling of threads. A program with deadlock immunity will pro-
gressively eliminate the manifestations of its deadlocks bugs, by automatically
avoiding a monotonically increasing set of deadlock contexts. We expect this
approach to result in fewer false positives, because it relies on deadlock patterns
that actually manifested, not on inferred deadlocks that may occur in the future.
However, if a deadlock does not have a pattern similar to an already encountered
one, our approach will not avoid it (false negative). To be precise, the false neg-
ative rate of our approach is exactly one per deadlock context, because all runs
after the first occurrence will be free of the corresponding deadlock pattern.

Fortunately, deadlock immunity is often as useful as complete deadlock avoid-
ance in practice, since the only difference is that one occurrence per deadlock
pattern. Thus, software users now have the option of employing a tool based
on our approach, instead of waiting for the manifest deadlock bugs to be fixed
by software vendors. In fact, deadlock immunity must not be only an interim
solution, but could also provide permanent immunity against those deadlocks,
without having to risk the system destabilization often associated with patching.

This paper makes three main contributions: (a) An algorithm for developing
deadlock immunity with no assistance from programmers or users; (b) Proof
that the algorithm is sound (i.e., avoids deadlocks while preserving liveness) and
eventually complete (i.e., avoids all deadlocks after a finite number of steps); and
(c) Preliminary evidence that the algorithm can scale to large programs (over
350,000 lines of code) and large degrees of concurrency (up to 280 threads).

1 In the limited space here we cannot do justice to all the prior work that has provided
us with inspiration; we therefore include a more extensive survey in [9].

In the rest of this paper we describe the deadlock immunity algorithm (§2),
describe a proof of its soundness and completeness (§3) and analyze its complex-
ity (§4). We present an implementation for Java programs and a preliminary
evaluation of effectiveness and performance in real systems (§5), after which the
paper concludes (§6).

2 Algorithm for Deadlock Immunity

In this section we present the algorithm per se. After an overview and necessary
definitions (§2.1), we describe in detail the instrumentation needed to intercept
lock/unlock requests (§2.2). Afterward, we present the two main parts of our
approach: the avoidance algorithm (§2.3) and the detection algorithm (§2.4).

2.1 Overview and Definitions

The deadlock immunity algorithm applies to the following abstract model of a
multi-threaded program: there is a finite number of threads performing synchro-
nization operations (i.e., lock and unlock) on a finite number of shared mutex
locks. When a thread t performs a lock(l) on mutex l, it follows 3 steps: (1) t
requests lock l; then (2) t waits until l becomes free, i.e., not held by any other
thread; and finally (3) t acquires l. A thread can request only one lock at time,
and a lock can be held by only one thread at a time. When t performs unlock(l),
it releases l, which becomes available to other threads for acquisition. A code
region protected by a lock l (i.e., situated between a lock(l) and unlock(l)) is
called a critical section. When a thread performs lock(l’) within the critical sec-
tion of lock l, we say the thread is doing a nested lock (if l′ 6= l) or a reentrant
lock (if l′ = l). Both reentrant and nested locking is supported. We identify the
program position p at which a thread requests or acquires a lock as the offset of
the corresponding instruction within the program source code or binary.

A set of threads is deadlocked iff every thread from that set is waiting (step
2 above) for a lock held by another thread in that set. The immediate cause of
a deadlock (or, alternatively, its context) is a given sequence of lock acquisitions
that have led to the situation described above. A deadlock avoidance mechanism
generally tries to predict impending deadlocks and dynamically reorder the lock
acquisitions in order to avoid the predicted deadlocks.

The deadlock immunity algorithm consists of two parts, one that detects
deadlocks and another that avoids them by forcing threads to yield (in step 1
above) when they are approaching a previously-seen deadlock. In order to detect
deadlocks, we maintain a standard resource allocation graph RAG=[V, E]. The
vertices v ∈ V can be threads or locks, and the edges e ∈ E can be request, hold,
grant, or yield edges.

A request edge t→rl represents thread t requesting permission to wait for lock

l (step 1 above). A grant edge t
p
→gl represents the fact that thread t was granted

permission by the algorithm to wait for lock l at position p in the program (i.e.,

to enter step 2). A hold edge t
p
←hl indicates that t has acquired lock l at position

p (step 3). A group of yield edges t
p1

→yt1, ..., t
pn
→ytn indicates that thread t was

forced to yield because threads t1, ..., tn had acquired (or were granted) locks at
positions p1, ..., pn; the usefulness of yield edges will become clear later on. In
summary, a request edge is the manifestation in the RAG of a lock request and
a hold edge the manifestation of a lock acquisition. A grant edge reflects the
algorithm’s decision to allow a thread to do a blocking wait for a lock, while a
yield edge captures the immunity algorithm’s decision to pause a thread in order
to avoid a potential deadlock. In terms of notation, when the value of an edge
label or an endpoint is irrelevant, we mark it with ∗ (as in v1

∗

→yv2, or v1
∗

→y∗).

A deadlock appears as a cycle in the RAG, involving exclusively request,
grant, and hold edges (i.e., no yield edges). When avoiding deadlocks using
thread yields, livelocks can arise; e.g., when a thread t1 is forced to yield because
of thread t2, while thread t2 waits for a lock held by thread t1. We call such
livelocks avoidance-induced livelocks.

l

t2

t1

t3 t4

t5

t6

ownership edge
grant edge

yield edge

Fig. 1. Livelocked threads and yield cycles.

Avoidance-induced livelocks
appear as yield cycles in the
RAG—a cycle is a yield cy-
cle iff all yield edges emerg-
ing from its nodes belong to
yield cycles. One can think of
avoidance-induced livelocks as a
group (conjunction) of yield cy-
cles that intersect in a vertex v
of the RAG as well as in all yield
edges that emerge from v. The
yield cycle construct enables the
algorithm to detect and avoid
all avoidance-induced livelocks the same way it detects and avoids deadlocks.

To illustrate the concept, consider Figure 1: for thread t1 to be livelocked, all
of its yield edges must be part of cycles, as well as all of t4’s yield edges, since
t4 is in one of t1’s yield cycles. If the RAG had solely the (t1, t2, . . . , t1) and
(t1, t3, l, t4, t6, . . . , t1) cycles, then there would be no livelock, because t4 could
“evade” livelock through t5, allowing t1 to “evade” through t3. If, as in Figure 1,
cycle (t1, t3, l, t4, t5, . . . , t1) is also present, then the threads have no way to make
forward progress and are thus livelocked.

We use instruction location information to capture and save templates of
deadlocks and induced livelocks. Remember, the program position p is an ab-
straction that denotes the location of an instruction in the source code or binary.
A template is the set of program positions (edge labels) corresponding to the
edges of a cycle in the RAG; remember that only grant, hold, and yield edges

carry labels. For example, the template of the cycle t1 →r l1
p1

→h t2 →r ...ln
pn
→h t1

is {p1, ..., pn}. Templates capture the “contexts” in which deadlocks occur. A
template instance is an instantiation of a template in a program execution, i.e.,
a set of (thread, position) tuples, representing distinct threads that are currently
holding or have been granted locks at positions corresponding to the template,

that cover all positions in the template; e.g., the instantiation of {p1, ..., pn} in
the current state of a program would take the form {(t1, p1), ..., (tn, pn)}.

Templates are analogous to “antibodies”—the algorithm saves them to per-
sistent storage and avoids their re-instantion in all future executions. Since both
deadlocks and avoidance-induced livelocks have their templates saved to the
same template history, we will refer to all of them as simply templates, the uni-
fied deadlock and induced livelock history simply history, and the deadlocks and
avoidance-induced livelocks simply cycles when no distinction needs to be made.

An immunizing tool based on the proposed algorithm instruments programs
such that all lock and unlock operations are intercepted and relayed to the
immunity algorithm’s avoidance module. This module shares an event queue
and the history with the detection module, as illustrated in in Figure 2.

lock(l)

unlock(l)

Thread
Avoidance

Detection
History

decide

periodically do :

 process events

 search for cycles

 if cycles found
 save to history
 recover program

request

acquired

release

grant / yield
lock-free
event
queue

RAG

Fig. 2. Architecture of an immunizing tool.

The avoidance module runs
synchronously with the applica-
tion, in that it is invoked on
every lock request, acquisition
or release; avoidance decisions
are made only for lock requests.
This module is responsible for
avoiding cycles, based on the
templates stored in history. The
avoidance module notifies asyn-
chronously the detection com-
ponent about events (lock re-
quest/acquisition/release) and
decisions (grant/yield) using an
event queue. On every lock re-
quest, this module checks whether any templates in the history would be instan-
tiated by granting the requested lock. If not, the thread is allowed to proceed
with locking; otherwise, the thread must yield.

The detection module runs asynchronously, in parallel with the program’s
threads. It periodically updates the RAG based on notifications received from the
avoidance module, detects cycles in the RAG, and saves these cycles’ templates
to the history. It then restarts the deadlocked application’s threads.

In summary, the proposed approach has three key features: (1) it captures
execution-independent templates of previously-encountered deadlocks and avoids
future instantiations of these templates; (2) detects and avoids livelocks induced
by avoidance in exactly the same way as deadlocks (yield cycles allow us to cast
a liveness property into an easily detectable safety property); (3) detects cycles
asynchronously in a separate thread, in order to remove this expensive compu-
tation from the critical path. Given that a deadlocked application is not making
any progress anyway, the only drawback of asynchrony is a potentially longer
recovery time; the latter can easily be tuned by selecting a suitable period.

2.2 Instrumentation

The code or binary of the original program needs to be instrumented such that
all lock and unlock operations are intercepted. The instrumentation replaces
each call to a native lock/unlock with corresponding code that relays events to
the avoidance module and exercises control over the scheduling of the calling
thread, as shown in Figure 3. We discuss the instrumentation here as much as
necessary for understanding the mechanics of the runtime system; the details
appear in the next section.

When an immunized thread t wants a lock l at position p, it asks for per-
mission from the avoidance module, which could ask the thread to yield, in
which case the thread will sleep until permitted to proceed. When the avoidance
module allows the thread to proceed, t uses the native locking mechanism to
acquire l and then notifies the avoidance module of the acquisition event. An
unlock operation is analogous, but simpler. This form of instrumentation is just
one possible design choice—it could also be implemented inside the runtime, the
operating system kernel, etc.

2.3 Avoidance

The avoidance module is responsible for controlling the schedule of threads to
avoid previously-encountered deadlocks and avoidance-induced livelocks. The
interface offered by this module to the instrumented threads consists of three
operations: Request , Acquired and Release, that process lock requests, acquisi-
tions and releases, respectively. We developed both a synchronized version of the
algorithm, which uses a global lock to ensure atomicity of Request and Release,
as well as a lock-free version, which eliminates this global lock, but requires addi-
tional checks in Request , Release and in the instrumentation of lock operations.
We present here the lock-free version of the algorithm; the synchronized version
appears together with the lock-free one in [9].

The Request , Acquired and Release operations are described in Figure 5.
The core avoidance occurs in Request, whose return value determines whether a
thread is paused or allowed to proceed. But, before discussing the algorithms in
any more detail, we describe the data structures they employ.

Since avoidance is performed synchronously with calling threads, we aim
to minimize the amount of work performed in the critical path; for this we
choose fine-grain, efficient data structures in the avoidance module. The avoid-
ance module shares only two data structures with the cycle detector: an event
queue (updated by the avoidance module and read by the detector) and the
template history (updated by the detector and read by the avoidance module).
Cycle detection requires a consistent view of the RAG, thus requiring exclusive
access to it, but is also a complex operation, thus holding the RAG locked for
extended periods of time. We therefore opted to have all RAG updates be per-
formed in the detection module, based on the events received through the queue.
This provides optimal decoupling between the two modules.

The avoidance module uses the following data structures:

• lockGrantees[p] is a multiset2 containing the threads that hold (or are granted)
locks at position p; it is initially empty. This is the data structure used in search-
ing for template instantiations.

• history is the set of templates of previously-encountered cycles. It is persistent,
in that all updates are saved on disk, to be available in subsequent executions.
At program startup, history is loaded in memory.

• yieldCause[t] is the cause of thread t’s yield; yieldCause[t] has the same
structure as a template instance, because it is in effect a subset of a real template
instance. It is initially null.

lock wrapper(l)
1 t := current thread ID
2 p := current program position
3 if owner[l] 6= t then

4 events := events + [request(t, l, p)]
5 yCause := Request(t,l,p)
6 if yCause 6= null then

7 foreach (t′, p′) ∈ yCause do

8 native lock for read((t’,p’))
9 if ∀(t′, p′) ∈ yCause :

1lockGrantees[p′](t
′) > 0 then

10 native lock(yieldLock[t])
11 foreach (t′, p′) ∈ yCause do

12 yielders[t’,p’] :=
yielders[t’,p’] ∪ {t}

13 native unlock for read((t’,p’))
14 yieldCause[t] := yCause
15 events := events +

[yield(t, yieldCause[t])]
16 yieldLock[t].wait()
17 native unlock(yieldLock[t])
18 else

19 foreach (t′, p′) ∈ yCause do

20 native unlock for read((t’,p’))
21 goto 5
22 native lock(l)
23 Acquired(t, l, p)

unlock wrapper(l)
1 t := current thread ID
2 Release(t,l)
3 native unlock(l)

Fig. 3. Lock/Unlock Instrumentation.

• yielders[t, p] is the set of threads
that are currently paused and
have (t, p) in their yieldCause;
the yielders map is initially
empty.

• yielders[t, p] is the set of threads
that are currently paused and
have (t, p) in their yieldCause;
the yielders map is initially
empty.

• owner[l] is the thread currently
holding lock l; it is initially null.

• acqPos[l] is the program posi-
tion where lock l was acquired by
its current owner; it is initially
null.

• nLockings[l] is the number
of times lock l was reentrantly
locked; it is initially 0.

• yieldLock[t] is the lock (condi-
tion variable) used for pausing or
waking up thread t.

The instrumentation for the
lock operation (Figure 3) per-
forms avoidance iff the current
thread t does not already hold
the lock l it is currently request-
ing (line 3). To perform the avoid-
ance, the cycle detector is first no-
tified of the request (line 4). Then

2 A multiset is a set whose elements can be present more than once. An element x
is added to a multiset M using the ⊎ operator and removed from M using the
\ operator. For a multiset M and an element x, 1M (x) represents the number of
times x was added to M (M := M ⊎ {x}) less the number of times it was removed
(M := M \ {x}). x is deleted from M only when 1M (x) reaches zero.

lines 5-6 check if it is safe for t to proceed with locking l. If yes, t uses the native
locking mechanism to acquire l (line 22), notifies the avoidance module of the
acquisition event (lines 23) and is done. If unsafe, i.e., the avoidance module
returned a non-null yield cause on line 5, we must check if the yield cause is still
current (lines 7-9). If yes, a yield is required: register t in all (thread, position)
pairs from the yield cause (lines 11-12), store the yield cause (line 14), notify
the detector about the yield decision (line 15), and wait until a thread from the
yield cause releases all required locks and wakes t up (line 16). If the yield cause
is no longer valid (line 18), we need to re-check whether it is safe to proceed
(line 21). The immunity algorithm influences the thread schedule via a simple
wait mechanism that relies on the condition variable yieldLock[t]; an alternative
choice would have been to call yield in a loop, but that is more CPU-intensive.

When a thread requests a lock, the avoidance module checks whether grant-
ing that lock would instantiate any of the templates currently in history. An
instantiation of template T = {p1, ..., pn} is a set of (thread, position) tuples
representing distinct threads t that hold (or are granted) locks at positions
p from T (i.e., t ∈ lockGrantees[p]), with all positions being covered (i.e.,
∀p ∈ T : lockGrantees[p] 6= ∅). Thus, a template T would be instantiated
by thread t being granted a lock at position p iff p ∈ T and T − {p} is already
covered by threads different from t (i.e., instance(T − {p}, {t}) 6= null).

The templateInstance(t,p) helper, shown in Figure 4, returns a template in-
stantiation that would occur, if thread t granted a lock at position p (lines 2-4).

templateInstance(t,p)
1 foreach T ∈ history where p ∈ T do

2 templInstance := instance(T − {p}, {t})
3 if templInstance 6= null then

4 return templInstance
5 return null

instance(T, exclThreads)
1 if T = ∅ then

2 return ∅
3 else

4 pos := choose p ∈ T
5 foreach t ∈ lockGrantees[pos]

where t /∈ exclThreads do

6 match :=
instance(T \ {pos}, exclThreads∪ {t})

7 if match 6= null then

8 return {(t, pos)} ∪match
9 return null

Fig. 4. Helpers for matching templates.

If no potential template in-
stantiations are found, tem-
plateInstance(t,p) returns null.
The instance(T,exclThreads)
helper returns an instantia-
tion of template T that does
not involve any thread from
exclThreads (line 8), or null if
such an instantiation does not
exist (line 9). If templateIns-
tance(t, p) returns an instantia-
tion {(t1, p1) . . . , (tn, pn)}, then
it means that yieldCause[t] =
{(t1, p1) . . . , (tn, pn)}, i.e., thread
t has to wait until t1 releases all
the locks it acquired at p1, or
. . . , or tn releases all the locks
it acquired at pn. Whenever a
thread t releases all locks ac-
quired at position p, it wakes up
all yielding threads ti for which (t, p) ∈ yieldCause[ti] by performing a notify
on the corresponding condition variable (i.e., on yieldLock[ti]).

Request(t,l,p)
1 lockGrantees[p] :=

lockGrantees[p] ⊎ {t}
2 yieldCause := templateInstance(t,p)
3 if yieldCause = null then

4 events := events + [grant(t, l, p)]
5 else

6 RemoveGrant(t,p)
7 return yieldCause

Acquired(t,l,p)
1 if owner[l] 6= t then

2 owner[l] := t
3 acqPos[l] := p
4 events := events + [acquired(t, l, p)]
5 nLockings[l] := nLockings[l] + 1

Release(t,l)
1 nLockings[l] := nLockings[l] - 1
2 if nLockings[l] = 0 then

3 p := acqPos[l]
4 owner[l] := null
5 acqPos[l] := null
6 events := events + [release(t, l)]
7 RemoveGrant(t,p)

RemoveGrant(t,p)
1 if 1lockGrantees[p](t) = 1 then

2 native lock for write((t,p))
3 lockGrantees[p] :=

lockGrantees[p] \ {t}
4 if 1lockGrantees[p](t) = 0 then

5 foreach t′ ∈ yielders[t, p] do

6 native lock(yieldLock[t’])
7 yieldLock[t’].notify()
8 native unlock(yieldLock[t’])
9 yielders[t,p] := ∅

10 native unlock for write((t,p))

Fig. 5. The avoidance module.

Figure 5 presents the core opera-
tions of the avoidance module.

When Request(t,l,p) is invoked,
thread t is intially granted lock l (line
1). Then, one checks if thread t can
safely proceed, i.e., if no template can
be instantiated (line 2). If it is unsafe,
the lock grant is canceled (line 6) and
thread t must be forced to wait and
the yield cause is returned (line 7). If
it is safe, one lets t execute the lock
by returning a null yield cause (line 7)
and notifies the cycle detector about
this decision (line 4).

However, a group of threads may
still simultaneously instantiate a tem-
plate after being granted on line 1 the
locks they required. If this occurs, at
least one thread in the group will no-
tice the instantiation during the check
from line 2.

In Acquired(t,l,p), if thread t does
not own l, then l is marked as acquired
by t (line 2), the position p where l
was acquired is saved (line 3), and the
detector is notified (line 4). If t already
holds l, a counter for reentrant locking
of l is incremented (line 5).

In Release(t,l), we decrement the
counter associated with t (line 1). If
l can be released (line 2), the owner
and acquisition position for l must be
reset (lines 4-5), the cycle detector no-
tified (line 6), and the lock grant given
to t removed by deregistering t from
acqPos[l] (line 7).

In RemoveGrant(t,p), if t is about to release all locks from p (line 1), lock
(t, p) in write mode (line 2) to ensure consistency of the operations performed in
the instrumentation, and remove the grant given to t for position p (line 3). If t
released all locks from p (line 4), then wake up (notify) all yielders, i.e., threads
that have (t, p) in their yield cause, and finally unlock (t, p) on line 12.

2.4 Detection

The detection module finds cycles in the RAG—deadlocks and avoidance-induced
livelocks—and saves their templates to history. As illustrated in Figure 7, it peri-
odically fetches and processes the notifications—RAG events and avoidance

waitCycles(v)
1 foreach x ∈ rag do

2 x.color := white
3 endings := ∅
4 hasCycles(v, endings)
5 return

S

x ∈ endings

waitChains(x, x)

hasCycles(v, endings)
1 if v.color = black then

2 return false

3 if v.color = grey then

4 endings := endings ∪ {v}
5 return true

6 v.color := grey
7 if ∃ v

∗
→r/g/h v′ ∈ rag s.t. hasCycles(v′, endings)

∨ ∀ v
∗

→yvi ∈ rag : hasCycles(vi, endings) then

8 return true

9 else

10 v.color := black
11 return false

template(C)

1 return {e.pos | e ∈ C ∧ (e = ∗
∗
←h∗ ∨ e = ∗

∗
→y∗)}

waitChains (v1, v2)
1 cycles := ∅
2 if ∃e = v1

∗

→r/g/h v ∈ rag s.t. v.color = grey then

3 if v = v2 then

4 cycles := cycles ∪ {{e}}
5 else

6 cycles := cycles ∪ (
S

c ∈ waitChains(v,v2)

{e} ∪ c)

7 if ∀v1
∗

→yvi ∈ rag : vi.color = grey then

8 choose e = v1
∗

→yvi ∈ rag
9 if vi = v2 then

10 cycles := cycles ∪ {{e}}
11 else

12 cycles := cycles ∪ (
S

c ∈ waitChains(vi ,v2)

{e} ∪ c)

13 return cycles

Fig. 6. Helpers for the detection module.

decisions—sent by the
avoidance module, up-
dates the RAG, and
looks for cycles in the
RAG. If cycles are found,
their templates are com-
puted and saved, af-
ter which the threads
(or a subset thereof)
are restarted. The detec-
tion module looks only
for RAG cycles contain-
ing threads with pend-
ing lock requests, because
only request events can
introduce new cycles in
the RAG (see proof in
§3).

These actions are per-
formed with a period of
τ (e.g., 1 second). In
principle, the value of τ
does not affect correct-
ness, given that it merely
introduces a delay be-
tween the moment the
program becomes dead-
locked/livelocked and when
this condition is detected.
In practice, however, τ is
a “knob” for tuning the
tradeoff between compu-
tation overhead and re-
covery time: a higher τ
reduces the CPU time
consumed on updating
the RAG and detecting
cycles, while a lower τ
leads to more prompt detection and, thus, faster recovery from deadlock/livelock,
which improves the availability of the program.

The detection module uses two data structures, rag (the resource allocation
graph) and events (the event queue used to receive RAG events and avoidance
decisions from the avoidance module), which is initially empty. A RAG event can
be request(t, l, p), yield(t, yieldCause), grant(t, l, p), acquired(t, l, p) or release(t,
l), corresponding to adding a request edge, adding a yield edge, converting a
request edge into a grant edge, converting a grant edge into a hold edge, and
removing a hold edge, respectively. requestingThreads is the set of threads
having pending lock requests.

main loop

1 while stop = false
2 sleep τ milliseconds
3 processEvents()
4 foundCycles := ∅
5 foreach t ∈ requestingThreads do

6 foundCycles :=
foundCycles ∪ waitCycles(t)

7 if foundCycles 6= ∅ then

8 foreach c ∈ foundCycles do

9 history := history ∪ template(c)
10 restart program

processEvents()
1 while events 6= ∅ do

2 evt := events.head
3 events := events.tail
4 switch evt do

5 case request(t, l, p)
6 rag := rag ∪ {t→rl}
7 requestingThreads :=

requestingThreads ∪ {t}
8 case yield(t, yCause)

9 rag := rag \ {t
∗

→yt
′|t

∗

→yt
′ ∈ rag}

∪{t
p
→yt

′| (t′, p) ∈ yCause}
10 case grant(t, l, p)

11 rag := rag \ {t→rl} ∪ {t
p
→gl}

12 case acquired(t, l, p)

13 rag := rag \ {t
p
→gl} ∪ {t

p
←hl}

14 requestingThreads :=
requestingThreads \ {t}

15 case release(t, l, p)

16 rag := rag \ {t
∗
←hl}

Fig. 7. The detection module.

As in the case of the avoid-
ance module, we make use of
helpers, defined in Figure 6.
We only give a high-level de-
scription of these helpers, be-
cause the underlying algorithms
are well-known. The waitCy-
cles, waitChains, and hasCy-
cles helpers are used for cy-
cle detection, and template(C)
is used to extract the template
of a cycle C. hasCycles(v, end-
ings) is easiest implemented us-
ing colored-DFS [11], in which
all explored nodes are marked
“grey” or “black”, depending on
whether they are involved in
deadlocks/livelocks. hasCycles(v,
endings) finds out whether v
is involved in deadlocks/livelocks
and returns the nodes in which
the deadlocks/livelocks (if any)
end. waitCycles(v) retrieves cy-
cles involving v by exploring the
“grey” nodes, starting from the
endings returned by
hasCycles(v, endings).

A RAG node of type thread
can have multiple edges emerging
from it: up to one request edge
and zero or more yield edges.
Thus, a node can be involved
in more than one cycle, which
means waitCycles(v) could return more than one cycle. However, it is not neces-
sary to retrieve, save and avoid the templates of all cycles containing a particular
node: to avoid an induced livelock, it is sufficient to avoid one of its correspond-

ing yield cycles. Thus, if a thread t is involved in an avoidance-induced livelock,
it is enough for waitCycles(t) to return just one yield cycle of the livelock.

The two core algorithms are shown in Figure 7. As long as it is not asked to
stop, the cycle detector periodically (every τ msec) processes the notifications
from the avoidance module (line 3), finds all cycles containing threads with
pending requests (lines 4-6) and, if cycles found (line 7), adds the templates of
the detected cycles to the history (lines 8-9) and recovers the program (line 10).

3 Soundness and Completeness

In this section we outline the proof of the deadlock immunity algorithm’s sound-
ness and refer the reader to [9] for the details. The proof shows soundness by
demonstrating safety, i.e., that the algorithm indeed avoids previously-seen dead-
locks, and liveness, i.e., that all threads will eventually make progress. The al-
gorithm is also proven to be eventually complete, i.e., that it eventually detects
and avoids all cycles, i.e., deadlocks and avoidance-induced livelocks.

In proving soundness and completeness of our algorithm, we make the fol-
lowing assumptions:

– All avoidance routines (Request , Acquired , Release) are thread-safe. This
depends on implementation: in the synchronized version of the algorithm
[9], atomicity (and therefore thread-safety) is ensured by a global lock. In
the lock-free version (Figure 5), thread-safety (consistency) is preserved via
the additional check performed in the Request routine.

– The number of threads in a program and the number of possible program
positions (i.e., program size) are finite.

– All existing deadlock bugs in a program and avoidance-induced livelocks
eventually manifest.

– All critical sections eventually terminate, except in cases of deadlock or live-
lock.

– The native thread scheduler is fair.
– All lock/unlock statements performed in the program are instrumented as

shown in Figure 3.
– The position within the program of lock operations previously involved in

deadlocks or livelocks does not change from one execution to another, i.e.,
templates are execution-independent. This assumption could be invalidated
by a program upgrade or patch.

We first prove completeness of the cycle detection algorithm. The detection
module looks only for cycles containing threads with pending requests, so we
first prove that, indeed, only the request events can introduce new cycles in the
RAG; we do this by proving that the remaining RAG events — acquired and
release — cannot introduce new cycles in the RAG. Second, we prove that the
detection module detects all cycles required to perform avoidance.

To prove safety (i.e., that we achieve deadlock immunity), we split history
into its version before the current execution (historyold) and the additions made

during the current run (historynew), i.e., history = historyold ∪ historynew.
We then prove that the following invariant is maintained: ∀T ∈ historyold :
instance(T, ∅) = null, i.e., the algorithm avoids the instantiation of all tem-
plates from historyold. Then, we prove the invariant ∀C ∈ waitCycles(t) :
template(C) /∈ historyold, i.e., no newly-detected cycle has its template in
historyold. Finally, we prove the invariant historynew ∩ historyold = ∅, i.e.,
templates do not repeat in different runs.

To prove completeness (i.e., that an application instrumented with our algo-
rithm eventually develops immunity against all possible deadlocks and avoidance-
induced livelocks), we first prove that the number of possible templates is finite.
Then we prove that every program instrumented according to Figure 3, after a
finite number of restarts, eventually reaches a point beyond which all subsequent
executions become free of deadlocks and avoidance-induced livelocks. Finally, we
prove that the deadlock immunity algorithm preserves liveness, i.e., all lock re-
quests are eventually granted by our algorithm. The detailed proofs, for both
synchronized and lock-free implementations, are presented in [9].

4 Complexity Analysis

In this section, we discuss the theoretical complexity of the algorithm, and in the
next section we analyze its empirically measured performance. For conciseness,
we highlight here the main results of the complexity analysis and direct the
reader to [9] for the details.

For the avoidance module, assume an immunized program is running with
a history containing N templates, containing NP positions on average, and for
each position p in a template, |lockGrantees[p]| = NG, on average. Let NW

be the average number of yields (waits) performed by a thread before being
granted a lock, and Cwait the cost of a wait() system call. Let |yielders[t, p]| =
NY on average, and Cnotify the cost of a notify() call. The complexity of the
Request operation, which is the most expensive in the avoidance module, is
O(NW · (Cwait + N · (NP + (NP − 1)! ·NNP−1

G)) + NY · Cnotify).
Note that we expect NP to be small in practice, on the order of NP = 2...4,

since deadlocks normally involve no more than 4 threads. This is justified by the
fact that, for a group of threads to deadlock, first they have to simultaneously
perform nested locks, and then to perform the inner locks in such a way that
a circular wait occurs. As far as induced livelocks are concerned, note that an
avoidance-induced livelock is a conjunction of yield cycles (§2.4) and a yield cycle
will mirror one of the already-encountered deadlocks. Thus, since NP is small,
we expect that the exponential term in NP to not be dominant in practice.

For the detection module, consider RAG = [V, E], with |requestingThreads| =
NR, on average; say we have on average NE events in the event queue. The com-
plexity of the detection module is O(NE +NR ·(|V |+|E|)), because every event is
processed in constant time, and we use the optimal colored DFS algorithm (§2.4)
for detecting RAG cycles starting from each thread in requestingThreads.

For the complete derivation of the two modules’ complexities, please see [9].

5 Evaluation

In order to verify the practicality of deadlock immunity, we built a prototype of
the deadlock immunity algorithm for Java programs. After describing the imple-
mentation and experimental setup, we evaluate effectiveness (§5.1), performance
overhead in a real application server (§5.2), as well as discuss the effect of false
positives (§5.3). The interested reader can additionally find in [9] the evaluation
of performance overhead using a lock-intensive microbenchmark.

In our implementation, we rely on AspectJ [1], an aspect-oriented compiler,
to instrument Java programs. We instrument the bytecode-level calls to moni-
torenter (corresponding to the start of Java synchronized blocks) and to mon-
itorexit (corresponding to the end of synchronized blocks). The instrumen-
tation is embodied by advices that capture lock requests (before-monitorenter
advice), lock acquisitions (after-monitorenter advice), and lock releases (before-
monitorexit advice). Lock positions are represented as file:line strings corre-
sponding to the line of code containing the statement in the source file.

The experiments reported here were run on computers with 2 x 4-core Intel
Xeon E5310 1.6GHz CPUs, 4GB RAM, WD-1500 hard disk, 2 NetXtreme II GbE
interfaces, interconnected by a dedicated GbE switch, running Linux Fedora Core
7 with kernel 2.6.20, Java HotSpot Server VM 1.6.0, and Java SE 1.6.0.

5.1 Effectiveness

The first question we wanted to answer was whether the proposed approach will
avoid deadlocks in real applications. We scoured bug reports for the MySQL
database system [13] and, of the various reports of deadlocks or hangs, we were
able to reproduce four (#21427, #14972, #31126, and #17709). They all occur
in the connector that allows Java programs to interact with the database engine.
We wrote test programs that deterministically reproduce these bugs. The im-
munized test programs detected each deadlock the first time it occurred, saved
the template to history, and successfully avoided it in subsequent executions.
Since extensive repeated runs never deadlocked, we cite this as an empirical
proof point that the immunized programs had developed immunity against the
deadlock bugs. MySQL users encountering these bugs face the option of waiting
for the MySQL team to fix them, or to use an immunization tool right away.

While in some cases deadlocks can be eliminated by fixing the root cause,
in other cases this is not a reasonable option. For example, a number of syn-
chronized classes in the Java runtime environment can cause deadlocks in the
applications that call them. Consider two vectors v1, v2 in a multithreaded
program—since Vector is a synchronized class, programmers allegedly need not
be concerned by concurrent access to vectors. However, if one thread wants to
add all elements of v2 to v1 via v1.addAll (v2), while another thread concurrently
does the reverse via v2.addAll (v1), the program can deadlock, because under-
neath the covers, the JDK locks v1 then v2 in one thread, and v2 then v1 in the
other thread. This is a general problem for all synchronized Collection classes

in the JDK, of which there are dozens. It is difficult for developers to know-
ingly steer clear of deadlocks resulting from the implementation of an opaque
interface, and deadlocks hidden underneath the runtime interface are some of
the most insidious. At the same time, it is tenuous to precisely document in this
interface all possible usage scenarios that could lead to deadlock.

We wrote test cases for six such deadlock traps and immunized them. After
encountering the respective deadlocks for the first time, all subsequent executions
were free of deadlocks. This resolution requires no programmer intervention and
no JDK modifications.

5.2 Performance Overhead in Real Applications

We applied our immunization tool to JBoss [8], a J2EE application server. JBoss
is a piece of middleware that allows enterprise and Web applications to be written
in Java, with all complexities of transactions, persistence, group communication,
replication, etc. being handled transparently on the applications’ behalf. Behind
virtually every e-commerce Web site today lies an application server. JBoss is
one of the most widely used J2EE servers and, at over 350,000 lines of code
(excluding comments), it is likely one of the largest systems written in Java.

0
1%
2%
3%
4%
5%
6%

 0 2 4 8 16 32

T
hr

ou
gh

pu
t r

ed
uc

tio
n

Number of templates

RUBiS threads=900, JBoss threads=280, Template len=2
 Baseline=515.5 req/sec

Fig. 8. JBoss throughput drop at 280 threads.

To benchmark perfor-
mance on the immunized
JBoss, we used the RU-
BiS benchmark [14], an
online auction applica-
tion modeled after eBay.
In our measurements, we
used the servlet ver-
sion of RUBiS with the
browse workload.

We ran JBoss+RUBiS,
the corresponding MySQL
database tier, and the
RUBiS clients on sepa-
rate nodes. We operated the auction site just below its saturation point (900
RUBiS client threads); below and above this level we found the impact of our
algorithm to be virtually unmeasurable. The JBoss console reported that 280
threads were running inside JBoss. In Figure 8, we show the measured reduction
in throughput introduced by our immunization tool for history sizes ranging
from 0 to 32 templates of length 2. The templates are random combinations of
program locations at which JBoss performs synchronization.

The conclusion is that the cost of immunity against up to 32 templates is
a penalty of < 6% in request throughput on an e-commerce workload, which
suggests that our approach offers an efficient deadlock avoidance solution even
for the largest production systems.

5.3 Effects of False Positives

An important question is whether, by pruning executions that might lead to
deadlock, the immunity algorithm is not being too conservative. Said otherwise,
paths that once led to deadlock may not deterministically lead to deadlock. For
example, if wrapper methods are used to perform locking (instead of direct calls
to native lock), all the lock positions may end up being the same (the location
of the lock statement in the wrapper) resulting in overly aggressive serialization
of the threads. Exaggerated conservativeness might lead to performance degra-
dation by reducing parallelism, or even to the elimination of some functionality
through the persistent avoidance of deadlock-prone executions paths.

While we do not know yet how to quantify the true effect of false positives, or
how to measure them directly, our initial experimentation indicates that func-
tionality does not get eliminated for some of the largest programs. Moreover,
the low performance overhead suggests that, for the systems we measured, even
if loss of parallelism influences negatively the performance, it does so to a small
degree. Nevertheless, further experimentation is required, as well as further the-
oretical analysis of the false positives introduced by deadlock immunity.

The way to reduce false positives is by improving the precision of avoidance.
We are currently experimenting with storing more contextual information in
the template, such as a suffix of the call path that led to the deadlock-forming
lock statements. The added information defines more precisely the particular
execution that led to the observed deadlock, thus allowing the algorithm to better
distinguish an execution heading for a similar deadlock from one that will not
deadlock. Such increase in precision (reduction in false positive rate) will hurt,
however, the convergence rate—the less general the avoided templates are, the
longer it takes to develop immunity against all the existing deadlock bugs. Said
differently, increased precision makes the “eventual” in eventual completeness
longer.

We are also exploring techniques for dynamically adjusting (learning) the
ideal length of call path suffixes, in order to achieve an optimal precision vs.
generality tradeoff. We are also considering saving the sequence of lock positions
traversed along the call paths.

Another area we wish to explore further is the use of static analysis and
symbolic execution as a way to complement deadlock immunity. In particular, we
want to use look-ahead static analysis to help predict deadlocks that are similar
to ones we have already seen. Using bounded symbolic execution, on the order
of a few instructions ahead of the current state, we can identify unsafe states
without having to actually reach them. Performing such analyses at runtime
could harness the “free parallelism” made available by the advent of multi-core
CPUs. We could also use static analysis for detecting lock statements that would
never lead to deadlocks. We could avoid instrumenting these lock statements,
thus reducing the intrusiveness and therefore the overhead of our algorithm.

Our empirical evaluation indicates that the deadlock immunity approach is
effective at developing immunity against deadlocks, scales to real programs with

hundreds of thousands of lines of code, and introduces low overheads on a real e-
commerce workload. There are still some questions to be answered with respect
to the effect of false positives, and this is the subject of future work.

6 Conclusion

We described an algorithm for imparting deadlock immunity to software systems,
that helps avoid deadlocks with no assistance from programmers or users. We
showed that, once an immunized program encounters a deadlock, it avoids in
all future executions all deadlocks with that same template. We proved the
algorithm’s soundness and eventual completeness; we also showed empirically
that the algorithm is effective against deadlocks in real software like MySQL
JDBC and Java JDK. Preliminary results indicate that the algorithm scales
gracefully to large software systems: in JBoss, a >350 KLOC application server
with 280 threads, worst-case overhead introduced by immunization was a drop
of <6% in request throughput while avoiding up to 32 deadlock templates.

While pure deadlock avoidance is undecidable, deadlock immunity is decid-
able, to the extent imposed by the definition of similarity between deadlocks.
Our technique builds upon and complements prior work by addressing the chal-
lenges of real systems: code size scalability, correctness in the face of program
I/O, and performance overhead. We believe deadlock immunity is a practical
way to eventually run production systems deadlock-free despite the deadlock
bugs that lurk within.

References

1. Aspectj. http://www.eclipse.org/aspectj, 2007.
2. P. Boronat and V. Cholvi. A transformation to provide deadlock-free programs.

In Intl. Conf. on Computational Science, 2003.
3. D. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions

and deadlocks. In 19th ACM Symp. on Operating Systems Principles, 2003.
4. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.

Extended static checking for Java. In Conf. on Programming Language Design and
Implementation, 2002.

5. A. N. Habermann. Prevention of system deadlocks. Communications of the ACM,
12(7), 1969.

6. M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for
lock-free data structures. In 20th Intl. Symposium on Computer Architecture, 1993.

7. Java pathfinder. http://javapathfinder.sourceforge.net/doc/What can be checked with JPF.html,
2007.

8. JBoss. http://jboss.org.
9. H. Jula and G. Candea. A scalable, sound, eventually-complete algorithm for

deadlock immunity. Technical Report EPFL-DSLAB-2007-002, EPFL, Lausanne,
Switzerland, 2007. http://dslab.epfl.ch/pubs/dimmunix-algo.

10. M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A run-
time assurance approach for java programs. In Formal Methods in System Design,
2004.

11. D. E. Knuth. The Art of Computer Programming, volume III: Sorting and Search-
ing. Addison-Wesley, 1998.

12. T. Li, C. S. Ellis, A. R. Lebeck, and D. J. Sorin. Pulse: A dynamic deadlock
detection mechanism using speculative execution. In USENIX Annual Technical
Conference, 2005.

13. MySQL bug database. http://bugs.mysql.com/.
14. RUBiS. http://rubis.objectweb.org, 2007.
15. M. Singhal. Deadlock detection in distributed systems. IEEE Computer, 22(11),

1989.
16. A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for Java li-

braries. In 19th European Conference on Object-Oriented Programming, 2005.
17. F. Zeng and R. P. Martin. Ghost locks: Deadlock prevention for Java. In Mid-

Atlantic Student Workshop on Programming Languages and Systems, 2004.

