
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Lausanne, EPFL
2009

Prof. A. Ailamaki, présidente du jury
Prof. K. Aberer , directeur de thèse
Prof. R. Baeza-Yates, rapporteur
Prof. M. Henzinger, rapporteur

Dr F. Silverstri, rapporteur

Query-Driven Indexing in Large-Scale
Distributed Systems

Gleb SKOBELTSYN

THÈSE NO 4280 (2009)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 30 jANvIER 2009

À LA FACULTE INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE SYSTÈMES D'INFORMATION RÉPARTIS

SECTION DES SYSTÈMES DE COMMUNICATION

To my parents Elena and Kirill.

ii

Abstract

Efficient and effective search in large-scale data repositories requires complex indexing solutions
deployed on a large number of servers. Web search engines such as Google and Yahoo! already
rely upon complex systems to be able to return relevant query results and keep processing times
within the comfortable sub-second limit. Nevertheless, the exponential growth of the amount
of content on the Web poses serious challenges with respect to scalability. Coping with these
challenges requires novel indexing solutions that not only remain scalable but also preserve the
search accuracy.

In this thesis we introduce and explore the concept of query-driven indexing – an index
construction strategy that uses caching techniques to adapt to the querying patterns expressed
by users. We suggest to abandon the strict difference between indexing and caching, and to
build a distributed indexing structure, or a distributed cache, such that it is optimized for the
current query load.

Our experimental and theoretical analysis shows that employing query-driven indexing is
especially beneficial when the content is (geographically) distributed in a Peer-to-Peer net-
work. In such a setting extensive bandwidth consumption has been identified as one of the
major obstacles for efficient large-scale search. Our indexing mechanisms combat this problem
by maintaining the query popularity statistics and by indexing (caching) intermediate query
results that are requested frequently. We present several indexing strategies for processing
multi-keyword and XPath queries over distributed collections of textual and XML documents
respectively. Experimental evaluations show significant overall traffic reduction compared to
the state-of-the-art approaches.

We also study possible query-driven optimizations for Web search engine architectures.
Contrary to the Peer-to-Peer setting, Web search engines use centralized caching of query
results to reduce the processing load on the main index. We analyze real search engine query
logs and show that the changes in query traffic that such a results cache induces fundamentally
affect indexing performance. In particular, we study its impact on index pruning efficiency. We
show that combination of both techniques enables efficient reduction of the query processing
costs and thus is practical to use in Web search engines.

Keywords: large-scale systems, query-driven indexing, P2P, P2PIR, information retrieval,
XML, Web search engines, caching, index pruning.

iii

iv Abstract

Résumé

Des techniques d’indexation complexes, déployées sur un grand nombre de serveurs, sont
nécessaires pour garantir l’efficacité des techniques de recherche d’information utilisées au sein
de répertoires de données de grande taille. Par exemple, des moteurs de recherche comme
Google ou Yahoo! s’appuient sur de telles techniques pour retourner des résultats de recherche
pertinents tout en préservant des temps de traitement substanciellement inférieurs à la seconde.
Toutefois, la croissance exponentielle de la quantité d’information présente sur le Web soulève
des défis de passage à l’échelle et de précision qui necéssitent des solutions novatrices pour
l’indexation.

L’objectif de ce travail de thèse est de présenter et d’analyser le concept d’indexation
guidée par les requêtes – une stratégie d’indexation utilisant des techniques de cache afin
de s’adapter aux modèles de requêtage exprimés par les utilisateurs. En particulier, nous
proposons d’abandonner la distinction entre indexation et cache, et de construire une structure
d’indexation distribuée sous la forme de caches distribués optimisant la charge de requêtage.

Notre analyse expérimentale et théorique montre que l’utilisation de telles techniques
d’indexation guidées par les requêtes est particulièrement utile lorsque le contenu du répertoire
est (géographiquement) distribué au sein d’un réseau pair-à-pair. En effet, dans ce type de
situations, une consommation excessive de bande passante a été identifiée comme l’un des
obstacles majeurs pour la mise en oeuvre efficace de systèmes de recherche d’information de
grande taille. Les mécanismes d’indexation que nous proposons permettent d’apporter une
solution à ce problème en maintenant les statistiques de popularité des requêtes et en indexant
(mise en cache) les résultats intermédiaires des recherches fréquentes. Nous proposons plusieurs
mécanismes d’indexation pour le traitement de requêtes multi-termes (resp. de requêtes XPath)
opérant sur des collections distribuées de documents textuels (resp. de documents XML). Nos
évaluations expérimentales démontrent une significative réduction du trafic global en compara-
ison des approches les plus récentes correspondant à l’état de l’art.

Nous traitons également de possibles optimisations guidées par les requêtes afin d’améliorer
les architectures des moteurs de recherche Web. A la différence des systèmes pair-à-pair, les
moteurs de recherche pour le Web utilisent actuellement des mécanismes de cache centralisés
pour réduire la charge de requêtage de l’index principal. Dans cette perspective, nous analysons
les historiques de requêtes (“query logs”) de plusieurs moteurs de recherche existants pour

v

vi Résumé

montrer que les modifications induites dans le trafic de requêtage par de telles techniques
ont un impact sensible sur les performances de l’indexation. En particulier, nous étudions
l’impact de ces modifications sur la performance de l’élagage de l’index. Nous montrons que
la combinaison des deux techniques apporte une réduction importante des coûts de traitement
des requêtes, et, de fait, présente un intérêt pratique pour les moteurs de recherche Web.

Mots clefs: systèmes de grande taille, indexation guidée par les requêtes, P2P, P2PIR,
recherche d’information, XML, moteur de recherche Web, cache, élagage d’index.

Acknowledgements

The first person I would like to thank is my thesis supervisor, Prof. Karl Aberer. He did
an excellent job in supporting me throughout my PhD and at the same time gave me the
opportunity to concentrate on the topics I liked most. I learnt a lot from Karl and I consider
myself very lucky that I did my PhD in his lab.

I am very thankful to the members of my thesis committee: Prof Anastasia Ailamaki, Prof.
Ricardo Baeza-Yates, Prof. Monika Henzinger and Dr. Fabrizio Silvestri for their important
comments and discussions to improve my dissertation.

I wish to thank all my colleagues whom I collaborated with during the work on this thesis,
especially Manfred Hauswirth, Ivana Podnar Žarko, Martin Rajman, Toan Luu and Sebastian
Michel.

I thank all my colleagues from the laboratoire de systèmes d’information répartis – we have
a great team. A special thanks goes to Chantal who helped me sort out so many not only
administrative issues.

I also want to thank the Yahoo! Research Barcelona group for the wonderful 4 months I
spent there during my internship. I learned many interesting things there and was lucky to
work with Flavio Junqueira, Vassilis Plachouras and Ricardo Baeza-Yates.

I thank all my friends from the doctoral school group and beyond, for their support and for
all the great moments we spent together, including all our travels, mountain adventures and
parties: Ivana, Šarūnas, Kasia, Michal, Marta, Maciej, Mallory, Maxim, Ivana, Dan, Parisa,
Wojtek, Irina, Valya, Alexei, Iuli, Oana, Razvan, Carla, Radu, Marcin, Yura, Natasha, Denis,
Philippe, Roman, Sebastian, Sheila, Claudia, Simon and many many others.

Finally, I want to thank Adriana, Sasha, Zoya and my parents Elena and Kirill for their
support and encouragement.

vii

viii Acknowledgements

Contents

Abstract iii

Résumé v

Acknowledgements vii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1 Introduction 1

1.1 Searching Large-Scale Data Repositories . 1
1.1.1 Peer-to-Peer Networks . 3
1.1.2 Peer-to-Peer Data Management . 3
1.1.3 P2P Information Retrieval . 4

1.2 Contribution of the Work . 6
1.3 Structure of the Thesis . 7
1.4 Selected Publications . 8

2 State of the Art 11

2.1 Peer-to-Peer Networks . 11
2.1.1 Distributed Hash Tables (DHTs) . 13

2.1.1.1 DHT Implementations . 14
2.1.2 Indexing in Structured Peer-to-Peer Networks 15

2.1.2.1 Peer-to-Peer Data Indexing Approaches 16
2.1.2.2 Peer-to-Peer XML Management 18

2.2 Distributed Information Retrieval . 19
2.2.1 Index Partitioning Principles . 20
2.2.2 Web Search Engines . 22

2.2.2.1 Caching in WSE . 23

ix

x Contents

2.2.2.2 Index Pruning in WSE . 23
2.2.3 P2P Information Retrieval . 24

2.2.3.1 P2P-IR Systems . 26
2.2.3.2 Indexing with Highly Discriminative Keys 30

3 Efficient Processing of XPath Queries in a P2P XML Storage 33

3.1 Introduction . 33
3.2 P-Grid . 34
3.3 Basic Index . 36
3.4 Caching Strategy . 39

3.4.1 Answering a Query . 40
3.4.2 Cache Maintenance . 41
3.4.3 What to Cache? . 42
3.4.4 Example . 42

3.5 Simulations . 44
3.6 Conclusions . 47

4 Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval 49

4.1 Introduction . 49
4.2 Indexing and Caching Strategy . 51

4.2.1 Meta-Index . 53
4.2.2 Cache Management . 53
4.2.3 Example . 56

4.3 Load Balancing . 57
4.3.1 Meta-Index Load Balancing . 57
4.3.2 Cache Access Load Balancing . 58

4.4 Experimental Results . 58
4.4.1 Simulation Setup . 58
4.4.2 Storage Capacity (Records) . 59
4.4.3 Storage Capacity (Bytes) . 60
4.4.4 Traffic Consumption . 61
4.4.5 Stress Test . 64
4.4.6 Load Balancing . 65
4.4.7 Term Combinations vs. Queries . 65

4.5 Conclusions . 66

5 Scalable Web Text Retrieval with a P2P Query-Driven Index 69

5.1 Introduction . 69
5.2 Distributed Query-Driven Indexing/Retrieval 71

5.2.1 P2P Global Index . 71

Contents xi

5.2.2 Indexing/Retrieval Mechanisms . 75
5.2.3 On-Demand Indexing Mechanism . 78
5.2.4 Updates in the Query-Driven Index . 78

5.3 Indexing/Retrieval Algorithms . 81
5.3.1 Retrieval . 81
5.3.2 Indexing . 83

5.4 Scalability . 84
5.5 Experiments . 87

5.5.1 Retrieval Quality Experiments with the AOL Query-Log 88
5.5.2 Retrieval Quality Experiments with the Wikipedia Query-Log 92
5.5.3 TREC Experiment . 93
5.5.4 P2P Index Simulations . 94
5.5.5 Experiments Investigating the Index Size 96

5.6 AlvisP2P Prototype . 98
5.6.1 AlvisP2P Architecture . 98
5.6.2 AlvisP2P Client Software . 101

5.7 Conclusions . 102

6 ResIn: A Combination of Result Caching and Index Pruning for WSE 103
6.1 Introduction . 103
6.2 ResIn Architecture . 105
6.3 Experimental Setup . 107
6.4 Results Caching . 107

6.4.1 Results Cache Performance . 108
6.4.2 All Queries vs. Misses . 109

6.5 Index Pruning . 111
6.5.1 Term Pruning . 112
6.5.2 Document Pruning . 114
6.5.3 Term+Document Pruning . 117
6.5.4 Discussion . 120

6.6 Conclusions . 121

7 Conclusions 123
7.1 Summary of the Work . 123
7.2 Future Work . 124

Bibliography 125

Curriculum Vitae 139

xii Contents

List of Figures

2.1 Term and document partitioning of the inverted index. 21
2.2 A simplified Web search engine architecture. 22
2.3 The basic idea of HDK indexing. 30

3.1 P-Grid overlay network. 35
3.2 Caching strategy example. 43
3.3 Average number of messages required to answer a query depending on the network

size. 44
3.4 Average number of messages required to answer a query depending on the fraction

of cached queries. 45
3.5 Average update cost depending on the network size. 46
3.6 Average number of messages (query processing + updates) depending on the frac-

tion of cached queries. 46

4.1 Query subsumption example. 52
4.2 Query processing example. 57
4.3 Max achieved CacheHit, SubsumHit and TopKHit for the different number of peers

with 200K records capacity each. 60
4.4 Max achieved CacheHit, SubsumHit and TopKHit for the different number of peers

with 20 MB capacity each. 61
4.5 Cache-hit and traffic consumption for the network of 100 peers. 63
4.6 Cache-hit and traffic consumption while performing a stress test with 500 peers. . 64
4.7 Load caused by the cache accesses and meta-index lookups in the network of 100

peers. 65
4.8 Impact of caching with arbitrary term combinations compared to queries only. . . 66

5.1 Example of index item types. 74
5.2 Possible scenarios of query processing. 76
5.3 Updating the distributed index for a new document. 79
5.4 Query-driven index updates. 81
5.5 Google experiment: maximal overlap achieved for different values of smax. 88

xiii

xiv List of Figures

5.6 Google experiment: overlap achieved for different sizes of the query log measured
in days. 89

5.7 Google experiment: overlap achieved for different values of DFmax. 90
5.8 Google experiment: overlap achieved for different values of QFmin. 91
5.9 The average overlap obtained with the Google and Yahoo! search engines. 92
5.10 Number of generated indexing keys depending on the number of processed queries. 95
5.11 Average overlap depending on the number of processed queries. 95
5.12 Overlap upper bound for different values of QFmin with the small Wikipedia doc-

ument collection. 96
5.13 Dynamics of key activation. 97
5.14 The number of activated keys in the query-driven index for different values of QFmin. 97
5.15 Speculative comparison of the total number of keys stored in the index for the HDK

and QDI approaches. 98
5.16 AlvisP2P architecture – layered view. 99
5.17 AlvisP2P network. 100
5.18 Screenshot of the AlvisP2P client software. 101

6.1 Query processing scheme with the ResIn architecture. 106
6.2 Cache hit achieved with a large results cache using the LRU eviction policy. . . . 108
6.3 Fraction of queries with a given number of terms among all queries and misses. . 109
6.4 Query result size distributions for the Yahoo! Web search engine and the UK

document collection. 110
6.5 Term popularity distribution for all queries and for misses. 111
6.6 Hit rate with the term pruned index. 112
6.7 Comparison of results caching and term pruning used separately and the cumulative

hit rate with both techniques are used together. 113
6.8 Fraction of misses with df of the most frequent and the least frequent term in a

query above a given threshold. 115
6.9 Fraction of all queries and misses that can be resolved from posting lists truncated

to the PLLmax = 300K topmost entries. 117
6.10 Document pruning for all queries and misses compared with term pruning. 118
6.11 Term+document pruning for all queries and for misses with both profit functions. 119
6.12 Index pruning efficiency for different sizes of the document collection. 120

List of Tables

3.1 Main notations of Chapter 3. 36

4.1 Main notations of Chapter 4. 52
4.2 Example of query statistics maintained by a peer in the DCT approach. 56
4.3 Average query traffic obtained with näıve approaches for the Wikipedia query load. 62

5.1 Main notations of Chapter 5. 72
5.2 Indexing statistics for the sample page http://globalcomputing.epfl.ch/alvis. 79
5.3 QDI: Precision@k for the TREC experiment. 93

6.1 ResIn: Hit rates with 10% pruned index. 119

xv

xvi List of Tables

List of Algorithms

3.1 Search in P-Grid. 36
3.2 XPath querying using the basic index. 38
3.3 Shower broadcast algorithm. 38
3.4 XPath querying using the basic index with caching. 41

5.1 QDI query processing. 82
5.2 QDI key probing. 83

xvii

xviii List of Algorithms

Chapter 1

Introduction

If we want things to stay as they are,
things will have to change.

Giuseppe Tomasi di Lampedusa

1.1. Searching Large-Scale Data Repositories

We have witnessed an exponential growth of the amount of Web content in the past twenty
years since the beginning of the World Wide Web in 1989. As for 2008, recent studies report
almost 30 Billion Web pages1 on the surface Web – a part of the Web indexed by search
engines, more than 500 Million Internet domains2 and about 1.5 Billion Internet users3. The
size of Web data has reached the order of petabytes and is constantly growing. Furthermore,
according to [Bergman 2001] the amount of the Web content that is not indexed by search
engines, called the deep Web, could be 400-550 times larger than the surface Web.

It is no surprise that searching in this ocean of data poses serious challenges in terms of
quality and performance. Web search engines such as Google4 and Yahoo! 5 rely upon large
complex systems using thousands of servers, interconnected through different networks, and
often spanning multiple data centers in order to be able to handle thousands of queries per
second6. To sustain such loads and support sub-second query processing times, search engines
constantly crawl the surface Web and build an index over the fetched data. The index is used
for query processing and is distributed and replicated on many servers. At such a scale all
components of the system have to be carefully optimized and many sophisticated techniques
that reduce the resource utilization are employed, in particular caching.

1 http://www.worldwidewebsize.com
2 http://www.isc.org/ops/ds
3 http://www.internetworldstats.com/stats.htm
4 http://www.google.com
5 http://www.yahoo.com
6 http://www.comscore.com/press/release.asp?press=2230

1

http://www.worldwidewebsize.com
http://www.isc.org/ops/ds
http://www.internetworldstats.com/stats.htm
http://www.google.com
http://www.yahoo.com
http://www.comscore.com/press/release.asp?press=2230

2 1. Introduction

Nowadays, commercial search engines earn most of their revenue by embedding context-
sensitive advertisements in the search results. This search monetization model enables sub-
stantial investments in the infrastructure that permits search engines to cope with constantly
increasing loads and deliver reliable service. Thus, for most of the Internet users Web search
became a basic service in many aspects of their everyday life.

However, despite the general success of Web search, the problem of efficient and effective
searching in large-scale data repositories is far from being solved. For instance, improving search
accuracy is at the current focus of research. The Web comprises various types of content in the
form of textual documents, structured metadata, databases, maps, images, video, etc. Using
specific properties of each type could potentially increase the quality of search but requires non-
trivial solutions to handle large volumes of data. In particular, structural information found on
the Web is often ignored at indexing time thereby potentially harming search accuracy. Other
search quality related issues include relevance computation, data freshness, spam detection,
duplicate page removal, language detection, etc.

But possibly the main challenge is scalability – the ability to cope with the growing amount
of information and the increasing demand for the search service. A recent survey by [Baeza-
Yates et al. 2007a] envisions that the number of servers required by a search engine to keep up
with the load in 2010 might reach the order of millions. This could be unfeasible for the cluster-
based architecture currently employed by commercial search engines. Thus, it is important to
design a truly distributed large-scale system that enables fast and accurate search over very
large amounts of content.

In this thesis we study novel indexing strategies that enable efficient search in distributed
large-scale data repositories. In particular, we introduce and explore the concept of query-driven
indexing – an index construction strategy that adapts to the querying patterns expressed by
users. The idea is to abandon the strict difference between indexing and caching, and to build
a distributed indexing structure, which is optimized for the current query load.

We show that employing query-driven indexing is especially beneficial when the content is
(geographically) distributed in a Peer-to-Peer network. In such a setting extensive bandwidth
consumption has been identified as one of the major obstacles for efficient large-scale search.
Our indexing mechanisms combat this problem by maintaining popularity statistics and in-
dexing (caching) intermediate query results that are requested frequently. We present several
indexing strategies for processing multi-keyword and XPath queries over distributed collections
of textual and XML documents respectively.

Contrary to the Peer-to-Peer setting, Web search engines use centralized caching of query re-
sults to reduce the processing load on the main index. We analyze real query logs and show that
the changes in the query traffic that such a results cache induces fundamentally affect indexing
performance. In particular, we study its impact on the efficiency of (static) index pruning – a
technique that reduces the resource utizilation by employing a smaller version of the main index
for query processing. We consider query-driven techniques to construct such a pruned index.

1.1. Searching Large-Scale Data Repositories 3

1.1.1. Peer-to-Peer Networks

Peer-to-Peer (P2P) systems have been very successful as global-scale file-sharing systems (e.g.,
BitTorrent7). A recent study by Sandvine Inc. reports that up to 44% of the bandwidth in
North America is consumed by P2P file sharing [Sandvine Inc. 2008]. Despite the fact that the
success mainly comes from the illegal content distribution, Peer-to-Peer networks have been
also intensively studied in the research community in the past years. Nevertheless, there are
only few applications except for file sharing where Peer-to-Peer systems are being practically
deployed, for example: Seti@home8 for distributed computation, Skype9 for IP telephony and
Zatoo10 for video streaming. However, it is clear that with a right “killer” application a P2P
network could easily reach millions of users in a short time, e.g., Skype recently reported 12
Million users concurrently online11.

1.1.2. Peer-to-Peer Data Management

To make Peer-to-Peer systems a viable architectural alternative for more technical and
database-oriented applications than simple file sharing, support for powerful and expressive
queries is required. A couple of approaches have been suggested already on top of unstruc-
tured P2P systems, for example Edutella [Nejdl et al. 2002]. Unstructured P2P systems do
not use indexing, but typically employ some form of constrained flooding to locate resources.
Thus, they can handle queries of arbitrary complexity, since each peer receiving the query can
locally evaluate it and return its contribution to the overall result set. However, this comes at
the expense of very high bandwidth consumption and some intrinsic limitations.

The efficient alternative are structured P2P systems, as they typically offer logarithmic
search complexity in the number of participating nodes. Although the use of a distributed
index (typically a Distributed Hash Table) enables more efficient query processing, it also
introduces considerable complexity in an environment that is as instable and error-prone as
large-scale Peer-to-Peer systems.

Since the first structured Peer-to-Peer networks12 appeared in 2001, designing a large-scale
data storage on top of such systems became a popular research topic. Various approaches
implementing P2P relational databases (e.g., [Harren et al. 2002]), P2P XML management
systems (e.g. [Abiteboul et al. 2008]) and P2P Information Retrieval systems (e.g. [Bender
et al. 2005b]) were proposed. In particular, P2P XML (or more recently RDF) management
became a popular research direction in the context of distributed digital libraries.

7 http://www.bittorent.com
8 http://setiathome.berkeley.edu
9 http://www.skype.com

10 http://zattoo.com
11 http://share.skype.com/sites/en/news_events_milestones
12 E.g., Chord [Stoica et al. 2001], Pastry [Rowstron and Druschel 2001], CAN [Ratnasamy et al. 2001] and P-

Grid [Aberer 2001].

http://www.bittorent.com
http://setiathome.berkeley.edu
http://www.skype.com
http://zattoo.com
http://share.skype.com/sites/en/news_events_milestones

4 1. Introduction

Many approaches implementing a P2P data storage rely on some sort of distributed indexing
structure optimized for processing conjunctive queries – a crucial functionality of a large-scale
data repository. Standard techniques for processing conjunctive queries in P2P systems are
query flooding and distributed inverted list intersection. However, it has been shown that both
methods fail to scale well with the size of the data. Thus, a number of optimizations have been
suggested recently based on these techniques. In Chapter 3 we present an approach for XPath
query processing in a P2P XML data storage that employs a dedicated caching strategy in
order to avoid expensive query flooding.

1.1.3. P2P Information Retrieval

In reaction to the scalability problems encountered with centralized information retrieval en-
gines, P2P networks that distribute a global index over a large number of interconnected peers
may be considered as a promising solution to cope with Web-scale document retrieval. While
P2P networks containing very large number of peers indeed provide virtually unlimited storage
capacities, there is no evidence about true scalability of P2P Web search. Particularly, [Li
et al. 2003] show that a näıve use of structured or unstructured P2P networks for Web re-
trieval leads to unscalable network traffic, and, even for more sophisticated schemes, such as
term-to-peer indexing [Bender et al. 2005a; Cuenca-Acuna et al. 2003] or hierarchical federated
architectures [Balke et al. 2005b; Lu and Callan 2005], only little evidence of their scalability
is available. In fact, [Zhang and Suel 2005] have shown that, even when carefully optimized,
distributed algorithms using traditional single-term indices in structured P2P networks gener-
ate unscalable network traffic during retrieval, mainly because of the bandwidth consumption
resulting from the large posting list intersections required to process queries with frequent
terms. In Chapters 4 and 5 we propose query-driven indexing techniques for medium-scale and
Web-scale full text retrieval in Peer-to-Peer networks that efficiently combat the problem of
excessive traffic consumption.

There is an ongoing debate on the practical feasibility of large-scale Peer-to-Peer informa-
tion retrieval. From the technological point of view, there is nothing a Peer-to-Peer system can
offer, which can not be implemented with a centralized system provided that it has sufficient
resources. Even with its main advantage – a possibility for no-investment bootstrap, Peer-
to-Peer systems can hardly compete with commercial search engines, which can invest their
advertising revenues in the infrastructure. Especially when search engine users are used to
nearly instant query processing times backed up by huge data centers, P2P systems nowadays
can not impress in terms of query latency.

Nevertheless, while commercial Web search engines are looking towards more distributed
architectures to cope with the scalability challenge [Baeza-Yates et al. 2007a], it could happen
that some techniques developed in the P2P-IR domain would be adopted by search engines
in the near future or new alternative ways of searching on the Web will appear. For example

1.1. Searching Large-Scale Data Repositories 5

several P2P-IR startups such as Faroo13 and YaCy14 have appeared recently. Another example
is the AlvisP2P research prototype15 developed in our group at EPFL (see Chapter 5).

Apart from the scientific interest in large-scale distributed architectures for P2P-IR, we
identify several reasons why P2P Web search can be of practical interest and could possibly
successfully complement commercial search engines in the future:

Queries from the long-tail: [Broder 2002] classifies Web queries into three classes:
navigational (the intent to reach a particular site), transactional (the intent to perform some
Web-mediated activity) and informational (the intent to acquire some information assumed
to be present on one or more web pages). Given the limited resources, search engines would
rather optimize the performance of navigational and transactional queries because they better
contribute to their advertising model. On the other hand, a P2P-IR system might potentially
deliver better results for informational queries than traditional centralized Web search engines
due to a different incentive mechanism.

Heterogeneity: Web search engines use pull mechanisms to populate their indices: they
periodically crawl the Internet, extract textual elements from the acquired Web pages and
build their indexes from these elements. Such uniform and centralized processing implies
that some specific indexing features (e.g., complex gene names in bioinformatic collections, or
formulas in math or chemistry related sites) might get lost unless they are specifically supported
by the search engine, which requires a substantial centralized effort. In contrast, P2P-IR
systems would naturally use push mechanisms: peers decide themselves which documents they
want to make globally searchable and, more importantly, how these documents should be
indexed. Thus, the effort of handling heterogenous data is distributed in the network and
can be managed more efficiently. Such a scenario is therefore appropriate for the management
of heterogeneous, frequently changing document collections. For instance, a specialized digital
library could continue to use its own sophisticated means to index/query local documents, while
using a P2P-based IR infrastructure as a common search framework that makes its specialized
indexing/retrieval means available to the whole P2P network.

Provider-centric vs. broker-centric approach: Major search engines play a central
role as information brokers, but not so much as information creators. Therefore, IR infrastruc-
tures allowing novel business models based on the direct rewarding of original content providers
might be considered. Within this perspective, P2P-IR systems exhibit interesting characteris-
tics: namely, as already mentioned, in such systems only the document indexes are published
in the network, while the documents (and thus the associated added value) always remain
under the control of the original provider (peer). The peers can therefore decide about the
conditions upon which the document access will be granted (e.g., free access, micro-payment,
subscription, remunerated advertizement, etc.).

13 http://www.faroo.com
14 http://yacy.net
15 http://globalcomputing.epfl.ch/alvis

http://www.faroo.com
http://yacy.net
http://globalcomputing.epfl.ch/alvis

6 1. Introduction

Community-based search: A P2P-IR client is an easy to install software that requires
only limited resources from the hosting system. A P2P-IR network is therefore quite simple to
deploy, as it does not require anyone taking the responsibility of setting up a centralized server
(or network of servers). Consequently, as soon as P2P-IR clients become widely available,
building topical communities sharing a document collection within a given domain should
become simple. Thus, as the emergence of such topical communities in fact corresponds to
an implicit structuring of the global Web-scale document collection, this opens an interesting
possibility to fight the unavoidable precision drop associated with the growth of any document
collection.

1.2. Contribution of the Work

In this thesis we make the following contributions to indexing and caching techniques for search
optimization in large-scale information systems:

• In the area of Peer-to-Peer Information Retrieval (Chapters 4 and 5):

◦ We introduce the Distributed Cache Table (DCT) approach (Chapter 4) – a decentralized
cache of query results deployed in a structured Peer-to-Peer network for medium-scale
text retrieval.

◦ We study how subsumption of multi-term queries can be used for cache selection in
the DCT approach and perform extensive experiments with real Wikipedia16 query logs
that show a significant overall traffic reduction compared to the distributed single-term
indexing approach.

◦ We introduce an alternative Query-Driven Indexing (QDI) strategy (Chapter 5) for
Web-scale Peer-to-Peer text retrieval that guarantees scalable storage/bandwidth re-
quirements and is based on: 1) indexing of popular term combinations, and 2) truncating
the posting lists containing too many document references.

◦ We provide a scalability analysis of the QDI approach, based both on theoretical results
and experimental evaluations, that shows the viability of our approach for Web-scale
document collections.

• In the area of Web search engine architectures (Chapter 6):

◦ We show that centralized results caching plays a crucial role in optimizing query pro-
cessing for Web search engines. It guarantees high cache hit rates with a constant
cache capacity independently of the document collection size – an important advantage
compared to index pruning for example.

16 http://www.wikipedia.org

http://www.wikipedia.org

1.3. Structure of the Thesis 7

◦ We compare the properties of the original query stream and the stream of misses after
the results cache, and show how the differences affect the applicability of index pruning.

◦ We compare the efficiency of various static index pruning techniques when a pruned
index is used separately or in combination with a results cache.

◦ We propose a different technique for combining term and document pruning that out-
performs state-of-the-art methods.

• In the area of Peer-to-Peer XML data management (Chapter 3):

◦ We present an indexing strategy that is optimized for processing XPath queries in a
structured Peer-to-Peer network.

◦ We introduce caching of intermediate results to efficiently handle some XPath constructs
and minimize the number of expensive multicasts.

1.3. Structure of the Thesis

The thesis is organized in the following way:
Chapter 2 gives an overview of the existing literature in the areas of P2P networks,

distributed indexing, distributed information retrieval and search engine architectures. The
remaining chapters follow the chronological order.

Chapter 3 presents an approach that aims at efficient processing of XPath queries over
a large XML repository distributed in a structured P2P network. We suggest an indexing
structure that is optimized for processing XPath queries and extensively employs caching of
partial results to efficiently handle some XPath constructs. Because of the dedicated caching
mechanism, the content of the index is directly influenced by the query load. Thus, we can
already refer to such an indexing strategy as query-driven. However, the concept of query-
driven indexing is exploited in greater detail in the next two chapters.

In Chapter 4 we continue to explore query-driven indexing strategies for distributed query
processing in structured P2P networks, now applied to the P2P text retrieval scenario. We
propose an approach for efficient processing of multi-term queries over a large collection of
textual documents distributed in a P2P network. A query is resolved either 1) by locating a
peer that can process the query locally using previously cached results, or 2) by broadcasting
the query to the whole network. A distributed index is built on top of the underlying DHT
to efficiently locate the caches that can answer a given multi-term query, thus, minimizing
the number of expensive broadcasts. By analogy with Distributed Hash Tables (DHTs) we
call this approach Distributed Cache Table (DCT). Our experimental results show up to two
orders of magnitude traffic reduction at retrieval compared to the standard single-term indexing
approach. However, while being suitable for middle-scale distributed digital libraries, DCT
would be impractical for Web-scale document collections due to expensive cache maintenance.

8 1. Introduction

In Chapter 5 we further explore query-driven indexing methods for Peer-to-Peer text
retrieval and propose a new Query-Driven Indexing (QDI) strategy. The QDI approach extends
the Distributed Cache Table mentioned above and the HDK approach [Lu 2007], outlined in
Section 2.2, to enable Web-scale text retrieval. It is based on two important properties: (1) the
generated distributed index stores posting lists for carefully chosen indexing term combinations
that are frequently present in user queries, and (2) the posting lists containing too many
document references are truncated to a bounded number of their top-ranked elements. These
two properties guarantee acceptable latency and bandwidth requirements, essentially because
the number of indexing term combinations remains scalable and the posting lists transmitted
during retrieval never exceed a constant size. An index update mechanism efficiently handles
adding of new documents to the document collection. Thus, the generated distributed index
constantly evolves by following current information needs of the users and changes in the
document collection.

Finally in Chapter 6 we switch our attention from the Peer-to-Peer index organizations
to the classical Web search engine architecture with the purpose of investigating the advan-
tages of query-driven indexing in this setting. In particular, we explore the results caching
and index pruning techniques that employ information about past queries for query processing
optimization. We propose ResIn – a variation of the Web search engine architecture that com-
bines results caching and static index pruning. We study the performance of both components
separately and investigate how they affect each other in a realistic setting.

We provide the conclusions of our work and outline future directions in Chapter 7.

1.4. Selected Publications

This thesis is based on the following main publications:

Peer-to-Peer XML data management

• Gleb Skobeltsyn, Manfred Hauswirth, Karl Aberer: Efficient Processing of XPath Queries
with Structured Overlay Networks. Proceedings of the International Conference on On-
tologies, Databases and Applications of SEmantics (ODBASE), October 31 – November
4, 2005, Agia Napa, Cyprus.

Peer-to-Peer information retrieval

• Gleb Skobeltsyn, Karl Aberer: Distributed Cache Table: Efficient Query-Driven Process-
ing of Multi-Term Queries in P2P Networks. Proceedings of the CIKM Workshop on
Information Retrieval in Peer-to-Peer Networks (P2PIR), November 11, 2006, Arlington,
USA.

1.4. Selected Publications 9

• Gleb Skobeltsyn, Toan Luu, Ivana Podnar Žarko, Martin Rajman, Karl Aberer: Web
Text Retrieval with a P2P Query-Driven Index. Proceedings of the 30st International
ACM SIGIR Conference, July 23 – 27, 2007, Amsterdam, The Netherlands.

• Toan Luu, Gleb Skobeltsyn, Fabius Klemm, Maroje Puh, Ivana Podnar Žarko, Martin
Rajman, Karl Aberer: AlvisP2P: Scalable Peer-to-Peer Text Retrieval in a Structured
P2P Network (demo paper). Proceedings of the 34th International Conference on Very
Large Data Bases (VLDB), August 24 – 30, 2008, Auckland, New Zealand.

• Gleb Skobeltsyn, Toan Luu, Ivana Podnar Žarko, Martin Rajman, Karl Aberer: Query-
Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Future Generation Computer
Systems, Volume 25, Issue 1, January, 2009.

Web search engine architectures

• Gleb Skobeltsyn, Flavio Junqueira, Vassilis Plachouras, Ricardo Baeza-Yates: ResIn: A
Combination of Result Caching and Index Pruning for High-performance Web Search
Engines. Proceedings of the 31st International ACM SIGIR Conference, July 20 – 24,
2008, Singapore.

10 1. Introduction

Chapter 2

State of the Art

In this section we summarize the related work relevant to the scope of the thesis. We
first cover major topics in the area of Peer-to-Peer networks in Section 2.1 including struc-
tured/unstructured P2P organizations, Distributed Hash Tables (Section 2.1.1) and P2P data
indexing (Section 2.1.2). We specifically look into XML management in P2P networks in
Section 2.1.2.2.

We then switch our attention to distributed Information Retrieval (distributed IR) in Sec-
tion 2.2. We first look into index partitioning principles in Section 2.2.1 and discuss architec-
tures of Web search engines with an emphasis on caching and index pruning in Section 2.2.2.
We then provide the overview of P2P Information Retrieval in Section 2.2.3 specifically focus-
ing on the HDK approach [Lu 2007; Podnar et al. 2007], which we extend with query-driven
indexing in Chapter 5.

2.1. Peer-to-Peer Networks

Nowadays most of the popular Web applications such as search engines, mail services, file host-
ing, photo sharing, social networks, etc. rely on centralized architectures. In order to handle
high workloads they are deployed on a large number of servers possibly spanning several data
centers but require a certain degree of centralized administration and control. P2P networks,
on the other hand, target a different niche of applications, where each peer is autonomous
and no central coordination is imposed. In this section we describe the classification of P2P
approaches and present major P2P systems.

Simple file-sharing applications such as Napster1 and Gnutella2 made the Peer-to-Peer idea
popular. Generally, a P2P network is an overlay network that consists of a number of peer
nodes (peers) that act both as clients and servers (“servents”) at the same time. The term

1 http://en.wikipedia.org/wiki/Napster
2 http://en.wikipedia.org/wiki/Gnutella

11

http://en.wikipedia.org/wiki/Napster
http://en.wikipedia.org/wiki/Gnutella

12 2. State of the Art

overlay is used to emphasize that the network is built on top of another network, for example
on top of the Internet. The main properties of the Peer-to-Peer paradigm are:

• Every participating node acts both as a client and a server (“servent”);

• Every node contributes by providing access to (some of) its resources;

• No central coordination;

• No central database;

• Peers are autonomous;

• No peer has a global view of the system;

• Global behavior emerges from local interactions;

• All existing data and services are usually accessible from any peer;

• Peers and connections are often unreliable.

While the number of peers in a P2P network could potentially be very large – locating the
peer or the set of peers that hold a specific resource is a challenging problem. Various solutions
for efficient resource lookup that rely on some form of indexing have been suggested.

To evaluate the efficiency of P2P systems, usually the communication overhead in terms
of network messages is used as the dominating cost factor. Some P2P systems exhibit log-
arithmic search cost, i.e., the number of messages required to locate a given resource grows
logarithmically with the number of peers.

P2P systems can be classified as centralized, decentralized and hybrid. Centralized systems
such as Napster use a central directory for the index – while resources (music files for Napster)
are stored on the individual peers, each resource lookup has to go through the central sever.
This solution does not scale because one node gets all index traffic and is a single point of
failure. Shutting down the central server causes the whole network to stop operating, which is
exactly what happened to Napster in 2001 due to copyright issues.

Decentralized P2P systems rely on distributed index structures, thus avoiding a single point
of failure. Each peer plays an equal role maintaining only a fraction of the index. Alternatively,
in hybrid systems, some peers (called super-peers) play the role of a “centralized” server for a
small subset of “normal” peers.

P2P systems can also be classified as unstructured and structured based on their structural
properties (i.e., topology) and the level of binding and dependency among the peers (i.e., how
much “knowledge” peers maintain of other peers). In unstructured P2P systems such as
Gnutella3 peers organize according to an arbitrary topology. This causes overheads in search
efficiency, but on the other hand makes the system flexible and robust. There exist different

3 http://en.wikipedia.org/wiki/Gnutella

http://en.wikipedia.org/wiki/Gnutella

2.1. Peer-to-Peer Networks 13

searching methods in unstructured systems, which are usually based on a constrained broadcast
approach or random walks [Chawathe et al. 2003]. Constrained broadcast forwards a message
to all neighboring peers, which in turn forward the message until its Time-To-Live (TTL)
counter expires. This solution causes a significant amount of redundant traffic. A random walk
is based on randomly transmitting one (or more) messages (walkers) between peers until the
particular element is found. The walker periodically asks the originator of the request – if it
should continue the search or not. Such walkers are not efficient in terms of time required to
perform the search operation.

Structured P2P systems, on the other hand, have a strict topology and each node stores
and maintains information about few other peers to support efficient routing. The search cost
is reduced noticeably comparing to unstructured systems, but additional maintenance has to
be performed. For example, joining and leaving nodes have to be considered (update of the
routing tables, redundant entries) and also changes in the structure of the network have to be
taken into account. If the population of nodes in the network does not change drastically over
time, structured systems typically perform much better than unstructured systems in terms of
bandwidth consumption. The majority of structured P2P networks implement the hash table
interface and are therefore called Distributed Hash Tables (DHTs).

2.1.1. Distributed Hash Tables (DHTs)

A distributed hash table (DHT) is a hash table whose entries are distributed among different
peers. Each peer implements a variation of a so-called put/get interface inherited from hash
tables: 1) a resource can be placed in the network using the put(resource) function, and 2) a
resource can be retrieved from the network using the get(key) function. As the name suggests,
DHTs use hash functions to compute the key that is used to identify the peer responsible for a
resource. Usually locating this peer is efficient in terms of overlay hops and for the majority of
approaches it takes O(log N) hops to route to any peer in the network, where N is the number
of peers.

Each peer in a DHT is responsible for a partition of the overall key space and maintains a
routing table such that it can forward requests that cannot be answered locally to other peers
(neighbors). The routing table of a peer is constructed such that it holds peers with exponen-
tially increasing distance in the key space from its own position in the key space. This technique
basically builds a small-world graph [Kleinberg 2000], which enables search in O(log N) steps.
Essentially, all systems referred to as DHTs are based on variations of this approach and only
differ with respect to fixed vs. variable key space partitioning, the topology of the key space
(ring, interval, torus, etc.), and how the routing information is maintained (redundant entries,
dealing with network dynamics and failures, etc.). Routing tables are always constructed in
such a way that they cover the whole key space (completeness property). This means a request
for a certain key can be routed to the responsible peer starting from any peer in the network.

Popular DHT implementations include CAN [Ratnasamy et al. 2001], Chord [Stoica et al.

14 2. State of the Art

2001], Pastry [Rowstron and Druschel 2001], Kademlia [Maymounkov and Mazières 2002] and
P-Grid [Aberer 2001]. We briefly describe them in the next section.

2.1.1.1. DHT Implementations

CAN [Ratnasamy et al. 2001] uses a d-dimensional Cartesian coordinate space. The coordinate
space is partitioned into hyper-rectangles. Each node is responsible for one hyper-rectangle,
also called zone. In CAN, a node is identified by the boundaries of the zone it is responsible
for. Two nodes are neighbors if their zones share a d-1 dimensional hyper-plane. Thus, the
routing table for each peer contains links to its neighbors.

Routing in CAN is done by forwarding a message along the path that approximates the
straight line in the coordinate space from the originator of the message to the node responsible
for the key. The size of routing table is O(d) and the routing cost is O(dN1/d). Assum-
ing d is O(log N) the routing cost would be O(log N), thus exhibiting the “standard” DHT
performance.

To join the network, a node chooses an arbitrary point in the key space and contacts the
node responsible for this point by asking any peer in the network. The requested node splits
its zone into two equal parts and assigns one of the halves to the new node. If a node leaves,
its zone is taken over by a neighbor. A dedicated algorithm handles node failures.

Chord [Stoica et al. 2001] uses a one-dimensional key space for both keys and node ad-
dresses (IDs). The key space forms a ring, so that ID 0 follows the highest ID. The node whose
ID most closely follows a key k is responsible for it and is called the successor of k. Chord’s
routing tables, called finger tables, contain the links to the nodes that are halfway around the
ID space from a specific node, a quarter, one eighth and so forth until the immediate successor.
To ensure correct and robust routing, each node additionally keeps a set of links to the next r

immediate successors. This list is called successor list.

Routing in Chord is done by greedily approaching the node that is responsible for a given
key using the finger tables. A node forwards the message to one of the nodes from its finger
table whose ID is highest but not greater then the destination key. The power-of-two structure
of the finger table ensures O(log N) routing cost.

To join the network, a node chooses an arbitrary ID and finds the peer responsible for this
ID. The new node and existing nodes have to update their finger tables.

Pastry [Rowstron and Druschel 2001] nodes randomly choose 128-bit IDs in the base 2b,
where b is usually 4. As in Chord, the key space is also represented by a ring, and the peer
with the ID numerically closest to a key is responsible for that key. Pastry uses a prefix-based
forwarding scheme. Each node A stores a leaf set L, which consists of: 1) the set of |L|/2 nodes
whose IDs are the closest to and smaller then A’s ID, and 2) the set of |L|/2 nodes whose
IDs are the closest to and larger then A’s ID. This leaf set guarantees correct routing and is
conceptually similar to Chord’s successor list. The routing table contains links to the other

2.1. Peer-to-Peer Networks 15

peers in the ID space and the number of rows in the routing table is log2b N . The i-th row
points to a set of nodes whose IDs start with the same prefix of length i as the current node
with the i+1 th digit different, thus, 2b− 1 links are stored in each row.

While routing to the node responsible for a key k, node A uses its leaf set and the routing
table. If k is covered by the leaf set, the message is forwarded to the node responsible for k.
If not, the message is forwarded to the node from the routing table that has a longer shared
prefix with k then A. If such a node does not exist, the message is forwarded to the node with
the same shared prefix as A, but which is numerically closer to k. The upper bound of routing
cost is log2b N . The routing algorithms of Tapestry [Zhao et al. 2001] are similar to Pastry.

P-Grid [Aberer 2001] is a tree-based DHT that was designed at EPFL. P-Grid uses a
virtual tree to position peers in the ID space. Routing tables of O(log N) size enable effi-
cient lookup with O(log N) messaging cost. Contrary to other DHTs, P-Grid uses an order-
preserving hash function that provides a natural support for range queries [Datta et al. 2005].
For this reason we use P-Grid to design a P2P XML storage in Chapter 3 and provide a more
detailed description of it in Section 3.2.

Kademlia [Maymounkov and Mazières 2002] is a symmetrical DHT-based overlay that
uses a XOR-based distance metric to construct its topology and assign resource advertise-
ments to peers. Kademlia’s symmetrical architecture enables the usage of query messages for
maintenance purposes, thus reducing the maintenance costs. Kademlia allows peers to select
their neighbors from sets of peers sharing the same prefix.

Other approaches. [Girdzijauskas et al. 2005] show that the logarithmic-style DHT ap-
proaches described above form topologies that follow Kleinberg’s small world principles [Klein-
berg 2000]. They belong to the special class of “routing efficient” small-world networks where
decentralized, greedy search algorithms provide the best performance. Therefore, conceptually,
all these approaches build similar small-world graphs with certain constraints for each case.
Symphony [Manku et al. 2003] follows Kleinberg’s principle while constructing the peer’s rout-
ing tables resulting into a small-world topology. For other logarithmic-style overlay networks,
each peer views the identifer space as split in log N partitions where each partition is b times
bigger than the previous one (b is the radix of the identifer alphabet). The peers’ routing tables
in such systems contain logb N links to some nodes from each partition. In Chord the chosen
node will be the one with the smallest identifer of the given partition, while Pastry and P-Grid
use any random node in the partition, which is a more relaxed constraint.

[Aberer et al. 2005] identify common properties of P2P approaches and presents a reference
architecture for overlay networks including a qualitative comparison and standardized API
principles. Another good survey is published by [Lua et al. 2005].

2.1.2. Indexing in Structured Peer-to-Peer Networks

In the context of databases, indexing is a technique used by all current database management
systems to speed up the execution of particular kinds of queries. A dedicated redundant data

16 2. State of the Art

structure is typically maintained such that requested table entries can be located quicker as
opposed to a sequential scan through the whole table. The query processing speedup due to
indexing becomes even more significant when the database is distributed.

Peer-to-peer systems can be viewed as a form of loosely-coupled distributed databases
with limited (or without any) central coordination and knowledge. Data lookups in Peer-
to-Peer networks are usually done in two steps: 1) finding the node(s) storing the requested
resource(s), and then 2) retrieving the resource(s) locally at each node and return them to the
user. Very often only the first step is at the focus of Peer-to-Peer research because the latency
caused by local lookup can be often neglected compared to the network delays during the peer
lookup.

Structured Peer-to-Peer systems rely on indexing to enable efficient lookup. Various P2P
indexing approaches exist depending on the types of queries they support: conjunctive queries,
range queries, similarity queries, structured queries, etc. Many of them rely on the basic DHT
indexing functionality and can potentially be deployed on top of any DHT system. Some
might rely on specific properties of a concrete P2P approach or even design a dedicated overlay
network.

2.1.2.1. Peer-to-Peer Data Indexing Approaches

The use of routing indices [Crespo and Garcia-Molina 2002a] facilitates the construction of
a P2P network based on content. In such content-based overlay networks peers are linked if
they keep similar data, i.e., each peer maintains summaries of the information stored at its
neighbors. While searching, a peer uses the summaries to determine whom to forward a query
to. The idea of clustering peers with semantically close content is exploited by [Crespo and
Garcia-Molina 2002b].

The Edutella project [Nejdl et al. 2002] is a P2P system based on a super-peer architec-
ture, where super-peers are arranged in a hypercube topology. This topology guarantees that
each node is queried exactly once for each query, which presumes powerful querying facilities
including structured queries, but does not scale well.

[Datta et al. 2005] leverage P-Grid [Aberer 2001] to implement range queries. Two range
query processing algorithms are proposed: min-max traversal and the shower algorithm. Both
rely on the key-locality property of P-Grid: keys that share the same binary prefix are stored
close to each other because of the order-preserving hash function used in P-Grid. Thus, the
set of peers storing keys matching a given range are neighbors in the overlay structure and can
be efficiently contacted using a constrained multicast. We use the shower broadcast algorithm
in Chapter 3 for XPath query processing.

[Kothari et al. 2003] propose a range addressable network architecture that facilitates range
query lookups by storing the query results in a cache. [Sahin et al. 2004] leverage the CAN P2P
network to address a similar problem. In both cases, queries are specified as integer intervals.
The ranges themselves are hashed, which makes simple key search operations inefficient.

2.1. Peer-to-Peer Networks 17

[Ganesan et al. 2004] describe indexing of multidimensional data in the P2P network using
skip graphs [Aspnes and Shah 2003]. The authors propose two approaches: SCRAP – mapping
of multidimensional data into a single dimension using space-filling curves, and MURK – a
multidimensional extension of skip graphs. Space-filling curves are also used by [Chawathe
et al. 2005] who suggest using Prefix Hash Trees – a data structure for geographic range
queries that is built on top of a standard DHT.

MAAN [Cai et al. 2004] extends Chord to answer multi-attribute queries in the grid en-
vironment. Ranges are supported using a locality-preserving hash function. MAAN uses a
single attribute dominated approach, i.e., one (the most selective) attribute-value pair is used
to route to the peer that answers the whole query. Thus, data records are replicated across
the network for each attribute. We employ a similar approach in Chapter 4 while caching
document digests. RDFPeers [Cai and Frank 2004] use the MAAN architecture for indexing
RDF triples.

Mercury [Bharambe et al. 2004] is an overlay network designed to support multiple-attribute
range queries. The network consists of several sub-networks (hubs) – each responsible for one
attribute. These sub-networks are organized in order-preserving circular overlays such that
each peer is responsible for a certain range of a certain attribute. In order to handle skewed
value distributions Mercury performs data sampling.

Oscar [Girdzijauskas et al. 2006, 2007] is an overlay network based on small world graphs.
Oscar efficiently handles the bandwidth/storage heterogeneity of peers, as well as the non-
uniformity observed in data-oriented applications, i.e., skewed key distributions and skewed
workloads. Oscar is similar to P-Grid [Aberer 2001] as it supports complex non-uniform key
distributions, but does not suffer from node in-degree imbalance while exhibiting good lookup
performance. Unlike Mercury, the construction of the Oscar overlay does not require an ap-
proximation of the key skew over the entire key space. Oscar employs a scalable sampling
technique, where only very few samples of the network are needed to construct routing efficient
networks given key distributions of any complexity. Thus, Oscar supports range queries over
very skewed distributions.

A decentralized P2P cache of Web pages called Squirrel is proposed by [Iyer et al. 2002].
Squirrel enables Web browsers on desktop machines to share their local caches in a Pastry
DHT network, to form a decentralized (e.g., corporate) Web cache.

Finally, the PIER project [Harren et al. 2002; Huebsch et al. 2005] implements a distributed
execution of relational database query operations on top of a DHT including joins and aggre-
gation queries.

In Chapter 3 we propose an approach for XPath query processing in structured P2P net-
works, hence we devote the next section to provide an overview of indexing approaches specif-
ically targeted to XML management in structured P2P networks. Another important cluster
of P2P indexing approaches – P2P full text retrieval is discussed in Section 2.2.3.

18 2. State of the Art

2.1.2.2. Peer-to-Peer XML Management

Many approaches exist that deal with querying of XML data in a local setting. Most of them try
to improve the query-answering performance by designing an indexing structure for local data
processing. Examples of such index structures include DataGuides [Goldman and Widom 1997],
T-indexes [Milo and Suciu 1999], Index Fabric [Cooper et al. 2001], the Apex approach [Chung
et al. 2002] and others. [Mandhani and Suciu 2005] propose caching of materialized views for
query processing in a local XML database. The authors report up to 78% of queries answered
using cached materialized views in their setup. However, these approaches are not targeted for
a large-scale distributed XML storage.

On the other hand, Peer-to-Peer networks yield a promising solution for storing huge
amounts of XML content. The important metrics of such systems are:

• Flexibility of the querying mechanism (e.g., query language);

• Costs of query processing and maintenance.

[Koloniari and Pitoura 2004] propose using multi-level bloom filters [Bloom 1970] to sum-
marize hierarchical data, i.e., the similarity of peers’ contents is based on the similarity of their
filters. [Petrakis et al. 2004] use histograms as routing indexes and propose a decentralized
procedure for clustering peers based on their histogram distances. A recent work by [Skyvali-
das et al. 2007] focuses on replicating XML fragments in a P2P network using a data structure
called Replication Routing Index. The content-based approaches could efficiently solve the
problem of answering structured queries, though lack of structure affects the result set quality
and significantly increases the search cost for large-scale networks.

[Galanis et al. 2003] index XML paths in a Chord-based DHT by using XML tag names
as keys. A peer responsible for an XML tag stores and maintains a data summary with all
possible unique paths leading to the tag. Thus, only one tag from a query is used to locate the
responsible peer. Although ensuring high search speed, the approach introduces considerable
overhead for popular tags, when the data summary is large. The paper also addresses answering
branching XQuery expressions by joining the result sets obtained from different peers.

The approach by [Bonifati et al. 2004] also uses a Chord network, but follows a differ-
ent technique. Path fragments are stored with the information about the super- and child-
fragments. Having located a peer responsible for a path fragment, it resolves the query by
navigating to the peers responsible for the descendant fragments. Additional information has
to be stored and maintained to enable this navigation, which causes additional maintenance
costs. For some types of queries the search operation may be rather expensive due to the
additional navigation.

Caching is used by many P2P indexing approaches to improve performance. For exam-
ple, [Garcés-Erice et al. 2004] utilize caching for efficient processing of XPath queries. Each
descriptor – a top level segment in an XML file, is represented by the most specific query for

2.2. Distributed Information Retrieval 19

this segment, which includes all the data stored in the segment. The most specific queries are
indexed in the DHT pointing to relevant documents. Less specific queries are also indexed
pointing to more specific queries and so on. The querying process is recursive until the most
specific queries are reached. The most popular queries are cached to boost the performance.

Cooperative caching of XPath queries was recently suggested by [Lillis and Pitoura 2008].
The authors exploit a prefix-based approach for caching results of path queries. Relevant to
this thesis, their cache-based query processing relies on query subsumption. Two approaches
are proposed: 1) in a loosely-coupled approach each peer stores results of its own queries in the
local cache and just publishes the queries in the index, and 2) in a tightly-coupled approach
each peer is assigned a specific part of the query space to cache. Cooperative caching is very
similar to our DCT approach discussed in Chapter 4, however we concentrate on multi-keyword
query processing. It also resembles the XPath indexing scheme we employ in Chapter 3.

A P2P XML retrieval system called SPIRIX is proposed by [Winter 2008]. SPIRIX relies on
indexing with combinations of (content, structure)-tuples called XTerms extending the HDK
approach [Luu 2007] described in Section 2.2.3.2. As a result, such an index can process
“content-only” queries consisting of keywords as well as “content-and-structure” queries.

Finally, KadoP, proposed by [Abiteboul et al. 2008], indexes XML element labels (but not
the paths) in a DHT and employs a Distributed Posting Partitioning (DPP) algorithm to split
large posting lists among several peers. It also introduces structural Bloom filters to optimize
the bandwidth consumption.

A good survey of P2P XML management approaches as of 2005 is published by [Koloniari
and Pitoura 2005].

2.2. Distributed Information Retrieval

Broadly defined, Information Retrieval (IR) systems target matching of user queries to docu-
ments that are relevant to the queries. Relevance of a document to a query is explicitly modeled
and usually only the top-k most relevant documents are returned. Typically, the majority of
queries in such systems are multi-keyword queries. Documents might contain structured, semi-
structured, or unstructured textual information. Full text retrieval is a branch of information
retrieval that considers textual data only. In the common case of conjunctive query processing
a text document is a valid answer for a query when it contains all terms from the query. For
example, search engines imply AND semantics for multi-keyword queries by default: a query
{t1 t2 ... tn} is the same as {t1 & t2 & ... & tn}.

To evaluate the quality of query processing, IR systems use various metrics with preci-
sion and recall being the most common ones. Precision and recall evaluate an IR system by
comparing its query results to the ground truth usually provided by human experts. Formally,

precision =
|{relevant documents}⋂{retrieved documents}|

|{retrieved documents}| ,

20 2. State of the Art

i.e., precision is the fraction of the retrieved results that are relevant. Formally,

recall =
|{relevant documents}⋂{retrieved documents}|

|{relevant documents}| ,

i.e., recall is the fraction of relevant results that are successfully retrieved.

Recall and precision are measures for the entire result list and do not account for the
quality of ranking. In large-scale IR systems a query often returns many results and only the
top-k of them are of interest. To capture the effect of ranking the precision@k measure is
used. Precision@k is evaluated at a given cut-off rank, considering only the k topmost results
returned by the IR system. Thus, precision@k is the proportion of the top-k documents judged
relevant.

For efficient query processing IR systems rely on indexing, typically on a variation of the
inverted index technique [Baeza-Yates and Ribeiro-Neto 1999]. The inverted index maintains a
vocabulary – a list of all terms found in the document collection, and a number of posting lists
for all terms from the vocabulary. A posting (or inverted) list of a term t stores the references
to all documents that contain t together with some auxiliary information, e.g., the statistics
that are used for ranking (for example term frequency) or positional information which is used
for resolving phrase queries. A multi-term query can then be processed by intersecting the
posting lists of all query terms, computing (aggregating) the scores of the documents in the
intersection and returning k documents with the highest scores.

2.2.1. Index Partitioning Principles

For large IR systems the inverted index becomes too big to fit on one server and has to be
distributed. There are two main strategies for partitioning the index [Baeza-Yates and Ribeiro-
Neto 1999; MacFarlane et al. 2000]: term partitioning and document partitioning. Figure 2.1
illustrates both strategies.

Document partitioning splits the document collection in several sub-collections and
each sub-collection is indexed locally and independently on a different server. Thus, document
partitioning is sometimes called local index partitioning. A query is processed by all servers in
parallel and the final result is aggregated from the top-k local answers supplied by each server.
Important advantages of document partitioning are the simplicity of the indexing procedure
and nearly even load balancing between the servers. On the other hand, each query has to
be processed by each server which increases the processing costs. Nevertheless, search engines
employ document partitioning as being advantageous when deployed in a cluster with good
network connectivity [Badue et al. 2001]. We will discuss Web search engine architectures and
indexing principles in detail in Section 2.2.2.

Term partitioning assigns terms to servers such that each server maintains complete
posting lists for certain terms. Hence, term partitioning is sometimes called global partition-
ing. To process a query only the servers responsible for the query terms have to be contacted.

2.2. Distributed Information Retrieval 21

However indexing is costly and it is hard to balance the load as the term frequency distribu-
tion follows a power law4. Intersecting posting lists that are stored on different servers can
be time and bandwidth consuming. Nevertheless, Peer-to-Peer Information Retrieval (P2P-
IR) approaches built on top of structured P2P networks (typically DHTs) often choose term
partitioning, e.g. [Zhang and Suel 2005]. The main reason is that in large P2P networks it is
important to restrict the query processing to a small number of peers instead of broadcasting
each query to all peers as in the case of document partitioning. Also the put/get interface of
DHTs can be easily extended to support such a term partitioned index. In Section 2.2.3 we
discuss several P2P-IR approaches in more detail.���������	
�� ������������

�� �� �� �� �� �� �������� ���� �� �� �� �� �� �� ���������
��

���� ����������� ������
� ���� ������������

�� ������� �� �� �� �� ����� ��� ��� ��������� ���������
� �� ! ! "#�$ %&
��

'()�*�*+,- ./ 0��������
1233 4567 897: 45:7; <=>?@ A> BC BCDECEFG HIJKLMNOPQRNRN HMRM S

Figure 2.1. Term and document partitioning of the inverted index.

Recent work by [Bender et al. 2007] surveys the design alternatives for large-scale Web
search focusing on index partitioning in search engines and P2P networks.

4 We provide evidence of this observation in Chapter 6 by analyzing a real Web search engine query log.

22 2. State of the Art

2.2.2. Web Search Engines

In this section we discuss the main architectural principles of Web search engines (WSEs) with
an emphasis on caching and index pruning techniques as being relevant to Chapter 6.

Figure 2.2 shows a simplified architecture of a Web search engine. Following this archi-
tecture, users submit queries through a front-end server. Upon receiving a new query, such a
server forwards it to the back-end servers for processing. Following the document partitioning
principle described above, each of the back-end servers maintains an index for a subset of the
document collection. Each back-end server resolves the query against its local index. The in-
dex comprises posting lists for all terms in the sub-collection, where each posting list contains
(document reference, term frequency) pairs. Once the servers finish the query processing, they
return their results to the front-end server that displays them to the user. A broker machine is
usually responsible for aggregating the results from a number of back-end servers, and return-
ing these results to the front-end server. The whole main index can be replicated to handle
higher query loads.

Figure 2.2. A simplified Web search engine architecture.

A results cache is placed in between the front-end and the broker. It maintains a fixed-
capacity temporary storage of previously computed top-k query results as the broker has to
send them to the front-end server in any case during query processing. Because of the very
skewed popularity distribution of Web search queries, results caching can reduce the number
of queries that hit the back-end servers by more than 50% [Baeza-Yates et al. 2007b]. Each
back-end server is also equipped with a local term cache – an in-memory structure that speeds
up local query processing by minimizing the number of disk input/output operations.

Given the tremendous impact of search engines on the Internet today a number of solu-
tions that aim at reducing query processing costs in such architectures have been proposed

2.2. Distributed Information Retrieval 23

in the literature, including various caching and index pruning techniques. Furthermore, al-
ternative architectures were proposed, e.g., recent work by [Moffat et al. 2007] investigates
term-partitioned index strategies for Web search engines. Other approaches that deal with
term-partitioning by [Lucchese et al. 2007; Zhang and Suel 2007] analyze query-logs in order
to efficiently assign terms to index partitions and avoid expensive distributed intersections by
placing frequently co-queried terms on the same server.

2.2.2.1. Caching in WSE

Eviction policies that maximize the hit rate for a given cache capacity have been studied
in a number of different domains, including search engine architectures. The standard Least
Recently Used (LRU) eviction policy discards the least recently used items first. Despite various
improvements over LRU were suggested, it is used in many domains due to its simplicity. In
the context of results caching, [Fagni et al. 2006] introduce a Static Dynamic Cache (SDC).
SDC achieves higher cache-hit rates than the baseline LRU by devoting a fraction of the storage
for a static cache containing frequent queries pre-computed in advance. Further improvements
are considered by [Baeza-Yates et al. 2007c]. However, when the cache capacity increases, the
hit rate approaches its upper bound determined by the fraction of unique queries in the query
log. Thus, sophisticated eviction policies have little effect on the performance of a results cache
with the capacity of several gigabytes.

[Teevan et al. 2007] explore users’ repeat searching behavior and categorize different refor-
mulations of similar queries in the query logs. [Baeza-Yates et al. 2007b] investigate the impact
of results caching and static caching of posting lists in the context of Web search engine archi-
tecture. The impact of compression on caching efficiency is addressed by [Zhang et al. 2008].
Finally, [Long and Suel 2005] introduce a 3-level caching architecture that includes on-disk
caching of the posting lists for popular term combinations.

2.2.2.2. Index Pruning in WSE

Index pruning can significantly reduce the fraction of the index needed for query processing.
With static pruning, the system generates a pruned index beforehand, whereas dynamic pruning
proceeds on a per-query basis saving resources and reducing latency by dynamically skipping
non-relevant parts of the index.

Index pruning can also be classified as term pruning and document pruning. Term pruning
is the complete removal of posting lists of certain terms (e.g., stop words removal or the ap-
proach described by [Blanco and Barreiro 2007]), whereas document pruning refers to ignoring
only certain portions of the posting lists (e.g., [Carmel et al. 2001]).

In particular, some document pruning techniques were inspired by the algorithms intro-
duced by [Fagin et al. 2001], known as threshold algorithms. The intuition behind these algo-
rithms is that there is no need to scan complete inverted lists if only the top-k fraction of the

24 2. State of the Art

intersection is requested. Instead, the lists are sorted according to some score-dependent value
and it is likely that the top-k query results can be found in the top portions of the posting lists.

In the context of text search engines this idea was first exploited by [Carmel et al. 2001].
They introduced a static document pruning mechanism that is able to reduce the size of the in-
dex by up to 50-70% but at the price of a certain loss in precision. [de Moura et al. 2005] extend
Carmel’s lossy pruning by taking into account co-occurrences of words that appear close to each
other in documents. A similar pruning technique is also employed by [Long and Suel 2003].

Impact-ordered inverted lists and a lossy dynamic pruning scheme tailored for such an
index organization are proposed by [Anh and Moffat 2006]. An impact is a compression-
friendly representation of the importance of a term in a document. [Tsegay et al. 2007] extend
this approach by considering in-memory caching of pruned posting lists.

Alternatively, lossy index pruning based on removal of collection-specific stop words is
discussed by [Blanco and Barreiro 2007]. [Büttcher and Clarke 2005, 2006] use a compact
pruned index that can fit in the main memory of back-end servers. While [Büttcher and Clarke
2005] combine term and document pruning, the approach described by [Büttcher and Clarke
2006] advocates pruning the least important terms for each document individually. Query
processing with the full index maintained in main memory is discussed by [Strohman and
Croft 2007].

The approach presented by [Ntoulas and Cho 2007] investigates static index pruning with
the aim of reducing the amount of resources needed to handle a given query-rate without
sacrificing the result quality (lossless pruning). It employs term pruning, document pruning,
and a combination of both. For a real query log and a large document collection the authors
report relatively good hit rates (60-70%) achieved with the pruned index of 10-20% of the
original index size.

ResIn, described in Chapter 6, studies the impact of results caching on the efficiency of
static index pruning. We show that the index pruning performance is fundamentally affected
by the changes in the query traffic that the results cache induces. We experiment with real
query logs and a large document collection, and show that the combination of both techniques
enables an efficient reduction of query processing costs and thus is practical to use in Web search
engines. We also observed that investigating the behavior of components of a Web search engine
in isolation can sometimes give misleading results without considering the impact they have
on each other.

2.2.3. P2P Information Retrieval

In contrast to Web search engines architectures, Peer-to-Peer networks impose serious restric-
tions on the design of P2P-IR systems, such as:

• Decentralization and lack of control: no centralized components such as brokers or caching
servers are available,

2.2. Distributed Information Retrieval 25

• Dynamicity: peers can join and leave at any time – the churn rate is substantially higher
than the failure rate among back-end servers,

• Heterogeneity: performance, connectivity and storage capacity of peers might largely
vary,

• Limited connectivity: unlike in a stable and fast cluster network, overlay connections
often exhibit limited bandwidth and long latencies.

Nevertheless, information retrieval in Peer-to-Peer networks gained significant attention in
recent years. Apart from the motivations listed in Section 1.1.3, leveraging a P2P network to
deploy a highly distributed search engine can be interesting for several reasons:

• A P2P search engine is a straightforward application that can be built on top of P2P
networks,

• A (text) search engine is often an important supplementary functionality to other P2P
applications such as peer data management systems (PDMS),

• The lack of cental control and coordination can be beneficial for more objective informa-
tion search,

• Indexing solutions developed for the P2P setting can be considered in other (e.g., cen-
tralized) scenarios.

Peer-to-Peer information retrieval and in particular full text retrieval has been investigated
for various P2P network organizations. Search techniques in unstructured networks are usually
based on broadcasts, thus suffering from high bandwidth consumption. Hence, approaches
based on random walks, content-based routing indexes and hierarchical network solutions have
been proposed to reduce the generated traffic in a P2P network.

Many P2P-IR approaches employ peer-level document collection descriptions to identify
the candidate nodes that can process the query. These descriptions guide the peer-selection
process followed by document-level retrieval from the selected peers. Such solutions depend on
the quality of the peer-level descriptors and in general perform well for clustered content, when a
small subset of peers holds documents relevant to a given query. However, the main problem of
such solutions is the increase of the number of generated messages during retrieval with the size
of the network in order to maintain acceptable retrieval quality. In contrast to such peer-level
solutions, document-level indexing approaches do not compromise the retrieval quality when
the network size grows but require higher index maintenance costs. Such approaches typically
distribute the complete index in a structured P2P network using the term partitioning scheme.

Structured networks are more expensive in terms of maintenance, but offer considerably
better search efficiency compared to unstructured networks. For example, a DHT that main-
tains a term-partitioned global index provides a straightforward P2P-IR solution resolving

26 2. State of the Art

single-term lookups by hashing terms into keys. Assuming that the distributed index stores
posting lists for all terms found in a document collection, then a multi-term query can be
resolved by intersecting these lists for all terms in the query. However, this approach faces
significant scalability problems caused by the high traffic costs required for intersecting large
posting lists. Thus, a number of solutions have been suggested to resolve this issue.

Popular P2P-IR systems are described in the following section.

2.2.3.1. P2P-IR Systems

Some P2P approaches use resource selection algorithms such as CORI [Callan 2000] or the
Kullback-Leibler divergence-based algorithm [Xu and Croft 1999] that aim at selecting a small
set of resources that contain a large number of documents relevant to the query. Resources are
ranked by their likelihood to return relevant documents and top-ranked resources are selected.

For example, the federated search system described by [Lu 2007; Lu and Callan 2003, 2005]
uses a hierarchical P2P network organization. The P2P network consists of hubs that are
connected to their leaf nodes according to a clustering algorithm. A query is submitted to one
or more initially selected hub nodes. The hub uses its resource selection algorithm to relay
the query to its leaf nodes as well as to other neighboring hubs based on their descriptions.
A TTL counter is attached to each query to limit the resource utilization. Leaf nodes resolve
the query against their local document collections and the results are propagated back to the
query originator. Hubs execute a result merging algorithm to aggregate answers from different
leaf nodes. [Lu and Callan 2006] improve resource selection by modeling past user behavior to
direct the search into the adequate part of the network.

A similar solution is employed by [Balke et al. 2005a] with an emphasis on federated digital
libraries. Here a super-peer backbone network maintains the information about good candi-
dates for answering a query based on past queries. The approach proposed by [Papapetrou
et al. 2007] clusters peers into communities, each of the communities having a representative
super-peer. All occurrences of a term in a community are published in a backbone DHT built
by the corresponding super-peer.

SemreX [Jin and Chen 2008] is a system for sharing desktop literature documents in an
unstructured P2P network based on clustering semantically similar peers. Peers are connected
based on their content with the addition of long-range links to enable efficient content-based
routing.

PlanetP [Cuenca-Acuna et al. 2003] gossips Bloom filter based summaries about the peers’
document collections to offer content addressable publish/subscribe service in an unstructured
P2P network. Inverted peer frequency statistics are used to estimate which peers are good
candidates to process a given query.

Minerva [Bender et al. 2005a,b] maintains a global index with peer selection statistics
in a structured overlay to facilitate the peer selection process. The global index only holds
compact, aggregated meta-information about the peers’ local indexes to the extent that the

2.2. Distributed Information Retrieval 27

individual peers are willing to disclose. A query initiator selects a few most promising peers
based on their published per-term metadata. Subsequently, it forwards the complete query to
the selected peers which execute the query locally.

Minerva∞ [Michel et al. 2005b] is a P2P-IR system that is based on an order preserving
DHT. It relies on Term Index Networks (TINs) storing the global inverted list of a term on
several peers. The query is processed by a parallel top-k algorithm involving nodes within
TINs and across TINs.

Additionally, the importance of the term co-occurrence statistics has been recognized
by [Michel et al. 2006]. In this approach term co-occurrences facilitate identifying promis-
ing peer-level index entries associated with term combinations. The authors show that such
a technique largely improves the peer selection process and consequently the retrieval perfor-
mance. The usage of keyword correlation statistics for publish/subscribe scenarios is discussed
by [Zimmer et al. 2008].

In contrast to peer-level solutions, document-level indexing has mainly been applied in
structured P2P networks. Since large posting lists are the major concern for such solutions,
both [Reynolds and Vahdat 2003] and [Suel et al. 2003] have proposed top-k posting list joins,
Bloom filters [Bloom 1970], and caching as promising techniques to reduce search costs for
multi-term queries. A recent work by [Chen et al. 2008] reports 73% traffic reduction by
applying optimal Bloom filter settings for DHT-based full text retrieval. However, a study
by [Zhang and Suel 2005] shows that single-term indexing is practically unscalable for Web
sizes even when sophisticated protocols are combined to reduce retrieval costs.

Top-k query processing inspired by the algorithms of [Fagin et al. 2001] has been employed
by many P2P-IR approaches to combat the problem of extensive bandwidth consumption.
The main idea is to terminate the processing of a query as early as possible and at the same
time guarantee (or provide probabilistic guarantees) that the top-k results obtained so far are
correct. While resolving a multi-term query using the inverted index there is no need to scan
complete posting lists if only a top-k fraction of the intersection is requested. Instead, the
lists can be sorted according to the score values and it is likely that the top-k query results
can be found by probing the documents found in the top-portions of the posting lists only.
Early termination is particulary beneficial for distributed posting list intersections since it has
an immediate effect of reducing bandwidth consumption. Top-k query processing algorithms
tailored for P2P networks include the Distributed Pruning Protocol (DPP) by [Suel et al. 2003],
the Three-Phase Uniform Threshold (TPUT) algorithm by [Cao and Wang 2004] and a family
of distributed threshold algorithms (DTA) with Bloom filter optimizations by [Zhang and Suel
2005].

A family of approximate top-k query processing algorithms called KLEE are proposed
by [Michel 2007; Michel et al. 2005a]. With small penalties on the top-k result quality KLEE
algorithms significantly reduce the bandwidth consumption while query processing. Each peer
maintains a histogram that encodes the distribution of scores in its index. Each cell in the

28 2. State of the Art

histogram stores a synopsis: a Bloom filter based structure that represents the set of documents
whose scores fall in this cell. This data is used in a 4-steps approximate query execution
algorithm, which according to the experiments consumes up to an order of magnitude less traffic
than TPUT while preserving the recall at around 80-90% depending on the test collection.

The pSearch system [Tang et al. 2004] proposes another approach that places documents
onto a DHT network according to their semantic vectors produced by Latent Semantic Indexing
(LSI) in order to reduce document dimensionality and guarantee solution scalability. However,
as semantic vectors have to be defined a priori, the method cannot efficiently handle dynamic
scenarios and adapt to changing collections.

A costly distributed posting list intersection can also be avoided if posting lists, apart from
document identifiers, also store so-called document digests – lists of terms contained in the
documents. Such document digests are sufficient for local query answering: a query can be
resolved from a posting list for any of its terms. Although this insures that the traffic caused by
query processing is low, the size of the index becomes very large. Moreover, populating such
an index generates substantial traffic. Therefore, this approach is typically used by smaller
scale applications in domains other from P2P-IR, for example [Bharambe et al. 2004; Cai et al.
2004; Tryfonopoulos et al. 2005]. The paper by [Tang and Dwarkadas 2004] describes eSearch
– a P2P full text retrieval system that uses a similar indexing principle. eSearch stores only
selected terms from documents in the posting lists thus sacrificing the search quality in order
to reduce the index size. A similar technique is employed by [Li et al. 2005] and [Kurasawa
et al. 2007].

Our Distributed Cache Table (DCT) approach described in Chapter 4 also uses document
digests for indexing. In contrast to the approaches described above, it generates the index (or
distributed cache) “on-the-fly”, driven by the query load, and caches results for multi-term
queries instead of single terms only.

The idea of indexing with term combinations has also been exploited in the past. An ap-
proach that is close to DCT with respect to the caching strategy is suggested by [Bhattacharjee
et al. 2003]. The authors employ a similar idea with a different hierarchical index organization
called ViewTree. However, no load balancing is considered and no explicit results showing
query processing costs are reported. Finally, a recent work by [Kobatake et al. 2008] suggests
a caching scheme for conjunctive queries in a DHT network that closely resembles the DCT
approach.

The Keyword-Set Search System (KSS) [Gnawali 2002] precomputes and stores results of
inverted list intersections for popular keywords. However, KSS’ exhaustive generation of term
combinations leads to unrealistic storage requirements for the index. An extension of the KSS
system that takes term co-occurrence statistics into account in order to reduce the index size is
presented by [Zhang et al. 2005]. However, neither the result quality nor the cost of indexing
is reported. Moreover, the method requires a query log available in advance and might not
adapt well to future queries.

2.2. Distributed Information Retrieval 29

The HDK approach discussed in Section 2.2.3.2 as well as the indexing scheme presented
in Chapter 5 rely on multi-term indexing but also focus on top-k query processing and employ
pruning of posting lists to reduce the bandwidth consumption.

A query-driven indexing method at document granularity has recently been proposed by [Li
et al. 2007]. The solution is based on single-term indexing and, contrary to our contributions,
does not consider indexing with term combinations.

The paper by [Loo et al. 2004] suggests to avoid maintaining large posting lists in the global
index by complementing index-based query processing with broadcasting. The authors suggest
using flooding mechanisms to answer popular queries, and resort to indexing only for rare
queries. Interestingly, this approach is the opposite to caching-based P2P systems such as DCT.

[Shi et al. 2004] suggest a hybrid index partitioning scheme for keyword search. All peers are
clustered in groups and the indexing technique employs term partitioning within the groups, but
uses document partitioning between the groups. Thus, each query has to be broadcast to all the
groups but only several nodes do the actual processing within each group. Since the document
collection size within a group can be bounded, this solution reduces latency and efficiently
distributes the bandwidth consumption compared to the standard P2P global index approach.

While most of the approaches employ either peer-level or document-level indexing granu-
larity, the recent work by [Nguyen et al. 2008] suggests an adaptive scheme aiming at balancing
the costs between indexing and query processing. For an individual peer, groups of local doc-
uments are created and represented as term sets which are managed by the index. Thus,
such a group-level indexing strategy is a generalization of both indexing techniques: peer-level
(one group per peer) and document-level (one document per group). The authors propose a
probabilistic model to estimate the cost associated with a given number of groups. They also
introduce a grouping algorithm based on the observed term distributions derived from the doc-
uments and the query logs. Experimental results report cost reductions of 47 – 73% compared
to the standard peer-level and document-level indexing strategies respectively.

The approach described by [Joung et al. 2005] follows quite a different indexing technique
for P2P keyword search. Each document is mapped to an r-bit vector according to its keyword
set and is viewed as a point in a r-dimensional hypercube. The hypercube is matched into a
DHT such that each document is indexed by one peer only. Query expansion and caching are
used to reduce bandwidth consumption for queries containing few keywords.

Finally, [Yong Yang and Cooper 2006] compare the performance of full text retrieval in
structured, hierarchical and unstructured P2P systems for information retrieval. They con-
clude that in their experimental setting random walks in the unstructured network suffer from
very high latencies, while the structured network provides the best response times for query
processing. On the other hand, the super-peer network consumes less bandwidth than the
structured P2P network during indexing and the unstructured P2P network obviously does
not require indexing at all. These results, however, depend on the experimental setup and the
implementation of each approach.

30 2. State of the Art

2.2.3.2. Indexing with Highly Discriminative Keys

In this chapter we present the HDK approach [Luu 2007; Podnar et al. 2006b, 2007], a DHT-
based full text retrieval solution based on indexing with Highly Discriminative Keys (HDKs).
We pay a special attention to this indexing method because we use it as the basis for the
query-driven indexing approach in Chapter 5.

Instead of indexing with single terms, which leads to potentially very large posting lists,
the HDK approach reduces the retrieval traffic by systematically truncating large posting lists
to a constant size, while compensating the resulting loss of information by also indexing with
carefully selected combinations of indexing terms. Consequently, the index contains a larger
number of entries – terms and term combinations which are denoted as indexing keys. However,
each entry is associated with a shorter posting list.

The idea behind the HDK approach is quite intuitive and is depicted in Figure 2.3. This
approach is fully in line with the general properties of P2P networks that can easily store large
amounts of data (provided that enough peers are available), but must be carefully controlled
with respect to the number of messages and the volume of information transmitted between
the peers.

term 1 posting list 1

term 2 posting list 2

term T-1 posting list T-1

term T posting list T

... ...

long posting lists

s
m
a
ll
v
o
c
.

key 11 posting list 11

key 12 posting list 12

key 1i posting list 1i

... ...

short posting lists

la
rg
e
 v
o
c
.

PEER 1

...

key N1 posting list N1

key N2 posting list N2

key Nj posting list Nj

... ... PEER N

PEER 1

PEER N

...

HDK approach

Naïve approach

Figure 2.3. The basic idea of HDK indexing: to index a large number of term combinations associated
with small posting lists instead of a small number of terms with large posting lists.

2.2. Distributed Information Retrieval 31

Query processing with such an index is performed by collecting the truncated posting lists
for the keys that are contained in the query and computing the top-k best ranked results. Band-
width consumption and latencies are minimal because the size of any posting list is bounded
by a constant denoted as DFmax (i.e., maximal document frequency). Chapter 5 describes the
query processing in more detail.

However, the number of potential multi-term keys grows exponentially with the size of the
collection, therefore indexing keys have to be carefully selected such that the index remains
scalable, but, at the same time, delivers acceptable retrieval quality. The HDK approach defines
a number of filtering conditions for selecting indexing keys, which we briefly describe below.

Size filtering limits the number of terms in an indexing key (or the size of the key) to a
maximal size smax. Obviously, setting smax = ∞ disables the size filtering and permits keys
with an arbitrary amount of terms to be indexed, which is also supported.

Proximity filtering limits the number of documents matching a multi-term key by intro-
ducing a proximity window w. A document matches a multi-term key only if all terms from
the key are encountered within the distance of w terms from each other within the document.
A set of keys Kw denotes all possible keys that pass the proximity filter for a given document
collection.

Redundancy filtering relies on the key subsumption property, which is described below.

Each key k is associated with its document frequency df(k) corresponding to the number
of documents in the collection that contain k. Given a document frequency threshold DFmax,
the key document frequencies are used to classify the keys into two distinct categories: dis-
criminative keys and non-discriminative keys. Discriminative keys (DKs) are the keys that
appear in at most DFmax documents and therefore have a high discriminative power. On the
other hand, non-discriminative keys (NDKs) are the keys with a low discriminative power.

Notice that the DKs (resp. NDKs) verify the following subsumption property : any key
containing a DK of smaller size is also a DK. Respectively, any key contained in an NDK of
bigger size is also an NDK.

The redundancy filtering method relies on the subsumption property of the DKs to further
reduce the number of candidate keys. If a key k1 contains a discriminative key k2 of a smaller
size, then k1 is also discriminative and the answer set PL(k1), which is contained in PL(k2),
can be produced by local postprocessing of PL(k2). In other words, k1 is practically redundant
with respect to k2 and therefore does not need to be stored in the global index.

Thus, a key k is highly discriminative iff: 1) |k| ≤ smax (size filtering), 2) k ∈ Kw (prox-
imity filtering), and 3) k is discriminative and all its sub-keys of strictly smaller size are
non-discriminative.

In other words, redundancy-based filtering implies considering only highly-discriminative
keys and all their (non-discriminative) sub-keys for indexing. It greatly reduces the number of
candidate keys, and, due to the subsumption property, fully preserves the indexing exhaustive-
ness.

32 2. State of the Art

The scalability analysis of the HDK approach [Podnar et al. 2007] has shown that the
number of generated keys grows linearly with the number of documents, which is acceptable
under the reasonable assumption that the ratio between the total number of documents and
the total number of peers in the network remains bounded.

However, we have observed that the HDK approach generates a large number of keys that
are never or rarely used in queries. Indeed, as the keys are generated only on the basis of their
document frequencies, their popularity in user queries (and thus practical usefulness) is not
taken into account. Obviously, the creation and maintenance of such superfluous keys causes
substantial consumption of both bandwidth and storage, which represent valuable resources in
large-scale networks. We describe our solution to this problem in Chapter 5.

Chapter 3

Efficient Processing of XPath

Queries in a Peer-to-Peer XML

Storage∗

3.1. Introduction

This chapter presents an approach that aims at efficient processing of XPath queries over a large
XML repository distributed in a structured P2P network. We suggest an indexing structure
that is optimized for XPath query processing and extensively employs caching of partial results
to efficiently handle some XPath constructs. Because of the dedicated caching mechanism, the
content of the index is directly influenced by the query load and thus we refer to such an
indexing strategy as query-driven. This chapter describes the initial results of applying query-
driven indexing for P2P search. In Chapters 4 and 5 we will explore this concept in greater
detail in the context of the P2P text retrieval scenario.

We assume a structured P2P system that can process queries expressed in a complex XML
query language such as XQuery. XQuery uses XPath expressions to locate data fragments
by navigating structure trees of XML documents stored in the network. We refer to this
functionality as processing of path queries. In this work we do not address query plans or
joins, but focus on a basic indexing strategy that facilitates efficient answering of path queries,
which we refer to as structural indexing in the following. We restrict the supported queries
to a subset of the XPath language including node tests, child axes (“/”), descendant axes
(“//”) and wildcards (“*”), which we will denote as XPath{∗,//}. Our goal is to provide a basic
functional building block that can be exploited by a higher-level query engine to efficiently
answer structural parts of complex queries in large-scale structured P2P systems. Moreover,
we think that the work presented in this chapter provides concepts, which can be generalized

∗ The material presented of this chapter was published in the proceedings of the International Conference on

Ontologies, DataBases, and Applications of Semantics (ODBASE’05) [Skobeltsyn et al. 2005].

33

34 3. Efficient Processing of XPath Queries in a P2P XML Storage

to a more complete support of XPath predicates and joins in the P2P environment.
The remainder of the chapter is organized as follows. Section 3.2 gives a brief introduction

of the P-Grid structured overlay network, which we use to evaluate our approach. Our basic
indexing strategy is described in Section 3.3. In Section 3.4 we present a dedicated distributed
caching technique that improves the performance of the basic index. The complete approach
is then evaluated in Section 3.5 through simulations. Finally, we present our conclusions in
Section 3.6.

3.2. P-Grid

We have briefly introduced P-Grid1 [Aberer 2001] in Section 2.1 already. However, since its
properties are crucial for our indexing strategy and also to keep the chapter coherent we give
a more detailed P-Grid overview in the following.

P-Grid is a structured overlay network that implements a Distributed Hash Table (DHT). P-
Grid peers refer to a common underlying trie structure in order to organize their routing tables
as opposed to other topologies, such as rings (Chord [Stoica et al. 2001]), multi-dimensional
spaces (CAN [Ratnasamy et al. 2001]), or hypercubes (HyperCuP [Schlosser et al.]). A trie is a
generalization of a tree for storing strings in which there is one node for every common prefix.
The strings are stored in extra leaf nodes. In the following we will use the terms trie and tree
conterminously.

Without constraining general applicability we use binary keys in P-Grid. Each peer π ∈ Π,
|Π| = N is associated with a leaf of the binary tree (see Figure 3.1). Each leaf corresponds
to a binary string γ, also called the key space partition. Thus, each peer π is associated with
a path γ(π). To construct the routing table, the peer π stores for each prefix γ(π, `) of γ(π)
of length ` a set of references ρ(π, `) to peers π′ with the property γ(π, `) = γ(π′, `), where
γ is the binary string γ with the last bit inverted. Therefore, at each level of the tree the
peer has references to some other peers that do not pertain to the peer’s subtree at that level.
This enables the implementation of prefix routing for efficient search. The cost for storing the
references and the associated maintenance cost scale as they are bounded by the depth of the
underlying binary tree.

Each peer stores a set of data items δ(π). For the data item d ∈ δ(π), the binary key key(d)
is calculated using an order-preserving hash function, i.e., ∀s1, s2 : s1 < s2 ⇒ h(s1) < h(s2),
which is a prerequisite for efficient range querying as information is being clustered. The
binary key key(d) has γ(π) as prefix, but it is not excluded that temporarily also other data
items are stored at the peer. That is, the set δ(π, γ(π)) of data items whose key matches
γ(π) can be a proper subset of δ(π). Moreover, for fault-tolerance, query load-balancing and
hot-spot handling, multiple peers are associated with the same key-space partition (structural
replication). Additionally, peers maintain references to the peers with the same path, i.e.,

1 P-Grid project web site: http://www.p-grid.org

http://www.p-grid.org

3.2. P-Grid 35

their replicas, and use epidemic algorithms to maintain replica consistency. Figure 3.1 shows
a simple example of a P-Grid tree. Notice that while the network uses a tree/trie abstraction,
the system is in fact hierarchy-less, and all peers reside at the leaf nodes. This avoids hot-spots
and single points of failure.

01 : 2
1 : 5

00 : 6
1 : 4

11 : 5
0 : 2 0 : 6

11 : 5 10 : 4
0 : 6

Routing table
(route keys with prefix P to peer X)

00 01 10 10 1100

0

00 01 10 11

1

query(5, 100)

query(4, 100), found!

query(6, 100)

01 : 2
1 : 3

Legend:

Peer X

Data store
(keys have prefix P)

3 4 521

P

6

X

P:X

Figure 3.1. P-Grid overlay network.

P-Grid supports a set of basic operations:

• Retrieve(key) for searching a certain key and retrieving the associated data item,

• Insert(key, value) for storing new data items,

• Update(key, value) for updating a data item, and

• Delete(key) for deleting a data item.

Since P-Grid uses a binary tree, Retrieve(key) is of complexity O(log N), measured in
overlay messages, required for resolving a search request in a balanced tree. I.e., all paths
associated with peers are of equal length. Skewed data distributions may imbalance the tree,
so that it may seem that search cost becomes non-logarithmic in the number of messages.
However, in [Aberer 2002] it is shown that due to the randomized choice of routing references
from the complimentary subtree, the expected search cost remains logarithmic, independently
of how the P-Grid is structured. The intuition why this works is that in search operations keys
are not resolved bit-wise, but in larger blocks, thus the search costs remain logarithmic in terms
of messages. This is important as P-Grid’s order-preserving hashing may lead to non-uniform
key distributions.

The basic search algorithm is shown in Algorithm 3.1. The peer that currently processes
the request is denoted as π in the algorithm. The algorithm always terminates successfully, if
the P-Grid is complete (ensured by the construction algorithm) and at least one peer in each

36 3. Efficient Processing of XPath Queries in a P2P XML Storage

partition is reachable (ensured through redundant routing table entries and replication). Due
to the routing table construction, Retrieve(key, π) will always find the location of a peer at
which the search can continue (use of completeness). With each invocation of Retrieve(key, π),
the length of the common prefix of γ(π) and key increases at least by one and therefore the
algorithm always terminates.

Algorithm 3.1 Search in P-Grid: Retrieve(key, π).
1: if (γ(π) isPrefixOf key) or (γ(π) = key) or (key isPrefixOf γ(π)) then
2: return(d ∈ δ(π) | key(d) = key);
3: else
4: determine ` such that γ(key, `) = γ(π, `);
5: r = randomly selected element from ρ(π, `);
6: Retrieve(key, r);
7: end if

Insert(key, value) and Delete(key) are based on P-Grid’s more general update functional-
ity [Datta et al. 2003]. An insert operation is executed in two logical phases: first an arbitrary
peer responsible for the key-space to which the key belongs is located (Retrieve(key, π)) and
then the found peer notifies its replicas about the inserted key using a light-weight hybrid
push-and-pull gossiping mechanism. Deletions and updates work alike.

Table 3.1 summarizes the main notations we will use throughout the chapter.

π Peer
N Number of peers in the P2P network

γ(π) Path of peer π

γ(π, `) Prefix of length ` of π’s path
ρ(π, `) π’s routing table references at level `

δ(π) Data items under responsibility of peer π

key(d) Binary key of a data item d

h(“val”) Result of applying the hashing function on “val”
qB Longest subpath of the query q, see Definition 3.1
qC Sorted sequence of subpaths of the query q, see Definition 3.2

Table 3.1. Main notations of Chapter 3.

3.3. Basic Index

The goal of structural indexing is to provide efficient means to find a peer or a set of peers, that
store pointers to XML documents or fragments containing the path(s) matching the queried
expression. As we target large-scale distributed XML repositories, our goal is to minimize the

3.3. Basic Index 37

messaging costs, measured in overlay hops, required to answer the query. The intuition of
our approach is to use standard database techniques for suffix indexing applied to XML path
expressions. Instead of symbols, the set of XML element tags is used as the alphabet.

Given an XML path P consisting of m element tags, P = t1/t2/t3/ . . . /tm, we store m data
items in the P-Grid network using the following subpaths (suffixes) as application keys:

• sp1 = t1/t2/ . . . /tm

• sp2 = t2/ . . . /tm
...

• spm = tm

The key of each data item is generated using P-Grid’s prefix-preserving hash function:
keyi = h(spi). Insertion of m data items requires O(m log N) overlay hops. Each data item
stores the original XML path to enable local processing and the URI of the XML source
document/fragment. We refer to this index as basic index.

For example, for the XML path “store/book/title”, the following data items (we represent
them in a form of {key, data} pairs) will be created:

• {h(“store/book/title”), (“store/book/title”, URI)}

• {h(“book/title”), (“store/book/title”, URI)}

• {h(“title”), (“store/book/title”, URI)}

Any peer in the overlay network can submit an XPath{∗,//} query. To support wildcards
(“*”) we consider them as a particular case of descendant axes (“//”). They are converted
into “//” and are used only at the local lookup stage as a filtering condition. I.e., our strategy
is to preprocess a query replacing all “*” by “//”, for example, “A/*/B” → “A//B”, answer
the transformed query using the distributed index and filter the result set using the original
query. Thus, we obtain the intended semantics of wildcards. In this approach we concentrate
on general indexing strategy and do not address possible optimizations on this issue.

Definition 3.1. A longest subpath of a query q, denoted as qB, refers to the longest
sequence of element tags divided by child axes (“/”) only. For example, for the query
“A//C/D//F”, qB = “C/D”.

When a query is submitted to a peer, the peer generates the query message that contains
the path expression and the address of the originating peer. This message is sent to the
network following the basic structural querying algorithm as shown in Algorithm 3.2. The
basic algorithm uses the longest query subpath qB as a search key2.

2 We choose the qB notation for the search key because it is used with the basic index.

38 3. Efficient Processing of XPath Queries in a P2P XML Storage

Algorithm 3.2 XPath querying using the basic index: AnswerQueryBasic(q, π).
1: compute qB from q;
2: key = h(qB)
3: if (γ(π) isPrefixOf key) or (γ(π) = key) then
4: return(d ∈ δ(π) | isAnswer(d, q) = true);
5: else if key isPrefixOf γ(π) then
6: ShowerBroadcast(q, length(key), π);
7: else
8: determine ` such that γ(key, `) = γ(π, `);
9: r = randomly selected element from ρ(π, `);

10: AnswerQuery(q, r);
11: end if

The function AnswerQueryBasic(q, π) in Algorithm 3.2 extends the default P-Grid’s rou-
tine Retrieve(key, π) described in Algorithm 3.1 for answering XPath{∗,//} queries using the
basic index. First, the search key key is computed by hashing the query’s longest subpath qB

(lines 1–2). Then the algorithm checks whether the currently processing peer is the only one
responsible for the key key (line 3). If yes, the routing is finished and the result set is returned
(line 4). Function isAnswer(d, q) examines whether the data item d is a correct answer for the
query q.

Alternatively, if routing is finished at one of the peers from the sub-trie defined by the key
key (line 5), all peers from this sub-trie could store relevant data items and have to be queried.
In this situation, the key is the prefix of the peer’s path, which means that all bits of the key
have been resolved and the query has reached the sub-trie, in which potentially all peers may
store the data belonging to the query answer set.

To query all the peers in the sub-trie, we use a variant of the broadcasting algorithm (line
6) for answering range queries described by [Datta et al. 2005] as shown in Algorithm 3.3,
where the range is defined by the binary prefix key. I.e., we query all the peers for which key

is the prefix of their paths.

Algorithm 3.3 Shower broadcast algorithm: ShowerBroadcast(q, `current, π).
1: for ` = `current to length(γ(π)) do
2: r = randomly selected element from ρ(π, `);
3: ShowerBroadcast(q, ` + 1, r);
4: end for
5: return(d ∈ δ(π) | isAnswer(d, q) = true);

The algorithm starts at an arbitrary peer from the sub-trie, and the query is forwarded to
the other partitions in the trie using the peer’s routing table. The process is recursive, and
since the query is split in multiple queries, which appear to trickle down to all the key-space

3.4. Caching Strategy 39

partitions in the range, we call it shower algorithm.
With the basic index the expected cost (in terms of overlay messages) of answering a single

query is L + S − 1, where L is the cost of locating any peer in the sub-trie and S is the shower
algorithm’s messaging cost. The expected value of L is a length of the sub-trie’s binary prefix.
The intuition for this value is that it is analogous to the search cost in a tree-structured overlay
of size 2L. The expected value of S is N/2L, which refers to the number of peers in the sub-trie.
The latency remains O(log N) because the shower algorithm works in a parallel fashion.

To illustrate how a query is answered using the basic index, assume the query
“A//C/D//E” is submitted at some peer π. Following Algorithm 3.2 the peer responsible
for h(“C/D”) is located. Assume that there is a sub-trie defined by the prefix h(“C/D”) as
it is depicted in Figure 3.2. The shower broadcast is executed and every peer in the sub-trie
performs a local lookup for the original query and sends the result to the originating peer π.

3.4. Caching Strategy

The basic index is efficient in finding all documents matching an XPath{∗,//} query expression
based on the longest sequence of element tags qB. It performs well for the queries containing a
relatively long h(qB), such that the number of peers contacted by the shower broadcast is not
excessive. However, the search cost might be substantially higher for queries, which require
large shower broadcasts, i.e., h(qB) is short. For example, queries like “A//B” are answered by
looking up the peer responsible for h(“A”) and then a relatively expensive broadcast depending
on the data in the overlay may have to follow. Search would be more efficient if the knowledge
about the second element tag “B” was employed as well. In this section we introduce a caching
strategy to address this issue, which allows us to reduce the number of broadcasts, and thus,
decrease the average cost of query processing.

Each peer upon receiving a query determines whether it belongs to one of the following
types:

1. Queries that can be answered locally, i.e., only a single peer is responsible for qB: γ(π)
is a prefix of h(qB) or γ(π) = h(qB). For example the query “A/B/C//E” at the peer
responsible for h(“A/B”).

2. Queries that require an additional broadcast, i.e., h(qB) is a prefix of γ(π), but contain
only one subpath such that q = qB. For example, the query “A” at the peer responsible
for h(“A/B”). In this case the matching index items are stored on all the peers responsible
for h(“A”). As queries of this type may be very expensive (for example “//”), they could
be disabled in the configuration or only return part of the overall answer set to constrain
costs.

3. Queries that require an additional broadcast, i.e., h(qB) is a prefix of γ(π), but include
at least one descendant axis (“//”) or wildcard (“*”) such that qB 6= q. For example the

40 3. Efficient Processing of XPath Queries in a P2P XML Storage

query “A//C//E” at the peer responsible for h(“A/C”). The result set for such queries
can be cached locally and accessed later without performing the shower broadcast.

Type 1 queries are inexpensive and work well with the basic index. Type 2 queries are so
general that they return undesirably large result sets and the system may want to block or
constrain them. The most relevant type of queries whose costs could be minimized are, thus,
type 3 queries, which we will address in the following. For simplifying the presentation we
assume that only one peer is responsible for a given query and has sufficient resources to cache
results.

3.4.1. Answering a Query

In order to enable the caching mechanism we modify the routing process and add cache man-
agement to the “basic” Algorithm 3.2.

Definition 3.2. A sorted sequence of subpaths of a query q, denoted as qC , is obtained
by sorting all q’s subpaths3 by their length in descending order and concatenating them:
qC = concat(Pl1 , Pl2 , ..., Plk), where Pli is the i-st longest subpath. For example, for the
query q =“A//C/D//F”, qC = “C/D/A/F” using “/” as the concatenation symbol.

We will use qC for routing instead of qB, which gives us the benefit that we use the whole
query for generating the search key4, thus making it more discriminative. Clearly for type 3
queries |qC | > |qB|. The modified querying algorithm is shown in Algorithm 3.4.

In line 1 we compute qC which is used for routing (line 12) to the peer possibly storing
the cached result set. Since P-Grid uses a prefix-preserving hash function and qB ⊆ qC (qB is
always the first subpath of qC), this peer is located in the keyB = h(qB) sub-trie.

Similarly to the basic index’s search algorithm we check whether the currently processing
peer is the only one responsible for keyB (line 5). If yes, the result set is returned (line 6).
If the routing reached one of the peers from the sub-trie defined by the key keyB, we execute
the shower broadcast algorithm (line 8) to answer the query as introduced in the previous
section, but only if the query has not already been cached (line 7). Section 3.4.2 explains how
the function ifCached(q) works. If the query is cached, the routing proceeds until the peer
responsible for the key keyC is reached. This peer answers the query by looking up the cached
result set (line 10).

3 Recall, that a subpath of a query is a sequence of element tags divided by child axes (“/”) only.
4 We choose the qC notation for the search key here because it is used with the basic index plus caching, contrary

to qB , which is used with the basic index only.

3.4. Caching Strategy 41

Algorithm 3.4 XPath querying using the basic index extended with caching:
AnswerQueryCachingEnabled(q, π).
1: compute qC from q;
2: keyC = h(qC)
3: compute qB from q;
4: keyB = h(qB)
5: if (γ(π) isPrefixOf keyB) or (γ(π) = keyB) then
6: return(d ∈ δ(π) | isAnswer(d, q) = true);
7: else if (keyB isPrefixOf (γ(π))) and (ifCached(q) = false) then
8: ShowerBroadcast(q, length(keyB), π);
9: else if (γ(π) isPrefixOf keyC) or (γ(π) = keyC) then

10: return(d ∈ cache(π) | isAnswer(d, q) = true);
11: else
12: determine ` such that γ(keyC , `) = γ(π, `);
13: r = randomly selected element from ρ(π, `);
14: AnswerQueryCachingEnabled(q, r);
15: end if

3.4.2. Cache Maintenance

Each peer runs a cache manager, which is responsible for cache maintenance. The cache
manager implements two functions createCache(q) and deleteCache(q), where q is any query
the peer is responsible for. In the following we explain how these functions work.

To cache a query, a peer determines the sub-trie’s prefix by hashing qB and collects the
result set for the query by executing a special version of the shower broadcast algorithm. The
only difference compared to the original ShowerBroadcast algorithm (Algorithm 3.3) is that
for cache consistency reasons all the peers in the broadcast sub-trie add the query expression
to their lists of cached queries LCQ. Thus, in case the P-Grid is updated, i.e., data items
are inserted, modified or deleted, any peer from the sub-trie can contact the peer(s) that
cache relevant queries, to inform them of the change so they can keep their caches consistent.
This operation requires O(log N) messages per cache entry. The function ifCached(q) (line 7,
Algorithm 3.4) looks up the locally maintained LCQ list to determine if the query is cached.

When a data item is inserted, updated or deleted, all relevant cache entries are updated
respectively. The peer looks up the cached queries list and sends the update messages to all
the peers caching the relevant queries. Each cache update requires a message to be routed with
O(log N) cost.

42 3. Efficient Processing of XPath Queries in a P2P XML Storage

3.4.3. What to Cache?

The cache manager analyzes the benefits of caching for each candidate query the peer is re-
sponsible for. To do so, it estimates the overall messaging cost for the query with and without
caching. The decision to cache the query result or to delete the existing cache entries is based
on comparing these two values.

If the query is cached, each search operation for the query saves one shower broadcast
(the shower broadcast requires s − 1 messages where s is the number of peers in the trie).
On the other hand, each update operation for any data item related to the query will cost
additional messages to update the cache. Knowing the approximate ratio of search/update
operations (obtained by local monitoring), the peer can make an adaptive decision on caching
of a particular query.

The query is considered to be profitable to cache if:

UpdateCost ∗ UpdateRate(subtrie) < SearchCost(subtrie) ∗ SearchRate(query),

where:

• subtrie is the sub-trie described by the qB prefix, i.e., the basic index’s shower broadcast
sub-trie;

• UpdateCost is the cost of one update, which is equal to the routing cost;

• UpdateRate(subtrie) is the average update rate in the given sub-trie;

• SearchCost(subtrie) is the number of peers in the sub-trie to be contacted to answer the
shower broadcast; and

• SearchRate(query) is the search rate for the given query.

To estimate these values each peer collects the corresponding statistics. For SearchRate

the peer’s local knowledge is sufficient, whereas the UpdateCost and SearchCost values have
to be gathered from the neighbors. To do so, we can periodically flood the network or employ
a more efficient algorithm described in [Albrecht et al. 2003]. This algorithm gossips the
information about the tree structure among all the peers in the network. Each peer maintains
an approximate number of peers in each sub-trie it belongs to (as many values as the peer’s
prefix length). The values are exchanged via local interactions between peers and a piggyback
mechanism avoids sending additional messages. The same idea can be used to gossip the
UpdateRate in every sub-trie a peer belongs to.

3.4.4. Example

An example illustrating the application of caching is shown in Figure 3.2.

3.4. Caching Strategy 43

Search for a key h(CDAE)

(3)

(1)

(1)

(1)

Result: ACDZE, ABCDE

(4)

LCQ

011 10 0

011 10 00

011 10 1

0

10

1

0

011 10

1

0

1

0

h(CD)

h(CDA)

h(CDE) h(CDF)

I II III IV V

...

011 10 11011 10 01011 10 00 0 011 10 10

P
e
e
rs

Query originator Q=A//C/D//E

key path

h(CD) CD

...

key path

h(C) YC

...

key path

h(CDZE) ACDZE

...

key path

h(CDE) ABCDE

...

key path

h(CDF) ACDF

...

D
a
ta

ite
m
s

011 10 00 1

URI

...

URI

...

URI

...

URI

...

URI

...

path

Cache

...

...

..
.

URI

...

...

L
is
t o
f c
a
c
h
e
d

q
u
e
rie
s

LCQ LCQ LCQ

+A//C/D//E +A//C/D//E +A//C/D//E

(1) (1) (1)

(2)

+A//C/D//E

(2)

ACDZE

ABCDEC
D
A
E ...

...

(1+) (1+)

Figure 3.2. Caching strategy example.

Notice that in Figure 3.2 each element tag is represented by one capital letter and we omit
child axes (“/”) to simplify the presentation. The numbers 1–4 written in brackets next to the
arrows correspond to the following steps:

1. The cache manager at the peer II decides to cache the result set for the query Q =
“A//C/D//E”. The shower broadcast to the peers responsible for h(“C/D”) is initiated
to populate the cache with all the data items matching the query. It reaches the peers I,
III and IV. They add Q to their lists of cached queries (LCQ).

2. Peers III and IV send back the matching items (not shown). The shower broadcast
reaches peer V, which also adds Q to its list of cached queries. Four messages are sent
to execute the shower broadcast in the sub-trie h(“C/D”).

3. Assume, the query Q = “A//C/D//E” is submitted at the originating peer again. The
search message is routed to the peer II, which can answer the query locally by looking
up its cache. The broadcast has to be executed every time to answer the query Q only if
it is not cached.

4. The answer is sent back to the originating peer.

Let us now demonstrate how cache updates are handled. Assume a new path “A/C/D/E”
is indexed and one of the four generated data items5 with the key h(“C/D/E”) is added to

5 The query has 4 subpaths, see Section 3.3 for more details.

44 3. Efficient Processing of XPath Queries in a P2P XML Storage

the peer V. It checks the list of cached queries and finds the cache for Q = “A//C/D//E” to
be affected by the new path “A/C/D/E”. Peer V sends the cache update message containing
the new path to the Peer II (responsible for the Q’s cache) to ensure the cache consistency.

3.5. Simulations

To justify our approach and its efficiency, we implemented a simulator of a distributed XML
storage based on the P-Grid overlay network. The simulator is written in Java and stores all
data locally in a relational database.

As the input data for our experiments, we use about 50 real XML documents (mainly taken
from http://www.cs.washington.edu/research/xmldatasets) from which we extracted a
path collection of more than 1,000 unique paths. Based on each path in the collection we
generated four additional paths by randomly distorting the element tags. Using the resulted
path collection (about 5,000 paths) we generate a P-Grid network by inserting a corresponding
number of data items per each path (about 20,000 data items in total). P-Grid networks of
different sizes can be built by limiting the maximum number of data items a peer can store.

For our experiments we generate queries by randomly removing some element tags from
the paths in the path collection. The parameter t affects the query construction and specifies
the fraction of “cachable” (type 3) queries in the collection.

To simulate the querying process we generate several query logs of 10,000 XPath{∗,//}
queries each using different distributions.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

Figure 3.3. Average number of messages required to answer a query depending on the network size, t

denotes the fraction of “cacheable” queries.

In the first experiment we assume that all possibly “cacheable” queries are cached. We
use different values of the t parameter and the uniform distribution to generate the query logs.
We vary the network size and measure the average cost of query processing. In Figure 3.3 the
first four curves show the average search cost for t = 0, 0.5, 0.75 and 1 respectively. From

http://www.cs.washington.edu/research/xmldatasets

3.5. Simulations 45

the figure, the more queries are cached, the lower the search cost is. The fifth curve, called
“no broadcasts”, shows the cost of locating at least one peer responsible for the query, i.e.,
the search cost when shower broadcasts are ignored. Evidently, the two last curves coincide
because if all queries are cached – no shower broadcast is required.

However, in reality query logs do not necessary follow the uniform distribution. Instead,
many studies report that real queries are power-law distributed (e.g., in Chapter 6 we will show
that this is true for real-word Web search engines query logs). In the next experiment we use
the Zipfian distribution to generate the query logs, fix the network size to 1,000 peers, t = 0.5
and vary the cache size. The first curve in Figure 3.4 shows the constant search cost when
caching is disabled. The other three curves correspond to the different parameters of the Zipf
distribution (s = 0, 0.8 and 1.2) used to generate the corresponding query log. Unsurprisingly,
caching performs better with more skewed query distributions.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Number of peers

A
vg

.
u

p
d

at
e

co
st

 (

m
sg

)

~1 cached query per path

~0.5 cached queries per path

basic index
12

13

14

15

16

17

18

19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Percentage of cached queries (%)

A
vg

.
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

No caching
Zipf s=0
Zipf s=0.8
Zipf s=1.2

Figure 3.4. Average number of messages required to answer a query in the network of 1000 peers
depending on the fraction of cached queries.

However, the benefits we gain from caching at the querying time come at the price of
increasing the update costs. To perform one update operation, for example to insert a new
path containing m element tags, we have to contact all the peers responsible for all the subpaths
(m routing requests). To ensure cache consistency, we also have to update all relevant cache
entries (one routing request per cache entry). Figure 3.5 shows the average update costs
depending on the size of the network for different numbers of cached queries.

In Section 3.4.3 we described the strategy for minimizing the overall messaging costs. In
the last experiment we show that for a given state of the system this minimum can be achieved
by choosing which queries to cache. In Figure 3.6 we show that for the given parameters (1,000
peers, t = 0.5, Zipf s = 1.2, average number of element tags in the path = 2.5) the overall
messaging cost can be minimized. We show two curves for search/update ratios of 1:2 and 2:1.
In these cases the minimal messaging costs are achieved if about 0.5% and 1.0% of the queries
are cached.

46 3. Efficient Processing of XPath Queries in a P2P XML Storage

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Number of peers

A
vg

.
u

p
d

at
e

co
st

 (

m
sg

)

~1 cached query per path

~0.5 cached queries per path

basic index

Figure 3.5. Average update cost depending on the network size, t denotes the percentage of “cacheable”
queries.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Number of peers

A
vg

.
u

p
d

at
e

co
st

 (

m
sg

)

~1 cached query per path

~0.5 cached queries per path

basic index
12

13

14

15

16

17

18

19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Percentage of cached queries (%)

A
vg

.
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

No caching
Zipf s=0
Zipf s=0.8
Zipf s=1.2

14

15

16

17

0 0.5 1 1.5 2 2.5 3 3.5 4

Percentage of cached queries (%)

A
vg

.
co

st
 o

f
o

n
e

q
u

er
y/

u
p

d
at

e
o

p
er

at
io

n

(#
 m

sg
)

search/update ratio = 1:2

search/update ratio = 2:1

Figure 3.6. Average number of messages (query processing + updates) depending on the fraction of
cached queries.

Evidently, if the search/update ratio is high (more searches than updates) the minimum
moves to the right (more queries to be cached). In contrast, if the update ratio is relatively
high, the minimum moves to the left (up to 0, where caching is not profitable anymore). Hence
we observed that our solution can reduce the query processing costs by adapting to the current
state of the system.

The simulations show that the basic index strategy is sufficient for building a P2P XML
storage with support for processing of path queries. The introduction of caching decreases the
messaging costs. Depending on the characteristics of the query load the benefits from caching
vary.

3.6. Conclusions 47

3.6. Conclusions

In this chapter we presented the solution for indexing XML data in a structured P2P net-
work. We demonstrated the efficiency (low search latency and low bandwidth consumption)
of our approach via simulations. We also showed that our proposed caching strategy reduces
messaging costs by adapting to the query patterns and the search/update ratio.

We envision that the presented solution can be used in a P2P XML querying engine for
answering structural queries. Such a system could be an alternative to the solutions based on
the unstructured P2P networks (e.g., Edutella [Nejdl et al. 2002]), but is more scalable due to
the considerably reduced messaging costs.

Last but not least, the presented approach is the first evidence that we obtained during the
work on this thesis that shows the usefulness of the concept of query-driven indexing in a P2P
setting.

48 3. Efficient Processing of XPath Queries in a P2P XML Storage

Chapter 4

Distributed Cache Table:

Query-Driven Indexing for

Peer-to-Peer Text Retrieval∗

4.1. Introduction

We continue to explore query-driven indexing strategies for distributed query processing in
structured P2P networks. In this chapter we look at the P2P text retrieval scenario. We
propose an approach for efficient processing of multi-term queries over a large collection of
textual documents distributed in a P2P (DHT) network. To reduce the overall bandwidth
consumption in the network we introduce a query-driven indexing strategy which generates
and maintains only those index entries that are actually used for query processing. Such a
query-driven indexing structure can be viewed as a distributed cache facility maintained in the
P2P network. Thus, by analogy with Distributed Hash Tables (DHTs) we call our approach
Distributed Cache Table (DCT).

In DCT we suggest to abandon the difference between data indexing and query caching
in a structured P2P network, and to store result sets (caches) for the most profitable queries
at the nodes of the network. DCT employs a distributed index to efficiently locate caches
that can answer a given multi-term query and broadcasts the query to all the peers only if
no such caches were found. Evaluations on real Wikipedia data and query logs show that
DCT converges to a high cache-hit rate and offers an elegant distributed solution for storing
and efficient querying of large amounts of documents in a P2P network. In our experimental
setting DCT achieves two orders of magnitude improvement in traffic consumption compared
to the standard single-term indexing approach.

As the number of peers in the network can be large, the use of an unstructured network

∗ The material presented of this chapter was published in the proceedings of the Workshop on Information Retrieval

in Peer-to-Peer Networks (P2PIR’06) [Skobeltsyn and Aberer 2006].

49

50 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

is expensive due to high messaging costs induced by frequent broadcasts. Thus, we employ a
standard DHT approach to associate queries to their result sets in a non-trivial fashion. Our
approach is motivated by the observation that a large number of index entries may never be
queried and therefore the maintenance of such entries is unnecessary. Thus, we employ an
indexing/caching strategy for efficient processing of multi-term queries that is driven by the
query load.

DCT populates the storage space provided by participating peers with the results for pop-
ular queries and uses this data to answer further queries. Each cached query result contains
sufficient information to resolve any other (more discriminative) query, whose answer is con-
tained in the cached result. Peers only maintain caches that are: 1) frequently used to answer
queries, and 2) consume little space. DCT performs an adaptive selection of queries to cache,
based on the monitored query statistics taking into account limited storage capacity with the
goal of minimizing the number of cache-misses. In particular, each peer locally runs a greedy
algorithm leading to a global quasi-optimal cache selection.

To get a general idea about our approach consider a scenario where N peers form a DHT-
based P2P network. Each peer shares some of its documents with other peers and is able
to search documents located at other peers by issuing multi-term queries. A straightforward
solution is to broadcast queries to all peers, so each peer can evaluate each query locally.
Unfortunately frequent broadcasts generate excessive amounts of redundant traffic.

Let us assume now, that every peer π can provide a limited storage space sπ. The whole
network then has S =

∑N
i=1 sπi storage capacity that peers utilize to store query caches.

Definition 4.1. In DCT, a cache for the multi-term query q stores its result set RSq, which
contains documents digests (see Definition 4.2) for all documents satisfying q. Document
digests enable query filtering, i.e., we can locally answer q using RSq′ if RSq′ contains RSq.

Definition 4.2. A document digest is a data structure that represents a text document.
It contains a unique document identifier and a list of terms extracted from the document.

Now, to answer a multi-keyword query q we first try to find (at least one) cache which
can answer q, and issue a broadcast only if no such cache was found. To entirely benefit from
caching, DCT exploits query subsumption. Hence, we are interested in locating any cache
which contains the result set of q. The DCT network evolves in time into a distributed cache
driven by the query load, avoiding maintenance of (almost) never used indexing information
and employing broadcasts only for rare queries.

DCT employs a distributed ranking mechanism described by [Podnar et al. 2006a]. When
a stored result set (cache) is used to answer a query, it processes the query locally and returns
the top-k documents only. The next portion of results can be supplied on demand. This
mechanism significantly reduces the traffic consumption during retrieval.

4.2. Indexing and Caching Strategy 51

In summary, the main contributions of the DCT approach described in this chapter are the
following:

• We introduce a novel query-driven indexing strategy for multi-term queries in a P2P
environment that is based on the query subsumption property (see Definition 4.3);

• We perform experiments with real query logs that show a high number of subsumption
dependencies in realistic query loads that are beneficial for our approach;

• We achieve a significant overall traffic reduction compared to the distributed single-term
indexing approach.

The rest of the chapter is organized as follows. We describe the caching strategy in Sec-
tion 4.2, in particular, distributed meta-index in Section 4.2.1 followed by the cache manage-
ment discussion in Section 4.2.2. We discuss load balancing issues in Section 4.3. Simulation
results are presented in Section 4.4 followed by the conclusion in Section 4.5.

4.2. Indexing and Caching Strategy

Let us assume a network of N peers, πi, i ∈ 1..N , where each peer hosts a part of the document
collection Dπi and issues queries from a local query load Lπi . Therefore, D =

⋃N
i=1 Dπi is the

global document collection and L =
⋃N

i=1 Lπi is the global query load.
Let us define a superset T = {t1, t2, .., tm} as the vocabulary consisting of all single terms

found in the global query load L. Then, a query q ∈ L is defined as q = {t1, t2, .., tn} and
q is a subset of T , q ∈ 2T . The number of terms in q is denoted as |q| = n. Similarly, we
define a document d ∈ D as d = {t1, t2, .., tr} which is also a subset of T : d ∈ 2T . Essentially,
we simplify the representation of an original document d0 by intersecting the set of all terms
contained in d0 with T , d = d0 ∩ T , and therefore ignore the terms contained in the original
document which do not appear in the query load.

A query q matches a document d iff q ⊆ d. The result set RSq for the query q is the set of
all documents matching q, RSq = {∀di ∈ D | q ⊆ di}.

Definition 4.3. We define the query subsumption relation as follows. A query q′ sub-
sumes a query q when all terms in q′ are also contained in q, i.e., q′ ⊆ q. Obviously, q′ ⊆ q

implies RSq′ ⊇ RSq. Thus, a query q can be answered by postprocessing of the result set
associated with q′. For example the query q′ ={EPFL Switzerland} subsumes the query
q ={EPFL Lausanne Switzerland}.

The set of all possible queries over T can be represented as a lattice of the size 2|T | − 1.
Each lattice node corresponds to a query, and the whole lattice models the set of all potential

52 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

queries over T that might appear in the query load L. For example, a lattice generated for
the vocabulary of four terms Tabcd = {a, b, c, d} is shown in Figure 4.1.a. An arrow from a
query q1 to a query q2 reflects the subsumption relation q1 ⊆ q2. Figure 4.1.b highlights all
descendants of nodes a and cd, referring to all the queries that are subsumed by the queries a

and cd. Indeed, all queries containing either the term a or both terms c and d can be answered
from the two result sets RSa and RScd.

a b c d

ab bc adac bd cd

abc abdacd bcd
abcd

a b c d

ab bc adac bd cd

abc abdacd bcd
abcd

a)

b)

Figure 4.1. Query subsumption: a) a,b,c,d lattice; b) lattice with the queries “a” and “cd” being
cached.

Each peer provides a certain cache capacity and uses it to store carefully selected result
sets. More precisely, a peer π caches result sets for certain queries from its local query load Lπ

and advertises them to other peers using a distributed meta-index. Therefore, to answer a new
query, another peer may lookup the location of existing caches that may resolve the query as
it is described in Section 4.2.1. Furthermore, as the peer storage capacity is limited, each peer
runs a greedy cache-selection algorithm as described in Section 4.2.2.

Table 4.1 summarizes the main notations used in the chapter.

π Peer
N Number of peers in the P2P network
D Global document collection, Dπ is the document collection at the peer π

L Global query log, Lπ is the local query log at the peer π

q A multi-term query q = {t1, t2, .., tn}
RSq A result set of a query q

Table 4.1. Main notations of Chapter 4.

4.2. Indexing and Caching Strategy 53

4.2.1. Meta-Index

The meta-index enables efficient lookup of the result set (cache) locations for a given query.
Formally, given q we need to obtain a result set RSq by locating at least one cache RSq′ such
that RSq′ contains RSq (RSq′ ⊇ RSq). In other words, we are interested in locating a cache
for q′, such that q′ ⊆ q. To locate relevant result sets, we introduce a distributed meta-index,
which stores links to actual cache locations. Given a query q, the meta-index returns a list of
tuples {qi, uri(RSqi)} for the queries that are: 1) cached, and 2) subsume q. A random tuple
from the received list is selected and the query q is forwarded to the peer storing the chosen
cache. This peer processes q locally and returns the list of documents matching q. If no caches
were located by using the meta-index, i.e., the query can not be answered from the cache, it is
broadcast to all the peers in the network that evaluate the query against their local document
collections and send the answers to the originating peer.

Since peers participate in a DHT, we can use the shower broadcast technique [Datta et al.
2005] described in Algorithm 3.3. Recall that the shower broadcast insures that each peer is
visited only once. To answer a query q, O(N) messages have to be sent to notify all peers that
generate |RSq| records of traffic while answering, where |RSq| denotes the number of records
in the result set of q.

The meta-index is implemented using the standard put/get functionality offered by the
DHT1. Given the cache RSq′ physically stored at uri(RSq′), an advertise operation is performed
by inserting a tuple {q′, uri(RSq′)} at the peer responsible for the key = h(tr), where h()
denotes the DHT’s hash function and tr ∈ q′ is a randomly chosen term from q′. Therefore,
the advertise operation requires one put message to be send with O(log N) overlay hops.

Given a query q to be answered, the meta-index lookup operation is performed in the fol-
lowing way: n = |q| messages containing the original query q are sent to the n peers responsible
for h(t1), h(t2), .., h(tn), where ti ∈ q,∀i ∈ 1..n. Each peer responds with a list of cached
result set locations for queries that subsume q. Therefore, the cache lookup operation requires
n get messages to be send with O(log N) overlay hops each.

Section 4.2.2 introduces the cache management and explains how a peer can locally decide
which caches have to be created or evicted leading to a quasi-optimal utilization of the overall
network storage capacity S, thus reducing the number of broadcasts for the current query load.

4.2.2. Cache Management

Having defined the meta-index, we can formulate the problem of finding an optimal set of
caches in the network, which maximize the cache-hit ratio for: 1) a given query load, and 2)
a P2P network with a constrained global storage capacity distributed among the participating
peers.

1 Notice that unlike the XPath indexing approach described in Chapter 3, DCT does not rely on any specific

properties of a particular DHT, such as the type of the hash function for example.

54 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

Each query q in the global query load L is assigned a probability pq of being queried. We
assume that the result set sizes of all queries from L are known: |RSq|, ∀q ∈ L denotes the
number of documents in RSq.

We denote the set of cached queries as Ω ⊆ L. To store (to cache) all the result sets for
all queries in Ω, the following global storage capacity is needed (measured in the number of
documents): SΩ =

∑
∀qi∈Ω |RSqi |.

Our goal is to utilize the available storage as efficiently as possible, which means to min-
imize the number of broadcasts or maximize the number of cache-hits. We denote a function
cachehit(q) as follows:

cachehit(q) =

∣∣∣∣∣
1, ∃q′ ∈ Ω, s.t. q′ ⊆ q;
0, otherwise.

Therefore, the cache optimization problem is to find the set Ω containing queries to be
cached that maximizes the number of cache-hits:

Ω = argmax
∑

∀qi∈L

cachehit(qi) pqi ,

having a storage constraint:
SΩ =

∑

∀qi∈Ω

|RSqi | ≤ S0.

The stated optimization problem is similar to the well-known 0/1 knapsack problem [Garey
and Johnson 1979] (which is known to be NP-complete), applied to all queries from L. The
increased complexity of the cache optimization problem compared to the knapsack problem
is caused by the fact that we cannot assign constant profits to queries (items) due to the
subsumption-related inter-dependencies between the queries. Furthermore, as the query load
is dynamic, we are rather interested in a decentralized algorithm which leads to a quasi-optimal
solution.

Indeed, each peer has to decide locally on a set of queries it caches to fill in its available
storage. A peer pursues a greedy cache-selection strategy by deciding to cache queries such that
their estimated profits are high. We define a max profit of the query q as: profitmax(q) = gq

|RSq | ,
where gq =

∑
∀qi⊆q pqi refers to the probability of the query q being utilized to answer any query

from L if no other caches are available2. However, since there could be more then one cache
capable of answering a given query due to the subsumption, the actual profit is lower and
depends on the existing caches in the network.

An estimate of the query profit can be obtained from the statistics as profit(q) =∑
∀qi⊆q

bfreq(qi)
|RSq | , where bfreq(qi) is the number of broadcasts of qi (because no caches sub-

suming qi were found) observed recently. In this formula we can distinguish an abso-
lute frequency afq = bfreq(q) of the query q being queried and a subsumption frequency

2 A similar heuristic is used by [Baeza-Yates et al. 2007b]. In Chapter 6 we re-use it in the context of index

pruning for Web search engines.

4.2. Indexing and Caching Strategy 55

sfq =
∑
∀qi⊆q bfreq(qi). The latter one counts all queries subsumed by q including q itself for

the current state of the network. Obviously, afq ≤ sfq. After we defined the subsumption
frequency, the query profit can be finally expressed as:

profit(q) =
sfq

|RSq| .

DCT peers perform local and isolated maintenance of the global query statistics: each
peer has a global view (by listening to broadcasts) on the locally selected subset of queries it
monitors. We restrict this monitored subset to the set of popular queries this peer used to
submit in the past. The advantage of this mechanism is that approximate result set sizes are
already known from the history. The statistics module counts recent absolute and subsumption
frequencies for each query. When a peer caches a new query, it advertises the new cache in the
meta-index as described above.

For every existing cache, similar statistics are maintained measuring its absolute and sub-
sumption cache-hit values in order to evict it if more profitable caches were found.

Following the greedy strategy a peer can create a new cache if there is enough space available
or the required amount of space can be released by evicting caches with lower profits. Hence,
each peer locally selects the most profitable caches for the available local capacity. Therefore,
if the query load is static, the greedy strategy ensures that the resulting cache-hit can only
increase or remain the same.

Due to the multiple subsumption dependencies between queries, caching or evicting a cache
might in some cases substantially influence statistics maintained for other related queries.
We argue, that the presented strategy, though simple, gracefully adapts to the P2P network
instability and changes in the query load. Indeed, the cost of adding a cache is only O(log N)
overlay hops (needed to modify the meta-index), while evicting a cache causes only one extra
message to be sent. In case of a peer failure all caches it stored or indexed become unavailable,
causing broadcasting the associated queries. Thus, other peers will probably cache them if the
profits are high enough.

Notice that a popular query q0 might not be cached if it is associated with a large result
set because its profit could be relatively low. In this case, DCT will react by caching popular
derivatives of q0 (queries subsumed by q0) if needed. However, the meta-index would report a
cache-miss for q0 itself, and it would have to be broadcast every time. To solve this problem
we suggest caching only the top-k results of the proper query q0. Obviously, this “top-k” cache
can not be utilized to answer any other query except for q0. The profit of such a top-k cache
can be estimated as:

profittopK(q0) =
afq0

k
.

Recall, that afq0 denotes the absolute query frequency of q0 being queried. The constant k

reflects the maximum number of records the majority of the users would browse.
We choose the best type of cache for each query by comparing the estimations of profits

calculated for the top-k cache and the full cache. If adding a new full cache fails, the second

56 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

attempt is made as top-k. A top-k cache can be switched back to a full cache by issuing a
broadcast if the profit of the full cache is higher. Alternatively, when a full cache is about to
be deleted it can be switched to the top-k cache instead.

The presented strategy facilitates the distributed selection of caches being constrained with
the available storage capacity in the network and leads to a quasi-optimal solution with respect
to minimization of the traffic consumption. Furthermore, utilizing top-k caches significantly
reduces the number of cache-misses for the queries associated with large result sets and further
decreases the traffic consumption.

4.2.3. Example

Let us illustrate the approach by an example. Initially, all queries are broadcast and each peer
has to evaluate each query over its local document collection. A peer π joins the network and
starts processing broadcasts and issuing its own queries. The peer π maintains statistics about
the queries from its local query history, for example as shown in Table 4.2:

Multi-term query |RSq| afq sfq

cd 500 5 50
a 5000 98 100
ab 2000 21 23

Table 4.2. Example of query statistics maintained by a peer in the DCT approach.

The statistics table stores information about the most frequent queries from π’s local query
history. Recall that afq and sfq denote the absolute and subsumption frequencies respectively.
|RSq| is estimated locally, since the result set for q was obtained by π before.

Assume the query cd is issued at π. The peer computes the full and the top-k profit
estimates as profit(“cd”) = sfcd

|RScd| = 50/500 = 0.1 and profittopK(“cd”) = afcd
k = 5/250 =

0.02, if k = 250 is chosen. Then it checks if there is enough storage space to cache cd as a full
cache. If not, π compares profit(“cd”) with profits of already existing caches and evicts some
of them if needed to store the result set of cd. Alternatively, it can consider caching the query
as top-k, which would be the case for the query a for example.

Assume π is caching cd. It issues a broadcast and stores the obtained result set. To
make the cache available for other peers in the network, π generates a key: key = h(“c”) (or,
alternatively, key = h(“d”)) and inserts the tuple {“cd”, addressπ} into the meta-index using
the key key. The tuple is routed to the peer πkey responsible for the key and πkey stores the
tuple. Assume also, that another peer caches a (top-k) result set for the query “a”.

Figure 4.2 shows how the 2-step query processing is performed. A peer πorig submits the
query q = “acd”. First, the meta-index is searched for available caches. To do so, 3 messages
containing q are routed to the peers responsible for h(“a”), h(“c”) and h(“d”) respectively (step
1). The peers πa, πc and πd browse their meta-index tables and send back the lists of relevant

4.3. Load Balancing 57

cd��
a�� � RS(“cd”)

q=”acd”?

(1)

(1)

(2)

(4)

(2)

(3)

metaindex

cache

Legend:

P2P

�����
(1)

��

Figure 4.2. Query processing example.

caches (step 2). Note that since the query a is cached as top-k, it cannot be used to answer
acd. Hence, the information that the query cd is cached at addressπ received from the peer πc

will be used. The originating peer requests π to answer the original query (step 3). The peer
π responds back with the answer (step 4). In case no caches were found in the meta-index, a
broadcast would be used to answer the query.

4.3. Load Balancing

Since our approach is based on caching popular queries, peers can suffer from certain load
imbalances due to both non-uniform meta-index lookup requests and uneven cache utilization.
In this chapter we show that load imbalance caused by these factors can be efficiently tackled
without substantial performance degradation. In the following we discuss load balancing issues
for both cases in detail.

4.3.1. Meta-Index Load Balancing

We show that due to the small size of the data stored in the meta-index and a certain ran-
domization in the advertise operation, almost no explicit load balancing of the meta-index is
necessary. However, peers that are responsible for the most popular terms can receive a large
number of incoming requests, which can be avoided by handling such terms in a special way,
e.g., as discussed by [Cudré-Mauroux and Aberer 2002; Datta et al. 2007]. First, these terms
are marked as popular and the index information involving them is moved to alternative lo-
cations if possible, since a query q = t1..tn can be indexed on any of the n peers. Then, the

58 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

terms are advertised to the forwarding peers3 as popular so these peers can take part of the
load caused by the popular term. Thus, subsequent requests will not reach the original peer,
but will be pruned on the way, leading to a better load distribution.

Indeed, our evaluations show, that only several top popular terms cause very high meta-
index lookup load. Hence, the solution proposed above would split the load among neighboring
peers, avoiding meta-index lookup hot-spots.

4.3.2. Cache Access Load Balancing

Balancing of the load caused by resolving queries from caches is more crucial due to the high
traffic it creates to supply query results compared to the meta-index lookup. However, our
evaluations show that only several top popular caches are accessed very often and cause serious
load imbalance. Thus, standard replication mechanisms can be employed to relieve overloaded
peers.

4.4. Experimental Results

In this section we report experimental results obtained by using our DCT simulator im-
plemented in Java. The document collection used in the experiments is the collection of
Wikipedia articles available at http://www.wikipedia.org. We used the 6GB XML dump of
the core English Wikipedia from May 2006 that contains 3M pages. The dump is available at
http://download.wikimedia.org/enwiki/20060518.

We used two real Wikipedia query logs from August and September 2004. Both of them
have very similar properties, hence we summarize only those of the August trace. From the
total of 4.6M queries, there are 1.3M unique queries. There are 0.5M queries occurring at least
twice and 250K at least three times in the query log. The queries contain 160K unique terms
while the average number of terms in a query is 2.6.

Both the Wikipedia document collection and the query logs were preprocessed by applying
the Porter stemmer [Porter 1980]. Before performing the experiments we obtained the result set
sizes for all the queries: first we built an in-memory single-term index for all terms appearing
in the query logs and then we computed cache sizes for each query by intersecting posting lists
for its terms.

4.4.1. Simulation Setup

The DCT simulator creates a number of peers with a predefined available cache capacity.
It iteratively chooses random peers to generate queries and simulates the distributed query

3 Forwarding peers are peers that have πp in their routing tables, where πp is the peer responsible for a popular

term.

http://www.wikipedia.org
http://download.wikimedia.org/enwiki/20060518

4.4. Experimental Results 59

processing using the algorithms defined in Section 4.2. A query generator selects a real query
from one of the query logs following the real query popularity distribution.

In most of the experiments we limit the available storage capacity per peer to 200K records
and fix the top-k cache size to 250 records. As mentioned in Section 4.2.2, we monitor only
recent query statistics, hence we selected a reasonable size of 200K broadcasts for the history
window. In other words, the query statistics are maintained for the period which covers the
last 200K broadcasts. Finally, a query can be cached only if it was already answered before,
since its result set size has to be known.

In our experiments we measure three values: CacheHit, SubsumHit and TopKHit. CacheHit
is the main measure that reflects the fraction of queries that were answered from caches,
therefore the remaining (1 − CacheHit) fraction of queries were answered using broadcasts.
CacheHit aggregates three different situations:

• A query q is answered from a top-k cache for q – we register this particular case as
TopKHit.

• Alternatively, a query q produces a SubsumHit if it was answered using a full cache RSq′

and the issued query q is different from the cached query q′ (formally, q′ ⊂ q).

• Finally, a query q can be answered from the full cache RSq′ producing a NormalHit.

Obviously, CacheHit = TopKHit + SubsumHit + NormalHit.

4.4.2. Storage Capacity (Records)

In this experiment we explore how much capacity measured in records is needed to ensure a
reasonable cache-hit rate. A record in this case refers to one entry in a posting list, e.g., a
posing list with x elements would consume x records. We vary the number of peers N , thus
changing the overall network capacity as N × 200K records. Figure 4.3 plots the maximum
CacheHit, SubsumHit and TopKHit achieved after the network converges to a stable state by
processing 4.6M queries.

Figure 4.3 shows that high cache-hit values can be achieved with relatively low storage
capacity, e.g., DCT with 100 peers storing 200K records each, converges to 85% cache-hit. An-
other observation which we make from this plot is that top-k caches are extensively used when
available storage space is limited (when the number of peers is below 20), whereas more and
more queries are answered via subsumption as the capacity grows. Having high subsumption
rate leads to a more robust network as we will see in the stress test experiment in Section 4.4.5.

When the DCT network contains 1,000 peers (marked with the asterisk) only 71% of the
available capacity is utilized, thus the achieved cache-hit of 98% is the maximum for our
experimental setting. The remaining 2% are singleton queries that are not subsumed by any
cached query, so caching had no impact on them.

60 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

1

3
5

10

20

50

100 250 500 1000*

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1K

ca
ch

eh
it

(%
)

number of peers, each peer provides 200K records capacity

CacheHit

SubsumHit

TopKHit

Figure 4.3. Max achieved CacheHit, SubsumHit and TopKHit for the different number of peers with
200K records capacity each.

We achieved such a low cache-miss rate due to the high fraction of subsumption hits.
Indeed, our simulations show that if peers have infinite capacity, but store only top-k caches,
the maximum cache-hit that can be achieved is only 82%. This number can easily be obtained
from the query load statistics. Recall, that out of 1.3M unique queries only 500K were repeated
at least twice. Hence, caching has no impact on 800K singleton queries. Having 4.6M queries
in total, these 800K queries are exactly the remaining 18%.

4.4.3. Storage Capacity (Bytes)

We repeat the experiment from Section 4.4.2 with one important difference: instead of using
a notion of record we measure precisely how much space in bytes each cache would require.
Thus, we can compute the real capacity of the network needed to ensure a reasonable cache-hit
rate.

As in the previous experiment, we vary the number of peers N and fix the peer capacity
to 20MB. The overall network capacity is therefore N × 20MB. Figure 4.4 plots the maximum
CacheHit, SubsumHit and TopKHit achieved after the network converges to a stable state by
processing 4.6M queries.

Recall that each cache for a query q stores the result set |RSq| that contains document
digests for (all or only top-k) documents matching q. We measured the size of the document
digest digestd for each document d in the Wikipedia document collection. Thus, for a given
cache we can approximate its size as: |cacheq| = |hq|+

∑
∀d∈RSq

(|hd|+|digestd|), where |hq| and
|hd| are the sizes of the cache header (64 bytes) and document header (64 bytes) respectively.

4.4. Experimental Results 61

20Mb

60Mb
100Mb

200Mb

0.5Gb

1Gb

2Gb 3Gb
5Gb 10Gb 20Gb 40Gb*

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1K

ca
ch

eh
it

(%
)

number of peers, each peer provides 20Mb capacity

CacheHit

SubsumHit

TopKHit

cache_sizeq (bytes) = cachehdr_size +
+ |RSq|

�dochdr_size + sum_digest_size;

where
cachehdr_size = 64 bytes,
dochdr_size = 64 bytes.

Figure 4.4. Max achieved CacheHit, SubsumHit and TopKHit for the different number of peers with
20 megabytes capacity each.

Figure 4.4 shows that high cache-hit values can be achieved with relatively low storage
capacity, e.g., DCT with 100 peers providing 20MB of storage space each (2GB in total),
converges to almost 80% cache-hit. Recall that the collection size is 6GB.

Another interesting observation can be made by comparing Figures 4.3 and 4.4: 20MB of
storage could fit less than 200K records, thus in Figure 4.4 more top-k hits are registered when
the number of peers is small. This happens, because the storage capacity is insufficient to fit
some full caches. On the other hand, there are more subsumption hits with the same number
of peers in Figure 4.3 because more storage is available. This example illustrates how DCT
adapts to the current conditions of the network.

4.4.4. Traffic Consumption

The main goal of our simulation is to show that the proposed query-driven approach is a
promising alternative to the standard single-term indexing techniques for P2P information
retrieval. We will show that DCT reduces traffic consumption by two orders of magnitude
when compared to the näıve approach, which distributes the standard global inverted index in
the P2P network using term partitioning.

We implemented the näıve approach as follows. For each query we first eliminate all stop
words contained in it (we used a list of 260 common English words). Then, we locate peers
responsible for the remaining terms in the same way it is done by DCT. The query is answered
by conveying a posting list between the peers responsible for the query terms. Posting lists are
practically intersected along the way until reaching the final peer that produces the answer to

62 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

the query and sends only the top-10 records to the query originator (more records can be send
on demand).

We implemented two variations of the näıve approach: näıve-random and näıve-sort. The
first one chooses the terms and the responsible peers in a random order, whereas the second one
sorts the terms according to the sizes of their posting lists in the ascending order and contacts
the peers accordingly. We measure the traffic required to process a query as the number of
records transmitted in the network. Note that assuming the term index is already available
because it was produced beforehand during the indexing phase, the traffic required to process
a query depends only on the posting list sizes of its terms. We computed the average traffic
for the Wikipedia query logs and the data dump. Table 4.3 shows the obtained values after
processing 4.6M queries.

Approach August 2004 September 2004

näıve-random 37 370 rec./query 38 919 rec./query
näıve-sort 8 232 rec./query 8 903 rec./query
broadcast 7 920 rec./query 7 197 rec./query

Table 4.3. Average query traffic obtained with näıve approaches for the Wikipedia query load.

The size of the generated single-term index is 240M records. However, the index was build
only for the terms extracted from the query load, whereas in practice this information is not
available in advance.

The näıve approach performs poorly in terms of traffic consumption due to large posting list
sizes which have to be transmitted. Surprisingly, Table 4.3 shows that the traffic consumption of
the simple broadcast is even slightly better than the näıve-sort approach4, although it requires
propagating each query to all peers in the network.

Let us investigate the DCT performance in the dynamic setting. Figure 4.5.a shows how
the CacheHit, SubsumHit and TopKHit values increase with the number of processed queries.
The figure also plots the storage space utilization curve, which shows that all available space
is almost fully utilized after processing 30K queries. Hence, the following cache-hit increase is
achieved by proper selection of queries to cache. Finally, after enough statistics are gathered
(after 200K broadcasts) the TopKHit starts decreasing while SubsumHit increases. It happens
because some caches switch from top-k to full cache, based on the profit comparison.

Figure 4.5.b plots the average traffic per query generated by our approach (DCT-All curve).
The DCT-Indexing curve shows the fraction of the DCT-All traffic, which was spent to create
new caches. Traffic consumption is reducing rapidly as DCT converges. We also output the
näıve and the broadcast traffic consumption for comparison. DCT-All curve is always below
näıve and broadcast, moreover, the traffic consumed by our approach after DCT converged

4 This happens mostly due to a relatively small number of peers used in the experiments. Also notice that our

traffic computation ignores the control and routing messages sent between peers.

4.4. Experimental Results 63

0

10

20

30

40

50

60

70

80

90

100

0 2.0M 4.0M 6.0M

number of generated queries

ca
ch

eh
it,

 s
pa

ce
 u

til
iz

at
io

n
(%

)

CacheHit
SubsumHit
TopKHit
SpaceUtilization

1

10

100

1K

10K

100K

0 2.0M 4.0M 6.0M

number of generated queries

av
er

ag
e

tr
af

fic
 p

er
 q

ue
ry

 (
re

co
rd

s)

Naive-Random

Naive-Sort

Broadcast

DCT-All

DCT-Indexing

a)

b)

Figure 4.5. Cache-hit and traffic consumption for the network with 100 peers, 200K records per peer.
a) Cache-hit; b) Traffic consumption.

(approx. 140 records/query) is two orders of magnitude lower than näıve-sort or broadcast.
As we will see in Section 4.4.5 the DCT traffic consumption decreases even further when the
cache-hit increases. The ideal value of 10 records/query would be achieved if all queries are
answered from the cache.

Despite of low traffic requirements, DCT still has to broadcast the remaining (1−CacheHit)
fraction of queries that cannot be answered from the cache. This price is paid however, for
a much smaller index size due to its adaptivity to the query load. In terms of latency DCT
requires O(log N) time to answer a query from cache plus additional O(log N) in case the
broadcast is required. The näıve approach requires additional time to transmit (possibly) large
posting lists, which substantially increases the latency.

64 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

4.4.5. Stress Test

We performed a stress-test: in the first part of the test we generate queries from the August
query trace and after 4.5M queries we switch to the September trace. Figure 4.6.a shows that
DCT converges to the high cache hit rate of approx. 98%, slightly drops when the query load
changes and converges again. The change is quite smooth because of the high subsumption
utilization. Figure 4.6.b shows the traffic consumption during the stress test. It can be observed
that the traffic consumption drops to relatively low values and slightly increases when the query
load changes. Finally, with 98% cache-hit rate the traffic consumption reduces to approx. 75
records/query.

0

10

20

30

40

50

60

70

80

90

100

0 4.5M 9.0M

number of generated queries

ca
ch

eh
it,

 s
pa

ce
 u

til
iz

at
io

n
(%

)

CacheHit

SubsumHit

TopKHit

SpaceUtilization

N
ew

 query load

1

10

100

1K

10K

100K

0 4.5M 9.0M

number of generated queries

av
er

ag
e

tr
af

fic
 p

er
 q

ue
ry

 (
re

co
rd

s)

Naive-Random

Naive-Sort

Broadcast

DCT-All

DCT-Indexing

N
ew

 query load

a)

b)

Figure 4.6. Cache-hit and traffic consumption while performing a stress test with 500 peers, 200K
records per peer. a) Cache-hit; b) Traffic consumption.

4.4. Experimental Results 65

4.4.6. Load Balancing

Figure 4.7 shows the peers’ load obtained for the network consisting of 100 nodes and caused
by answering queries from caches (Figure 4.7.a) and by executing meta-index lookups (Fig-
ure 4.7.b).

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90
peers

C
ac

he
 lo

ad
 (%

)

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90
peers

M
et

a-
in

de
x

lo
ad

 (%
)

a)

b)

Figure 4.7. Load caused by a) cache accesses and b) meta-index lookups in the network of 100 peers.

It might seem that popular caches cause huge load imbalance. However, if a user requests
only top-10 items and taking into account unrestricted cache placement, which depends only
on the peers’ querying activities, the load is distributed almost evenly as it can be observed
in Figure 4.7.a. The only problem is caused by several top-popular queries that create very
heavy load. A native DHT replication mechanism can be used to solve this imbalance. Also
notice that in our experimental setting the Wikipedia query log could be the culprit: the most
popular query “wikipedia” occurs very often (in 2.5% of the cases) and explains the spike on
Figure 4.7.a.

The meta-index service exhibits a certain load imbalance as shown in Figure 4.7.b, however
it serves only index lookups that do not require large traffic transfers. Moreover, TCP/IP
connections to the neighbors are maintained alive by the DHT, hence, the imbalance caused by
the meta-index has low impact compared to the cache imbalance. Additionally, the mechanisms
we proposed in Section 4.3.1 would help avoiding hot spots with low overhead.

4.4.7. Term Combinations vs. Queries

The last experiment we performed suggests that the cache-hit values reported before can be
further improved by considering all possible term combinations as candidates for caching in-
stead of using only real queries. We measure the CacheHit values for 100 peers with 20MB

66 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

capacity each as we did before with one difference: each peer can cache not only full queries
but also any combinations of terms contained within past queries. The benefit of such a mod-
ification is clear – the number of all possible term combinations that can be cached increases
significantly enabling a better selection of the most profitable caches.

50

60

70

80

90

100

0 2,0M 4,0M 6,0M

ca
ch

hi
t (

%
)

number of generated queries

CacheHit:
caching term combinations

CacheHit:
caching queries only

Figure 4.8. CacheHit for 100 peers with 20 megabytes capacity each: caching arbitrary term com-
binations vs. caching queries only.

Figure 4.8 shows the CacheHit increase of nearly 10% in our setting with 100 peers with
20MB capacity each. This indicates that very profitable combinations might not be queried
alone, but often included in queries along with other terms. We explore the option of term
combinations caching in more details in Chapter 5. Similar results for XPath query caching
were recently reported by [Lillis and Pitoura 2008].

4.5. Conclusions

In this chapter we presented a novel query-driven indexing strategy for multi-term query pro-
cessing with structured P2P networks. In our approach, called Distributed Cache Table (DCT),
each peer runs a greedy algorithm leading to a quasi-optimal network-wide cache selection that
maximizes the global cache-hit rate. DCT relies on the subsumption relation between queries
while selecting a cached result set to resolve a query.

We performed an extensive experimental evaluation on real data and query traces that
confirms the feasibility of our approach. The results showed two orders of magnitude reduction

4.5. Conclusions 67

in traffic consumption compared to the näıve single-term indexing approach.
We believe that DCT can be applied to the broader class of conjunctive queries. Such a

query is expressed by a conjunction of atomic predicates: q = a1&a2&..&an, where the atomic
predicate structure is application-specific, e.g., for the studied class of multi-term queries each
atomic predicate is a natural language term.

We envision DCT to be a perfect solution for distributed digital libraries, where DCT offers
an easy to use indexing service without any central coordination point in a relatively stable
and reasonably small network.

However, it is also clear that caching full posting lists even for combinations of terms
(queries) becomes very expensive when the document collection size reaches Web scale. Another
issue of the DCT approach is that it has to maintain document digests to enable local post-
processing and make use of query subsumption. Clearly, document digests consume significant
amount of storage space and traffic. Chapter 5 presents a different Query-Driven Indexing
approach (simply called the QDI approach) that addresses these problems by using truncated
versions of posing lists and keeping only document ids in the posting lists.

68 4. Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval

Chapter 5

Scalable Web Text Retrieval

with a Query-Driven Index

in a Peer-to-Peer Network∗

5.1. Introduction

In this chapter we continue to explore query-driven indexing methods for P2P text retrieval.
The Distributed Cache Table (DCT) approach presented in Chapter 4 provides an elegant
distributed caching solution, but requires indexing and maintenance of full posting lists for
popular combinations containing relatively big document digests. Thus, with a Web-scale
document collection DCT would suffer from substantially reduced cache-hit rates because fewer
popular (and possibly associated with very large caches) combinations will be cached.

In this chapter we present an alternative query-driven indexing/retrieval strategy for effi-
cient full text retrieval from a Web-scale document collection distributed within a structured
P2P network. Our novel indexing strategy is based on two important properties:

1. the generated distributed index stores posting lists for carefully chosen indexing term
combinations that are frequently present in user queries, and

2. the posting lists containing too many document references are truncated to a bounded
number of their top-ranked elements.

These two properties guarantee acceptable latency and bandwidth requirements, essentially
because the number of indexing term combinations remains scalable and the posting lists

∗ The material presented of this chapter aggregates several research papers published in the proceedings of:

- the 16th International World Wide Web conference (WWW’07, poster track) [Skobeltsyn et al. 2007a],

- the 2nd International Conference on Scalable Information Systems (Infoscale’07) [Skobeltsyn et al. 2007b],

- the 30th International ACM SIGIR Conference (SIGIR’07) [Skobeltsyn et al. 2007c].

The journal version is available in [Skobeltsyn et al. 2009]. The approach is implemented in the AlvisP2P

prototype [Luu et al. 2008], Website – http://globalcomputing.epfl.ch/alvis.

69

http://globalcomputing.epfl.ch/alvis

70 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

transmitted during retrieval never exceed a constant size. An index update mechanism effi-
ciently handles adding of new documents to the document collection. Thus, the generated
distributed index corresponds to a constantly evolving query-driven indexing structure that ef-
ficiently follows current information needs of the users and changes in the document collection.
We will show that the size of the index and the generated indexing/retrieval traffic remains
manageable even for Web-size document collections at the price of a marginal loss in precision
for rare queries. Our theoretical analysis and experimental results provide convincing evidence
about the feasibility of the query-driven indexing strategy for large-scale P2P text retrieval.

As we already discussed in Chapter 2, extensive bandwidth consumption has been identified
as one of the major obstacles for the adoption of peer-to-peer (P2P) technology in the field of
information retrieval (IR). Studies such as [Li et al. 2003; Zhang and Suel 2005] have shown
unscalable traffic requirements for Web-size document collections, even when sophisticated pro-
tocols are used to reduce retrieval costs. Recall that query processing with a term-partitioned
distributed index requires intersection of posting lists that can physically reside on different
nodes of the network, causing substantial latencies and traffic consumption. Instead of in-
dexing single terms found in the document collection, which might lead to potentially very
large posting lists and thus unscalable bandwidth consumption, we focus our research efforts
on building distributed indexing structures based on term combinations.

The rationale behind this idea is that due to a high degree of distribution in a P2P network
it is more efficient to store the index in a large number of small blocks instead of a small number
of large blocks. For the P2P-IR scenario we reformulate the last sentence in a more concrete
way: it is easier to index a large number of term combinations associated with small posting
lists than a small number of terms with large posting lists. Notice that we implicitly exploited
this idea already in Chapter 4 while designing the Distributed Cache Table approach.

Alternatively, the approach based on indexing with Highly Discriminative Keys
(HDK) [Podnar et al. 2007] follows the idea of using term combinations as well. In Sec-
tion 2.2.3 we already described the basic properties of the HDK approach. Recall, that it relies
on indexing with terms and term combinations (called keys) that occur in at most DFmax

documents, where maximal document frequency DFmax is a parameter of the model. In the
HDK approach keys with a document frequency exceeding the predefined DFmax threshold
are associated with truncated posting lists, only storing the top-DFmax ranked documents and
are possibly expanded into several larger keys (i.e., keys consisting of more indexing terms)
with smaller document frequencies. The scalability analysis of the HDK approach [Podnar
et al. 2007] has shown that the number of generated keys grows linearly with the number of
documents, which is acceptable under a reasonable assumption that the ratio between the total
number of documents and the total number of peers in the network remains bounded.

However, we have observed that the HDK approach generates a large number of keys that
are never or rarely used in queries. Indeed, as the keys are generated only on the basis of their
document frequencies, their popularity (and thus practical usefulness) is not taken into account.

5.2. Distributed Query-Driven Indexing/Retrieval 71

Obviously, the creation and maintenance of such superfluous keys causes substantial consump-
tion of both bandwidth and storage, which represent valuable resources in large-scale networks.

In this perspective, we started exploring ways to eliminate superfluous keys from the index
such that the retrieval quality remains acceptable. As a result, we designed the Query-Driven
Indexing (QDI) strategy, which extends the HDK indexing mechanism, by taking into account
the popularity of term combinations appearing in user queries. The QDI approach uses query
statistics to filter out superfluous keys which results in a substantial reduction of the generated
index size compared to the HDK approach. As a consequence, the quality of the answer
obtained for a given query depends on the popularity of the term combinations it contains.
We have observed that this leads to only a marginal loss in retrieval quality, as the indexing
structure constantly evolves and reacts to changes in the query distribution.

In this chapter we present the detailed description of the QDI approach. The rest of the
chapter is organized as follows. We explain the indexing/retrieval model in Section 5.2 followed
by the algorithms overview in Section 5.3. We then present the scalability analysis in Section 5.4
and the experiments in Section 5.5. We describe the AlvisP2P prototype that implements QDI
in section 5.6 and provide conclusions in Section 5.7.

5.2. Distributed Query-Driven Indexing/Retrieval

In this section we introduce our P2P-IR framework and outline indexing/retrieval routines.
We then present an indexing on-demand mechanism that is used to activate new multi-term
keys detected as popular and to generate the associated posting lists. Finally we discuss how
to maintain the contents of the index up-to-date w.r.t changes in the document collection.

5.2.1. P2P Global Index

Let us consider a structured P2P network with N peers Pi, 1 ≤ i ≤ N , and a possibly very
large document collection D, consisting of |D| documents dj , 1 ≤ j ≤ |D|. TD is the set of all
indexing single terms in D and |TD| denotes the number of terms in TD.

In addition, we assume that a large query log L is available, where each query q ∈ L is a set
of terms. The set of all terms present in the query log is denoted by TL, and the intersection
TL ∩ TD thus corresponds to the query terms producing non-empty results.

In the P2P network, each peer Pi stores a fraction of the global document collection D,
denoted by Di, and builds a local index for Di. At the same time, Pi contributes to store and
maintain a fraction of the global distributed index I that associates keys with references to
documents in D.

Definition 5.1. A key k refers to an indexing term or a combination of indexing terms.
The standard stop-word elimination and stemming procedures [Porter 1980] are applied when
generating a key.

72 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

A posting list ρ(k) associated with a key k is the list of references to documents that contain
k: ρ(k) = {dj ∈ D | k ∈ dj}, where |ρ(k)| corresponds to the document frequency of k, denoted
as df(k). In addition, a set of statistical values such as term frequency, document size, etc., is
stored in the posting list for each pair (dj , k), dj ∈ ρ(k). These values are used to compute the
final relevance score of the document for any query containing k as well as the score r(dj , k) that
determines the rank of the document in the posting list. Various models can be used to compute
the relevance scores. Currently, we are using the top performing BM25 relevance computation
scheme [Robertson et al. 1992]. Notice, however, that any other relevance computation scheme
could be used instead, provided that the required global statistics for relevance computation
are available in the P2P network.

Definition 5.2. A truncated posting list (TPL) τ(k) associated with a key k refers to the
DFmax best-ranked document references in the posting list ρ(k), where DFmax is a parameter
of our model, corresponding to the maximal size of a TPL.

By construction, |τ(k)| ≤ DFmax, and, obviously, τ(k) = ρ(k) when |ρ(k)| ≤ DFmax.

Definition 5.3. The usage frequency qf(k) of a key k is a metric indicating the global
popularity of the key k in the query log L. In the simplest case, qf(k) can be the query
frequency of k, which is incremented each time a new query containing k is processed.

N Number of peers in the P2P network
D Document collection
TD The set of all unique terms in D (the vocabulary)
L Query log
I Global index
k Single-term or multi-term key

ρ(k) Full posting list associated with the key k

r(dj , k) Relevance score of a document dj with respect to k

τ(k) Truncated posting list (TPL) for k

df(k) Document frequency of the key k, which equals |ρ(k)|
qf(k) Usage frequency of the key k

smax The maximum number of terms that any key can contain
DFmax The maximal size of a TPL
QFmin The minimal query frequency in order to activate a key

Table 5.1. Main notations of Chapter 5.

5.2. Distributed Query-Driven Indexing/Retrieval 73

Currently, we use frequency counters that maintain usage frequencies within a predefined
time interval and therefore enable a timely reaction to changes in the query popularity distri-
bution.

In our framework we introduce three types of index items that are used to store the index-
ing information in the P2P network. Posting lists for all single terms found in the document
collection D are stored in basic index items. Popularity statistics for selected multi-term com-
binations is maintained in candidate index items and, finally, truncated posting lists (TPLs)
for the most popular combinations are stored in active index items. The formal definitions are
given below:

Definition 5.4. A basic index item for a single-term key k, |k| = 1 is the pair (k, ρ(k))
associating k with its full posting list ρ(k). The corresponding TPL τ(k) can always be locally
obtained from the full posting list ρ(k).

Definition 5.5. A candidate index item for a multi-term key k is the pair (k, qf(k))
associating k with its usage frequency qf(k). The candidate index item is created for the key
k and inserted into the global index I iff:

◦ k contains from 2 to smax terms: 2 ≤ |k| ≤ smax, where smax is a parameter of our
model (size filter).

◦ the document frequency dfk′ of each sub-key k′ of the key k of size |k| − 1 is above
DFmax and the corresponding basic or active index item for k′ is already stored in the
global index. ∀ k′ ⊂ k, |k′| = |k| − 1 : dfk′ = |ρ(k′)| > DFmax & τ(k′) ∈ I (redundancy
filter).

Definition 5.6. An active index item for a multi-term key k is the triple (k, qf(k), τ(k))
associating k with its usage frequency qf(k) and the TPL τ(k). An existing candidate index
item for a multi-term key k is activated (i.e., its status is changed from candidate to active)
iff:

◦ k is popular : qf(k) ≥ QFmin, where QFmin is a parameter of our model (popularity
filter).

Within such a setup, the global distributed index I maintains:

• a set of basic index items for all single-term keys found in the document collection D,

• a set of candidate and active index items generated for the multi-term keys extracted
from the query statistics.

74 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

Basic index item:

Candidate index item:

Active index item:

<Lausanne>

<EPFL Lausanne>

<Lausanne Switzerland>

<null>

Index item type:
<key>

Popularity
counter Posting list

DFmax elements (used for query processing)

Each element contains

a document id and a

score of the document

w.r.t the key

High score Low score

<null>

Figure 5.1. Example of index item types.

Definitions 5.4–5.6 are illustrated in Figure 5.1 that shows examples for all three types of
index items. Notice that each single-term key found in D is always associated with a basic
index item (Figure 5.1-a). A multi-term key k can be either 1) not present in the index, or 2)
associated with a candidate index item (Figure 5.1-b), or 3) associated with an active index
item (Figure 5.1-c).

We call a multi-term key k a candidate key, if the global index contains a candidate index
item for k. Similarly, we say that a key k is indexed, if the TPL τ(k) can be obtained from the
index, i.e., an active or a basic index item can be found for k. Notice also that a multi-term
key can be indexed only if it passed all three filters (size, redundancy and popularity) defined
above (see Definitions 5.5, 5.6).

The global index is distributed over the peers such that the fraction of the index under
the responsibility of a peer Pi is exactly the set of index items associated with the keys that
are allocated to Pi by the Distributed Hash Table (DHT) built on top of the P2P network. In
such a DHT, the peer responsible for a given key can be uniquely determined by applying a
globally known hash function, thus, ensuring balanced placement of the indexing information.
An efficient and self-organizing communication protocol enables any peer to route a message
to the peer responsible for a given key in O(log N) overlay hops, where N is the total number
of peers in the network. The details of such a protocol can be found in Chapter 2.

Locally each peer Pi is responsible for the following complementary tasks:

• Pi ensures that its local document collection Di is properly represented in the global
distributed index I.

• Pi maintains its fraction of the global index Ii
1. In particular, it takes care that the

1 Notice that the fraction of the global index maintained by Pi has no a priori reason to be related to the local

document collection stored at Pi.

5.2. Distributed Query-Driven Indexing/Retrieval 75

usage frequencies are updated during query processing. Based on this information, Pi

can decide either to activate candidate index items or to deactivate active index items.

• While processing a query q, Pi interacts with the global P2P index in order to retrieve
available relevant TPLs from the distributed index. If necessary, Pi can request the
corresponding peers to create new candidate index items for the keys contained in q.

A more detailed description of the above-mentioned indexing and retrieval tasks is given
below. The formal description of the corresponding algorithms is presented in Section 5.3.

5.2.2. Indexing/Retrieval Mechanisms

The goal of distributed indexing is to generate and maintain a suitable set of index items,
associated with the corresponding TPLs, for any given global document collectionD distributed
over N peers and the current query popularity distribution. Since the indexing process is
computationally intensive, peers share the indexing load, and collaboratively build the required
distributed index.

First, the peers build the basic single-term index that contains basic index items ({t, ρ(t)}
tuples) for all single terms in TD. Each peer Pi performs indexing of its local document
collection Di and inserts all single-term keys associated with their local posting lists, into the
P2P network. As a result, a full posting list is acquired for each single term t ∈ TD maintained
at the peer Pt responsible for t. Recall that τ(t) ⊆ ρ(t), i.e., the TPL for a term t can be
locally generated from its full posting list. To ensure bounded bandwidth consumption only
(short) TPLs are used for retrieval. Thus, the basic index enables the processing of any query,
possibly with a degraded retrieval performance due to the loss of information caused by the
TPL truncation. Full posting lists are used for key activations and index updates as described
in Sections 5.2.3 and 5.2.4 respectively.

After the basic index is built, the subsequent indexing process2 is fully driven by the query
statistics, and is performed in parallel with retrieval. More precisely, as soon as a peer P

receives a new query q, it starts to explore the lattice of the query term subsets (hereafter
called the query lattice), in decreasing subset size order starting with the query itself3. An
example of a query lattice is given in Figure 5.2, which shows 3 potential scenarios for query
processing. For each of the explored lattice nodes q′ (hereafter called the query keys), the
querying peer P requests from the peer P ′ responsible for q′ the TPL associated with q′.

Each peer P ′ that receives such a request attempts to increment the usage frequency of
q′ in the corresponding index item. If no index item exists for q′, no extra action is taken.
Additionally, as soon as a candidate key q′ becomes popular, P ′ initiates the key activation
process by triggering the on-demand indexing mechanism for q′ (see Section 5.2.3). As a result

2 It can also be viewed as a form of distributed caching on top of the basic single-term index.
3 Notice that if the query has more than smax terms, the lattice exploration starts from the term subsets of size

smax.

76 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

of the on-demand key indexing, the candidate index item associated with q′ will acquire a
new global TPL and thus become an active index item that can be used for subsequent query
processing. For example, in Figure 5.2-b, a candidate index item is stored for the key bc, and,
as soon as its popularity reaches the QFmin threshold, it is activated as shown in Figure 5.2-c.

a b c

ab bcac

abc

a b c

ab bcac

abc

a)

c)

a b c

ab bcac

abc

b)

- probed
combination

- skipped
combination

- popularity
counter

- posting list
with the TPL
highlighted

- TPL is used
to answer
the query

- basic index
item (term’s
posting list)

- no index
item for
the key

- candidate
index item
(only stat.)

- active
index item
(stat.+TPL)

I n d e x i t e m s :

a

b

Legend

Figure 5.2. Possible scenarios when processing the query abc if: a) the posting list for a is truncated,
while posting lists for b and c are not; b) the posting list for a is also truncated; c) additionally the key
bc is indexed.

If q′ is indexed, the peer P ′ sends back to the querying peer P the content of the TPL
τ(q′) associated with q′. When P receives the TPL, it stores it locally, and the part of the
query lattice dominated by q′, i.e., all the query keys contained in q′, are excluded from the
subsequent lattice exploration. For example, for the query lattice shown in Figure 5.2-c, if a
TPL associated with the key bc is retrieved from the P2P index, the query keys b and c are
not further explored. Thus, the top-down query lattice exploration can lead to two mutually
exclusive terminal situations:

• At least one query key associated with a non-truncated posting list is reached offering an
exhaustive list of potential answers to the query. For example, the key a in Figure 5.2-a

5.2. Distributed Query-Driven Indexing/Retrieval 77

is associated with an exhaustive posting list (|ρ(a)| ≤ DFmax) that can be used to answer
any query containing a, e.g., abc.

• A cut of query keys (see Definition 5.7) associated with truncated posting lists is reached.
If none of the multi-term query keys is popular enough to be associated with an active
index item, the cut will consist of all the single-term keys contained in the query (see
Figure 5.2-b). Otherwise, the cut can consist of keys of different sizes (for example, in
Figure 5.2-c keys a and bc form the cut for the query abc, and the associated TPLs are
used for query answering).

Definition 5.7. In a subset lattice a cut is a set of nodes Ni, s.t.: 1) the union of all the
nodes dominated by Ni is equal to the top node of the lattice; and 2) none of the nodes in
the cut dominates any other node from the cut. For example the set of nodes a and bc in
Figure 5.2-c is a cut because: 1) a ∪ bc = abc, and 2) a * bc, bc * a.

When either of the two terminal situations is reached, the query lattice exploration stops
and all the retrieved TPLs are used by the querying peer for postprocessing. More precisely, the
peer produces their union, re-ranks all the resulting documents dj with respect to the original
query q (i.e., it computes the relevance scores r(dj , q) using the values stored in the postings),
and presents the top-ranked document references to the user as the result for the submitted
query q.

For example, Figure 5.2 shows the processing of the query abc with three different states
for the global index. Notice that the tick sign highlights the TPLs that are collected by the
querying peer and are used to produce the final result for abc in each case. The top-k results
obtained for the query abc in the case 5.2-c can potentially be of better quality than the ones in
5.2-b due to the fact that an extra TPL for the key bc is available. In the case 5.2-a, the quality
of the result is already maximal because the size of the posting list for a is below DFmax and
hence it contains all possible document references relevant for a, and therefore for abc.

Finally, as a consequence of the query lattice exploration, the querying peer can discover
new candidate multi-term keys that have to be created. According to Definition 5.5, these
candidate keys belong to the set of immediate ancestors of all identified query keys that are: 1)
indexed, and 2) associated with truncated TPLs4. The peer then simply requests the creation
of all such candidate index items, provided that they are not already stored in the global index.
Recall that the created candidate index items will only maintain their usage frequencies, and
can be activated later in case they become popular.

To summarize, the processing of new queries leads to key activations and hence to the
generation of new TPLs, which, in turn, increases the retrieval quality for subsequent queries.

4 In other words these candidate keys belong to the set of immediate ancestors of all the nodes in the cut.

78 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

Obsolete active keys that become unpopular over time due to changes in the user query distri-
bution can also be deactivated, thus constantly adapting the set of active index items stored
in the global index to the current users information needs.

5.2.3. On-Demand Indexing Mechanism

When a multi-term key k is activated, the on-demand indexing mechanism is executed by the
peer P responsible for k to generate the global TPL τ(k) containing top-DFmax document
references found in the global document collection for a given k. Notice that after the TPL is
generated, a query-driven index update mechanism (see Section 5.2.4) is used to maintain it
up-to-date with respect to the document collection changes (e.g., the addition of a new relevant
document might require changing of existing TPLs).

However, in order to activate a new key, top-DFmax relevant documents (ranked w.r.t
the key) currently present in the global document collection have to be identified. As all
peers could potentially hold documents containing k, a näıve approach would be to broadcast
an indexing request containing k to the whole network. P would then collect the answers
and generate the global TPL. Such a näıve approach is obviously quite expensive in terms of
bandwidth consumption and can also lead to load balancing problems. Nevertheless, our initial
solution described in [Skobeltsyn et al. 2007b] was based on a carefully optimized version of
broadcast, which uses a special P2P-level multicast and various piggybacking techniques to
reduce bandwidth consumption. However, the broadcast-based solution might still not scale
well with the network size.

A more bandwidth-efficient solution is to utilize the full posting lists stored in the basic
index items for all single-term keys. Then the on-demand indexing can be carried out in a
conventional way by intersecting the full posting lists of all single terms contained in the key
that is being activated. Any distributed set intersection algorithm, e.g., based on Fagin’s
Threshold Algorithm [Fagin et al. 2001], can be used.

The substantial difference compared to the standard single-term indexing approach is that
the intersection operation is not performed on a per-query basis (i.e., frequently), but is exe-
cuted only once when a new key is activated. Moreover, as the indexing latency is less crucial
than the retrieval latency, we can tolerate a certain delay of key activation.

5.2.4. Updates in the Query-Driven Index

In order to keep the contents of the index up-to-date, TPLs associated with active index items
have to be constantly refreshed such that new documents can be found shortly after they have
been added to the global collection.

Updating the query-driven index is a challenging task as the set of indexed keys relevant
to a document is unknown at indexing time. A näıve approach would be to probe all possible
keys extracted from the document and to update the corresponding TPLs. Obviously, even if

5.2. Distributed Query-Driven Indexing/Retrieval 79

updating posting lists associated with single terms is possible, such a strategy fails miserably
given the number of possible term combinations of size 2 and larger.

To explore the setting in more detail we performed the following experiment. We used a
large corpus of 17M AOL queries (see Section 5.5 for more details) to build a query-driven
index I. We discovered that the set of keys M(d) that match a document d (M(d) ⊆ I | ∀k ∈
M(d) : d 3 k) is typically large, normally reaching the order of thousands of keys. However, for
a large (Web-size) document collection, the set of keys U(d) for a document d that should be
updated (U(d) ⊆ M(d) | ∀k ∈ U(d) : TPL(k) 3 d) is typically very small. The reason for this
is that there are usually only few keys that will update their TPLs (top-DFmax results) with
the new document reference d, but there are many keys matching the document whose top-
DFmax document references are ranked higher than d. Figure 5.3 illustrates this observation:
all keys that match the document M(d) do not have to be updated except for the small subset
U(d), U(d) ⊆ M(d), where each key from U(d) will include the new document in its top-DFmax

results. ���������������������	
������� ��
U(d)

��������	
���
�����������������������������	
��������������������	
���

 All keys U(d)

that have to

be updated

All keys

M(d) that

match the

document

All keys in

the index

Document d

��� ��
M(d)

Figure 5.3. Updating the distributed index for a new document.

For example, we took http://globalcomputing.epfl.ch/alvis as a test document (the
main page of our AlvisP2P prototype Web site) and used the AOL query log (see Section 5.5.1)
to identify popular multi-term keys that are contained in the document (i.e., the M(d) \ Td

set). We crawled Google’s top results for each key in M(d) and checked whether the original
document is contained within the top-200 results. We obtained Table 5.2 for the AlvisP2P
Web page.

The digest size (the number of unique terms in d) |Td| 96

The number of indexed keys matching the document |M(d)| 2482

The number of indexed keys that have to be updated |U(d)| 5

Table 5.2. Indexing statistics for the sample page http://globalcomputing.epfl.ch/alvis.

http://globalcomputing.epfl.ch/alvis
http://globalcomputing.epfl.ch/alvis

80 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

We believe such a situation is standard for all documents and the goal is not to compute
the set M(d) of relevant keys for a document d, but to identify the set U(d) of all keys that
have to be updated.

One way to solve this problem is to create an auxiliary indexing structure that facilitates
discovery of relevant keys. Indeed, if each peer responsible for a single term could maintain a
list of indexed keys containing this term, this can be used to discover relevant keys for a given
document. Such a strategy would allow to discover M(d) but it also has to maintain ranking
information to compute U(d). However, our experiments show that obtaining U(d) in such a
way generates significant traffic and has other drawbacks such as extra complexity, significant
maintenance overhead and load imbalance.

Hence, we propose query-driven index updates. The main intuition behind this solution
is that there is no need to update a TPL until it is requested during retrieval. Recall that
full posting lists for single terms are maintained in basic index items and are used for key
activations. A new TPL for an activated multi-term key is generated by applying a distributed
intersection algorithm as explained in Section 5.2.3. Hence, we can reuse the same algorithm
to carry out periodic TPL updates at retrieval time. Thus, indexing of a new document d only
requires updates of all single-term full posting lists for all unique terms found in d. Updates
of the TPLs associated with multi-term keys are done later, together with retrieval.

Whenever a multi-term key k = t1..ts is requested during retrieval, the peers Pt1 ..Pts try
to refresh the TPL τ(k) by executing the distributed intersection algorithm as explained in
Section 5.2.3. There is no need to run the intersection over the full posting lists ρ(t1)..ρ(ts)
again, but only on the new portions that have been accumulated since the last TPL update.
Indeed, if a set of new documents Dnew = d1..dm has been indexed since the last update of the
TPL τ(k), the full posting lists ρ(t1)..ρ(ts) have possibly acquired new document references
from Dnew. Thus, it is guaranteed that the intersection of only the new portions of the single-
term posting lists will contain all relevant document references from Dnew matching k. For load
balancing reasons, TPL updates are done periodically and not with every retrieval request.

Figure 5.4 shows the main idea of the query-driven index update technique. Assume all
single term posting lists are sorted by a timestamp. Each indexed multi-term key k = t1..ts

maintains s values dfk
t1 ..df

k
ts that denote the position of the last item in the corresponding

term’s full posting list at the previous update (in other words dfab
b denotes the b’s document

frequency dfb = |ρ(b)| at the time of the previous update of the key ab). Obviously if ρ(t) did not
change since the previous update of the key k, dfk

t = dft = |ρ(t)|. However if the posting lists
associated with t1..ts have changed since the previous update of k, the newly added elements are
intersected and τ(k) is possibly updated. Then, dfk

t1 ..df
k
ts are set to |ρ(t1)|..|ρ(ts)| respectively.

Tracking the documents that are no longer accessible is also managed in a query-driven
fashion. Failure to access a document while generating a query response could trigger removal
of the corresponding document references from the posting lists that were involved in the query
processing. Thus, stale entries in the index are continuously removed driven by user queries.

5.3. Indexing/Retrieval Algorithms 81���������
��� ����������������� � � ���� ������������� ��

�	
 ��
���� ������ ���

��������������������������� �������������������������������� � �� ��	 ����
��� �� � !�"#
�$!%& #

F
u
ll p
o
s
tin
g
 lis
ts
 o
f s
in
g
le
 te
rm
s

T
P
L
s
 o
f k
e
y
s
 a
b
a
n
d
 b
c

� '())* '(*)*+,--.+,-/-+,- +,.-.+,//-+,/ +,.'(00) '()0)
Figure 5.4. Query-driven index updates.

5.3. Indexing/Retrieval Algorithms

5.3.1. Retrieval

The pseudo code in Algorithm 5.1 defines the algorithm executed by the querying peer when it
receives a new query q = {t1, t2, . . . , t|q|}. To process a query, the querying peer first probes all
keys of size min(smax, |q|) extracted from the query (lines 4–26) by contacting the responsible
peers. Recall that this is done by hashing a string representation of each key and following the
standard DHT routing mechanism. A key of size s is probed only in case a predecessor key of
size s + 1 have not been discovered before in the global index (line 6). For each probed key
k, the function probeKey(k) defined in Algorithm 5.2 is executed at the peer Pk responsible
for the key k. This function tries to locate the corresponding index item in Pk’s portion of the
index IPk

and to increment k’s usage frequency counter. The function returns the state of the
index item associated with k, which could be one of the following: ∅ (no index item), candidate

or basic/active.

82 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

Algorithm 5.1 QDI query processing: processQuery(q).
1: result ← ∅; /* obtained document identifiers */

2: found ← ∅; /* found indexed keys */

3: candidates ← ∅; /* keys to create new candidate items for */

4: for i = min(smax, |q|) downto 1 do
5: for k ← generateNextTermCombination(q, i) do
6: if ∀s ∈ 1..|found|, k * found[s] then

/* route to the peer responsible for k and request its state:*/

7: peer = DHT.route(generateKey(k));
8: keystate = peer.probeKey(k);

/* k is indexed ⇒ request its TPL, add to the result : */

9: if (keystate = basic/active) then
10: found ← found ∪ k;
11: result ← result ∪ peer.getTPL(k);

/* update (if needed) k’s TPL: intersect new portions */

/* of full posting lists of all single terms contained in k */

12: if (|k| ≥ 2) and (keystate.updateRequested) then
13: DHT .updateTPL(k, keystate.dfk

t1..t|k|);
14: end if
15: end if

/* there is no index item for k ⇒ add k to candidates: */

16: if (keystate = ∅) and (|k| ≥ 2) then
17: candidates ← candidates ∪ k;
18: end if

/* no index item for k OR k’s TPL is not truncated */

/* ⇒ delete all already found candidates that contain k: */

19: if (keystate = ∅) or (peer.getDF (k) ≤ DFmax) then
20: while (∃k′ ∈ candidates, s.t. k ⊂ k′) do
21: candidates ← candidates \ k′;
22: end while
23: end if
24: end if
25: end for
26: end for
27: DHT .createNewCandidateIndexItems(candidates);
28: return result;

5.3. Indexing/Retrieval Algorithms 83

Algorithm 5.2 QDI key probing: probeKey(k).
1: indexitem ← getLocalIndexItem(k); /* k’s index item */

2: if indexitem = ∅ then
3: return ∅; /* there is no index item for k */

4: else
5: inc(indexitem.qf); /* increase the usage frequency counter */

6: if indexitem.TPL = ∅ then
/* compare the query frequency of k to the QFmin constant */

7: if indexitem.qf ≥ QFmin then
8: DHT .updateTPL(k); /* activate candidate indexitem */

9: end if
10: return candidate; /* indexitem maintains no TPL */

11: else
12: return basic/active; /* indexitem maintains a TPL */

13: end if
14: end if

During query processing, the algorithm might discover some keys for which new candidate
index items have to be created (lines 17 and 19–23). After query processing is finished, the peers
responsible for such keys are contacted and requested to create the corresponding candidate
index items (line 27).

Furthermore, during query processing a multi-term active index item might require a pe-
riodic TPL update (line 12). In this case the function updateTPL(k, dfk

t1..t|k|), described in
Section 5.3.2 is executed (line 13), which ensures that the TPL content is up-to-date.

Finally, the usage frequency counted associated with a candidate index item can reach the
QFmin threshold (line 5 of Algorithm 5.2) and lead to a key activation (line 8). In order to
generate a new TPL for such a key, the same function updateTPL(k, dfk

t1..t|k|) is used.

5.3.2. Indexing

Whenever a new document is added to the collection, it leads to updates of the full posting
lists associated with all single terms found in the document. Activating a new multi-term key
(on-demand indexing) or refreshing a TPL for an active index item (index update) is done
using the function updateTPL(k, dfk

t1..t|k|) during retrieval.

This function initiates the distributed intersection of the recently added portions of the
full posting lists associated with all single terms belonging to the key k. The vector dfk

t1..t|k| =
{dfk

t1 ..df
k
t|k|}, ∀ti ∈ k contains |k| values corresponding to the starting positions of the document

references in each full posting list of ti that have not yet been intersected in the previous updates
of the TPL τ(k) (see Figure 5.4).

For an activation of a new key (line 8, Algorithm 5.2) the dfk
t1..t|k| vector is not specified

84 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

(filled with zeros by default) and the full posting lists of the corresponding single terms are
intersected.

In this chapter we do not discuss a concrete implementation of the updateTPL function,
however we assume that it preforms the top-k distributed intersection based on a variation of
the Fagin’s Threshold Algorithm (TA) [Fagin et al. 2001] such as Distributed Pruning Protocol
(DPP) [Suel et al. 2003] or the Three-Phase Uniform Threshold (TPUT) algorithm [Cao and
Wang 2004]. The authors of [Zhang and Suel 2005] also combined the top-k intersection with
Bloom filters to further optimize the bandwidth consumption. The intuition behind these
algorithms is that only top-k (top-DFmax in our case) document references from the resulting
intersection have to be obtained, which enables efficient pruning of a large number of items
associated with low scores.

To intersect posting lists ρ(t1)..ρ(t|k|) of t1..t|k|, ti ∈ k, the basic threshold algorithm scans
the posting lists sorted by the document scores in parallel, and calculates the sum of scores (a
threshold value) at the current position across all the lists. Each time a new document dj is
found, TA looks it up in all other lists to calculate its rank r(dj , k). TA stops when the DFmax

documents with the rank values higher than the threshold were identified5. Indeed, none of
the documents that have not been seen can have a score higher than the threshold, so the
algorithm is always correct. Protocol optimizations in DPP [Suel et al. 2003] and TPUT [Cao
and Wang 2004] ensure low latency and bandwidth consumption when the posting lists reside
on different nodes.

Furthermore, we make an assumption that such an intersection algorithm terminates early
when applied to queries with few frequent terms, which are typical keys in our framework.
Thus, we can ensure bounded bandwidth consumption per activation at the price of a precision
loss by enforcing an early termination. That is, if the intersection was not completed within a
predefined traffic quota, the algorithm is forced to terminate generating a possibly incomplete
TPL. However, such a TPL can still be used for query processing, possibly with a negative
effect on the result quality.

5.4. Scalability

In this section we discuss the scalability of the query-driven approach in terms of bandwidth
consumption. Essentially, the main reasons for scalability are the following: 1) the retrieval
traffic generated while processing a query is low, since all transmitted TPLs are of bounded
size, and 2) the indexing traffic needed to generate and maintain the global distributed index
is manageable, as it depends on the number of indexing keys, which can be adjusted with the
QFmin parameter. Following [Podnar et al. 2007], we assume that the number of documents
stored per peer is bounded and thus the total number of peers N determines the maximal size

5 Notice that the TPL update mechanism would benefit from the TA’s pruning even further as the threshold value

can be computed in advance based on the previous intersection results.

5.4. Scalability 85

of the document collection.

Retrieval traffic. As answering a query leads, in the worst case, to the exploration of all
the nodes in the query lattice that correspond to query term sets of at most smax terms, the
processing of a query requires the transmission of at most (log N + 1)

∑smax
i=1

(|q|
i

)
messages6.

Thus, as the size of all the transmitted messages is bounded, and, if we assume a bounded
query rate for each peer in the network, the total number of transmitted messages grows with
O(N log N). It corresponds to O(log N) retrieval traffic per peer, which is scalable.

Indexing traffic. The traffic generated to produce and maintain the global distributed
index consists of: 1) the single-term indexing traffic required to populate the basic single-term
index, and 2) the query-driven indexing traffic required to generate TPLs for newly activated
keys and to update the existing ones.

Single-term indexing traffic. If we assume that the number of documents published
by a peer is bounded, the number of messages that have to be transmitted in the network in
order to generate the basic single-term index grows with O(N). As the routing cost to deliver
a message to the corresponding peer is O(log N), the total number of messages to generate
the single-term index is O(N log N), which corresponds to O(log N) messages a peer has to
transfer during the single-term index generation.

Query-driven indexing traffic. Each key activation triggers the on-demand indexing
mechanism, which performs the distributed intersection of the corresponding single-term post-
ing lists to generate a new TPL. While the bandwidth consumption required to generate top-
DFmax postings stored in the TPL depends on the chosen distributed intersection algorithm,
following the communication cost analysis of the Fagin’s algorithms by [Suel et al. 2003], we
can assume that the complexity of such an activation is O(N

s−1
s), where s ∈ [2..smax] is the

number of terms in a key7. Furthermore, if we make an assumption that the Fagin’s algorithm
terminates early for queries that contain few frequent terms, which are typical keys in our
framework – the complexity of an activation can be bounded by a constant at the price of a
marginal precision loss. The overall query-driven indexing traffic thus depends on the number
of actual activations.

[Podnar et al. 2007] showed that the number of keys generated for a given document
collection by applying the HDK indexing grows linearly with the collection size. The query-
driven key activation mechanism results in a substantial decrease of the number of keys as
it can be viewed as an additional popularity filter based on the query distribution properties
that eliminates superfluous keys. Here, we derive an upper bound on the number of keys that
can be generated from the queries contained in the query log and show that it scales linearly
with the query log size. Since we cannot capture analytically the correlation between the term
combination popularity and its document frequency, the upper bounds are computed based on

6 For each key it takes at most log N messages to locate the responsible peer plus one message to return the

answer.
7 Our experimental results indicate that majority of activated keys contain two terms suggest smax = 3.

86 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

the query distribution properties only. Moreover, in Section 5.5 we will experimentally confirm
the linear dependency between the number of activated keys and the size of the log, and show
that despite of significant reduction of the number of indexed keys, the QDI approach causes
only a marginal loss of the answer quality even for Web-size document collections and real
query distributions.

If we abandon the correlation between the term combination popularity and its posting list
size, the number of possible keys selected for indexing depends only on the query log properties.
We make the assumption, backed by preliminary empirical analysis (see Figure 5.14), that the
number of multi-term combinations found in the query log follows the Pareto [Reed 2001]
distribution. We use this assumption to analyze the number of keys that can be potentially
activated. This number, however, is an upper bound and is significantly reduced in practice
by applying size and redundancy filters.

We are interested in deriving the number of multi-term keys with minimum usage frequency
(popularity) QFmin after |L| queries were observed in the query log. Recall, that the number of
single term keys does not depend on the query distribution as all terms found in the document
collection are indexed. According to Heaps’ law [Heaps 1978], the number of distinct terms
grows as O(

√
|D|) with the size of the document collection |D|, and, therefore can be practically

managed in a P2P network. For our future analysis, we ignore single term keys and concentrate
on combinations of size 2 and larger.

We assume that usage frequencies of keys of sizes 2, .., smax are Pareto distributed, i.e., the
probability that the usage frequency qfk of a key k is higher or equal to a predefined QFmin is
given by:

P (qfk ≥ QFmin) = (QFmin)−α, |k| ≥ 2,

where α > 0 denotes the Pareto index.
We define |K1| as the number of multi-term keys that have appeared only once in the query

log. The total number of multi-term keys γ found in a query log L is thus

γ = |K1|
∫ +∞

1
(QFmin)−α d(QFmin).

Assuming8 α > 1:

γ =
|K1|
α− 1

or
|K1| = γ (α− 1).

The number of multi-term keys to be activated for the chosen QFmin is the following:

|KQFmin | = |K1| P (qf ≥ QFmin) =

= (α− 1) (QFmin)−α γ = O(γ).
8 Our experiments suggest values of α around 1.8, see Figure 5.14.

5.5. Experiments 87

Assuming the number of multi-term keys extracted from a query is bounded by a constant,
calculated from the maximum query size, we can write:

|KQFmin | = O(|L|).

Therefore, the number of activated keys grows linearly with the number of queries submitted
to the system. Moreover, increasing the QFmin parameter results in decreasing the number
of activated keys according to the power law. We also justified this result experimentally, see
Figure 5.14.

Thus, we showed that the activation rate linearly depends on the global query rate. If we
assume that the query traffic per peer is bounded, the activation rate grows with O(N). Hence,
by enforcing a constant complexity of an activation we achieve a scalable traffic in the P2P
setup.

In addition, the traffic can be further controlled at the price of retrieval quality degradation
by tuning the QFmin parameter for a given time interval. Our extensive experimental evalu-
ation (see Section 5.5) shows that the retrieval quality remains acceptable even for Web-scale
document collections with reasonably chosen time interval and QFmin values.

Furthermore, in practice, we utilize a novel DHT-level congestion mechanism [Klemm et al.
2006], which optimizes the usage of the underlying DHT network resources. This module takes
care of the on-the-fly aggregation of the messages with the same next-hop destination and
facilitates efficient P2P network utilization at peak loads.

5.5. Experiments

We showed that the QDI approach scales to Web sizes with respect to the size of the index.
However, by pruning superfluous keys we have to tolerate a certain degradation of the retrieval
quality. Since we cannot capture analytically the correlation between the popularity of a certain
term combination and its document frequency, we conducted several large-scale experiments
(Sections 5.5.1 and 5.5.2) with real query-logs to investigate the retrieval performance of our
query-driven approach.

In Section 5.5.3 we also confirm that retrieval precision of our approach achieved for a
random set of real queries is fully comparable to the one obtained with a state-of-the-art
centralized query engine.

The second set of experiments analyzing the performance of the QDI approach in a dy-
namic setting and investigating the size of the query-driven index is presented in Sections 5.5.4
and 5.5.5. We report a significant reduction of the index size compared to the HDK-based
index, which in turn yields a significant bandwidth consumption decrease when compared to
the HDK approach.

88 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3

Q
ua

lit
y

of
 a

ns
w

er
 (

%
)

no overlap
(0%-25%)
[25%-50%)
[50%-75%)
[75%-100%)
100%
Avg.Overlap

smax (terms)

Figure 5.5. Google experiment: maximal overlap achieved for different values of smax

(assuming all possible combinations of size 1..smax are indexed).

5.5.1. Retrieval Quality Experiments with the AOL Query-Log

To analyze retrieval performance, we conducted several experiments using query logs from the
AOL search engine. These logs contain more than 17M of real queries collected from 650K
users during 3 months, from March to May 2006. We discarded the information about user
sessions and obtained a large list of queries sorted by timestamps. In addition, we considered
only unique entries in each user session, so the repetition of a query by the same user does
not affect the query popularity distribution. Finally, we filtered out queries corresponding to
Web site URLs, which represent a large fraction (about a third) of all queries, but are not
interesting for our experiments9.

The aim of this set of experiments was to evaluate the impact of query-driven indexing on
retrieval quality in the context of real life Web-scale document retrieval. To do so, we randomly
generated a test set of 2, 000 queries taken from the last day of the AOL log. We then crawled
Google’s top-20 results for each query in the test set. In the following, we will refer to these
top-20 results for a query q as the reference result for q.

For each test query, we removed the common stop words, applied the stemmer [Porter
1980], sorted the terms in alphabetical order10 and generated all possible term combinations.
Then, for each of these combinations, we computed their query frequencies using the AOL

9 Such queries can be easily resolved in our framework by treating URLs as single terms.
10 The sorting is performed to diminish the effect of term ordering on Google’s ranking.

5.5. Experiments 89

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

Q
ua

lit
y

of
 a

ns
w

er
 (

%
)

Log history size (days)

(0%,25%)

[25%,50%)

[50%,75%)

[75%,100%)

100%

Avg.overlap

Figure 5.6. Google experiment: overlap achieved for different sizes of the query log measured in days
(QFmin = 1, DFmax = 600, smax = 3).

query log for the previous 3 months and crawled Google’s top-DFmax results for all generated
term combinations. In our query-driven index, these results would be contained in the TPLs
associated with indexed term combinations, provided that each peer uses the same ranking
mechanism as Google.

To evaluate the retrieval quality for a query q, we measure the overlap between the reference
top-20 results for q and the union of the TPLs associated with the term combinations (keys) that
are: 1) contained in q, and 2) indexed. The overlap is expressed as the fraction of the reference
top-20 result that appear in the generated union. In other words, the overlap corresponds to
precision@k when Google considered as the reference.

In all experiments, we categorize the overlap values into the following categories:

1. overlap = 0%, i.e., no result from the reference top-20 appears in the union,

2. overlap = (0%− 25%),

3. overlap = [25%− 50%),

4. overlap = [50%− 75%),

5. overlap = [75%− 100%) and

6. overlap = 100%, i.e., all results from the reference top-20 appear in the union.

90 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 50 100 200 300 400 500 600

Q
ua

lit
y

of
 a

ns
w

er
 (

%
)

DFmax (records)

0%

(0%-25%)

[25%-50%)

[50%-75%)

[75%-100%)

100%

Avg.Overlap

Figure 5.7. Google experiment: overlap achieved for different values of DFmax

(QFmin =1/3 months, smax = 3).

Impact of smax. Figure 5.5 shows the achieved overlap if all possible combinations of
size 1, .., smax are indexed for different values of smax. From the figure, considering term
combinations with 1, 2 or 3 terms is sufficient to achieve overlap values as high as 97%. Thus,
in our experiments we fix smax = 3.

Impact of the log size. Figure 5.6 shows the achieved overlap as the function of the size
of the query log, measured in days. QFmin was set to 1, i.e., a term combination should be
encountered at least once in the previous query history to be activated and indexed. We set
the DFmax parameter to 600 and smax to 3.

With this setting, one can see that, starting from the poor performance of the single term
index11, the overlap rapidly grows with 100-200K queries being processed per day. The three
months query log yields an overlap of about 80%. Notice that our approach could use larger
query logs, which would further improve the retrieval quality. It is also important to mention
that for more than 80% of the test queries at least 10 out of 20 reference results were found,
whereas a very low fraction (about 3-4% of the queries) performed poorly returning no reference
result. We analyzed queries with poor overlap and identified that in 30-40% of the cases the
queries were misspelled. Thus, if they are treated properly, the overlap values can be increased.

11 Recall that if no query log is available, only single term keys are indexed by default.

5.5. Experiments 91

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 10 50 100 ∞

Q
ua

lit
y

of
 a

ns
w

er
 (

%
)

QFmin / 3 months

0%

(0%-25%)

[25%-50%)

[50%-75%)

[75%-100%)

100%

Avg.Overlap

Figure 5.8. Google experiment: overlap achieved for different values of QFmin/3 months
(DFmax = 600, smax = 3).

From Figure 5.6, we can conclude that taking popular combinations: 1) significantly in-
creases retrieval quality when compared to the single term index (a twice higher overlap with
the 90-days query log), and 2) yields an overall satisfactory retrieval quality.

Impact of DFmax. We used the 3-month query log, set QFmin to 1 and investigated
the impact of DFmax on retrieval quality. Figure 5.7 shows the achieved overlap for different
values of DFmax. From the figure, even small DFmax values of 200–500 are sufficient to achieve
good retrieval quality. It is also interesting to observe that changing DFmax hardly affects the
fraction of queries with the 100% overlap, with a growth from 56% to 59% for DFmax changing
from 20 to 600 respectively. The DFmax value however affects the average overlap.

Impact of QFmin. Finally, Figure 5.8 shows the decrease in retrieval quality when in-
creasing QFmin from 0 (all possible combinations are indexed) up to infinity (basic single term
index). From the figure, query-driven indexing of multi-term keys has the potential to double
the overlap compared to the basic single-term index (overlap=80% with QFmin = 1 compared
to 41% with QFmin = ∞). As before, smax was set to 3 and DFmax to 600.

Based on these results, we can assume that, in practice, the QFmin parameter should be
chosen in the 5-20 range resulting in a 60%-70% overlap with our settings. In this case, the
period during which we keep the query statistics should be increased accordingly.

92 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

5.5.2. Retrieval Quality Experiments with the Wikipedia Query-Log

We also used the Wikipedia query log introduced in Section 4.4. Recall that it contains more
than 9M queries issued to the Wikipedia on-line encyclopedia during September and October
2004. We generated a test set of 3, 000 queries and, for each of these queries, built a reference
result by retrieving the top-20 results produced by the Google and Yahoo! search engines.

We extracted all the term combinations present in the query log and evaluated their pop-
ularity. The query log contained more than 9M queries and we observed around 10M unique
term combinations. Since users usually search for a concrete article in the Wikipedia encyclo-
pedia, the popularity distribution of the Wikipedia query-log is much more skewed than of a
query-log of a typical Web search engine (e.g., the AOL query-log).

Figure 5.9 shows the average overlap between the result we get from our system and the
reference set from the Google and Yahoo! search engines in the same way we did in Section 5.5.1.
First observation we can make from the figure is that due to the fact that the Wikipedia query-
log is very skewed, the average overlap is very high, especially given that the DFmax parameter
was set to 100. Second, it confirms that setting smax = 3 is a good design choice – the line
that corresponds to smax = ∞ is not depicted on the plot just because it coincides with the
line for smax = 3. Most importantly, it shows that the overlap values are very similar between
Google and Yahoo!, which means that our solution is quite robust to reasonable variations in
the scoring function.

QFmin=0

1
2 3

5 7

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

m
ax

im
u

m
 o

ve
rl

ap
 f

o
r

to
p

-2
0

(%
)

QF_min / 9M queries

Yahoo, smax=3 Google, smax=3

Yahoo, smax=2 Google, smax=2

Yahoo, smax=1 Google, smax=1

������������������
Figure 5.9. The average overlap obtained with the Google and Yahoo! search engines.

5.5. Experiments 93

DFmax = 100 DFmax = 500

Precision QFmin=∞ QFmin=5 QFmin=3 QFmin=1 QFmin=∞ QFmin=5 QFmin=3 QFmin=1 ST-BM25

P@5 0.306 0.345 0.347 0.341 0.345 0.343 0.343 0.343 0.337

P@10 0.266 0.299 0.295 0.294 0.307 0.302 0.303 0.302 0.298

P@15 0.237 0.267 0.267 0.267 0.276 0.279 0.280 0.278 0.278

P@20 0.212 0.243 0.243 0.246 0.254 0.259 0.259 0.259 0.257

P@30 0.174 0.206 0.209 0.212 0.214 0.221 0.221 0.224 0.226

P@50 0.139 0.169 0.171 0.174 0.175 0.181 0.181 0.183 0.186

P@100 0.097 0.126 0.127 0.130 0.128 0.135 0.135 0.136 0.140

#docRef 236.7 184.6 179.1 173.3 1148.2 880.9 846.2 813.2 193652.4

Table 5.3. QDI: Precision@k for the TREC experiment.

5.5.3. TREC Experiment

To further evaluate the retrieval quality of our approach, we also used the WT10G collection12

that contains 1’692’096 documents. 100 test queries were selected from the Ad hoc topics of
the Web Track in TREC-9 and 1013. We processed title-only queries because queries with
additional fields were not used in the real Web search. The standard TREC assessments
supplied by the U.S. National Institute of Standards and Technology were used. We used the
Terrier14 engine with the BM25 weighting scheme to compute top-DFmax documents stored in
the TPLs, and also to compute the final ranked results.

After processing 17M queries from the AOL query log to generate the query-driven index,
we submitted the 100 TREC queries to the system. Then we compared our results to the
ones returned by the centralized Terrier engine (we denote this by ST-BM25, i.e., single term
indexing using the BM25 weighting scheme). DFmax was set to 100 and 500. Notice that the
DFmax parameter is useful to control the trade-off between the retrieval cost and the retrieval
quality (the smaller the DFmax, the lower the bandwidth consumption during retrieval). QFmin

was set to 1, 3, 5 and ∞, where QFmin = ∞ means that no key is activated and only the basic
single term index is used to process the queries.

Table 5.3 shows the achieved precisions at K (P@K). The highest value in each line of
the table is highlighted in bold. In general, the results achieved by our system (excluding
QFmin = ∞, DFmax = 100) are slightly better than ST-BM25 for K≤20. For K>20, our
system starts loosing some relevant documents, when compared to ST-BM25, because we only
store at most top DFmax document references per key. However, we believe this should not
be a problem in the context of Web search, where users are usually only interested in the top
10-20 documents.

In addition, for K>20, Table 5.3 also shows that, with a higher value for DFmax, our
system is becoming similar to ST-BM25 (in fact, if DFmax = |D|, our system is equivalent

12 http://ir.dcs.gla.ac.uk/test_collections/wt10g.html
13 TREC Web Track, http://trec.nist.gov/data/webmain.html
14 Terrier search engine, http://ir.dcs.gla.ac.uk/terrier/

http://ir.dcs.gla.ac.uk/test_collections/wt10g.html
http://trec.nist.gov/data/webmain.html
http://ir.dcs.gla.ac.uk/terrier/

94 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

to ST-BM25). In the worst case, when DFmax = 100 (we only keep top-100 documents in
the posting lists) and QFmin = ∞ (the query driven mechanism is not applied), our system
retrieves 75% of the relevant documents retrieved by ST-BM25 at top-50 (0.139/0.186) and 89%
at top-10 (0.266/0.298). Notice that these values are already quite high due to the relatively
small size of the WT10G collection. In general, the query-driven technique with reasonable
values of QFmin performs similarly to ST-BM25.

The last line in the table shows the average number of transmitted document references
during the processing of the 100 TREC queries, which indicates the bandwidth consumption
during retrieval. For ST-BM25, we simulate the näıve approach where the full posting lists
are transmitted to the querying peer for each of the terms in the query. Obviously, with
smaller values of DFmax, we achieve lower bandwidth consumption. Since our posting lists are
truncated to a constant size, the bandwidth consumption will remain constant when the size
of the collection increases, as shown by [Podnar et al. 2007].

Finally, the TREC experiment confirms the conclusion that the query driven indexing
approach indeed delivers a retrieval quality that is fully comparable to the one of a centralized
single-term index, and, at the same time, guarantees scalable traffic during retrieval.

5.5.4. P2P Index Simulations

In this section we analyze the performance of our approach in a dynamic setting. Starting
from the basic single-term index, we observe how processing of new queries triggers indexing
of newly activated keys and improves the retrieval quality. We conducted a set of experiments
with a small Wikipedia document collection containing 650K articles and the Wikipedia query
log introduced in Section 4.4. The experiments were carried out with the following parameters:
DFmax = 100, QFmin = 4

2M (i.e., a key is activated if it occurs at least 4 times among the 2M
recent queries) and smax = 3. Notice, that DFmax is smaller and QFmin is larger compared to
the values we used in Section 5.5.1 because the Wikipedia collection is much smaller than the
set of pages indexed by Google.

Figure 5.10 shows the number of generated keys as queries are being processed. Notice that
out of 1.3M single-term keys, less then 200K were actually used in queries, and that the total
number of generated keys was reduced by 1 − 2 orders of magnitude when compared to the
HDK approach without the query-driven key activation. We estimated that the HDK approach
would produce around 65M keys in this scenario, whereas our approach requires only 0.5M

keys to be activated with QFmin = 2/4M , in addition to the 1.3M single-term keys, while, as
shown in Figure 5.11, the retrieval quality remains reasonable.

We also measured the average overlap for the query results obtained with our approach
compared to the full single-term index based on the Terrier retrieval engine15. In this ex-
periment we measure the overlap between our approach and the results obtained for the full

15 http://ir.dcs.gla.ac.uk/terrier

http://ir.dcs.gla.ac.uk/terrier

5.5. Experiments 95

0

500K

1.0M

1.5M

2.0M

0 1M 2M 3M 4M 5M 6M 7M 8M 9M

Queries processed

N
um

be
r

of
 g

en
er

at
ed

 k
ey

s

All keys

1-term

2-terms

3-terms

Figure 5.10. Number of generated indexing keys depending on the number of processed queries.

queries using the Terrier search engine over the Wikipedia collection. The obtained overlap
values are shown in Figure 5.11. These values show that the retrieval quality grows quite fast
with the number of processed queries, starting from a relatively low value corresponding to the
single term index. At each point the overlap value was obtained by processing of a test set
of 50K queries with a given state of the index. Index updates were frozen during the overlap
measurements. For comparison we show similar plot obtained for QFmin = 3

2M .

70

75

80

85

90

95

100

0 2M 4M 6M 8M

queries processed

ov
er

la
p

fo
r t

op
 2

0
(%

)

Upper bound
Query-driven (QFmin=3/2M)

Query-driven (QFmin=4/2M)
Only single terms

Figure 5.11. Average overlap depending on the number of processed queries.

Finally, Figure 5.12 shows the upper bounds for the overlap that can be achieved with our
indexing mechanism for different QFmin values. This figure is similar to Figure 5.9, but, as the
document collection is much smaller shows higher overlaps.

96 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

70

75

80

85

90

95

100

1 10 100

QF_min / 9M queries

 m
ax

im
um

 o
ve

rla
p

fo
r t

op
20

/to
p5

0
(%

)

Top 20

Top 50

Top20: single terms

Top50: single terms

Figure 5.12. Overlap upper bound for different values of QFmin with the small Wikipedia document
collection.

The plots show the obvious tradeoff between the quality of answers and the number of
generated keys (and, therefore, the amount of the indexing traffic) in the network. Finally,
we showed that real savings in storage and bandwidth requirements can be achieved with a
marginal degradation of the answering quality.

5.5.5. Experiments Investigating the Index Size

In this section we analyze the number of keys present in the query driven index and compare it
to the HDK approach. We simulated the query-driven retrieval mechanism and analyzed the
number of activated keys of size 2 and 3 for the AOL query log. We plot in Figure 5.13 the
number of keys being activated when processing new queries for different threshold values of
QFmin

16. As we proved in Section 5.4, this number grows linearly with the size of the query
log |L| and the QFmin parameter can be used to adjust the slope. Figure 5.14 also confirms
that the number of multi-term combinations in the query log follows the Pareto distribution.
Thus, the number of keys decreases according to the power law with the increase of the QFmin

parameter.

Recall that the total number of indexed keys is composed by all single term keys found
in the document collection and all multi-term keys activated during retrieval. According to
Heaps’ law [Heaps 1978], the number of distinct terms grows as O(

√
|D|) with the size of the

document collection |D|. Additionally, the number of activated keys grows linearly with the
size of the query log |L|. On the other hand, the size of the index for the HDK approach
grows linearly with the number of documents |D| and does not depend on the query log. We
made a speculative comparison between the number of keys stored in the index for both HDK

16 We considered the first 45 days of the log only due to the simulator’s memory restrictions.

5.5. Experiments 97

0

3M

6M

9M

12M

15M

18M

0 2M 4M 6M 8M

� ��� ���� �	
� ��
 �� ��� ������ �� ������� ���������
QFmin=1

QFmin=2

QFmin=4

QFmin=10

Figure 5.13. The number of activated keys in the query-driven index with new queries being processed.

and QDI approaches. Figure 5.15 shows how the total number of keys grows with the size of
the document collection for both approaches (we varied the size of the query-log |L| and set
QFmin = 2 to compute the curves for the QDI approach). It is easy to see that due to the
fact that the size of the query log is potentially much smaller than the size of the document
collection, the query-driven approach would use orders of magnitude less resources than the
HDK approach.

QFmin=1

QFmin=2

QFmin=3

QFmin=4

QFmin=10

200K

2M

20M

1 10

� ��� ���� �	
� ��
 �� ��� �����
Figure 5.14. The number of activated keys in the query-driven index for different values of QFmin

after processing 7.5M queries (first 45 days of the AOL query log).

In [Skobeltsyn et al. 2007b] we also provided initial comparisons of the bandwidth con-
sumption during indexing, assuming for the QDI approach that each key activation is resolved

98 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

1E+00

1E+04

1E+08

1E+12

1E+16

1E+20

1E+00 1E+04 1E+08 1E+12 1E+16

� ��� ����� 	 �
� ����� �� ��������
HDK

QDI, |L|=10^9

QDI, |L|=10^6

QDI, |L|=10^3

QDI, no queries

Figure 5.15. Speculative comparison of the total number of keys stored in the index for the HDK and
QDI approaches.

using a broadcast. We showed that in realistic scenarios the query-driven index requires several
orders of magnitude less bandwidth than the HDK approach. Employing the distributed inter-
section algorithm instead of broadcasting each activation would sufficiently reduce the traffic
requirements, but might increase the risk of load imbalance.

5.6. AlvisP2P Prototype∗

In this section we briefly describe a prototype of the AlvisP2P IR engine [Luu 2007; Luu et al.
2006, 2008], which implements efficient retrieval with multi-keyword queries from a global
document collection available in a P2P network using either the HDK or QDI approach. While
operational P2P-IR systems are being deployed, such as Faroo17 or YaCy18, AlvisP2P prototype
is more a research platform that permits us to test sophisticated indexing schemas such as HDK
and QDI.

5.6.1. AlvisP2P Architecture

The AlvisP2P architecture is layered in order to separate different conceptual levels, and allow
the higher layers to use the functionalities provided by the lower ones. Altogether, it comprises
the following layers:

∗ AlvisP2P implementation is a joint effort of a large team of people including Toan Luu (the main author and

the coordinator of the project), Fabius Klemm (P2P layer), Maroje Puh (ranking), Gleb Skobeltsyn (QDI) and

others. AlvisP2P Web-site: http://globalcomputing.epfl.ch/alvis.
17 http://www.faroo.com
18 http://yacy.net

http://globalcomputing.epfl.ch/alvis
http://www.faroo.com
http://yacy.net

5.6. AlvisP2P Prototype 99

L1 A transport layer, which provides the means for direct communication between two peers;

L2 A peer-to-peer layer, which maintains the Peer-to-Peer overlay infrastructure;

L3 A distributed IR layer, which provides the basic functionalities related to document man-
agement, in particular the ones related to distributed IR;

L4 A ranking layer, which implements functionalities related to distributed document rank-
ing; and

L5 A local search layer, which implements possibly sophisticated local IR models.

TCP/UDP

P2P

Distributed (HDK) Indexing

Component

Distributed (HDK, QDI)

Retrieval Component

L5: Local search engine

Distributed Ranking

Component
L4: Ranking layer

L3: Distributed

information retrieval layer

L2: Peer-to-peer layer

L1: Transport layer

Local Indexing

Component

Local Query/Retrieval

Component

Figure 5.16. AlvisP2P architecture – layered view.

Figure 5.16 shows all major AlvisP2P functionalities positioned in the corresponding layers.
While components in higher layers exclusively rely on the functionalities provided by lower
layers, the architecture does not prevent from having different types of peers integrating in
a more or less extensive way the layers from 3 above. For example, a lightweight peer could
only integrate layers 1 to 4, while a peer associated with a more sophisticated local search
engine could exploit all 5 layers. The discussion on the performance issues of such a system is
presented by [Luu et al. 2006].

Layers 1 and 2 implement the peer-to-peer overlay infrastructure. Layer 2 (or P2P layer)
consists of a Distributed Hash Table (DHT) that is able to sustain high traffic loads. Peers
build routing tables of size O(log N), which results in an expected routing cost of O(log N)
hops (where N is the number of peers in the network). As it uses the concept of “hop space”
for routing table construction, the DHT supports arbitrary skews in the distribution of the
peers in the identifier space [Klemm et al. 2007]. In addition, we integrated a congestion
control mechanism into our DHT [Klemm et al. 2006] to efficiently handle the large amounts

100 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

of messages generated by the information retrieval application and to prevent the DHT from
congestion collapses.

Layer 3 provides the features related to distributed information retrieval and implements
one of the aforementioned techniques, i.e., indexing with highly discriminative keys (HDK) or
query driven indexing (QDI). This layer deals with the task of key-based indexing, i.e., finding
the set of keys and associated posting lists for a given document, and the querying task, i.e.,
given a query, finding corresponding keys in the global P2P index, retrieving the postings
associated with those keys and merging the result set for ranking. Additionally, the QDI
approach uses Layer 3 to collect the popularity statistics that define the keys to be indexed.

Layer 4 is responsible for ranking. Depending on the ranking model19, it might use global
document frequencies, average document length, term frequencies and other statistical infor-
mation, which are stored in the P2P network, to compute the relevant scores of documents
w.r.t the query.

PEER

PEER

PEER

PEER

PEER

PEER

Local SE

QUERYING

PEER

Local SE

Local SE

Local SE

Local SE

Distributed

Inverted Index

Local

Inverted

Index

Local

Inverted

Index

Local

Inverted

Index

Local

Inverted

Index

Local

Inverted

Index

Figure 5.17. AlvisP2P network.

Layer 5 implements a possibly sophisticated “local search engine”. For example, as shown
in Figure 5.17, such a search engine can use specialized document processing for its local
collection to build semantically rich indexes enhanced by various ranking strategies20. The
local search engine interacts with the associated peer through a generic API and uses a well-
defined communication protocol to submit the index of its local collection to the global P2P
network and to process queries.

More precisely, the answer to a given query can be:

19 Currently, the prototype it using the state-of-the-art BM25 ranking function. Notice, however, that any other

function could be used instead, provided that the required global statistics are available in the P2P network.
20 E.g., it can support complex structured queries or/and employ a particular ranking strategy.

5.6. AlvisP2P Prototype 101

• either produced exclusively using the information available in the distributed index and a
uniform distributed ranking model; in this case the retrieval mechanism guarantees good
response times, but, possibly, at the price of a lower precision;

• or refined in a second step during which the query is forwarded to the local search engines
associated with the peers holding the documents found in the first step; in this case the
retrieval might be slower (as it requires several interactions), but can benefit from the
advanced features made available by the local engines.

5.6.2. AlvisP2P Client Software

Joining an AlvisP2P network is as simple as downloading and installing the peer client software.
The user only has to specify few communication parameters, such as the IP address of a contact
peer and the communication port. The client software includes a Web server that can be
accessed by anyone through a Web browser to query the AlvisP2P network. Alternatively, the
default standalone client can be used, which allows only the local user to access the AlvisP2P
network from this peer. Figure 5.18 shows the interface of the AlvisP2P client.

Figure 5.18. Screenshot of the AlvisP2P client software.

To make documents searchable by other peers in the network, the user simply puts them
in the shared directory of his/her peer and uses the AlvisP2P software to index them. The fol-
lowing document types are supported: txt, xml, html, doc, pdf or xml-based Alvis format. The
index of a local shared document collection is implemented using the Terrier search engine21.

As local documents always remain at the peer that holds them, the document owner can
define specific access rights for them. For example, the user can choose that a document can
be freely accessible or has a limited access controlled by a username and a password.

21 http://ir.dcs.gla.ac.uk/terrier/

http://ir.dcs.gla.ac.uk/terrier/

102 5. Scalable Web Text Retrieval with a P2P Query-Driven Index

The AlvisP2P prototype is available at: http://globalcomputing.epfl.ch/alvis.

5.7. Conclusions

Using a structured P2P network for distributing the load among a large number of intercon-
nected nodes represents a promising approach for indexing very large document collections, but
poses serious challenges on the design of the distributed index in order to remain scalable with
respect to bandwidth consumption, storage space and load balancing at indexing and retrieval.

In this chapter we described a novel query-driven indexing strategy based on indexing of
carefully selected and popular term combinations that guarantees scalable storage and band-
width requirements. We also proposed a query-driven update mechanism that facilitates keep-
ing the index up-to-date with document collection changes. Our approach is shown to be
viable for Web-scale document collections based on the experimental evaluation of the retrieval
performance for Web-size document collections and query logs.

We showed that using such a highly distributed cache based on the truncated posting
lists for popular term combinations is beneficial for large-scale P2P information retrieval. Our
further analysis revealed that trivial porting of this solution for the search engine architecture
is not beneficial, mainly because a centralized results caching component can be used instead.
Clearly, most of the queries that return good quality results in our system would also be hits
in the centralized results cache.

Comparison with a centralized results cache. To estimate whether our query-driven
indexing technique simply substitutes a standard results cache, we computed the theoretically
maximal hit rate22 of the results cache with the AOL query log used in the experiments. We
obtained the maximal hit rate just below 41%. We can compare this value to up to 60%
of queries returning all top-20 correct results and up to 80% returning at least half of them
with the query-driven indexing. This shows that a substantial fraction of queries that are
misses in the (centralized) results cache could still be successfully processed with our system.
Furthermore, it suggests that with more skewed query logs (such as the one used in Chapter 6)
our results can be even better.

The observation above triggers another interesting question: How the changes in the query
stream caused by the results cache affect the performance of query processing in modern Web
search engines? We address this question in the next chapter.

22 We used the formula hitsmax = (1 − distinct queries
all queries

), which measures the maximal hit rate of an indefinite-

capacity cache.

http://globalcomputing.epfl.ch/alvis

Chapter 6

ResIn: A Combination of Result

Caching and Index Pruning for

High-Performance Web Search

Engines∗

6.1. Introduction

In this chapter we switch our attention from the Peer-to-Peer index organization to the clas-
sical Web search engine (WSE) architecture with the purpose of investigating advantages of
query-driven indexing in this setting. In particular, we explore the results caching and index
pruning techniques that employ the information about the past queries for query processing
optimization.

Major Web search engines process thousands of queries per second1 over billions of indexed
Web pages2 with sub-second response times. To sustain such a load, they rely upon large
complex systems using thousands of servers, interconnected through different networks, and
often spanning multiple data centers. Servers in these systems are often grouped according to
some functionality (e.g., front-end servers, back-end servers, brokers), and requiring that the
groups of servers interact increases the amount of time and resources needed to process each
query. It is therefore crucial for high-performance Web search engines to design mechanisms
that enable a reduction of the amount of time and computational resources involved in query
processing to support high query rates and ensure low latencies.

∗ The material presented of this chapter was published in the proceedings of the 31st International ACM SIGIR

Conference (SIGIR’08) [Skobeltsyn et al. 2008]. This work was done during Gleb Skobeltsyn’s internship visit

at Yahoo! Research, Barcelona.
1 http://www.comscore.com/press/release.asp?press=2230
2 http://www.google.com/press/funfacts.html

103

http://www.comscore.com/press/release.asp?press=2230
http://www.google.com/press/funfacts.html

104 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

Results caching is an efficient technique for reducing the query processing load, hence it
is commonly used in real search engines. This technique, however, bounds the maximum hit
rate due to the large fraction of singleton queries, which is an important limitation. In this
chapter we propose ResIn – an architecture that uses a combination of results caching and
index pruning to overcome this limitation. We argue that results caching is an inexpensive
and efficient way to reduce the query processing load and show that it is cheaper to implement
compared to a pruned index. At the same time, we show that the index pruning performance
is fundamentally affected by the changes in the query traffic that the results cache induces. We
experiment with real query logs and a large document collection, and show that the combination
of both techniques enables efficient reduction of the query processing costs and thus is practical
to use in Web search engines.

Typically, search engines use caching to store previously computed query results, or to speed
up the access to posting lists of popular terms [Baeza-Yates et al. 2007b]. Results caching is
an attractive technique because there are efficient implementations, it enables good hit rates,
and it can process queries in constant time. Moreover, as the query results are available after
a query is processed by the index, having a results cache is simply a matter of adding more
memory to the system to hold such results temporarily.

One important issue with caches of query results is that their hit rates are bounded. Due
to the large fraction of infrequent and singleton queries, even very large caches cannot achieve
hit rates beyond 50− 70%, independently of the cache capacity. To overcome this limitation,
a system can make use of posting list caching or/and employ a pruned version of the index,
which is typically much smaller than the full index and therefore requires fewer resources to
be implemented. Without affecting the quality of query results, such a static pruned index is
capable of processing a certain fraction of queries thus further decreasing the query rate that
reaches the main index, as for example shown by [Ntoulas and Cho 2007].

We show that there are several benefits of using results caching and index pruning together,
including higher hit rates and reduced resource utilization. Although index pruning has been
studied in the literature, to our knowledge, we are the first to present results on the impact of
results caching on index pruning in an architecture that is highly relevant for practical Web
search systems. In such an architecture, the stream of queries that has to be processed by the
pruned index differs significantly from the the original query stream because many queries are
filtered out by the results cache. This difference affects the performance of index pruning and
the way to optimize it.

In this chapter we consider several index pruning techniques such as term pruning – a com-
plete removal of posting lists of certain terms, document pruning – removing certain portions
of the posting lists, and the combination of both.

Apart from introducing the ResIn architecture, we make the following contributions:

• We show that results caching has important advantages compared to index pruning. In
particular, results caching guarantees high cache hit rates with a constant cache capacity

6.2. ResIn Architecture 105

independently of the document collection size;

• We compare the properties of the original query stream and the query stream after a
results cache, and show how the differences affect the applicability of index pruning;

• We compare the efficiency of various static index pruning techniques when a pruned index
is used separately or in combination with a results cache;

• We propose a different method of combining term and document pruning that outper-
forms the one presented by [Ntoulas and Cho 2007].

The remainder of this chapter is organized as follows. We first introduce the ResIn archi-
tecture in Section 6.2. We describe the experimental setup in Section 6.3. We then present
our findings for results caching in Section 6.4 including the comparison of the query-logs before
and after the results cache in Section 6.4.2. We discuss index pruning and its combination with
results caching in Section 6.5 and conclude with Section 6.6.

6.2. ResIn Architecture

In a Web search engine, users submit queries through a front-end server. Upon receiving a new
query, such a server forwards it to back-end servers for processing. Each of the back-end servers
maintains an index for a subset of the document collection and resolves the query against this
subset. The index comprises posting lists for all terms in the sub-collection, where each posting
list contains (document reference, term frequency) pairs. Once the servers finish processing the
query, they return results to the front-end server that displays them to the user. A broker
machine is usually responsible for aggregating the results from a number of back-end servers,
and returning these results to the front-end server.

It is a natural design choice to place at least one other server in between the front-end and
the broker to cache final top-k query results as the broker has to send them to the front-end
server in any case.

Definition 6.1. Results cache is a fixed-capacity temporary storage of previously com-
puted top-k query results. It returns the stored top-k results if a query is a hit or reports a
miss otherwise.

An important advantage of implementing the results cache is decreasing the number of
queries that hit the back-end servers, and thus reducing the number of servers needed to
handle the query traffic.

However, the hit rate of the results cache cannot increase beyond the limit imposed by
singletons, which often constitute a large fraction of the query traffic. Hence, we look into
techniques that enable increasing the hit rate further.

106 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

Definition 6.2. Pruned index is a smaller version of the main index, which is stored on a
separate set of servers. Such a static3 pruned index resolves a query and returns the response
that is equivalent to what the full index would produce or reports a miss otherwise.

We call term pruning a complete removal of posting lists of certain terms (e.g., stop words
removal or the approach described by [Blanco and Barreiro 2007]), whereas document pruning
refers to ignoring only certain portions of the posting lists (e.g., [Carmel et al. 2001]). We
consider pruned index organizations with fewer posting lists (term pruning), shorter posting
lists (document pruning) or combine both techniques. Thus, the pruned index is typically much
smaller than the main index and requires fewer servers to maintain it.

Figure 6.1 shows the ResIn architecture where the results cache and the pruned index are
placed between the front-end and the broker. In such an architecture, a query is forwarded to
the main index only if both the results cache and the pruned index could not answer it, thus
substantially reducing the load on the back-end serves.

Back

end

Results

cache

miss

hithit

miss

query result

Front

end

Back

end

Term cache

Main Index

query

result

BrokerPruned

index

Term cache

Pruned

index

Back

end

Term cache

Figure 6.1. Query processing scheme with the ResIn architecture.

Having a pruned index in a different network rather than in the one connecting the main
index servers is not a good design choice because ensuring the pruned index is up-to-date
requires transferring possibly large portions of the index. Thus, we place the pruned index
along with the back-end servers holding the main index.

A recent approach presented by [Ntoulas and Cho 2007] employs a similar architecture to
reduce the query-rate at the back-end servers without sacrificing the result quality. The authors,

3 We call it static pruning because the pruned version of the index has to be generated in advance, contrary to

dynamic pruning, which proceeds on a per-query basis saving resources and reducing latency by dynamically

skipping non-relevant parts of the index.

6.3. Experimental Setup 107

however, do not include a results cache, which is a crucial element in our architecture, and
employ only a pruned index for this purpose. Note that in reality none of these architectures are
really novel as architectures based on clusters for Web search have been proposed before [Brewer
2001]. The importance of the approach proposed by Ntoulas and Cho as well as ours comes
from the evaluation of techniques such as caching and pruning.

A typical experimental setup that is used in the literature to investigate the efficiency of an
index pruning approach usually considers an original query log or a small set of TREC queries
(e.g., [Anh and Moffat 2006; Blanco and Barreiro 2007; Büttcher and Clarke 2006; Carmel
et al. 2001; Long and Suel 2003; Ntoulas and Cho 2007; Tsegay et al. 2007]). In Section 6.4.2
we will show that some statistical properties of query logs change significantly when results
caching is used.

6.3. Experimental Setup

Test queries. We used a large query log of the Yahoo! search engine. The log contains more
than 185M queries submitted at the .uk front-end of the search engine. We use this query-log
to simulate query processing with a results cache and generate a “miss-log” of queries that are
not filtered out by the results cache. Henceforth, we use all queries to denote the queries from
the original query log, and misses to denote the queries from the miss log. Throughout the rest
of the chapter we will compare properties of both logs and use them to test various pruning
techniques.

Document collection. To investigate the efficiency of index pruning techniques we also
used the UK document collection [Boldi et al. 2004; Castillo et al. 2006]. It contains 77.9M
Web-pages crawled from the .uk domain in May 2006. We used the Terrier platform4 to index
the collection on 8 commodity machines, which resulted in a distributed compressed index of
approximately 40GB without positional information.

6.4. Results Caching

Results cache is a temporary storage for previously computed partial query results. We assume
here dynamic caching: when the system processes the query response containing top-k results
and returns it to the user, it stores these results in the cache, such that, for future requests
of the same query it returns these results instead of asking the back-end servers to process
the same query again. Results cache uses an eviction policy to ensure that it never exceeds a
maximum capacity. A query produces a hit if it was found in the cache and a miss otherwise.

In this section we analyze the performance of results caching using a real query log and
study the differences between the original query stream and the stream of misses after the
results cache.

4 http://ir.dcs.gla.ac.uk/terrier

108 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

6.4.1. Results Cache Performance

To evaluate the performance of the results cache we implemented the LRU policy and tested it
with our query log. We varied the cache capacity from 1M to 15M entries, where each entry
contains a query and its top-k results.

Figure 6.2 shows cache-hit rates obtained with different cache capacities for our query log.
For each point we warm up the cache with the first 40M queries and then measure the average
cache hit for the remaining 145M queries.

0

10

20

30

40

50

60

70

80

90

100

0 2M 4M 6M 8M 10M 12M 14M 16M

� ��� ������	
��� �������� ���������Normalized queries

Original queries

Figure 6.2. Cache hit achieved with a large results cache using the LRU eviction policy.

We also normalized each query by converting it to lower case, removing special symbols
and sorting the terms in each query in alphabetical order. Despite the simplicity of this
normalization5, it performs similarly to normalization procedures in current search engines.
Figure 6.2 shows that the normalization increases the cache hit by roughly 4 − 5%. This
happens because semantically similar, but lexicographically different queries have the same
normalized versions, e.g., queries written in a different case, containing symbols ignored by
search engines, etc.

Due to the presence of singleton queries the performance of any results cache is bounded
by the fraction of potential hits hitsmax = (1 − distinct queries

all queries). For the normalized version of
our query log this value is equal to 75.04%.

According to our experiments, sophisticated caching policies such as LFU, SDC [Fagni et al.
2006] or AC [Baeza-Yates et al. 2007c] substantially outperform LRU when the cache capacity

5 E.g., it ignores phrase queries and treats URLs as sets of terms.

6.4. Results Caching 109

is small, due to the optimized space usage. However, the improvement is marginal when the
cache capacity is big enough such that the hit rate approaches its upper bound. In such a case,
LRU becomes the best option due to its simplicity.

Let us assume that one entry in the results cache requires around 2KB in order to store top-
20 results including document URLs, titles and snippets. This number can be further reduced
by using compression. In this case one machine with 16GB of memory can host a results cache
with the capacity of approximately 10M queries. Thus, we simulated a 10M results cache with
the LRU eviction policy and used it to process all 185M normalized queries. We warm up the
cache with the first 40M queries, and then record all query misses for the remaining 145M
queries. As a result, we obtained a “miss log” containing 41M (mostly singleton) queries.
Notice that the miss log contains queries that have to be processed by the back-end servers,
and that query processing has to be optimized for such queries.

A very important property of the results cache is that its hit rate remains constant as the
size of the document collection grows because it depends only on the query log properties, in
particular on the number of unique queries. This property makes results caching a very efficient
technique to reduce the query load on the back-end servers, as it requires a relatively small
amount of storage and processing. The size of a pruned index, however, typically grows with
the size of the collection as we discuss further in Section 6.5.

6.4.2. All Queries vs. Misses

First, we confirm that the average number of terms in a query increases from 2.4 for all queries
to 3.23 for misses. Fractions of queries with different number of terms are shown in Figure 6.3.
In particular, it shows that the majority of single term queries become hits in the results cache
and thus very few of them have to be processed by the index.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

� ����� ���� 	
��� �� �� ������ �� ����� �� � �����
All queries

Misses

Figure 6.3. Fraction of queries with a given number of terms among all queries and misses.

110 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

Another crucial difference between all queries and misses is the distribution of the sizes of
query results. We use the Yahoo! search engine to collect the (estimated) results set sizes for
2, 000 randomly chosen queries in each set. Figure 6.4 shows that the result set sizes for query
misses are approximately two orders of magnitude smaller than for all queries. In particular,
almost half of the misses return less than 5, 000 results, which is extremely small compared to
the total number of documents on the Web indexed by the Yahoo! search engine. Figure 6.4
also shows similar results for the (much smaller) UK document collection of 78M documents
described in Section 6.3.

1

10

100

1000

10K

100K

1M

10M

100M

1000M

10000M

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

� �������� ��� �	
� ������� �� �������
All Queries, Yahoo! WSE

Misses, Yahoo! WSE

All Queries, UK collection

Misses, UK collection

10B

1B

Figure 6.4. Query result size distributions for: 1) the Yahoo! Web search engine, and 2) the UK
document collection (78M documents).

We say that a query is discriminative if it returns relatively few results. Usually it happens
because the query contains at least one rare term or the number of terms in the query is large.
Both cases suggest that such a query is unlikely to be popular in the query log and therefore
results caching performs poorly for discriminative queries. Furthermore, query misses contain
a considerable fraction of misspells as they are typically not filtered out by the results cache.
In our test set of misses, we detected about 20% of misspelled queries.

We characterize each query term with two properties: popularity and frequency. A term
is considered popular if it is likely to appear often in queries. That is, term popularity is
proportional to the number of occurrences of the term in the query log. A term is considered
frequent if it is likely to appear in documents. Frequency (or document frequency) is hence
proportional to the number of occurrences of the term in the document collection.

Figure 6.5 shows that terms that are popular in the original query log remain popular in

6.5. Index Pruning 111

the miss log as well. We extracted all terms from the original query log and sorted them by
popularity. For each term we also computed its popularity in the miss log (0 if the term does
not appear there). Each point on the plot shows the average popularity of 1, 000 consecutive
terms normalized by the size of the query log (185M for the original query log and 41M for the
miss log). Notice that averaging over 1, 000 consecutive terms generates a smoother curve for
misses while having one point per term would compromise visualization.

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1 10 100 1000 10K

A
vg

.
te

rm
 p

o
p

u
la

ri
ty

 (
n

o
rm

al
iz

ed
 b

y
th

e
lo

g
 s

iz
e)

Terms taken from all queries (each point for 1000 terms)

Terms from Misses (6.2M)

Terms from All Queries (7.3M)

Figure 6.5. Term popularity distribution for all queries and for misses.

From the figure we conclude that on average popular terms remain popular in the miss log
as well. Unpopular terms typically come from queries that are not hits in the results cache,
so their absolute popularity is similar in both logs, but the normalized popularity is higher for
the miss log because the miss log size is smaller.

This result indicates that, despite significant changes to the query stream after the results
cache, techniques that are based on term popularity such as term caching and term pruning
work similarly for all queries and for misses. We investigate this observation in detail in the
following sections.

6.5. Index Pruning

In this section we consider term and document pruning techniques as well as the combination
of both in the context of the architecture of Figure 6.1.

112 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

To perform index pruning experiments we used the original query log containing 185M
normalized queries and the miss log containing 41M normalized queries. Since it is computa-
tionally expensive to run experiments with such workloads, we randomly selected a test set of
10, 000 queries from the last 5M queries in the original query log. Similarly, we used the last
1M queries in the miss log to generate a test set of 10, 000 misses. We will refer to these test
sets as all queries and misses in the following sections. The remaining portions of the logs
(first 180M queries and 40M misses) were used to compute term popularities.

6.5.1. Term Pruning

Term pruning selects the most profitable terms and includes their full posting lists into the
pruned index. Thus, in order to verify whether a query can be processed by such a pruned
index, we only need to check that all terms from the query are included in the pruned index.
Notice that such a pruning technique assumes that each document in the result set of a query
has to contain all terms from the query (conjunctive query processing).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

��� ���� �
��	
��
���
� ��
����	�	� �� ��� ����All queries

Misses

Figure 6.6. Hit rate with the term pruned index.

We implemented a term pruning algorithm that estimates a term profit as: profit(t) =
pop(t)
df(t) , where pop(t) is the popularity of the term t and df(t) is its document frequency6. Hence,
the profit of a term is proportional to its popularity and inversely proportional to the space
required to store its posting list. We extracted the list of all terms found in the original query
log and computed their profits.

6 In fact, the denominator df(t) in the profit formula implies a non-zero storage cost for t’s posting list.

6.5. Index Pruning 113

The optimization problem of selecting the terms that maximize the hit rate for a given
pruned index size constraint is known to be NP-complete, as it can be reduced to the well known
knapsack problem. Thus, we follow the standard heuristics already employed in Chapter 4 that
have been shown to perform well in this scenario [Baeza-Yates et al. 2007b; Ntoulas and Cho
2007]. We sort the list of terms by profits in descending order and pick the top terms as long
as the sum of the posting list sizes for selected terms remains below the given size constraint.
Figure 6.6 shows the performance of such a pruning strategy for all queries and for misses.

The hit rate for all queries grows quickly in the beginning because of single term queries
and queries that contain few popular terms (typical hits in the results cache). In case of misses
though, the growth is nearly linear in the beginning, still being able to handle nearly half of
the queries with only a quarter of the index. Thus, even with misses, we can reduce hardware
costs by considering a pruned version of the index. For example, suppose that one full cluster
processes half of the query load, for some design of index cluster, thus requiring two clusters
to process all queries. By using a pruned index, we can have instead one full cluster and one
other cluster for the pruned index that is one-fourth of the original cluster.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

��� ���� �
��	
��
���
� ����collection size = x

collection size = 2x

collection size = 4x

Results caching

Term pruning (all q.):

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

� ���� ��� ����� !�� �" #$
%&'(%)*)+ $,($#-.#&/
0 /12

��	
��
���
� 3456789:; :4 4<== 9;>?@A
Results cache size is

ignored compared

to the full index size

Results cache size is

limited to 10% of

the full index size

Figure 6.7. Comparison of results caching and term pruning used separately (a), cumulative hit rate
with both techniques used together (b).

Figure 6.7-a compares the efficiency of the results cache and the term pruned index when
they are used separately. It shows that with a fixed amount of storage available, the hit
rate of the pruned index decreases linearly with the growth of the document collection size (a
collection of size x corresponds to the set of 78M documents from the .uk domain described in

114 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

Section 6.3). The storage required for the results cache, however, depends only on the query
log properties and thus remains constant. Therefore, for a Web-scale document collection,
the relative results cache size would amount to a small fraction of the full index. Results
caching hence is the preferable solution when the amount of available storage is limited and
the document collection is large.

However, the hit rate of the results cache is bounded and to avoid this limitation we study
the combination of results caching and index pruning. Figure 6.7-b shows the cumulative hit
rate obtained by the results cache and the pruned index together following the architecture of
Figure 6.1. The top dotted line in Figure 6.7-b shows the maximum cumulative hit rate in such
a scenario assuming a sufficiently large index size such that the results cache storage cost can
be neglected. We also measured the cumulative hit rate with the real (and relatively small)
UK document collection. In this case the results cache size was limited to maximum 10% of
the full index size (approx. 4GB). The dashed portion of the bottom line in Figure 6.7-b until
10% of the index size corresponds to the hit rate produced by the results cache and the rest is
obtained by the pruned index additionally to the results cache.

Figure 6.7 proves the importance of results caching in our architecture and shows that the
combination of results caching and index pruning delivers very good hit rates.

In the next experiment we confirm that a large fraction of misses contains at least one
frequent term, although misses typically return few results. Recall that term popularities in
the original query log and in the miss log are very similar (see Figure 6.5). Hence, the term
pruned index has to include a significant number of popular terms associated with large posting
lists.

In Figure 6.8 we use the test set of misses and the UK document collection to plot the
correlation between the query result set size and the document frequency of the most and the
least frequent term in a query. The former one is denoted as MaxDF (top plot), while the
latter one is MinDF (bottom plot). On both plots, we sort queries by the size of their result
set in increasing order, and the dashed line shows the size in log scale. The remaining lines
reflect the probability of MaxDF (MinDF) being above one of the thresholds: 0, 1K, 100K
and 1M elements. Each point is computed for 250 consecutive queries with about the same
result set size, which can be estimated from the dashed line.

Figure 6.8 suggests that MinDF correlates with the result set size of the query (bottom
plot), whereas MaxDF is constantly high for most of the misses (top plot). Hence, the term
pruned index has to include large posting lists in order to guarantee a reasonable hit rate.

6.5.2. Document Pruning

Including full (and often large) posting lists in the pruned index might seem redundant, so we
studied the document pruning option. Document pruning removes the least important entries
from the posting lists. It is based on the observation that if posting lists are sorted such that
more relevant documents are stored first, the top-k results for a query are likely to be computed

6.5. Index Pruning 115

1

10

100

1000

10K

100K

1M

10M

0

0,2

0,4

0,6

0,8

1

�� ��� ���� ��	
 ��� ���� ��� ������
�� ���

MaxDF>0

MaxDF>1K

MaxDF>100K

MaxDF>1M

1

10

100

1000

10K

100K

1M

10M

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

� ����� ��� �� ��� ���� ���� ���� ���
����� �
� ��

��� !"#$ #% &'(�) *"++(+ ,+#�!(- .) �(+'/! +(! +"0(1
MinDF>0

MinDF>1K

MinDF>100K

MinDF>1M

Figure 6.8. Fraction of misses with df of the most frequent (top) and the least frequent (bottom) term
in a query above a given threshold.

without traversing the whole lists, but by examining the top portions of them only [Fagin et al.
2001; Ntoulas and Cho 2007]. Thus, posting lists are usually sorted by an attribute that reflects
the probability of the document to be included in the top results, such as score, term frequency
or impact [Anh and Moffat 2006].

When static document pruning is used, only top-portions of posting lists are included in the
pruned version of the index and are used for query processing. A query can be answered from
such a pruned index only if it produces exactly the same top-k results as the full index would.
It is in general difficult to test this condition, and the only acceptable solution we are aware
of is starting processing the query using the pruned index – if the top-k correct results are
identified, then the query is a hit. Otherwise, the query is a miss and it has to be forwarded to
and processed again by the main index, thereby affecting latency. To determine the correctness
of the results, we can compute a maximum score threshold for all potentially relevant documents
whose scores cannot be computed exactly due to truncation. Then, we verify whether all top-k
results have scores above the threshold [Fagin et al. 2001; Ntoulas and Cho 2007].

116 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

Document pruning depends on the ranking function as it significantly influences how quickly
the top-k results for a query can be found while examining the top portions of the posting lists.
Following [Craswell et al. 2005], we used the following weighting formula:

score(d, q) =
∑

∀t∈q

(bm25(t, d) + ω
pr(d)

pr(d) + κ
),

where bm25(t, d) is the non-normalized BM25 score of the document d for a term t and pr(d) is
the query independent score of the document d. To model pr(d) we computed PageRank [Brin
and Page 1998] values from the graph of the UK collection [Boldi and Vigna 2004]). We do
not have relevance judgments for our document collection to estimate the values of κ and ω,
so we fix κ = 1 and vary the value of ω to study the impact of the PageRank weight on the
document pruning performance. Intuitively, the higher the weight ω is, the better document
pruning performs. In the following experiments we set ω to 0 (no PageRank), 10 and 20.

Notice that the way the query independent score is included in the final score affects the
index construction algorithm. Our formula guarantees that the top-k results obtained from the
pruned index and having scores above the maximum score threshold are exactly the same as if
they were computed from the full index.

Figure 6.9 shows the fraction of queries whose correct top-10 results are found in all pruned
posting lists relevant to the query. The maximum Posting List Length (PLLmax) specifies
the pruning threshold and is set to 300K entries. From the figure, we can see that document
pruning works better with non-discriminative queries (i.e., queries with a large result set size,
which correspond to the points on the right hand side of the plots). Furthermore, the fraction of
queries that require no more than top-300K entries in the posting lists grows with the increase
of the PageRank weight ω.

The same plot shows the fraction of queries with the least popular term having more than
100 occurrences in the query log. We could see that non-discriminative queries contain popular
terms only, while unpopular terms appear in queries that return few results. This observation
indicates that popular terms tend to be frequent as well.

Figure 6.9 suggests that document pruning performs much better for all queries than for
misses. Indeed, Figure 6.10 shows that while working well for all queries, document pruning re-
quires very high values of ω to outperform term pruning with misses. Each point of Figure 6.10
is obtained by computing the hit rate of the document pruned index with a number of different
PLLmax values and selecting the one that delivers the maximal hit rate. In fact, we compute
an upper bound for the hit rate – the fraction of queries for which the correct top-10 results
can be found in each pruned posting list relevant to the query. The dashed lines correspond to
term pruning for comparison.

We observed that the efficiency of document pruning correlates to the size of the query re-
sult. When the query result is small, it is likely that we have to scan large parts of the posting
lists (or even whole lists) to obtain enough documents. It can be very inefficient because fre-

6.5. Index Pruning 117

1

10

100

1000

10K

100K

1M

10M

0

0,2

0,4

0,6

0,8

1

�� ��� ���� ��	
����� ��� ����
�� �
��

Queries with Min Term Popularity > 100

Doc. pruning: PLLmax=300K, ω=20

Doc. pruning: PLLmax=300K, ω=10

Doc. pruning: PLLmax=300K, no pagerank

All Queries

1

10

100

1000

10K

100K

1M

10M

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

� ����� ��� �� ��� ����� ���� ����� �����

����

�������� � �!! "#$��$%&��'() *�%%$%&+����*(%���$, +- �$%#!� %$� %�.$
Misses

Figure 6.9. Fraction of all queries (top) and misses (bottom) that can be resolved from posting lists
truncated to the PLLmax = 300K topmost entries.

quent terms with long posting lists are common in misses (see Figure 6.8). Thus, the worse per-
formance of document pruning with misses can be explained by the fact that the result set sizes
are approximately two orders of magnitude smaller compared to all queries (see Figure 6.4).

6.5.3. Term+Document Pruning

Following [Ntoulas and Cho 2007] we study the combination of term and document pruning
in our scenario. The intuition behind combining the two is the following: while including
profitable terms, only at most top-PLLmax entries from each posting list should be copied to
the pruned index. If the PLLmax constant is chosen such that the hit rate is maximal for a
given pruned index size, term+document pruning would deliver at least as good hit rate as
term pruning. Indeed, in the case when PLLmax is set to ∞ the hit rate with such a pruned
index will be exactly the same as for term pruning.

118 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

��� ���� ���	
Fraction of index (%)

Document
pruning:
=20

Document
pruning:
=10

Document
pruning:
=0

Term pruning

Document pruning,

All Queries

0 10 20 30 40 50

Fraction of index (%)

Document pruning,

Misses

Figure 6.10. Document pruning for all queries (left) and misses (right) compared with term pruning.

To select terms for such a pruned index we adopt the same profit function as for term
pruning profit1(t) = pop(t)

df(t) because it was used by [Ntoulas and Cho 2007]. However, taking
into account the observations made in the previous section, we introduce a new profit function
profit2(t) = pop(t)

min(df(t),PLLmax) specifically tailored to term+document pruning. The rationale
behind it is that the storage cost of including a term t in the pruned index is proportional to
df(t) when df(t) < PLLmax, but depends only on the PLLmax parameter if df(t) ≥ PLLmax.

Figure 6.11 shows an upper bound for the hit rate6 of term+document pruning with the
two profit functions defined above for all queries and for misses. Each point is obtained by
computing the performance of the term+document pruned index with a number of different
PLLmax values and selecting the one that delivers the maximal hit rate. Notice that when the
maximum hit rate is achieved with PLLmax = ∞, the corresponding point coincides with the
dashed line, which means that there is no improvement over term pruning.

Figure 6.11 suggests that the new profit2 function (left plot) substantially outperforms
profit1 (right plot), especially with high PageRank weights. For example, the table below

6 Same as in Figure 6.10 we compute an upper bound of the hit rate by calculating the fraction of queries for

which the correct top-10 results can be found in each pruned posting list relevant to the query.

6.5. Index Pruning 119

shows the hit rate values obtained with the pruned index 10 times smaller than the full index
for both profit functions and different values of ω:

Term Term+document pruning (upper bounds)
pruning profit1 profit2

only ω=0 ω=10 ω=20 ω=0 ω=10 ω=20

All queries 47.7 47.7 54.9 61.4 49.7 61.7 69.3
Misses 21.7 21.7 21.7 28.6 21.7 26.2 37.7

Table 6.1. ResIn: Hit rates with 10% pruned index.

Figure 6.11 also shows that for all queries term+document pruning brings substantial ben-
efits compared to term pruning only. However, with misses it yields only a small increase of
hit rate when the PageRank weight is very high. For example, the table above shows that the
hit rates of term+document pruning with misses noticeably outperform the baseline 21.7% of
term pruning with ω = 20 only. Furthermore, term+document pruning induces high processing
costs and latencies compared to term pruning, therefore becoming rather unusable with misses.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

��� ���� ���	
Fraction of index (%)

Term+Doc.
pruning:
=20

Term+Doc.
pruning:
=10

Term+Doc.
pruning:
=0

Term pruning

profit�(t) =
popularity(t)

min(df(t),PLLmax)

0 10 20 30 40 50

Fraction of index (%)

profit�(t) =
popularity(t)

df(t)

Figure 6.11. Term+document pruning for all queries and for misses with both profit functions.

120 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

To perform the last experiment, we fixed the size of the pruned index to 10% of the full
index (i.e., the size of the pruned index grows linearly with the size of the document collection)
and the PageRank weight ω to 20 (the maximum value in our experiments). We measure the hit
rate of the pruned index for fractions of the document collection indexed on 1 and 4 machines
respectively, as well as for the full index on 8 machines.

Figure 6.12 shows that the hit rate is approximately the same for the term pruned index
when its size is 10% of the full index size (dashed lines) because the length of the posting lists
increases linearly with the collection size.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8

H
it

-r
at

e
(%

)

Size of the index (number of machines)

AllQueries, profit2=
pop/min(df,PLLmax)

AllQueries,
profit1=pop/df

AllQueries, term
pruning only

Misses, profit2=
pop/min(df,PLLmax)

Misses,
profit1=pop/df

Misses, term
pruning only

Pruned index size is ���
of the full index

Figure 6.12. Index pruning efficiency for different sizes of the document collection.

The hit rate for term+document pruning grows with the size of the document collection.
This happens because document pruning works better with non-discriminative queries, which
match a large number of documents. However, in practice, if such a pruned index had to be
distributed among several servers following the standard document partitioning scheme, each
server would have to compute the top-k results for each query from its (small) fraction of the
index. Thus, the resulting hit rate suffers because each server matches a small set of documents
in its local index.

6.5.4. Discussion

The original stream of queries contains a large fraction of non-discriminative queries that
usually consist of few frequent terms (e.g., navigational queries). Since frequent terms tend to
be popular, those queries are likely to repeat in the query log and therefore are typical hits in the
results cache. At the same time, these queries would be good candidates to be processed with
the document pruned index due to their large result set size. Therefore, document pruning does

6.6. Conclusions 121

not perform well anymore when the results cache is included in the architecture. The same
conclusion can be drawn from the fact that misses return much fewer results than original
queries on average.

However, individual term popularites are similar for all queries and for misses. Therefore,
the contents of the term pruned index does not change much. A larger fraction of short queries
explain higher hit rates with the term pruned index for all queries than for misses.

6.6. Conclusions

In this chapter we have presented the ResIn architecture for Web search engines that com-
bines results caching and index pruning to reduce the query workload of back-end servers.
With ResIn, we showed that such a combination is more effective than previously proposed
approaches, for example being capable of handling up to 85% of queries with four times less
resources than the full index requires.

Results caching is an effective way to reduce the number of queries processed by the back-
end servers, because its efficiency is independent on the size of the document collection. Its
performance is bounded, however, by the amount of singleton queries in the query stream.

We observed that the results cache significantly changes the characteristics of the query
stream: the queries that are misses in the results cache match approximately two orders of
magnitude fewer documents on average than the original queries. However, the results cache
has little effect on the distribution of query terms.

These observations have important implications for implementations of index pruning: the
results cache only slightly affects the performance of term pruning, while document pruning
becomes less effective, because it targets the same queries that are already handled by the
results cache.

When combining term and document pruning, we substantially increased the hit rates by
considering a better term profit function. We have also found that document pruning is more
effective when query independent scores, such as PageRank, have high weights in the final
scoring formula.

Overall, ResIn has allowed us to gain significant insights into the dependence between
different techniques for reducing the load on the back-end servers in a Web search engine, and
it has allowed us to improve existing techniques by testing them in a more realistic setting.

122 6. ResIn: A Combination of Result Caching and Index Pruning for WSE

Chapter 7

Conclusions

7.1. Summary of the Work

Despite the success of Web search, the problem of efficient and effective searching in large-scale
data repositories is far from being solved. In particular, improving the quality of search and
coping with the rapidly growing amount of information are at the current focus of research. In
this thesis we addressed both problems by suggesting novel distributed indexing mechanisms
and studying various query processing optimizations.

We investigated highly distributed query processing over document collections (geographi-
cally) distributed in a Peer-to-Peer network. We introduced the concept of query-driven index-
ing : an index construction or caching strategy that adapts to the querying patterns expressed
by the users. We observed that such strategies are particulary beneficial in a Peer-to-Peer
setting where connections between the peers exhibit limited bandwidth and long latencies.
Thus, high costs in transmitting the data make caching techniques even more attractive than
in centralized architectures such as Web search engines.

We proposed several query-driven indexing strategies that enable efficient query processing
in Peer-to-Peer data repositories. The common pattern shared by these approaches is that
they are based on a distributed caching system that is maintained in a Peer-to-Peer network
without any central coordination.

We proposed an indexing strategy for efficient XPath query processing in a structured Peer-
to-Peer XML storage. We also designed two approaches for Peer-to-Peer text retrieval. Both of
them, the Distributed Cache Table and the QDI approach enable efficient multi-keyword search
over distributed document collections. While the former has certain scalability limitations and
is rather suitable for middle-scale digital libraries, the latter is designed for Web-scale Peer-to-
Peer information retrieval.

We also explored Web search engine architectures that utilize a centralized caching compo-
nent. We studied the impact of such a centralized results cache on the efficiency of index-based
query processing. In particular, we showed that the performance of index pruning is fundamen-

123

124 7. Conclusions

tally affected by the changes in the query traffic that the results cache induces. We proposed
ResIn – a variation of the Web search engine architecture that includes both: the results cache
and the static pruned index.

To summarize, we observed that geographical distribution of the index affects the applica-
bility of caching. In particular, indexing with term combinations was shown to be beneficial in
the P2P setting. On the other hand the presence of a centralized results cache (e.g., in a Web
search engine architecture) affects the ways query processing can be optimized. For example, we
learnt that queries containing both frequent and unfrequent terms often occur in cache misses
and therefore account for a significant fraction of processing performed by the main index.

7.2. Future Work

There are several aspects that could be addressed by future work.
Performance of the Peer-to-Peer indexing techniques under churn. The Peer-to-

Peer indexing approaches presented in this thesis do not address the dynamics of the underlying
P2P network. While the analysis of the behavior of many P2P systems under churn is available,
applications built on top of this systems often assume that peers are relatively stable. We
implicitly made the same assumption although it might not hold in many practical situations.
An important aspect of the future work would be to test the performance of the presented
indexing techniques (especially the QDI approach) under churn.

Using Peer-to-Peer information retrieval to address the long-tail of the query
distribution. Search engines are more motivated to optimize the performance of navigational
and transactional queries because they better contribute to their advertising model. Such
queries are also relatively cheap to process. On the other hand, a P2P-IR system might
potentially deliver better results for informational queries than traditional centralized Web
search engines due to a different incentive mechanism. An indexing mechanism specifically
designed to process “complex” queries potentially with a better quality than Web search engines
might be a prerequisite for the long-waited “killer” application of the Peer-to-Peer technology.

Analysis of the impact of index pruning on the efficiency of term caching for
Web search engines. In Chapter 6 we learned that while reasoning about Web search engine
architectures it is important to consider the interaction between the components. We showed
that results caching affects the performance of static index pruning and concluded that they
can be combined together. The next step is to asses the impact of index pruning on the
performance of term caching at the back-end servers.

Combination of the index partitioning techniques for more efficient query pro-
cessing for Web search engines. So far document partitioning is preferred by search engines
over term partitioning due to better load balancing and lower indexing costs. However, with
the growing amount of information and changing hardware specifications hybrid partitioning
techniques for Web search engines might be (re-)considered.

Bibliography

K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Systems. In
CoopIS’01: Proceedings of the 9th International conference on Cooperative Information Sys-
tems, Trento, Italy, 2001. @pages 3, 14, 15, 16, 17, 34

K. Aberer. Scalable Data Access in P2P Systems Using Unbalanced Search Trees. In WDAS’02:
Proceedings of the 4th workshop on Distributed Data and Structures, Paris, France, 2002.
@pages 35

K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and M. Hauswirth. The Essence
of P2P: A Reference Architecture for Overlay Networks. In P2P’05: Proceedings of the 5th
International conference on Peer-to-Peer Computing, Konstanz, Germany, 2005. @pages 15

S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun. XML processing in DHT
networks. In ICDE’08: Proceedings of the 24th International conference on Data Engineering,
Cancún, México, 2008. @pages 3, 19

K. Albrecht, R. Arnold, M. Gahwiler, and R. Wattenhofer. Join and Leave in Peer-to-Peer
Systems: The Steady State Statistics Service Approach. Technical Report 411, ETH Zurich,
2003. @pages 42

V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts. In SIGIR’06:
Proceedings of the 29th Intrnaltional ACM SIGIR conference on Research and Development
in Information Retrieval, Seattle, WA, USA, 2006. @pages 24, 107, 115

J. Aspnes and G. Shah. Skip Graphs. In SODA’03: Proceedings of the 14th ACM-SIAM
Symposium on Discrete Algorithms, Baltimore, MD, USA, 2003. @pages 17

C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani. Distributed Query Processing
Using Partitioned Inverted Files. In SPIRE’01: Proceedings of the International Symposium
on String Processing and Information Retrieval, Laguna de San Rafael, Chile, 2001. @pages
20

R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri. Challenges on
Distributed Web Retrieval. In ICDE’07: Proceedings of the 23rd International conference
on Data Engineering, Istanbul, Turkey, 2007a. @pages 2, 4

125

126 Bibliography

R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri. The
Impact of Caching on Search Engines. In SIGIR’07: Proceedings of the 30th International
ACM SIGIR conference on Research and Development in Information Retrieval, Amsterdam,
The Netherlands, 2007b. @pages 22, 23, 54, 104, 113

R. Baeza-Yates, F. Junqueira, V. Plachouras, and H. F. Witschel. Admission Policies for
Caches of Search Engine Results. In SPIRE’07: Proceedings of the 14th Symposium on
String Processing and Information Retrieval, Santiago, Chile, 2007c. @pages 23, 108

R. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM Press / Addison-
Wesley, 1999. @pages 20

W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. DL Meets P2P – Distributed Document
Retrieval Based on Classification and Content. In ECDL’05: Proceedings of the 9th European
conference on Research and Advanced Technology for Digital Libraries, Vienna, Austira,
2005a. @pages 26

W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive Distributed Top-K Retrieval
in Peer-to-Peer Networks. In ICDE’05: Proceedings of the 21st International conference on
Data Engineering, Tokyo, Japan, 2005b. @pages 4

M. Bender, S. Michel, P. Triantafillou, and G. Weikum. Design Alternatives for Large-Scale
Web Search: Alexander was Great, Aeneas a Pioneer, and Anakin has the Force. In LSDS-
IR’07: Proceedings of the workshop on Large-Scale Distributed Systems for Information Re-
trieval, Amsterdam, The Netherlands, 2007. @pages 21

M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Improving Collection
Selection With Overlap Awareness in P2P Search Engines. In SIGIR’05: Proceedings of the
28th International ACM SIGIR conference on Research and Development in Information
Retrieval, Salvador, Brazil, 2005a. @pages 4, 26

M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. MINERVA: collaborative
P2P search. In VLDB’05: Proceedings of the 31st International conference on Very Large
Data Bases, Trondheim, Norway, 2005b. @pages 3, 26

M. Bergman. The Deep Web: Surfacing Hidden Value. JEP the Journal of Electronic Publish-
ing, 7(1), 8 2001. @pages 1

A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable multi-attribute
range queries. In SIGCOMM’04: Proceedings of the ACM SIGCOMM conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication, Portland,
USA, 2004. @pages 17, 28

Bibliography 127

B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan, P. Keleher, and B. Silaghi. Efficient Peer-
to-Peer Searches Using Result-Caching. In IPTPS’03: Proceedings of the 2nd International
workshop on Peer-to-Peer Systems, Berkeley, CA, USA, 2003. @pages 28

R. Blanco and A. Barreiro. Static Pruning of Terms in Inverted Files. In ECIR’07: Proceedings
of the 29th European conference on IR Research, Rome, Italy, 2007. @pages 23, 24, 106, 107

B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications
of the ACM, 13(7), 1970. @pages 18, 27

P. Boldi, B. Codenotti, M. Santini, and S. Vigna. UbiCrawler: A Scalable Fully Distributed
Web Crawler. Software: Practice & Experience, 34(8), 2004. @pages 107

P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In WWW’04:
Proceedings of the 13th International World Wide Web conference, New York, NY, USA,
2004. @pages 116

A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath lookup queries in P2P networks.
In WIDM’04: Proceedings of the 6th ACM International workshop on Web Information and
Data Management, Washington DC, USA, 2004. @pages 18

E. A. Brewer. Lessons from Giant-Scale Services. IEEE Internet Computing, 5(4), 2001. @pages
107

S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. In
WWW’98: Proceedings of the 7th International World Wide Web conference, Brisbane, Aus-
tralia, 1998. @pages 116

A. Broder. A taxonomy of Web search. SIGIR Forum, 36(2), 2002. @pages 5

S. Büttcher and C. L. A. Clarke. Efficiency vs. Effectiveness in Terabyte-Scale Information Re-
trieval. In TREC’05: Proceedings of the Text REtrieval conference, Gaithersburg, Maryland,
USA, 2005. @pages 24

S. Büttcher and C. L. A. Clarke. A Document-Centric Approach to Static Index Pruning in
Text Retrieval Systems. In CIKM’06: Proceedings of the 15th ACM International conference
on Information and Knowledge Management, Arlington, Virginia, USA, 2006. @pages 24,
107

M. Cai and M. Frank. RDFPeers: a scalable distributed RDF repository based on a structured
Peer-to-Peer network. In WWW’04: Proceedings of the 13th International World Wide Web
conference, New York, NY, USA, 2004. @pages 17

M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A Multi-Attribute Addressable Network
for Grid Information Services. Journal of Grid Computing, 2(1), 2004. @pages 17, 28

128 Bibliography

J. Callan. Distributed Information Retrieval. In Advances in Information Retrieval, pages
127–150. Kluwer Academic Publishers, 2000. @pages 26

P. Cao and Z. Wang. Efficient top-K Query Calculation in Distributed Networks. In PODS’04:
Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART symposium on Principles of
Database Systems, Paris, France, 2004. @pages 27, 84

D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. S. Maarek, and A. Soffer. Static
Index Pruning for Information Retrieval Systems. In SIGIR’01: Proceedings of the 24th In-
ternational ACM SIGIR conference on Research and Development in Information Retrieval,
New Orleans, Louisiana, USA, 2001. @pages 23, 24, 106, 107

C. Castillo, D. Donato, L. Becchetti, P. Boldi, S. Leonardi, M. Santini, and S. Vigna. A
Reference Collection for Web Spam. SIGIR Forum, 40(2), 2006. @pages 107

Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and J. Hellerstein.
A case study in building layered DHT applications. In SIGCOMM’05: Proceedings of the
ACM SIGCOMM conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, Philadelphia, Pennsylvania, USA, 2005. @pages 17

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like
P2P systems scalable. In SIGCOMM’03: Proceedings of the ACM SIGCOMM conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication,
Karlsruhe, Germany, 2003. @pages 13

H. Chen, H. Jin, J. Wang, L. Chen, Y. Liu, and L. M. Ni. Efficient multi-keyword search over
P2P Web. In WWW’08: Proceeding of the 17th International World Wide Web conference,
Beijing, China, 2008. @pages 27

C.-W. Chung, J.-K. Min, and K. Shim. APEX: an adaptive path index for XML data. In
SIGMOD’02: Proceedings of the ACM SIGMOD International conference on Management
of Data, Madison, Wisconsin, USA, 2002. @pages 18

B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast Index for
Semistructured Data. In VLDB’01: Proceedings of the 27th International conference on Very
Large Data Bases, Roma, Italy, 2001. @pages 18

N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor. Relevance Weighting for Query Inde-
pendent Evidence. In SIGIR’05: Proceedings of the 28th International ACM SIGIR confer-
ence on Research and Development in Information Retrieval, Salvador, Brazil, 2005. @pages
116

A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In ICDCS’02:
Proceedings of the 28th International conference on Distributed Computing Systems, Vienna,
Austria, 2002a. @pages 16

Bibliography 129

A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. Technical
report, Computer Science Department, Stanford University, 2002b. @pages 16

P. Cudré-Mauroux and K. Aberer. A Decentralized Architecture for Adaptive Media Dissem-
ination. In ICME’02: Proceedings of the International conference on Multimedia and Expo,
Lausanne, Switzerland, 2002. @pages 57

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using Gossiping to
Build Content Addressable Peer-to-Peer Information Sharing Communities. In HPDC’03:
Proceedings of the 12th International Symposium on High Performance Distributed Comput-
ing, Seattle, WA, USA, 2003. @pages 4, 26

A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated Peer-to-
Peer Systems. In ICDCS’03: Proceedings of the 29th International conference on Distributed
Computing Systems, Providence, RI, USA, 2003. @pages 36

A. Datta, M. Hauswirth, R. Schmidt, R. John, and K. Aberer. Range queries in trie-structured
overlays. In P2P’05: Proceedings of the 5th International conference on Peer-to-Peer Com-
puting, Konstanz, Germany, 2005. @pages 15, 16, 38, 53

A. Datta, R. Schmidt, and K. Aberer. Query-load balancing in structured overlays. In CC-
GRID’07: Proceedings of the 7th International Symposium on Cluster Computing and the
Grid, Rio de Janeiro, Brazil, 2007. @pages 57

E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S. da Silva, P. Calado, and M. A.
Nascimento. Improving Web Search Efficiency via a Locality Based Static Pruning Method.
In WWW’05: Proceedings of the 14th International World Wide Web conference, Chiba,
Japan, 2005. @pages 24

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In
PODS’01: Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of Database Systems, Santa Barbara, CA, USA, 2001. @pages 23, 27, 78, 84, 115

T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting the performance of Web search
engines: Caching and prefetching query results by exploiting historical usage data. ACM
Transactions on Information Systems, 24(1), 2006. @pages 23, 108

L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating Data Sources in Large Dis-
tributed Systems. In VLDB’03: Proceedings of the 29th International conference on Very
Large Data Bases, Berlin, Germany, 2003. @pages 18

P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: multi-dimensional
queries in P2P systems. In WebDB’04: Proceedings of the 7th International workshop on the
Web and Databases, Paris, France, 2004. @pages 17

130 Bibliography

L. Garcés-Erice, P. Felber, E. W. Biersack, G. Urvoy-Keller, and K. W. Ross. Data Indexing in
Peer-to-Peer DHT Networks. In ICDCS’04, Proceedings of the 24th International conference
on Distributed Computing Systems, Hachioji, Tokyo, Japan, 2004. @pages 18

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. 1979. @pages 54

S. Girdzijauskas, A. Datta, and K. Aberer. On Small-World Graphs in Non-uniformly Dis-
tributed Key Spaces. In NetDB’05: Proceedings of the International workshop on Networking
Meets Databases, Tokio, Japan, 2005. @pages 15

S. Girdzijauskas, A. Datta, and K. Aberer. Oscar: Small-World Overlay for Realistic Key
Distributions. In DBISP2P’06: Proceedings of the 4th International workshop on Databases,
Information Systems and Peer-to-Peer Computing, Trondheim, Norway, 2006. @pages 17

S. Girdzijauskas, A. Datta, and K. Aberer. Oscar: A Data-Oriented Overlay For Heteroge-
neous Environments. In ICDE’07: Proceedings of the 23nd International conference on Data
Engineering, Istambul, Turkey, 2007. @pages 17

O. D. Gnawali. A Keyword Set Search System for Peer-to-Peer Networks, 2002. Master’s
thesis, Massachusetts Institute of Technology. @pages 28

R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. In VLDB’97: Proceedings of the 23th International conference
on Very Large Data Bases, Athens, Greece, 1997. @pages 18

M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex Queries
in DHT-based Peer-to-Peer Networks. In IPTPS’02: Proceedings of the 1st International
workshop on Peer-to-Peer Systems, Cambridge, MA, USA, 2002. @pages 3, 17

H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Academic Press,
Inc., 1978. @pages 86, 96

R. Huebsch, B. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe, S. Shenker, I. Stoica,
and A. R. Yumerefendi. The Architecture of PIER: An Internet-Scale Query Processor. In
CIDR’05: Proceedings of the 2nd Biennial conference on Innovative Data Systems Research,
Asilomar, CA, USA, 2005. @pages 17

S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel: a Decentralized Peer-to-Peer Web
Cache. In PODC’02: Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing, Monterray, CA, USA, 2002. @pages 17

H. Jin and H. Chen. SemreX: Efficient Search in a Semantic Overlay for Literature Retrieval.
Future Generation Computer Systems, 24(6), 2008. @pages 26

Bibliography 131

Y.-J. Joung, C.-T. Fang, and L.-W. Yang. Keyword Search in DHT-Based Peer-to-Peer Net-
works. In ICDCS’05: Proceedings of the 25th International conference on Distributed Com-
puting Systems, Columbus, Ohio, USA, 2005. @pages 29

J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In STOC’00:
Proceedings of the 32nd ACM Symposium on Theory of Computing, Portland, Oregon, USA,
2000. @pages 13, 15

F. Klemm, J.-Y. L. Boudec, and K. Aberer. Congestion Control for Distributed Hash Tables.
In NCA’06: Proceedings of the 5th International Symposium on Network Computing and
Applications, Cambridge, MA, USA, 2006. @pages 87, 99

F. Klemm, S. Girdzijauskas, J.-Y. Le Boudec, and K. Aberer. On Routing in Distributed
Hash Tables. In P2P’07: Proceedings of the 7th International conference on Peer-to-Peer
Computing, Galway, Ireland, 2007. @pages 99

K. Kobatake, S. Tagashira, and S. Fujita. A New Caching Technique to Support Conjunctive
Queries in P2P DHT. IEICE Transactions, 91D(4), 2008. @pages 28

G. Koloniari and E. Pitoura. Content-Based Routing of Path Queries in Peer-to-Peer Systems.
In EDBT’04: Proceedings of 9th International conference on Extending Database Technology,
Heraklion, Crete, Greece, 2004. @pages 18

G. Koloniari and E. Pitoura. Peer-to-peer Management of XML Data: Issues and Research
Challenges. SIGMOD Record, 34(2), 2005. @pages 19

A. Kothari, D. Agrawal, A. Gupta, and S. Suri. Range Addressable Network: A P2P Cache
Architecture for Data Ranges. In P2P’03: Proceedings of the 3rd International conference
on Peer-to-Peer Computing, Linköping, Sweden, 2003. @pages 16

H. Kurasawa, H. Wakaki, A. Takasu, and J. Adachi. Data allocation scheme based on term
weight for P2P information retrieval. In WIDM’07: Proceedings of the 9th ACM International
workshop on Web information and data management, Lisbon, Portugal, 2007. @pages 28

J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris. On the Feasibility of
Peer-to-Peer Web Indexing and Search. In IPTPS’03: Proceedings of the 2nd International
workshop on Peer-to-Peer Systems, Berkeley, CA, USA, 2003. @pages 4, 70

Y. Li, H. V. Jagadish, and K.-L. Tan. Sprite: A Learning-Based Text Retrieval System in
DHT Networks. In ICDE’07: Proceedings of the 23nd International conference on Data
Engineering, Istambul, Turkey, 2007. @pages 29

Y. Li, F. Ma, and L. Zhang. pKSS: An Efficient Keyword Search System in DHT Peer-to-Peer
Network. In ICA3PP’05: Proceedings of the 6th International conference on Algorithms and
Architectures for Parallel Processing, Melbourne, Australia, 2005. @pages 28

132 Bibliography

K. Lillis and E. Pitoura. Cooperative XPath caching. In SIGMOD’08: Proceedings of the
ACM SIGMOD International conference on Management of Data, Vancouver, Canada, 2008.
@pages 19, 66

X. Long and T. Suel. Optimized Query Execution in Large Search Engines with Global Page
Ordering. In VLDB’03: Proceedings of the 29th International conference on Very Large Data
Bases, Berlin, Germany, 2003. @pages 24, 107

X. Long and T. Suel. Three-Level Caching for Efficient Query Processing in Large Web Search
Engines. In WWW’05: Proceedings of the 14th International World Wide Web conference,
Chiba, Japan, 2005. @pages 23

B. T. Loo, R. Huebsch, J. M. Hellerstein, S. Shenker, and I. Stoica. Enhancing P2P File-Sharing
with an Internet-Scale Query Processor. In VLDB’04: Proceedings of the 30th International
conference on Very Large Data Bases, Toronto, Canada, 2004. @pages 29

J. Lu. Full-text Federated Search in Peer-to-Peer Networks. PhD thesis, Carnegie Mellon
University, USA, 2007. @pages 8, 11, 26

J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In CIKM’03: Pro-
ceedings of the 12th International conference on Information and Knowledge Management,
New Orleans, LA, USA, 2003. @pages 26

J. Lu and J. Callan. Federated Search of Text-Based Digital Libraries in Hierarchical Peer-to-
Peer Networks. In ECIR’05: Proceedings of the 27th European conference on IR Research,
Santiago de Compostela, Spain, 2005. @pages 4, 26

J. Lu and J. Callan. User Modeling for Full-Text Federated Search in Peer-to-Peer Networks.
In SIGIR’06: Proceedings of the 29th International ACM SIGIR conference on Research and
Development in Information Retrieval, Seattle, WA, USA, 2006. @pages 26

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A Survey and Comparison of Peer-
to-Peer Overlay Network Schemes. IEEE Communications Survey and Tutorial, 7, 2005.
@pages 15

C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. Mining Query Logs to Optimize In-
dex Partitioning in Parallel Web Search Engines. In Infoscale’07: Proceedings of the 2nd
International conference on Scalable Information Systems, Suzhou, China, 2007. @pages 23

T. Luu. Scalable Peer-to-Peer Web search using Highly Discriminative Keys. PhD thesis,
EPFL, Lausanne, Switzerland, 2007. @pages 19, 30, 98

T. Luu, F. Klemm, I. Podnar, M. Rajman, and K. Aberer. ALVIS Peers: A Scalable Full-text
Peer-to-Peer Retrieval Engine. In P2PIR’06: Proceedings of the workshop on Information
Retrieval in Peer-to-Peer Networks, Arlington, VA, USA, 2006. @pages 98, 99

Bibliography 133

T. Luu, G. Skobeltsyn, F. Klemm, M. Puh, I. Podnar Žarko, M. Rajman, and K. Aberer.
AlvisP2P: Scalable Peer-to-Peer Text Retrieval in a Structured P2P Network. In VLDB’08:
Proceedings of the 34th International conference on Very Large Data Bases, Auckland, New
Zealand, 2008. @pages 69, 98

A. MacFarlane, J. A. McCann, and S. E. Robertson. Parallel Search using Partitioned Inverted
Files. In SPIRE’00: Proceedings of the 7th International Symposium on String Processing
Information Retrieval, A Coruña, Spain, 2000. @pages 20

B. Mandhani and D. Suciu. Query Caching and View Selection for XML Databases. In
VLDB’05: Proceedings of 31th International conference on Very Large Data Bases, Trond-
heim, Norway, 2005. @pages 18

G. S. Manku, M. Bawa, P. Raghavan, and V. Inc. Symphony: Distributed Hashing in a Small
World. In USITS’03: Proceedings of the 4th USENIX Symposium on Internet Technologies
and Systems, 2003. @pages 15

P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information System Based on the
XOR Metric. In IPTPS’02: Proceedings of the 1st International workshop on Peer-to-Peer
Systems, Cambridge, MA, USA, 2002. @pages 14, 15

S. Michel. Top-k Aggregation Queries in Large-Scale Distributed Systems. PhD thesis, Univer-
sität des Saarlandes, Max-Planck-Institut für Informatik, Germany, 2007. @pages 27

S. Michel, M. Bender, N. Ntarmos, P. Triantafillou, G. Weikum, and C. Zimmer. Discovering
and Exploiting Keyword and Attribute-Value Co-occurrences to Improve P2P Routing In-
dices. In CIKM’06: Proceedings of the 15th ACM International conference on Information
and Knowledge Management, Arlington, Virginia, USA, 2006. @pages 27

S. Michel, P. Triantafillou, and G. Weikum. KLEE: a framework for distributed top-k query
algorithms. In VLDB’05: Proceedings of the 31st International conference on Very Large
Data Bases, Trondheim, Norway, 2005a. @pages 27

S. Michel, P. Triantafillou, and G. Weikum. MINERVA∞: A Scalable Efficient Peer-to-Peer
Search Engine. In Middleware’05: Proceedings of the 6th International Middleware confer-
ence, Grenoble, France, 2005b. @pages 27

T. Milo and D. Suciu. Index Structures for Path Expressions. In ICDT’99: Proceedings of the
7th International conference on Database Theory, Jerusalem, Israel, 1999. @pages 18

A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A Pipelined Architecture for Distributed
Text Query Evaluation. Information Retrieval, 10(3), 2007. @pages 23

W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér, and T. Risch.
EDUTELLA: a P2P networking infrastructure based on RDF. In WWW’02: Proceedings of

134 Bibliography

the 11th International World Wide Web conference, Honolulu, Hawaii, USA, 2002. @pages
3, 16, 47

L. Nguyen, W. G. Yee, and O. Frieder. Adaptive Distributed Indexing for Structured Peer-
to-Peer Networks. In CIKM’08: Proceedings of the 17th ACM International conference on
Information and Knowledge Management, Napa, CA, USA, 2008. @pages 29

A. Ntoulas and J. Cho. Pruning Policies for Two-Tiered Inverted Index with Correctness
Guarantee. In SIGIR’07: Proceedings of the 30th International ACM SIGIR conference on
Research and Development in Information Retrieval, Amsterdam, The Netherlands, 2007.
@pages 24, 104, 105, 106, 107, 113, 115, 117, 118

O. Papapetrou, W. Siberski, W.-T. Balke, and W. Nejdl. DHTs over Peer Clusters for Dis-
tributed Information Retrieval. In AINA’07: Proceedings of the 21st International conference
on Advanced Networking and Applications, Niagara Falls, Canada, 2007. @pages 26

Y. Petrakis, G. Koloniari, and E. Pitoura. On Using Histograms as Routing Indexes in Peer-to-
Peer Systems. In DBISP2P’04: Proceedings of the 2nd International workshop on Databases,
Information Systems, and Peer-to-Peer Computing, Toronto, Canada, 2004. @pages 18

I. Podnar, T. Luu, M. Rajman, F. Klemm, and K. Aberer. A Peer-to-Peer Architecture for
Information Retrieval Across Digital Library Collections. In ECDL’06: Proceedings of the
European conference on research and advanced technology for Digital Libraries, Alicante,
Spain, 2006a. @pages 50

I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Beyond term indexing: A P2P
framework for Web information retrieval. Informatica, Special Issue on Specialised Web
Search, 2006b. @pages 30

I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Scalable Peer-to-Peer Web Re-
trieval with Highly Discriminative Keys. In ICDE’07: Proceedings of the 23nd International
conference on Data Engineering, Istambul, Turkey, 2007. @pages 11, 30, 32, 70, 84, 85, 94

M. F. Porter. An Algorithm for Suffix Stripping. Program, 14(3), 1980. @pages 58, 71, 88

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable Content-
Addressable Network. In SIGCOMM’01: Proceedings of the ACM SIGCOMM conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication,
San Diego, CA, USA, 2001. @pages 3, 13, 14, 34

W. J. Reed. The Pareto, Zipf and Other Power Laws. Economics Letters, 74(15-19), 2001.
@pages 86

Bibliography 135

P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. In Middleware’03:
Proceedings of the 4th International Middleware conference, Rio de Janeiro, Brazil, 2003.
@pages 27

S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at TREC.
In TREC’92: Proceedings of the Text REtrieval conference, Gaithersburg, Maryland, USA,
1992. @pages 72

A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems. In Middleware’01: Proceedings of the International
conference on Distributed Systems Platforms, Heidelberg, Germany, 2001. @pages 3, 14

O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A Peer-to-peer Framework for Caching
Range Queries. In ICDE’04: Proceedings of the 20th International conference on Data
Engineering, Boston, USA, 2004. @pages 16

Sandvine Inc. 2008. Analysis of Traffic Demographics in North-American Broadband Networks,
2008. URL http://www.sandvine.com/general/documents/Traffic_Demographics_NA_

Broadband_Networks.pdf. @pages 3

M. T. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP – Hypercubes, Ontologies, and
Efficient Search on Peer-to-Peer Networks. In AP2PC’02: Proceedings of the 1st International
workshop on Agents and Peer-to-Peer Computing. @pages 34

S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen. Making Peer-to-Peer Keyword Searching
Feasible Using Multi-level Partitioning. In IPTPS’04: Proceedings of the 3rd International
workshop on Peer-to-Peer Systems, La Jolla, CA, USA, 2004. @pages 29

G. Skobeltsyn and K. Aberer. Distributed Cache Table: Efficient Query-Driven Processing
of Multi-Term Queries in P2P Networks. In P2PIR’06: Proceedings of the workshop on
Information Retrieval in Peer-to-Peer Networks, Arlington, VA, USA, 2006. @pages 49

G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient processing of XPath queries with
structured overlay networks. In ODBASE’05: Proceedings of the International Conference
on Ontologies, Databases and Applications of SEmantics, Agia Napa, Cyprus, 2005. @pages
33

G. Skobeltsyn, F. Junqueira, V. Plachouras, and R. Baeza-Yates. ResIn: A Combination of
Result Caching and Index Pruning for High-performance Web Search Engines. In SIGIR’08:
Proceedings of the 31st International ACM SIGIR conference on Research and Development
in Information Retrieval, Singapore, 2008. @pages 103

G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, and K. Aberer. Query-Driven Indexing
for Peer-to-Peer Text Retrieval (poster). In WWW’07: Proceedings of the 16th International
World Wide Web conference, Banff, Canada, 2007a. @pages 69

http://www.sandvine.com/general/documents/Traffic_Demographics_NA_Broadband_Networks.pdf
http://www.sandvine.com/general/documents/Traffic_Demographics_NA_Broadband_Networks.pdf

136 Bibliography

G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, and K. Aberer. Query-Driven Indexing for
Scalable Peer-to-Peer Text Retrieval. In Infoscale’07: Proceedings of the 2nd International
conference on Scalable Information Systems, Suzhou, China, 2007b. @pages 69, 78, 97

G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, and K. Aberer. Web Text Retrieval
with a P2P Query-Driven Index. In SIGIR’07: Proceedings of the 30th International ACM
SIGIR conference on Research and Development in Information Retrieval, Amsterdam, The
Netherlands, 2007c. @pages 69

G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, and K. Aberer. Query-Driven Indexing
for Scalable Peer-to-Peer Text Retrieval. Future Generation Computer Systems, 25(1), 2009.
@pages 69

P. Skyvalidas, E. Pitoura, and V. V. Dimakopoulos. Replication Routing Indexes for XML
Documents. In DBISP2P’07: Proceedings of the 5th International workshop on Databases,
Information Systems and Peer-to-Peer Computing, Vienna, Austria, 2007. @pages 18

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In SIGCOMM’01: Proceedings of the
ACM SIGCOMM conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, San Diego, CA, United States, 2001. @pages 3, 13, 14, 34

T. Strohman and W. B. Croft. Efficient document retrieval in main memory. In SIGIR’07:
Proceedings of the 30th International ACM SIGIR conference on Research and Development
in Information Retrieval, Amsterdam, The Netherlands, 2007. @pages 24

T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and K. Shanmuga-
sundaram. ODISSEA: A Peer-to-Peer Architecture for Scalable Web Search and Information
Retrieval. In WebDB’03: Proceedengs of the International workshop on Web and Databases,
San Diego, CA, USA, 2003. @pages 27, 84, 85

C. Tang and S. Dwarkadas. Hybrid Global-Local Indexing for Efficient Peer-to-Peer Information
Retrieval. In NSDI’04: Proceedings of the 1st Symposium on Networked Systems Design and
Implementation, San Francisco, CA, USA, 2004. @pages 28

C. Tang, S. Dwarkadas, and Z. Xu. On Scaling Latent Semantic Indexing for Large Peer-to-
Peer Systems. In SIGIR’04: Proceedings of the 27th International ACM SIGIR conference
on Research and Development in Information Retrieval, Sheffield, UK, 2004. @pages 28

J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information Re-retrieval: Repeat Queries in
Yahoo’s Logs. In SIGIR’07: Proceedings of the 30th International ACM SIGIR conference
on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 2007.
@pages 23

Bibliography 137

C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/Subscribe Functionalities for Future
Digital Libraries using Structured Overlay Networks. In DELOS’05: Proceedings of the 8th
International workshop of the DELOS Network of Excellence on Digital Libraries on Future
Digital Library Management Systems, Schloss Dagstuhl, Germany, 2005. @pages 28

Y. Tsegay, A. Turpin, and J. Zobel. Dynamic Index Pruning for Effective Caching. In CIKM’07:
Proceedings of the 16th ACM Inernational conference on Information and Knowledge Man-
agement, Lisbon, Portugal, 2007. @pages 24, 107

J. Winter. Routing of structured queries in large-scale distributed systems. In LSDS-IR’08:
Proceedings of the 6th Workshop on Large-Scale Distributed Systems for Information Re-
trieval, Napa Valley, CA, USA, 2008. @pages 19

J. Xu and B. Croft. Cluster-based Language Models for Distributed Retrieval. In SIGIR’99:
Proceedings of the 22nd International ACM SIGIR conference on Research and Development
in Information Retrieval, Berkeley, CA, USA, 1999. @pages 26

M. R. Yong Yang, Rocky Dunlap and B. F. Cooper. Performance of Full Text Search in
Structured and Unstructured Peer-to-Peer Systems. In INFOCOM’06: Proceedings of the
25th conference on Computer Communications, Barcelona, Spain, 2006. @pages 29

J. Zhang, X. Long, and T. Suel. Performance of Compressed Inverted List Caching in Search
Engines. In WWW’08: Proceedings of the 17th International World Wide Web conference,
Beijing, China, 2008. @pages 23

J. Zhang and T. Suel. Efficient Query Evaluation on Large Textual Collections in a Peer-to-Peer
Environment. In P2P’05: Proceedings of the 5th International conference on Peer-to-Peer
Computing, Konstanz, Germany, 2005. @pages 4, 21, 27, 70, 84

J. Zhang and T. Suel. Optimized Inverted List Assignment in Distributed Search Engine
Architectures. In IPDPS’07: Proceedings of the 21st International Parallel & Distributed
Processing Symposium, Rome, Italy, 2007. @pages 23

L. Zhang, F. Zou, and F. Ma. KRBKSS – A keyword relationship based keyword-set search
system. Journal of Zhejiang University SCIENCE, 6A(6), 2005. @pages 28

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. Technical report, Berkeley, CA, USA, 2001. @pages 15

C. Zimmer, C. Tryfonopoulos, and G. Weikum. Exploiting correlated keywords to improve
approximate information filtering. In SIGIR’08: Proceedings of the 31st International ACM
SIGIR conference on Research and Development in Information Retrieval, Singapore, 2008.
@pages 27

138 Bibliography

Curriculum Vitæ

Personal Data

Name: Gleb Skobeltsyn
Date of birth: September 7, 1979
Place of birth: Moscow, Russia
Nationality: Russian
Languages: English (fluent), French (intermediate), Russian (native)

Education

PhD in Computer Science

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Distributed Information Systems Laboratory, School of Computer
and Communication Sciences. Supervisor – Prof. Karl Aberer.
PhD thesis: Query-Driven Indexing in Large-Scale Distributed Systems.

2008

Graduate studies in Computer Science

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
School of Computer and Communication Sciences.
Project: Visual reasoning about Subject and Aspect Oriented
Programming techniques, grade – 6 (excellent).

2003

M.S. in Computer Science

Saint-Petersburg State Polytechnical University (SPbSPU), Russia.
Master thesis: Databank of parameters of models of radio
electronic components, grade – excellent. GPA: 4.6/5.

2002

B.S. in Computer Science

Saint-Petersburg State Polytechnical University (SPbSPU), Russia.
Bachelor thesis: Information system for a construction company,
grade – excellent. GPA: 4.6/5.

2000

139

140 Curriculum Vitae

Work Experience

Jan. 04 – present Research Assistant at EPFL, Lausanne (Switzerland).

Distributed Information Systems Laboratory. Teaching assistantship
(5 semesters), student projects supervision, software development for
the EU projects Alvis, BRICKS and OKKAM (workpackage leader).

Sep.07 – Dec.07 Intern at Yahoo! Research Barcelona (Catalunya, Spain).

Research topic: combination of results caching and index pruning for Web
search engines.

Mar.99 – Sep.02 System Administrator at Electrosfera Ltd., Saint-Petersburg (Russia).

Network administration (3 branch offices, 5 servers, 50 clients) and soft-
ware development.

Jan.97 – Sep.02 Software Engineer at Navigator Ltd., Saint-Petersburg (Russia).

Project leader and software developer in the following projects:
- Information system of a small office enterprise;
- Regional databank of children adoption;
- Software for automatic parameters calculation of analog elements;
- PalmOS dashboard for industrial automatic control system of gas drying;
- CAD for window and door blocks;
- etc.

Publications

Conference and Workshop Papers

1. Sheila Kinsella, Adriana Budura, Gleb Skobeltsyn, Sebastian Michel, John G. Breslin,
Karl Aberer: From Web 1.0 to Web 2.0 and back – How did your Grandma use to tag?
Proceedings of the 10th ACM International Workshop on Web Information and Data
Management (WIDM), October 30, 2008, Napa, USA.

2. Toan Luu, Gleb Skobeltsyn, Fabius Klemm, Maroje Puh, Ivana Podnar Žarko, Martin
Rajman, Karl Aberer: AlvisP2P: Scalable Peer-to-Peer Text Retrieval in a Structured
P2P Network (demo paper). Proceedings of the 34th International Conference on Very
Large Data Bases (VLDB), August 24 – 30, 2008, Auckland, New Zealand.

3. Gleb Skobeltsyn, Flavio Junqueira, Vassilis Plachouras, Ricardo Baeza-Yates: ResIn: A
Combination of Result Caching and Index Pruning for High-performance Web Search
Engines. Proceedings of the 31st International ACM SIGIR Conference, July 20 – 24,
2008, Singapore.

Curriculum Vitae 141

4. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Žarko, Martin Rajman, Karl Aberer: Web
Text Retrieval with a P2P Query-Driven Index. Proceedings of the 30st International
ACM SIGIR Conference, July 23 – 27, 2007, Amsterdam, The Netherlands.

5. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Žarko, Martin Rajman, Karl Aberer Query-
Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Proceedings of the 2nd In-
ternational Conference on Scalable Information Systems (Infoscale), June 6 – 8, 2007,
Suzhou, China.

6. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Žarko, Martin Rajman, Karl Aberer Query-
Driven Indexing for Peer-to-Peer Text Retrieval (poster). Proceedings of 16th Interna-
tional World Wide Web Conference (WWW), May 8 – 12, 2007, Banff, Canada.

7. Gleb Skobeltsyn, Karl Aberer: Distributed Cache Table: Efficient Query-Driven Process-
ing of Multi-Term Queries in P2P Networks. Proceedings of the CIKM Workshop on
Information Retrieval in Peer-to-Peer Networks (P2PIR), November 11, 2006, Arlington,
USA.

8. Gleb Skobeltsyn, Manfred Hauswirth, Karl Aberer: Efficient Processing of XPath
Queries with Structured Overlay Networks. Proceedings of the International Confer-
ence on Ontologies, Databases and Applications of SEmantics (ODBASE), October 31
– November 4, 2005, Agia Napa, Cyprus.

9. Pavel Balabko, Gleb Skobeltsyn, Alain Wegmann Role Composition in Requirements En-
gineering: the Method and Prototyping Tool. Proceedings of 16th International Confer-
ence on Advanced Information Systems Engineering (CAiSE), June 7 – 11, 2004, Riga,
Latvia.

Journal Papers

1. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Žarko, Martin Rajman, Karl Aberer: Query-
Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Future Generation Computer
Systems, Volume 25, Issue 1, January 2009.

2. Alexander Isakov, Kirill Skobeltsyn, Gleb Skobeltsyn, Aleksey Polkovnikov: DISP dia-
log system for electronic circuits design. EDA Express journal (in Russian), N5, 2001,
Moscow, Russia.

3. Alexander Isakov, Kirill Skobeltsyn, Gleb Skobeltsyn: Software for automatic parameters
calculation of analog elements. EDA Express journal (in Russian), N4, 2001, Moscow,
Russia.

4. Gleb Skobeltsyn: FontEditor- Editor for system fonts in VGA text mode. Prologue jour-
nal (in Russian), 1994, Computer science - special issue, Saint-Petersburg, Russia.

142 Curriculum Vitae

Main Awards

1995 First place in Saint-Petersburg school programming Olympiad.

2002 Doctoral School scholarship from EPFL.

Other

1. Co-organizer of the 6th International workshop on Large-Scale Distributed Systems for
Information Retrieval (LSDS-IR’08) collocated with CIKM 2008.

2. PC member: SAC’08, SAC’09.

3. Reviewer: TKDE journal, FGCS journal.

4. External reviewer: ICDE, VLDB, SIGMOD, P2P conference, etc.

Lausanne, October 24, 2008

z

	Title
	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Searching Large-Scale Data Repositories
	1.1.1 Peer-to-Peer Networks
	1.1.2 Peer-to-Peer Data Management
	1.1.3 P2P Information Retrieval

	1.2 Contribution of the Work
	1.3 Structure of the Thesis
	1.4 Selected Publications

	2 State of the Art
	2.1 Peer-to-Peer Networks
	2.1.1 Distributed Hash Tables (DHTs)
	2.1.1.1 DHT Implementations

	2.1.2 Indexing in Structured Peer-to-Peer Networks
	2.1.2.1 Peer-to-Peer Data Indexing Approaches
	2.1.2.2 Peer-to-Peer XML Management

	2.2 Distributed Information Retrieval
	2.2.1 Index Partitioning Principles
	2.2.2 Web Search Engines
	2.2.2.1 Caching in WSE
	2.2.2.2 Index Pruning in WSE

	2.2.3 P2P Information Retrieval
	2.2.3.1 P2P-IR Systems
	2.2.3.2 Indexing with Highly Discriminative Keys

	3 Efficient Processing of XPath Queries in a P2P XML Storage
	3.1 Introduction
	3.2 P-Grid
	3.3 Basic Index
	3.4 Caching Strategy
	3.4.1 Answering a Query
	3.4.2 Cache Maintenance
	3.4.3 What to Cache?
	3.4.4 Example

	3.5 Simulations
	3.6 Conclusions

	4 Distributed Cache Table: Query-Driven Indexing for P2P Text Retrieval
	4.1 Introduction
	4.2 Indexing and Caching Strategy
	4.2.1 Meta-Index
	4.2.2 Cache Management
	4.2.3 Example

	4.3 Load Balancing
	4.3.1 Meta-Index Load Balancing
	4.3.2 Cache Access Load Balancing

	4.4 Experimental Results
	4.4.1 Simulation Setup
	4.4.2 Storage Capacity (Records)
	4.4.3 Storage Capacity (Bytes)
	4.4.4 Traffic Consumption
	4.4.5 Stress Test
	4.4.6 Load Balancing
	4.4.7 Term Combinations vs. Queries

	4.5 Conclusions

	5 Scalable Web Text Retrieval with a P2P Query-Driven Index
	5.1 Introduction
	5.2 Distributed Query-Driven Indexing/Retrieval
	5.2.1 P2P Global Index
	5.2.2 Indexing/Retrieval Mechanisms
	5.2.3 On-Demand Indexing Mechanism
	5.2.4 Updates in the Query-Driven Index

	5.3 Indexing/Retrieval Algorithms
	5.3.1 Retrieval
	5.3.2 Indexing

	5.4 Scalability
	5.5 Experiments
	5.5.1 Retrieval Quality Experiments with the AOL Query-Log
	5.5.2 Retrieval Quality Experiments with the Wikipedia Query-Log
	5.5.3 TREC Experiment
	5.5.4 P2P Index Simulations
	5.5.5 Experiments Investigating the Index Size

	5.6 AlvisP2P Prototype
	5.6.1 AlvisP2P Architecture
	5.6.2 AlvisP2P Client Software

	5.7 Conclusions

	6 ResIn: A Combination of Result Caching and Index Pruning for WSE
	6.1 Introduction
	6.2 ResIn Architecture
	6.3 Experimental Setup
	6.4 Results Caching
	6.4.1 Results Cache Performance
	6.4.2 All Queries vs. Misses

	6.5 Index Pruning
	6.5.1 Term Pruning
	6.5.2 Document Pruning
	6.5.3 Term+Document Pruning
	6.5.4 Discussion

	6.6 Conclusions

	7 Conclusions
	7.1 Summary of the Work
	7.2 Future Work

	Bibliography
	Curriculum Vitae

