
Scripting the swarm: event-based control of
microcontroller-based robots.

Stéphane Magnenat1, Philippe Rétornaz1, Basilio Noris2, and Francesco
Mondada1

1 LSRO - École Polytechnique Fédérale de Lausanne
stephane at magnenat dot net and firstname.lastname@epfl.ch

http://mobots.epfl.ch
2 LASA - École Polytechnique Fédérale de Lausanne - firstname.lastname@epfl.ch

Abstract. Swarm robotics in real world requires a large number of
robots and thus enough room for experimentation. Therefore, to imple-
ment such experiments with limited budget, robots should be compact
and low cost, which entails the use of microcontroller-based miniature
robots. In this context, developing behaviour is challenging, because mi-
crocontrollers are not powerful enough to support common high-level
development environments such as Java. Furthermore, the development
tools for microcontrollers are not able to monitor and debug groups of
robots online. In this paper, we present a new event-based control archi-
tecture: aseba. It solves the problem of developing and testing collective
behaviours by running script inside a lightweight virtual machine on
each microcontroller and by providing an integrated development envi-
ronment to program and monitor the whole group of robots from a single
application running on any desktop computer. We have validated aseba
by implementing a dangerous-area avoidance experiment using the e-
puck robot. Experiments of this type are common in swarm robotics,
but porting them to real robots is often challenging. By easing the de-
velopment of complex behaviours on real robots, aseba both exposes
collective robotics programming to a large community and opens new
research perspectives for swarm robotics.

1 Introduction

Swarm robotics is an approach to robotics applications in which a large group
of mobile robots coordinate to perform tasks [12]. The core idea is that a lot of
relatively simple robots can perform difficult tasks as good as few complex ones.
To which extent this claim is verified in reality is still a matter of research [11].
However, it is clear that swarm behaviours require numerous agents [12] and
thus enough room for experimentation. These are both expensive, and price is a
limiting factor for research. Therefore, robots should be compact and low cost.
The class of robots that satisfies at best these constraints are microcontroller-
based miniature robots. Our lab has developed a robot of this class, the open-
hardware e-puck, which is sold by several companies3.
3 e-puck robot: http://www.e-puck.org, which also lists the resellers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147945336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mobots.epfl.ch
http://www.e-puck.org

2 S. Magnenat, P. Retornaz, B. Noris, and F. Mondada

While robots such as the e-puck alleviate the problems of cost and space,
developing and testing behaviours is still challenging. On one hand, microcon-
trollers are not powerful enough to run complete operating systems that would
permit the use of standard development tools such as the Java Development Kit.
On the other hand, development tools custom-tailored to embedded systems re-
quire wired connections with the target, and interact with a single target at a
time. Moreover, they usually require to re-flash the whole microcontroller for
any single change, and this operation takes. For example, flashing the micro-
controller of the e-puck robot lasts one minute. Some swarm-robotics research
groups such as DISAL-EPFL have devised a way to flash all the robots at once,
but that removes any debugging capability from the development tools. Further-
more, even if each robot is attached to an embedded-system development tool, it
is almost impossible to concurrently debug coordinated behaviours implemented
in native code. Indeed, codes for the driving of sensors and actuators, for network
communication, and for behaviour control are all mixed in a single binary.

To facilitate the development of behaviours on microcontroller-based mobile
robots, we have developed a new event-based control architecture: aseba, which
stands for actuators and sensors event-based architecture (Fig. 1). It solves the
problem of developing and testing collective behaviours by running script in-
side a lightweight virtual machine on each microcontroller and by providing an
integrated development environment (ide) to program and monitor the whole
group of robots from a single application running on any desktop computer. The
ide compiles scripts into bytecodes and loads them to the microcontrollers. On
the microcontroller of each robot, the virtual machine runs the bytecode. This
approach ensures reasonable performances and a good reactivity combined with
excellent debugging possibilities. Moreover, in aseba, the control code does not
poll sensors in a big loop. Instead, the virtual machine executes small parts of
the control code that are relevant at the time new information arises, which is
the reason why we call aseba event-based. For instance, when new data are
available from a sensor, the virtual machine calls the data processing code as-
sociated with this sensor. If a new messages arrives from another robot, the
code that is responsible to react to this information is called as well. This pro-
vides a clear understanding of execution flows as asynchronous events provide
both intra-robot coordination and inter-robot communication, which helps the
development of distributed control algorithms. The Aseba ide allows online
monitoring of events, which provides aid to the development of the behaviours
themselves.

This papers presents aseba as a solution to program simple, single-microcon-
troller mobile robots. It demonstrates its use in a collective robotics experiment
using the e-puck robot (Sect. 3), puts it in perspective with the related work
(Sect. 4), and discusses its design choices and limitations (Sect. 5). With aseba,
we address the issue of developing controllers on physical robots; we deliberately
do not discuss any development methodology that involves simulation, because
the latter has already been studied extensively [10,8].

Scripting the swarm 3

robot

virtual machine

experiment
specific
script

communication medium

microcontroller

sensors or actuators

robot

virtual machine

experiment
specific
script

microcontroller

sensors or actuators

robot

virtual machine

experiment
specific
script

microcontroller

···

desktop computer

integrated
development
environment

monitoring
and logging

facilities

sample events

inter-robots event

intra-robot event

sensors or actuators

Fig. 1. The overall structure of aseba.

2 Aseba

With aseba, we write and debug our behaviours from an integrated development
environment (ide) running on a desktop computer (Sect. 2.2). We implement the
behaviours using a high-level scripting language (Sect. 2.1). Programming in a
scripting language speeds up the writing of behaviours with respect to the tra-
ditional use of C in microcontrollers, because developers are free from low-level
problems such as memory allocation. The aseba ide compiles script into byte-
code and uploads it to the robots microcontrollers. The microcontrollers then
execute the bytecode in virtual machines that also provide debugging facilities,
such as breakpoints. The use of virtual machines with respect to native code
ensures safe execution: no script mistake can bring the microcontrollers into a
deadlock state. Moreover, running bytecode inside virtual machines adds flexi-
bility: any 16 bit microcontroller is able to run the bytecode, and thus the aseba
compiler is not tied to the instruction set of a particular processor. Finally, vir-
tual machines can execute the bytecode from RAM memory, which allows for
writing/testing cycles in the order of seconds, where native code must run from
flash, which typically takes one minute to update.

In aseba, the communication between microcontrollers consists of broad-
casted asynchronous messages with payload data, called events. Aseba uses
events both during development — debug commands are events too — and for
primary communication during the experiments, typically using wireless radio
in collective robotics. An event-based control and communication strategy is in-
teresting for swarm robotics: as radio communication is of limited range, broad-
casting events locally allows for scalable controllers. Conversely, master/slave
communication is not suitable for a large group of robots, where at a time some
may be broken or some may be out of range.

We want to promote cooperation and standardization between researchers
using microcontroller-based mobile robots. Thus, we are developing aseba as

4 S. Magnenat, P. Retornaz, B. Noris, and F. Mondada

open source (GPL v.3) and the community can use and modify it free of charge.
Aseba can run on the open-hardware e-puck mobile robot, that has been widely
used in research recently. More information as well as the latest version are
available at http://mobots.epfl.ch/aseba.html.

2.1 Language

In aseba, we specify the robots behaviours in an event-based scripting language.
An event-based language frees the programmer from managing the moments of
execution of code: events trigger the execution of associated code automatically.
This is similar to how interrupts act at low-level in microcontrollers.

Syntactically, aseba scripts resemble matlab scripts; this similarity allows
developers with previous knowledge of some scripting language to feel quickly at
ease with robot programming. Semantically, aseba script is a simple imperative
programming language with a single basic type (16 bits signed integers) and
arrays. The use of a simple script allows execution on a compact and lightweight
virtual machine that fits well inside a microcontroller. That would not be the
case for more complex virtual machines such as the Java Runtime Environment
or the .Net Framework. Moreover, this simplicity allows developers to program
behaviours with no prior knowledge of a type system; integers being the most
natural type of variables and well suited for programming microcontroller-based
mobile robots. Furthermore, as aseba scripts only permit global variables, the
compiler verifies at compile time that neither the stack nor the memory will
overflow. This allows to develop robust robotics behaviours. This also reduces
the footprint and improves the efficiency of the virtual machine because it per-
forms less checks at run-time than what is required by more dynamic scripts. To
perform heavy computations such as signal processing, robots can provide na-
tive functions, implemented in C or assembly, that the script can call. Annex A
illustrates the use of aseba script by showing the complete source code of the
experiment we present in Sect. 3.

2.2 Integrated Development Environment

Aseba eases the development of robots behaviours by providing an ide within
which we edit and debug the scripts for all the robots (Fig. 2). The ide provides
the following features:

– Concurrent editing. The ide provides one tab per robot, with its script,
memory content, execution status, and debugging commands. In addition,
a toolbar provides general commands that affect all the robots. This allows
both an overall control of the group and a specific control of each robot.

– Syntax highlighting. The script editor highlights the syntax and colors
errors in red. This increases the readability of the scripts.

– Instant compilation. The ide recompiles the script while the developer is
typing it. The result of compilation (success or a description of the error) is
displayed below the editor. This permits the correction of errors as soon as
they appear, which improves the efficiency of the development process.

http://mobots.epfl.ch/aseba.html

Scripting the swarm 5

Fig. 2. A screenshot of aseba integrated development environment

– Variables inspection. The ide lists the variables available on each robot
along with their values, which we can change as well. These variables can
represent sensors values, actuators commands, or user-defined variables.

– Debugger The ide integrates a debugger. For each robot, it reports the
current execution status. The debugger supports continuous execution, step
by step, and breakpoints.

– Events. We can specify the names of the events, send them, and monitor the
ones that transit over the communication medium. Each robot also provides
local events, which are typically emitted when some attached sensors provide
updated data.

– Native functions documentation. The ide lists the native functions
available on each robot, along with their documentation.

– Constants definition. We can define constants that are available to all the
robots.

2.3 Virtual Machine

In aseba, the robots execute the bytecode in a lightweight virtual machine,
with a flash footprint of less than 10 kB and a ram footprint of 4 kB4. The

4 In our dsPIC30 e-puck implementation, including all communication buffers; this
can vary depending on the desired amount of bytecode and variable data, stack size,
and number of breakpoints.

6 S. Magnenat, P. Retornaz, B. Noris, and F. Mondada

virtual machine is implemented in less than 1000 lines of C and embeds the
debugging logic. This light footprint is a key element to allow deployment in
microcontroller-based robots. The drawback is that the feature set is limited,
in particular, our virtual machine does not provide support for object-oriented
programming nor for user-defined functions. In comparison, the ram footprint
of leJOS, a simplified Java virtual machine for the Lego Mindstorms, is 17 kB
on the RCX brick5.

3 Sample Experiment

IDE Switch Bluetooth

robotsdesktop computer

Robots

Fig. 3. The experimental setup (top). The structure of communication between
the robots and the desktop computer using Bluetooth (bottom).

In this section, we present a simple experiment that demonstrates the use
of event-based scripting in collective robotics (Fig. 3). The experiment runs on
the open hardware e-puck miniature mobile robot (Fig. 4). A group of e-pucks
implements a social behaviour which goal is to avoid dangerous areas. Experi-
ments of this type are common in swarm robotics, because of their interesting
dynamics [5]. However, porting them to real robots is often challenging because
of the noisy and non-linear nature of real sensors and actuators. Aseba provides
online interactions with the robots sensors and allows dynamic modifications
5 http://rcxtools.sourceforge.net/e_lejos.html

http://rcxtools.sourceforge.net/e_lejos.html

Scripting the swarm 7

prox[0]

prox[1]

prox[2]

prox[3]prox[4]

prox[5]

prox[6]

prox[7]

rightSpeedleftSpeed

camR[X]
camG[X]
camB[X]

acc[X]

Fig. 4. The e-puck mobile robot and its sensors and actuators as seen by aseba:
prox[0:7] refer to the proximity sensors organized as a ring around the robot;
camR[0:59]/camG[0:59]/camB[0:59] represent the camera pixels component
values; acc[0:2] represent the 3-axis accelerometer; leftSpeed and rightSpeed
are the wheel speed commands. A detailed description of the sensors and actu-
ators of the e-puck is available on its web at http://www.e-puck.org.

of the robots programs and thus eases the development of behaviours on real
robots.

In our sample experiment, the e-pucks perceive the color of the ground with
their cameras. If any e-puck experiences a shock while seeing a color, it considers
this color as dangerous and transmits this information to the other robots. All the
robots avoid the dangerous areas when they see their colors; but with time, they
forget the association. The complete source code of the experiment is available in
annex (Sect. A); its small size (59 non-empty lines) attests the expressive power
of aseba in the context of microcontroller-based robots.

no communication, no sensitivity

no communication, sensitive

communication, sensitive

10 15 20 25 30 35

number of e−pucks entering dangerous areas

Fig. 5. Results of dangerous area avoidance over 5 runs of 1 minute each; with
communication and sensitivity to shocks on and off.

Experimental results (Fig. 5) show that both the perception of external stim-
uli (sensitivity to shocks) and the use of event-based communication are useful to

http://www.e-puck.org

8 S. Magnenat, P. Retornaz, B. Noris, and F. Mondada

avoid dangerous areas. Thanks to the dynamic nature of programming in aseba,
we were able to implement and run this experiment in one day. This validates
that event-based scripting allows the rapid development of swarm behaviours
mixing several different sensors. In our case we mix the proximity sensors, the
camera, and the accelerometers.

4 Related Work

In this section, we present an overview of the landscape of architectures for de-
veloping programs on microcontroller-based mobile robots. We reject solutions
that require a desktop-level operating system (such as Linux or Windows). Al-
though these can support environments such as Java, they require more expen-
sive hardware than microcontrollers and are thus not suitable for experiments
involving large groups of robots. Table 1 shows a comparison of the architectures
we present.

ide Debug Easy Language E. b. Emb. HW i. Cross-p. Open-s.

aseba Yes Yes Yes Specific Yes Yes Yes Yes Yes
Mindstorm Yes No Yes Any No Yes No No Yes
Player No No No Any No No Yes Partial Yes
Urbi No No Yes Specific No No Yes Yes Yes
Pyro No Yes Yes Python No No Yes Yes Yes
Cubesystem No No No C/C++ No Yes No Yes No
Matlab/LabView Yes Yes Yes Specific No No Yes Yes No
ide for embedded Yes Yes No C/C++ n/a Yes No Yes No

Table 1. Functionality comparison of architectures for microcontroller-based
mobile robots. ide means that an integrated development environment is avail-
able, with or without a debugger. Debug means that a debugger is available.
Easy means that the language is simple enough to be used by non-experts. E.
b. means event-based, it indicates whether the control structure is based around
asynchronous events or not. Emb. indicates whether the user program can reside
in the microcontroller of the robot itself. HW i. denotes whether the architec-
ture is tied to a specific robot hardware. Cross-p. and Open-s. indicate whether
the programming environment and the execution runtime are cross-platform and
open-source.

– The Lego Mindstorms. The Lego Mindstorms NXT is one of the easiest
way to build and prototype physical robots [7]. The core of the NXT uses
a powerful 32bit ARM7 microcontroller with 64 kB of RAM, can connect
to up 3 servo motors and 4 sensors, and is capable of Bluetooth communi-
cation. Its sensors set comprises touch, sound, light, and ultrasonic sensors.

Scripting the swarm 9

The Lego Mindstorms robot can be assembled from any choice of Lego bricks
which allows to build various robots quickly. From the software standpoint, a
node-based graphical interface allows to design behaviours (e.g. by connect-
ing sensor inputs to conditional blocks and motor activation). Additionally,
the Not eXactly C (NXC) provides a concurrent C-like language that runs
directly on the NXT brick and benefits from a strong community support
in terms of examples, tutorials, and tools. One can also control the NXT
from Matlab or Simulink. Finally, a simplified Java virtual machine runs on
the NXT6, which is possible because the NXT has a large amount of RAM
for a microcontroller (64 kB vs 8 kB on the e-puck). Nevertheless, all the
development tools for the NXT platform lack a debugger and the platform
itself lacks the communication and the deployment capabilities that would
make it suited to collective robotics.

– Player [6]. Player is one of the most widely used software platform for
robots programming. It provides a suite of tools to interface the sensors and
actuators of a robot with a client program running on an external com-
puter. On this computer, Player provides an interface for a large number of
programming languages. However, with Player the controller does not run
on the robot itself and thus is subject to delay, bandwidth limitation, and
scalability problems due to the communication.

– URBI [1]. URBI is a parallel, event-driven scripting language with an in-
terface to C++ objects. In the context of robotics, it provides a powerful
way to quickly create complex behaviours. URBI supports several robots
(e.g. Aibo, iRobot Create, Lego Mindstorms NXT). Unfortunately, URBI
programs do not run directly on the robot and thus URBI is subject to the
same limitations as Player.

– Pyro [3]. Pyro is a Python based programming framework focusing on ed-
ucation. Pyro uses a client/server architecture with a minimal server on the
robot itself and the main program running on an external machine. Pyro can
interface with Player (and thus with all robots compatible with it) or directly
(among others) with the Pioneer, Khepera, AIBO, and Roomba robots. Pyro
suffers from the same drawbacks as Player do.

– CubeSystem [2]. CubeSystem is a combination of hardware and software
components that can be assembled to create a complete system. The CubeSys-
tem revolves around the RoboCube (an embedded controller), the CubeOS
operating system, and the RoboLib which contains a collection of functions
for robotics. It provides drivers for a large number of sensors and actuators,
and interfaces with a high-level language for programming behaviours, such
as PDL. CubeSystem is limited to the RoboCube embedded computer and
is not open source, which prevents its use in custom-made robots.

– Matlab / LabView. Mathwork Matlab 7 and National Instrument Lab-
View 8 are both development platforms with a powerful engine for compu-
tation and a relatively simple programming language. They can interface

6 leJOS, Java for LEGO Mindstorms: http://lejos.sourceforge.net
7 MathWorks Matlab: http://www.mathworks.com
8 National Instruments LabView: http://www.ni.com/labview

http://lejos.sourceforge.net
http://www.mathworks.com
http://www.ni.com/labview

10 S. Magnenat, P. Retornaz, B. Noris, and F. Mondada

with robots natively or through external libraries or drivers, depending on
the hardware. Furthermore, they also provide a graphical user interface and
a debugging environment. LabView also provides node-based programming
(Lego Mindstorms NXT uses LabView). However, they are not free, and they
do not allow the creation and debug of a standalone application that runs
on a microcontroller.

– IDE for embedded systems. Almost any microcontroller is supported
by one or more ide, either from its vendor or from third party. These ide
typically compile C and assembly and provide a debugger, and often a simu-
lator. However, they are general tools with no particular support for robotics
applications and they typically require a wired connection with the micro-
controller.

– Robot programming libraries. Open source libraries, such as YARP [9],
Orocos [4] and many others, provide clean modular architectures for robot
programming. In most cases they provide a solid communication interface for
message and object passing, access to common input/output devices (such
as cameras, motor control boards, etc.) and can be extended to support any
type of hardware. However, most of these libraries are client/server oriented
and run on external or embedded computers, and thus suffer from the same
limitations as Player do.

5 Discussion

Beside aseba, there is no development tool for miniature microcontroller-based
robots that at the same time run code on the robots themselves, are event-
based, and provide a high-level scripting language and an integrated development
environment (Table 1).

Running the controller on the robot — with opposition to running it on a
remote computer — is critical for scalability. Indeed, it is not possible to deploy
a large group of remote-controlled robots because this would require too many
communication links. Moreover, remote control adds latency between perception
and action which is a limiting factor from a control perspective.

An event-based control and communication strategy is interesting for collec-
tive robotics. The aseba implementation on the e-puck, which uses Bluetooth,
requires global communication; but aseba as an architecture supports local com-
munication, for instance radio links of limited range. In such cases, broadcasting
events locally allows for scalable controllers. In contrary, master/slave commu-
nication is not suitable for a large group of robots, where at a time some may
be broken or some may be out of range. Aseba pushes the concept further by
unifying events for internal sources and events from other robots. This unifica-
tion provides a coherent control structure where events are the sole source of
code execution. This removes the classical polling loops found in other robots
controllers which simplifies the real-time aspect of robots programming.

Scripting mobile robots allows to reduce the time from the experiment design
to the working behaviour. Indeed, script is faster to write and safer to run than

Scripting the swarm 11

C code. This ensures a low entry curve for new programmers and permits to
do more research or development for the same amount of resources. Scripting
is known for its low performances with respect to native code, in particular
when running on simple virtual machines, which is the case in aseba. However,
as microcontrollers can provide highly optimized native functions, for instance
ones that do exploit the optimized instructions of the microcontrollers. The
limitations of aseba script, such as lack of local variable, are the result of an
informed choice: Should we have added more dynamics into the language, would
the required virtual machines have became slower and heavier.

An integrated development environment with a debugger is an important,
yet often neglected, element for efficient development of computer programs.
While this fact is well known in computer science, the current state of the art
of collective robotics, in particular with miniature microcontroller-based robots,
seldom provides such tool. Embedded systems ide do exist, but are based on
wired connections. They target single fixed systems, not swarms of robots. For
instance, it is not realistic to connect six e-pucks to six Microchip MPlab ide
with six cables and expect the robots to move and act as if they were not being
debugged. Aseba demonstrates that with the appropriate architecture, it is
possible to develop and debug robots in real conditions. Online monitoring and
logging of events, because of the close link between events and the behaviour of
the swarm, improves dramatically the understanding of what the swarm is doing
at each moment. This capability enhances the classical debugging facilities such
as breakpoints and facilitates the development of complex behaviours.

Aseba on the e-puck is not perfect and suffers from several limitations. First,
communication is based on the rfcomm protocol of Bluetooth, which only allows
up to 7 concurrent communications. However, this is a limitation of the current
e-puck implementation and not of the core concept: the use of a lower level radio
communication medium would remove this limitation. Second, while debugging,
the interaction between the ide and the robots brings a communication band-
width consumption overhead that is linear with the number of robots, which
limits the scalability. However, aseba supports the storage of bytecode inside
the flash memory of the robots microcontrollers, which allows the deployment
and execution of collective control code on a large group of robots, even if the
development was limited to only a subset of them. These limitations bear some
resemblance with the ones of embedded systems ides; however the use of wireless
communication and lightweight debug protocol makes aseba far more powerful.

Being portable and open source, aseba is adaptable to multiple targets. In
particular, it is readily available on the open-hardware e-puck mobile robot.

6 Conclusion

Aseba provides a consistent solution to the development and test of behaviours
for swarms of small microcontroller-based robots. By easing the development
of complex behaviours on real robots, aseba both exposes collective robotics

12 S. Magnenat, P. Retornaz, B. Noris, and F. Mondada

programming to a large community and opens new research perspectives for
swarm robotics.

7 Acknowledgments

We thank Cyrille Dunant and an anonymous reviewer for their feedback on the
draft of this paper.

This work was supported by the Swarmanoid and the Perplexus projects,
which are funded by the Future and Emerging Technologies program (IST-FET)
of the European Community. The information provided is the sole responsibility
of the authors and does not reflect the Community’s opinion. The Community
is not responsible for any use that might be made of data appearing in this
publication.

References

1. J.-C. Baillie. Urbi: towards a universal robotic low-level programming language. In
Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 820–825, 2005.

2. A. Birk. Fast robot prototyping with the cubesystem. In Proceedings of the 2004
IEEE International Conference on Robotics and Automation, pages 5177–5182,
2004.

3. D. Blank, D. Kumar, M. L., and H. Yanco. Pyro: A python-based versatile pro-
gramming environment for teaching robotics. Journal of Educational Resources in
Computing (JERIC), 3(4), 2003.

4. H. Bruyninckx. Open robot control software: the orocos project. In Proceedings
of the 2001 IEEE International Conference on Robotics and Automation, pages
2523–2528, 2001.

5. D. Floreano, S. Mitri, S. Magnenat, and L. Keller. Evolutionary Conditions for
the Emergence of Communication in Robots. Current Biology, 17:514–519, 2007.

6. B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the Intl. Conf. on
Advanced Robotics (ICARJ), pages 317–323, 2003.

7. F. Klassner. A case study of lego mindstorms’TMsuitability for artificial intelligence
and robotics courses at the college level. In SIGCSE ’02: Proceedings of the 33rd
SIGCSE technical symposium on Computer science education, pages 8–12. ACM,
2002.

8. A. Martinoli, K. Easton, and W. Agassounon. Modeling Swarm Robotic Systems:
A Case Study in Collaborative Distributed Manipulation. Int. Journal of Robotics
Research, 23(4):415–436, 2004.

9. G. Metta, P. Fitzpatrick, and L. Natale. Yarp: Yet another robot platform. Ad-
vanced Robotics Systems, 3:43–48, 2006.

10. O. Michel. Webots: Symbiosis between virtual and real mobile robots. In Virtual
Worlds, pages 254–263. Springer, 1998.

11. F. Mondada, G. C. Pettinaro, A. Guignard, I. V. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo. SWARM-BOT: A new
distributed robotic concept. Autonomous Robots, 17(2–3):193–221, 2004.

12. E. Şahin. Swarm robotics: From sources of inspiration to domains of application.
In Swarm Robotics, pages 10–20. Springer, 2005.

http://www.swarmanoid.org
http://www.perplexus.org

Scripting the swarm 13

A Complete Source Code of Experiment

The code starts by defining some global variables (part A). Then, the code
associated with the intra-robot infrared sensors event implements the actual
controller. First, the controller decreases the values of the association of bad
colors; it uses a for loop to iterate over the colors (part B). Then, it checks
if there is a shock by looking at the values of the accelerometers. It first calls
the vec.stat native function to get the minimum and the maximum of the
acceleration on all axis, and then uses a when conditional to react only if the
conditions are different than during the previous execution (part C). Next, the
controller processes raw colors from the camera by extracting their means (part
D). Then, if the robot sees a color and is experiencing any shock, it sends an
event to notify the other robots (part E). At the end of the event, the controller
sets the speed of the wheels in order to avoid bad colors (part F). When a robot
receives an event telling it that a color is bad, the association is set (part G).

var badness [3] = 0 , 0 , 0 # part A
var wasBad = 0
var i
camLine = 32

onevent i r s e n s o r s # part B
for i in 0 :2 do

i f badness [i] > 0 then
badness [i] = badness [i] − 1

end
end

var i sAcc = 0 # part C
var min var max var m
ca l l vec . s t a t (acc , min , max , m)
when min < −1000 or max > 1000 do

i sAcc = 1
end

var mean [3] = 0 , 0 , 0 # part D
var meanOfMean = 0
ca l l vec . s t a t (camR [0 : 5 9] , min , max , mean [0])
ca l l vec . s t a t (camG [0 : 5 9] , min , max , mean [1])
ca l l vec . s t a t (camB [0 : 5 9] , min , max , mean [2])
ca l l vec . s t a t (mean , min , max , meanOfMean)
var isBad = 0

var ac t i v eCo lo r = 3 # part E
i f meanOfMean > 38 then

ac t i v eCo lo r = 2
i f mean [0] > mean [1] and mean [0] > mean [2] then

ac t i v eCo lo r = 0
e l s e i f mean [1] > mean [2] and mean [1] > mean [0] then

14 S. Magnenat, P. Retornaz, B. Noris, and F. Mondada

ac t i v eCo lo r = 1
end
i f i sAcc == 1 then

emit bad ac t i v eCo lo r
badness [a c t i v eCo lo r] = 1200

end
end
i f ac t i v eCo lo r != 3 then

i f badness [a c t i v eCo lo r] > 0 then
isBad = 1

end
end

i f wasBad == 1 then # part F
i f prox [1] + prox [6] + prox [0] + prox [7] > 300 then

l e f t S p e e d = −400
r ightSpeed = 400

else
wasBad = 0

end
else

i f isBad == 0 then
l e f t S p e e d = 1000 − prox [1] ∗ 4 − prox [0] ∗ 2
r ightSpeed = 1000 − prox [6] ∗ 4 − prox [7] ∗ 2

else
l e f t S p e e d = −400
r ightSpeed = 400
wasBad = 1

end
end

onevent bad # part G
badness [a rgs [0]] = 1200

	Scripting the swarm: event-based control of microcontroller-based robots.
	Stéphane Magnenat, Philippe Rétornaz, Basilio Noris, and Francesco Mondada

