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Abstract

In recent years, there has been a rapid growth in the adoption of virtual machine technology

in data centers and cluster environments. This trend towards server virtualization is driven

by two main factors: the savings in hardware cost that can be achieved through the use of

virtualization, and the increased flexibility in the management of hardware resources in a cluster

environment. An important consequence of server virtualization is the negative impact it has

on the networking performance of server applications running in virtual machines (VMs).

In this thesis, we address the problem of efficiently virtualizing the network interface in Type-

II virtual machine monitors. In the Type-II architecture, the VMM relies on a special, ‘host’

operating system to provide the device drivers to access I/O devices, and executes the drivers

within the host operating system. Using the Xen VMM as an example of this architecture,

we identify fundamental performance bottlenecks in the network virtualization architecture of

Type-II VMMs.

We show that locating the device drivers in a separate host VM is the primary reason for

performance degradation in Type-II VMMs, because of two reasons: a) the switching between

the guest and the host VM for device driver invocation, and, b) I/O virtualization operations

required to transfer packets between the guest and the host address spaces. We present a

detailed analysis of the virtualization overheads in the Type-II I/O architecture, and we present

three solutions which explore the performance that can be achieved while performing network

virtualization at three different levels: in the host OS, in the VMM, and in the NIC hardware.

Our first solution consists of a set of packet aggregation optimizations that explores the
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performance achievable while retaining the Type-II I/O architecture in the Xen VMM. This

solution retains the core functionality of I/O virtualization, including device driver execution,

in the Xen ‘driver domain’. With this set of optimizations, we achieve an improvement by a

factor of two to four in the networking performance of Xen guest domains.

In our second solution, we move the task of I/O virtualization and device driver execu-

tion from the host OS to the Xen hypervisor. We propose a new I/O virtualization architec-

ture, called the TwinDrivers framework, which combines the performance advantages of Type-I

VMMs with the safety and software engineering benefits of Type-II VMMs. (In a Type-I VMM,

the device driver executes directly in the hypervisor, and gives much better performance than

a Type-II VMM). The TwinDrivers architecture results in another factor of two improvement

in networking performance for Xen guest domains.

Finally, in our third solution, we describe a hardware based approach to network virtual-

ization, in which we move the task of network virtualization into the network interface card

(NIC). We develop a specialized network interface (CDNA) which allows guest operating sys-

tems running in VMs to directly access a private, virtual context on the NIC for network I/O,

bypassing the host OS entirely. This approach also yields performance benefits similar to the

TwinDrivers software-only approach.

Overall, our solutions help significantly bridge the gap between the network performance in

a virtualized environment and a native environment, eventually achieving network performance

in a virtual machine within 70% of the native performance.

Keywords: virtual machines, network virtualization, performance
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Résumé :

Au cours des dernières années, les technologies de machines virtuelles dans les centres de

données et les grappes de PC ont progressées de manière très rapide. Cette progression de

la virtualisation dans le monde des serveurs est attribuable à deux facteurs principaux : les

économies en matériel possibles grâce à la virtualisation, ainsi que la flexibilité de gestion des

ressources virtualisées. Une conséquence importante de la virtualisation est limpact notable sur

la performance des applications tournant sur les serveurs virtualisés.

Dans cette thèse, nous étudions les performances du réseau des machines virtuelles tournant

dans lenvironnement de virtualisation Xen. Nous identifions les goulets détranglement fonda-

mentaux qui limitent les performances du réseau dans la pile de virtualisation Xen, et nous

proposons un certain nombre doptimisations afin daméliorer les performances des domaines

Xen invités.

Nous présentons trois classes principales doptimisation. Pour commencer, nous proposons

un ensemble doptimisations qui peuvent être appliquées sans modifier larchitecture actuelle de

la du réseau dans Xen. Ces optimisations résultent en un facteur deux à quatre damélioration

des performances réseau dans les domaines Xen invités

Ensuite, nous proposons une nouvelle architecture des entrées sorties (e/s) dans Xen ap-

pelée TwinDrivers, qui combine les avantages darchitectures e/s existantes. Plus spécifiquement,

TwinDrivers combine la performance des VMMs basé sur un Hypervisor ainsi que la sécurité

et la simplicité des VMMs basés sur un système hôte. Larchitecture TwinDrivers contribue un

deuxième facteur deux damélioration dans la performance réseau des domaines Xen invités.
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Pour terminer, nous décrivons une alternative matérielle à la virtualisation réseau, dans

laquelle nous développons une interface réseau spécialisée (CDNA) qui permet laccès concurrent

au réseau depuis plusieurs domaines Xen. Cette approche résulte en un gain de performance

similaire à lapproche logicielle TwinDrivers.

Mots-clés : machines virtuelles, virtualisation du réseaux, performances
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Chapter 1

Introduction

In recent years, there has been a rapid growth in the adoption of virtual machine technology

in data centers and in cluster environments. Commercial virtualization software vendors such

as VMware, XenSource (Citrix) and Microsoft are increasingly making their presence felt in

the server market. On the hardware front, Intel and AMD have incorporated support for vir-

tualization in their CPU instruction set [AMD, INT], and the PCI-SIG vendor consortium has

proposed standards for adding support for virtualization in the PCI standard for I/O virtual-

ization [ATS, SRI, MRI].

This trend towards server virtualization is driven by two main factors: the savings in hard-

ware cost achieved through the use of virtualization, and the greater flexibility of management

of virtualized cluster resources.

In a typical server environment, each server application is run on a separate server machine,

both in order to isolate it from other server applications, and to customize its software stack

(including the operating system). Unfortunately, this results in unnecessary server sprawl,

where each server machine runs at a low average utilization rate. Server virtualization prevents

this sprawl by consolidating multiple underutilized servers onto a smaller number of physical

machines, thereby reducing the hardware costs required to run multiple servers. Each server

application is run in its own operating system running on a different virtual machine (VM),
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and multiple VMs are multiplexed on a single physical machine by the virtual machine monitor

(VMM).

On the management front, cluster wide server virtualization allows for the decoupling of the

management of the servers from the management of the hardware environment. Virtualization

of cluster resources allows for increased flexibility in the centralized management of storage,

ease of performing hardware upgrades and maintenance, and disaster recovery. For instance,

virtual machine migration allows hardware upgrades to be performed with zero downtime by

migrating the running servers onto other machines in the cluster while the target machine is

being upgraded/fixed.

1.1 Virtualization Approaches

In a virtualized environment, the VMM performs the task of virtualizing and multiplexing the

physical resources of the system among the virtual machines. These resources include the CPU,

memory and I/O devices. Thus, it provides each VM with its own virtual CPU(s), a subset

of the host memory, and a set of virtual I/O devices. The guest OS running in the VM uses

these virtual resources in a manner similar to the way it uses physical resources in a native

environment.

There are two main distinct approaches to virtualization, full virtualization and paravirtu-

alization [BDF+03, WSG02]. In full virtualization, the hardware interface provided to guest

operating systems is exactly identical to the underlying native hardware interface. The ad-

vantage of this approach is that it provides full binary compatibility with existing operating

systems, and thus does not require any modification in the guest OS to run in the VM. The

downside of this approach is performance degradation incurred for emulating the exact seman-

tics of the native hardware. The full virtualization approach for x86 CPUs was pioneered by

VMware. With the introduction of hardware support for virtualization in x86 CPUs, other

virtualization products, such as Citrix’s XenServer, and Microsoft Hyper-V also support full

virtualization for unmodified OSes.
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Because of the performance overheads of full virtualization, and also in order to avoid the

complexity of virtualizing x86 CPUs in the absence of hardware support, an alternate approach

to virtualization called paravirtualization was developed. In this approach, which was first

developed in the Xen VMM, the guest operating system running in a VM is slightly modified to

make it aware of the underlying VMM, so that, instead of accessing the raw hardware directly,

it requests the VMM to perform privileged operations on the hardware on its behalf. The

advantage of paravirtualization is improved performance over full virtualization, whereas the

downside is the need to modify guest operating systems in order to run in a VM.

1.2 Network Performance in Virtual Machines

In a virtualized environment, the VMM multiplexes I/O devices among the VMs by providing

each VM with a set of virtual I/O devices. In the case of networking, each VM is provided with

one or more virtual network interfaces. The guest OS uses this virtual network interface for all

its network I/O in a manner similar to the way it uses a regular network interface in a native

environment.

The VMM is responsible for multiplexing the network I/O operations performed by the

guest OSes on the virtual network interfaces onto the physical network interface. Thus, for

transmit operations, it must transfer packets transmitted on the guest’s virtual interface onto

the physical network interface card (NIC) (or to another guest VM, if the target of the packet

runs on a VM on the same machine). For receive operations, it must route packets in the

reverse direction, i.e., from the physical NIC to the appropriate virtual interface in a VM. This

packet transfer operation between the virtual and physical NICs is typically done through an

L-2 bridge and constitutes the main function of the network virtualization stack.

The complexity and cost of network virtualization in the VMM depends on a number of

factors, with an important factor being the I/O architecture used by the VMM. The I/O ar-

chitecture of the VMM defines the way it uses device drivers to control the I/O devices in the

system. There are two main approaches to do this, and VMMs are classified as either Type-I
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or Type-II depending on which approach they take.

In a Type-I VMM, or non-hosted VMM (also called hypervisor-based VMM), the virtual

machine monitor completely controls all hardware resources in the system, including the I/O

devices, and no guest OS is allowed to access the hardware directly. Thus, the VMM provides

its own device drivers for controlling the I/O devices in the system. The main advantage of this

approach is that I/O operations in the virtualized environment are very efficient, because the

hypervisor can directly invoke its drivers for performing I/O. The downside of this approach is

the software engineering effort required to develop or port the device drivers and their driver

support library. A second disadvantage is that the hypervisor becomes vulnerable to bugs in

the driver, and an I/O operation on behalf of one VM can bring down the entire system.

In a Type-II VMM, also called a hosted VMM, the VMM does not control all hardware

directly. Instead, it relies on a special privileged host operating system (called driver domain in

Xen terminology) for controlling and managing the hardware, including all I/O devices. Thus,

device drivers for managing the I/O devices are provided by the host OS, and the VMM must

switch from the guest to the host OS for every device I/O operation. Thus, this approach

entails greater performance overhead for I/O operations. The advantage of this approach is

that, firstly, the VMM can simply reuse the device driver and its support infrastructure present

in the host OS, saving on considerable engineering effort, and, secondly, since the device driver

runs in an isolated host VM, bugs or crashes in the driver cannot affect the rest of the system.

1.3 Scope of Thesis

An important concern with server virtualization is that the performance of server applications

running inside the VMs can degrade significantly relative to their performance in a native

environment. This is because of the overheads incurred by the VMM in the virtualization of the

physical resources of the system. This overhead can be particularly high for the virtualization

of I/O devices [MST+05, SVL01], especially for I/O devices which require frequent servicing by

the device driver, for example, interrupt-intensive devices such as network cards.
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We address the problem of efficiently virtualizing the network interface in a virtual machine

environment. A number of important server applications, such as web servers, and streaming

media servers are network-intensive applications, and their overall performance depends cru-

cially on the networking performance of the system. In addition, efficient networking in the

VMM is useful for a number of VMM operations, such as virtual machine migration, network

file system traffic, etc.

In this thesis, we investigate the networking performance in a Type-II VMM, using the

Xen VMM as an example of this architecture. Xen is an open-source VMM developed at

the University of Cambridge [BDF+03], and it uses an I/O architecture similar to the Type-

II hosted VMM. Although the Xen VMM controls all physical hardware other than the I/O

devices directly (and in this respect, is similar to a Type-I VMM), it requires a special, privileged

host OS, called the driver domain, to control and manage the I/O devices. Guest operating

systems running in other VMs (known as guest domains in Xen terminology) must request I/O

services from the driver domain with the help of Xen-specific paravirtualized drivers. Since Xen

uses a hosted I/O architecture, it suffers from the switching and other virtualization overheads

associated with the Type-II VMM architecture for I/O operations.

We focus on the network performance in paravirtualized guest operating systems running

on Xen. We identify the fundamental performance bottlenecks in the network virtualization

stack of the Xen VMM, and propose a number of solutions to address these bottlenecks.

1.4 Contributions of this Thesis

We explore a number of complementary solutions to optimize network virtualization in Type-

II VMMs. Although our solutions have been implemented and evaluated in the Xen VMM,

the techniques we propose are general, and can be applied to other Type-II VMMs, such as

Microsoft’s Hyper-V.

The contributions of this thesis are the following:

Using the Xen VMM as an example of Type-II VMMs, we identify the fundamental per-
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formance bottlenecks in the network virtualization architecture of Type-II VMMs. We show

that locating the device drivers in a separate host VM is the primary reason for performance

degradation in Type-II VMMs, because of two reasons: 1) the switching between the guest and

the host VM for device driver invocation, and, b) the overhead of I/O virtualization operations

required to transfer packets between the guest and host address spaces. We show that in the

Xen VMM, these overheads degrade network performance by up to a factor of five relative to

the native performance.

We present three solutions which explore the space of networking optimizations in Type-II

VMMs. The three solutions explore the networking performance that can be achieved through

different optimizations while performing network virtualization at different levels: in the driver

domain (host OS), in the VMM, and in the NIC hardware.

Our first solution explores the networking performance that is achievable while retaining

the Type-II I/O architecture of Xen. We present a set of optimizations that reduce network

virtualization overheads in the I/O stack by using packet ‘coalescing’ techniques to reduce the

per-packet processing overheads. This solution retains the core functionality of I/O virtualiza-

tion, including device driver execution, in the Xen driver domain. These optimizations improve

TCP transmit performance in Xen guest domains by a factor of 4, and TCP receive performance

by a factor of roughly 2, relative to the baseline performance.

In our second solution, we move the task of I/O virtualization and device driver execution

from the host OS to the Xen hypervisor. We propose the TwinDrivers architecture that allows

us to automatically derive safe network drivers from the host OS drivers, and run these drivers

directly in the hypervisor, like in a Type-I VMM. The TwinDrivers architecture combines the

performance advantages of Type-I VMMs with the safety and software engineering benefits of

Type-II VMMs. We improve networking performance in Xen guest domains by a factor of 2

using TwinDrivers.

Our third solution consists of a hardware-based approach to improve networking perfor-

mance. This work was done in collaboration with researchers at Rice University [WSC+07]. In
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this approach, we move the task of network virtualization into the network interface card (NIC).

We develop a specialized network interface (Concurrent Direct Network Access, CDNA) which

allows guest domains running in VMs to directly access a private, virtual context on the NIC

for network I/O, completely bypassing the host OS. This approach also helps achieve network

performance comparable to Type-I VMMs.

Overall, our solutions help significantly bridge the gap between the network performance

in a virtualized environment and native environment, eventually achieving within 70% of the

native performance.

The outline of the rest of the thesis is as follows. In Chapter 2, we present an analysis of

the network virtualization overheads in Type-II VMMs, with an emphasis on the Xen VMM. In

Chapter 3, we describe our packt aggregation optimizations that retain the Xen I/O architecture.

Chapter 4 describes our TwinDrivers approach to I/O virtualization, and Chapter 5 describes

our hardware based CDNA approach. We discuss related work in Chapter 6, and we conclude

in Chapter 7.
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Chapter 2

Network Virtualization Overheads

In this chapter, we describe the network I/O virtualization architecture of Xen, and analyze

the performance characteristics of the Xen I/O architecture (and Type-II VMM architectures

in general), for network-intensive workloads.

We first present the network I/O architecture used in Xen. The Xen VMM uses an I/O

architecture similar to that of hosted Type-II VMMs. Although the Xen hypervisor controls

most of the physical hardware directly (such as CPU and memory), it delegates the control of

the I/O devices to a privileged host OS running inside a VM, called the driver domain. Thus,

the performance characteristics of the Xen VMM for I/O workloads are similar to that of Type-

II VMMs. We describe the Xen I/O architecture and the implications of this architecture on

network performance in Section 2.1. Next, we analyze the main sources of performance overhead

in the Xen I/O virtualization architecture for network intensive applications in Section 2.2. The

section presents a high level picture of the fundamental performance bottlenecks in the Type-II

I/O architecture of Xen. Finally, we present a more detailed analysis of the network processing

overheads incurred for transmit and receive workloads running in Xen guest domains in Section

2.3. This section identifies the components of the I/O virtualization stack in Xen that dominate

network processing overhead.
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2.1 Xen I/O Architecture

Figure 2.1 shows the architecture of a Type-I VMM, also known as a hypervisor-based VMM, or

non-hosted VMM. In this architecture, the VMM controls all hardware resources of the system,

including the I/O devices. Thus, the VMM provides device drivers of its own to manage

the I/O devices. In contrast, in a Type-II architecture, the VMM relies on a privileged host

operating system to manage all the hardware, in particular, the I/O devices. Figure 2.2 shows

the architecture of a Type-II VMM.

Virtual Driver

Physical NIC

Virtual Driver

Guest OS Guest OS

VMM

Physical Driver

Figure 2.1: Type-I VMM Architecture. Device drivers for controlling the I/O devices are present
in the hypervisor (VMM).

The advantage of the Type-II architecture is that the VMM can reuse device drivers from

the host OS to manage a wide range of I/O devices. This constitutes a significant saving in

the software engineering effort required to make the VMM portable across a range of hard-

ware platforms. Unfortunately, this architecture also suffers from higher performance overhead

compared to Type-I VMMs, especially for I/O intensive operations. This is because for every

invocation of the device driver, the VMM must switch from the currently running guest OS to

the host OS hosting the drivers.

The VMM architecture of Xen is a combination of Type-I and Type-II VMM. Although the

Xen hypervisor controls the physical hardware such as CPU and memory directly, it delegates
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Physical Driver

Physical NIC

Virtual Driver

Host OS Guest OS

VMM

Figure 2.2: Type-II VMM Architecture. The VMM makes use of the device drivers of the host
OS for accessing I/O devices.

control of I/O devices to a special, privileged operating system running in a VM, called the

driver domain. Thus, it is similar to a hosted VMM architecture in that it relies on a host OS

for managing the I/O devices. However, Xen runs the host OS in an isolated VM of its own,

thus, the VMM and other VMs are isolated from bugs or crashes causes by the device driver.

Figure 2.3 shows a high level picture of the network I/O virtualization architecture of Xen.

Each guest domain running on Xen is provided with a number of virtual network interfaces

which it uses for all its network operations. Each virtual interface in a guest domain (also called

frontend interface) has its own MAC address and is connected to a corresponding ‘backend’

interface in the driver domain through an ‘I/O channel’. The I/O channel provides mechanisms

for exchanging network packets between the frontend and backend interfaces. The frontend and

backend interface can signal each other using virtual interrupts when there are network packets

to be transferred between the two.

All the backend interfaces in the driver domain (corresponding to the guest domain’s virtual

interfaces) are connected to the physical NIC and to each other through a network bridge.

The combination of the bridge and the I/O channel allows the physical interface and the guest

domain’s virtual interfaces to transfer packets to each other based on the destination MAC
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Figure 2.3: Xen Network I/O Architecture

address of the packet. Thus, for instance, on the transmit path, packets are transmitted by the

guest domain on its virtual interface, which are then transferred over the I/O channel to the

backend interface, which then transfers them to the physical interface over the network bridge,

and finally the NIC sends them out on the network. The receive path is similar, except in the

reverse direction.

The network virtualization overheads in the Xen I/O architecture are similar to the I/O

overheads incurred in a Type-II VMM. Like in a Type-II VMM, network I/O operations in

the guest domain require an address space switch to the driver domain in order to invoke the

NIC driver. The frequent switching for I/O operations and the cost of operations in the I/O

virtualization stack (I/O channel transfers, bridging) significantly degrade network performance

in Xen guest domains, as shown in the next section.

2.2 Xen Virtualization Overheads

Figure 2.4 shows the transmit and receive network performance for a netperf [NET] like bench-

mark running in three configurations: a Xen guest domain, the Xen driver domain, and a native

Linux system. The benchmark measures the maximum transmit/receive throughput achievable

(in Mb/s) over a small number of TCP connections, where each TCP connection is used to

send/receive traffic over a different network card. The first set of histograms in the figure shows
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the transmit performance and the second set shows the receive performance.
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Figure 2.4: Network performance in guest and driver domains running on Xen

The network performance when running the workloads in the driver domain is very close to

the performance in a native Linux system. Thus, transmit performance (3760 Mb/s) is the same

as the Linux transmit performance (except that it incurs higher CPU overhead), and receive

performance (1738 Mb/s) is within 70% of the native receive performance (2508 Mb/s). In

contrast, when the workloads run in the guest domain, the performance achieved is significantly

lower. The transmit performance in the guest domain (750 Mb/s) is only 20% of the native

transmit performance, and the receive performance (820 Mb/s) is roughly 33% of native.

The reason for the large difference between guest domain and driver domain performance

is that the driver domain invokes the NIC driver directly for network I/O, whereas the guest

domain needs to switch to the driver domain, and transfer its packet data to the driver domain

address space, for all network I/O operations. We note that in a Type-I VMM, no switching is

incurred for invoking the device driver in the hypervisor from the guest domain, and the packet

remains in the same address space, thus the performance of a Type-I VMM is comparable to

the performance of the Xen driver domain.

We now coarsely quantify the virtualization overheads of the Type-II architecture for running
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Figure 2.5: Breakdown of network processing overheads for guest and driver domains running
on Xen

network-intensive workloads in the guest domain. Figure 2.5 shows the breakdown of network

processing overhead for the transmit workload for guest and driver domain configurations. The

figure shows the percentage of the total network processing overhead that is incurred in the

driver domain, the Xen VMM, and the guest domain.

When the network workload is run in the driver domain (shown in the first set of bars),

the I/O virtualization overhead incurred in the hypervisor is less than 10%, and most of the

processing time is spent in the driver domain itself. However, when the workload runs in

the guest domain (shown in the second set of bars), close to 62% of the processing time is

spent in the network virtualization stack in the driver domain (35%) and the Xen hypervisor

(27%), and only 38% of processing time is left for network processing in the guest domain. The

processing overhead in the driver domain (35%) and the Xen hypervisor (27%) on behalf of the

guest domain network I/O, is composed almost entirely of I/O virtualization operations used to

transfer packets from the guest address space (virtual NIC) to the driver domain address space

(physical NIC) (We discuss this in more detail in Section 2.3).

We quantify the impact of the context switching between the driver and the guest domain

on the performance of the network stack. Figure 2.6 shows the relative ratio of the number of
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hardware events such as L-2 cache misses, instruction and data TLB misses, for the transmit

workload running in the guest and driver domain configurations. The figure shows the number

of misses in each configuration as a fraction of the number of misses incurred in the guest

domain. The figure shows that network I/O from the guest domain incurs significantly higher

overhead, in terms of cache and TLB misses, than the driver domain. L-2 cache misses incurred

are higher in the guest domain by a factor of almost 25, instruction TLB misses are higher by

a factor of 2.5 and data TLB misses are higher by a factor of 3. These figures indicate that

the constant switching between the guest and the driver domain for network I/O significantly

degrades the performance of the operations in the network I/O stack.
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Figure 2.6: Hardware event counts for network workload running in Xen guest and driver
domains

Figures 2.5 and 2.6 show that the choice of the driver domain I/O architecture for network

I/O is the fundamental bottleneck for network performance in Xen guest domains. Significant

overhead is incurred in the I/O virtualization stack in transferring packets between guest domain

and the driver domain address spaces, and this is exacerbated by the overhead of switching

between the guest and driver domains. In contrast, in the driver domain configuration, the

network driver can be invoked directly, and this shows an estimate of the performance that is

achievable in a Type-I VMM architecture. We now discuss the I/O virtualization overheads of
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the Xen architecture in more detail in the next section.

2.3 Analysis of Xen Virtualization Overheads

We identify the components of the network I/O virtualization stack that contribute the most

to virtualization overhead for guest domains. An important objective here is to quantify the

overhead of operations in the network stack that must be necessarily incurred on each network

packet, such as TCP/IP protocol processing, and distinguish it from other operations that are

not necessarily per-packet, such as the I/O virtualization specific operations.

In the following analysis, we also distinguish between ‘per-packet’ overheads in the network

stack, and ‘per-byte’ overheads. In the networking literature, per-packet overhead is defined as

the overhead incurred in operations that must be performed for every packet of data processed,

and includes operations such as packet protocol header processing, buffer management, I/O

channel transfers, etc. In contrast, the per-byte operations are those which must be performed

on every byte of data processed, and includes operations such as data copying and checksum

computation.

Figures 2.7 and 2.8 show the breakdown of the processing overhead for a transmit and a

receive workload, respectively, running in a Linux 2.6.16.38 guest domain running on Xen 3.0.4.

The figures show the overhead incurred for netperf [NET] like transmit and receive workloads

in different components of the network virtualization stack of Xen, in terms of number of CPU

cycles incurred per network packet. The different groups into which we classify the network

processing overheads are the following:

1. per-byte: Data copy routines. For the transmit workload this includes the data copy

from the guest domain’s file system buffers into the frontend driver’s socket buffers. For

the receive workload, this includes the two data copies: the first from the driver domain

into the guest domain, and second copy from the guest kernel into the guest application.

2. non-proto: This includes the bridge and netfilter routines in the driver domain, and
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other system-specific non-protocol processing related routines in the guest domain. The

bridge transfers packets from the backend interface to the physical NIC for transmit work-

loads, and in the reverse direction for receive workloads. The overhead in this category is

essentially a per-packet overhead.

3. netback: The netback driver initializes transfer of ACK packets from the driver to the

guest domain for transmit workloads, and receives packets from the guest domain for

receive workloads. Its overhead is mostly per-packet, and is proportional to the number

of packets it transfers.

4. netfront: The netfront driver initiates transfer of packets from the guest domain to the

driver domain for transmit workloads, and receives packets from the driver domain for

receive workloads. Its overhead is similar to the netback driver, and is proportional to the

number of packets it accepts.

5. tcp rx and tx: The transmit and receive TCP routines in the guest domain. These are

per-packet overheads.

6. buffer: Buffer management routines for management of network packet buffers and the

Linux sk buff structure, in both the driver domain and the guest domain. This is a

per-packet overhead.

7. driver: Device driver running in the Driver domain. This is a per-packet overhead.

8. xen: Xen manages domain scheduling, inter-domain interrupts, validation of packet trans-

fer rights, etc. Its overhead cannot be classified strictly as either per-packet or per-byte.

9. misc: Other routines. These cannot be classified as either per-packet or per-byte.

For transmit processing (figure 2.7), the overhead of the device driver routines, driver,

is roughly 11%, and for receive side processing (figure 2.8), it is roughly 8%. Although this
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Figure 2.7: Breakdown of transmit processing overheads in a Linux guest domain running on the
Xen VMM. The overhead is predominantly per-packet, and most of the per-packet overhead is
incurred in virtualization-specific operations such as bridging, etc. TCP/IP protocol processing
incurs very low overhead.
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Figure 2.8: Breakdown of receive processing overheads in a Linux guest domain running on the
Xen VMM. The overhead is predominantly per-packet, and most of the per-packet overhead is
incurred in virtualization-specific operations such as bridging, etc. TCP/IP protocol processing
incurs very low overhead.

overhead is per-packet, it cannot be reduced by software-only optimizations, and possibly re-

quires modifications to the NIC for further reduction. Thus, for the purpose of the subsequent
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discussion, we distinguish between the driver routines and the other per-packet routines in the

network stack.

The overall overhead of the per-packet routines for the transmit workload, comprising of

the non-proto, netback, netfront, tcp tx, tcp rx and buffer routines, adds up to roughly

50% of the total network processing overhead, and is significantly larger than the per-byte

overhead, 14%. Of this total per-packet overhead, TCP/IP protocol processing, consisting of

tcp tx and tcp rx, is only 7% of the network processing overhead. The rest of the per-packet

overhead is incurred in operations unrelated to protocol processing, such as L-2 bridging in the

driver domain (non-proto, 15%), I/O channel transfers (netfront and netback, 14%), and

Linux buffer management (buffer, 12%). The overhead of these operations is possibly further

exacerbated because of the switching overheads described in section 2.2.

The overhead of the bridging operations in the driver domain (the non-proto category) is

15%. One of the reasons for this being so large is that the L-2 bridge in the driver domain

includes the infrastructure for the Linux netfilter framework, which provides a set of hooks into

the kernel for intercepting and manipulating network packets. Unfortunately, the overhead of

this infrastructure is non-trivial even when no netfilter hooks are set up.

The second major source of overhead is the I/O channel operations (netback and netfront,

14%) for transferring packets between the guest and driver domains. This operation is expensive

because, for every packet transferred between the driver and the guest domain, the driver domain

must verify the permissions of the guest domain to access the physical page address of the packet.

In the Xen architecture, this operation requires hypercalls to the hypervisor in order to perform

the so-called grant-table operations [FHN+04]. This overhead is specific to the Type-II VMM

architecture, where the driver domain needs to invoke the hypervisor in order to verify the

guest domain’s permissions. In a Type-I architecture, the VMM can directly verify the guest

domain’s page permissions, since the device driver is invoked inside the hypervisor.

The profile for receive side workloads, in figure 2.8, is very similar to that of the transmit

workload. The overall overhead of the per-packet routines for the receive workload adds up to
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roughly 56% of the total overhead, and is significantly higher than the per-byte copy overhead,

14%. This is inspite of the fact that there are two data copies involved, one from the driver

domain to the guest domain, and the second from the guest kernel to the guest application.

TCP/IP protocol processing (tcp tx and tcp rx) incurs less than 10% of the overhead, and

the non-protocol processing related per-packet operations, non-proto, netback, netfront and

buffer, add up to almost 46% of the overhead. Here again, the bulk of the per-packet overhead

is incurred in the I/O virtualization operations such as bridging (non-proto, 19%), and I/O

channel operations (netback and netfront, 18%).

Thus, for both transmit and receive workloads, most of the per-packet overhead is incurred

in routines in the I/O virtualization stack, and very little overhead in incurred in TCP/IP

protocol processing.

2.4 Summary

In this chapter, we analyzed the performance characteristics of network-intensive workloads

running in Xen guest domains. We showed that the I/O virtualization architecture of Xen,

which is similar to that of Type-II VMMs, results in a significant performance degradation for

I/O intensive workloads. In contrast, an I/O architecture similar to Type-I VMMs (such as the

driver domain) suffers from much less performance degradation. We further showed that much of

the overhead of network processing in guest domains is incurred in the I/O virtualization stack,

in operations such as bridging and I/O channel transfers. Actual TCP/IP protocol processing

itself incurs very little overhead.

In the next three chapters, we present three complementary solutions to reduce the I/O

virtualization overheads in Type-II VMMs. The solutions proposed are motivated in part by

the analysis and observations made in this chapter.

In chapter 3, we present a set of optimizations that reduce the per-packet I/O virtualization

overheads in the existing Xen network stack. The optimizations in this chapter make use of our

observation that a number of overheads in the I/O virtualization stack (such as L-2 bridging
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and I/O channel transfers) are currently incurred on a per-packet basis, but since they are

not central to TCP/IP protocol processing, they do not actually need to be incurred for every

packet transmitted or received from the network.

Our second and third solutions try to eliminate the driver domain (or host OS) from the

performance critical path of network I/O operations in a Type-II VMM, and thus, try to achieve

performance closer to a Type-I VMM architecture. The two solutions take different approaches

to achieve this goal.

In our second solution, presented in chapter 4, we propose the TwinDrivers I/O architecture,

which allows us to automatically derive safe hypervisor drivers from the host OS drivers, and

run these drivers directly in the hypervisor, like in a Type-I VMM. The rewriting is done in

a manner that guarantees memory safety of the derived hypervisor driver. Thus, the Twin-

Drivers architecture combines the performance advantages of a Type-I VMM with the safety

and software engineering benefits of a Type-II VMM.

In our third solution, in chapter 5, we eliminate the host OS from the performance critical

path by using a hardware-based approach, called CDNA. In the CDNA approach, we move

the task of network virtualization into the network interface card (NIC). We develop a special-

ized network interface that can be partitioned safely into independent virtual network contexts,

such that each context can be assigned independently to a different guest domain. By perform-

ing network virtualization directly in the network interface, this approach bypasses the driver

domain, and thus achieves performance similar to a Type-I VMM.
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Chapter 3

Packet Aggregation Optimizations

In this chapter we present a set of optimizations to the Xen network stack that can be applied

to the existing Xen I/O architecture. These optimizations retain the basic Xen architecture

of locating device drivers in a privileged driver domain, and providing guest domains with

paravirtual network interfaces for network I/O operations (see chapter 2). The optimizations

address both transmit side and receive side networking performance.

The basic idea of our optimizations is to focus on reducing the per-packet overhead of packet

processing in the network stack, as a means to reduce the overall network processing overhead.

The optimizations reduce per-packet overheads in the network stack by batching together, or

combining, the processing of multiple small network packets into one ‘coalesced’ host packet.

Batching together the processing of network packets is an effective way to reduce the per-

packet overheads. This is because batching, or coalescing, allows many of the packet processing

operations in the network stack to be performed only once for every ‘coalesced’ packet, instead

of once for each network packet. Thus, for instance, operations such as bridging, I/O channel

transfers and system specific operations such as buffer management (which are not related to

TCP/IP protocol processing) now need to be performed only once for every coalesced packet,

instead of being performed for every network packet. Thus, the average cost of these per-packet

operations can be reduced to a small fraction of their original cost, by varying the ‘batching
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ratio’.

We present tranmit side and receive side optimizations that make use of the general phi-

losophy of coalescing packets to reduce per-packet overhead. On the transmit side, we present

two optimizations, a High Level Virtual Interface (HLVI) optimization for the guest domain’s

virtual network interface, and I/O channel optimizations. On the receive side, we also present

two optimizations, Receive Aggregation and Acknowledgment Offload. The transmit side opti-

mizations improve TCP transmit performance in guest domains by a factor of upto four, and

the receive side optimizations improve receive performance by 86%.

The outline for the rest of this chapter is as follows. We describe the transmit side op-

timizations in section 3.1 and the receive side optimizations in section 3.2. We evaluate the

performance benefits of these optimizations in section 3.3 We conclude in section 3.4 with a

discussion of the limitations of these optimizations.

3.1 Transmit Side Optimizations

We present the High Level Virtual Interface optimization in section 3.1.1, and the I/O Channel

Optimizations in section 3.1.2.

3.1.1 High Level Virtual Interface

A number of transmit side optimizations in the network stack of an operating system depend

on hardware offload support from the network interface (NIC). For instance, support for TCP

Segmentation Offload (TSO) is most commonly implemented in the network interface, and zero-

copy TCP transmit implementation requires support for scatter/gather DMA and checksum

offloading from the network interface. The TSO optimization allows the network stack to

transmit packets using an effective MTU size which is much larger than the network MTU size.

Scatter/gather DMA support allows the network card to directly DMA network packets from

non-contiguous memory regions, such as from the OS file system buffers and a distinct protocol

header.
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Unfortunately, when a physical network interface is virtualized by a VMM, the correspond-

ing virtual network interface provided to guest domains may not always support these offload

features. This was, in fact, the case with the initial implementation of virtual network inter-

faces for Xen guest domains. Xen guest domains were initially provided with a basic, simple

network interface which supported only the basic transmit and receive operations, and did not

support any additional hardware offload features, even if these features were supported by the

underlying physical NIC.

The rationale behind this choice of a low-level virtual network interface was that it simplified

the implementation of the virtual NIC, and made it ‘portable’ across all underlying physical

NICs. Since the virtual NIC supported only the least common denominator of all possible

physical NIC functionality, its operations could be mapped easily to corresponding operations

in the physical NIC. Unfortunately, this approach also prevented the Xen guest domain from

taking advantage of the offload features of the physical NIC.

Our first optimization is a new ‘High Level Virtual Interface’ for Xen guest domains, which

aims to reduce the per-packet overheads in the TCP transmit path for Xen guest domains.

Figure 3.1 shows a high level picture of this virtual interface architecture.

In this architecture, we provide a ‘high-level’ virtual interface for networking in Xen guest

domains, that supports all the important transmit side offload features such as TCP Segmen-

tation Offload (TSO), scatter/gather DMA and checksum offload. The key feature of the new

architecture is that the offload features are supported in the guest’s virtual interface independent

of whether they are supported in the underlying physical NIC.

Since the physical NIC may not support all the offload features required by the guest’s virtual

NIC, we introduce a new component, the ‘offload driver’, to emulate the required features in

software. The offload driver is situated at the entry point of the NIC driver in the driver domain,

and its task is to ensure that packets transmitted from the virtual interface are ‘compatible’

with the offload features supported in the physical NIC. Thus, if a packet from a guest domain

requires TSO support in the NIC, and the physical NIC does not support this feature, the
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Figure 3.1: High Level Virtual Interface Architecture. The virtual NIC in the guest domain
supports high level offload operations independent of whether they are supported by the actual
NIC.

offload driver emulates TSO in software, and sends only segmented MTU-sized packets to the

physical NIC. Similarly, the offload driver implements support for other offload features, like

scatter/gather DMA and checksum offloading.

Advantages of a High Level Virtual Interface

The main advantages of a high level virtual interface are similar to the advantages of traditional

transmit side optimizations, such as TSO and zero-copy transmit, in a native operating system

network stack. Thus, scatter/gather DMA and checksum offload support in the virtual NIC

allow the guest domain to perform zero-copy TCP transmits, and TSO support allows the guest

operating system to make use of the standard large packet offload optimization.

However, the impact of these optimizations, in particular the TSO optimization, is even

more pronounced in a virtualized environment than in a native environment. This is because,

in a virtualized environment such as Xen, a large part of the network processing overhead is

incurred in the network virtualization operations performed in the driver domain and the Xen

VMM, and much of this overhead is incurred in per-packet operations not related to protocol

processing, such as bridging and I/O channel transfers (see chapter 2). The TSO optimization

amortizes the cost of these per-packet operations by batching together the processing of multiple
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MTU-sized network packets into one ‘large’ host packet. Thus, operations in the virtualization

stack are incurred only once for each ‘large’ packet, instead of once for each network packet.

This also justifies the decision to support the high level offload features in the virtual NIC,

even when the underlying physical NIC does not support them. By supporting the offload

features in the virtual NIC, in particular TSO, the cost of the per-packet operations in the

network virtualization stack and in the guest domain’s network stack are greatly reduced, even

in the case when the features have to be emulated by the offload driver. Since the actual offload

emulation takes place at a point just before invoking the physical NIC driver, few additional

per-packet overheads are incurred after this point.

3.1.2 I/O Channel Optimizations

Our second transmit side optimization in the Xen architecture consists of I/O channel optimiza-

tions for improving the efficiency of packet transfer over the I/O channel. The I/O channel, as

discussed in chapter 2, is the inter-domain data transfer mechanism used for exchanging packets

between the frontend driver in the guest domain and the backend driver in the driver domain.

As such, this I/O channel optimization does not strictly fall in the general category of the

packet coalescing optimization techniques discussed in this chapter. However, we include it for

completeness to cover the set of transmit side optimizations which can be implemented within

framework of the Xen I/O architecture. The description of these optimizations in this section

is kept brief, additional details can be found in [MCZ06].

The I/O channel optimizations consists of a set of techniques designed to avoid the ineffi-

ciencies in the packet transfer mechanism used in Xen, for the common case. It consists of a

transmit path optimization which avoids the cost of the I/O channel page remapping operations

using a ‘header’ channel, and an ACK receive path optimization which replaces page remapping

by data copy (We consider the receive path operations for the I/O channel for reception of the

ACK packets in TCP).

On the transmit path (i.e., for transferring data from the frontend driver to the backend
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driver), the I/O channel currently makes use of a page remapping mechanism in which a virtual

memory page in the driver domain is mapped to the physical address of the data page in the

guest domain. This is an expensive operation involving multiple TLB flushes and hypercalls

(to check for page permissions). Our transmit path optimization relies on the observation that

the driver domain does not need to map in the entire packet for its bridging operation. It only

needs to access the MAC header of the packet. Thus, the optimization consists of augmenting

the I/O channel with a ‘header’ channel, which the frontend driver in the guest domain uses to

to supply the packet header separately to the backend driver. The header channel, thus, avoids

the page remapping operation and replaces it with the cost of a small header copy.

Similarly, on the receive path (transferring ACK packets from the driver domain to the guest

domain), the initial I/O channel mechanism made use of complex page remapping and page

ownership transfer operations in order to avoid data copy costs. However, for TCP transmit

workloads, packets transferred on the receive path are only small TCP ACK packets, whose

data copy costs are quite small. Thus, our receive path optimization consists of using data copy

to implement the I/O channel transfer from driver to guest domain.

3.2 Receive Side Optimizations

We now present receive side optimizations which can be applied within the framework of the

Xen I/O architecture. We discuss the Receive Aggregation optimization in section 3.2.1 and

the Acknowledgment Offload optimization in section 3.2.2.

Both these optimizations fall in the general category of packet coalescing optimizations dis-

cussed earlier. The basic idea in these optimizations is to batch together the processing of

multiple network packets into a single ‘coalesced’ packet to amortize the cost of per-packet

operations in the network virtualization stack that are not related to protocol processing. Re-

ceive Aggregation ‘aggregates’ together multiple incoming TCP packets into a single ‘host’ TCP

packet, and Acknowledgment Offload batches together multiple TCP ACK packets into a ‘large’

ACK packet.
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3.2.1 Receive Aggregation

The idea of Receive Aggregation is to coalesce, or ‘aggregate’ together multiple incoming TCP

packets into a single ‘host’ TCP packet, and to process only the aggregated TCP packets in the

network virtualization stack, instead of processing the individual network packets. This allows

us to amortize the cost of per-packet operations in the network stack that are not related to

protocol processing, such as buffer management, I/O channel forwarding, bridging, as these

need to be performed only once for each aggregated TCP packet, instead of once for every

network TCP packet.

Receive Aggregation is performed at the entry point of the network virtualization stack in

Xen, i.e., at the point when network packets are received in the NIC driver in the driver domain.

The NIC driver receives a sequence of network TCP packets from the network interface, and,

instead of delivering them directly to the network stack, it first passes them to a proxy layer

sitting between the driver and the network stack. This proxy layer performs the task of packet

aggregation, and delivers the final aggregated TCP packets to the network bridge for further

processing.

Packet aggregation is done in the proxy layer by ‘chaining’ together the received packets, and

rewriting the TCP/IP header. The proxy layer only aggregates TCP packets that belong to the

same TCP connection and which are ‘in-sequence’. Aggregation is performed by maintaining a

small hash table of partially aggregated TCP packets, and checking newly received TCP packets

against this table to determine if they can be ‘coalesced’ with previously received TCP packets.

When a ‘sufficient’ number of network TCP packets have been coalesced into an ‘aggregated’

TCP packet, the proxy layer delivers this packet to the bridge.

The implementation of the aggregation function is done outside of the NIC interrupt context,

and is done in a work-conserving fashion. This means that no TCP packets are delayed in the

aggregation hash table while the network stack is idle and ready to process packets.

Once aggregated, the TCP packet is processed in the rest of the network virtualization stack

in a manner very similar to the processing of a regular TCP packet. Thus, the network bridge
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in the driver domain, the backend and frontend interfaces, and the I/O channel, all process the

aggregated TCP packet exactly as they would process a regular TCP packet. The only changes

required are in the guest domain’s network stack, in the TCP layer processing of the aggregated

TCP packet (described later in this section).

Ideally, we would have liked to implement Receive Aggregation in a completely transparent

manner, without any modifications to the NIC driver or the rest of the kernel, but for reasons

of performance and correctness, some small changes are required to the NIC driver and in the

TCP layer in the network stack of the guest domain. In the following sections, we describe in

more detail different aspects of Receive Aggregation, namely, a) which packets and how many

packets are chosen for Receive Aggregation, b) the structure of the aggregated TCP packet, and

c) changes required to the TCP layer processing in network stack in the guest domain.

Which Packets are Aggregated

Receive Aggregation is done only for TCP packets which belong to the same TCP connection,

and which are “in-sequence”. Thus, the incoming packets must have the same source IP, desti-

nation IP, source port, and destination port fields. The packets must also be in sequence, both

by TCP sequence number and by TCP acknowledgment number.

Packet aggregation is done only for valid TCP packets, i.e., those with a valid TCP and IP

checksum. Only the IP checksum field is verified in software. For the TCP checksum we require

the network interface card to support checksum verification, since it would be too expensive to

do it in software. We do not aggregate TCP packets of zero length, such as pure ACK packets.

Since the TCP and IP headers support a large number of option fields, it is not possible to

aggregate two TCP packets if they contain different option fields. Thus, for simplicity, we only

aggregate TCP packets whose IP headers do not use any IP options or IP fragmentation, and

whose TCP headers use only the TCP timestamp option.

Packets which fail to match any of the conditions for Receive Aggregation are passed un-

modified to the network stack. In doing so, we ensure that there is no packet reordering between
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packets of the same TCP connection, i.e., any partially aggregated packet belonging to a TCP

connection is delivered before any subsequent unaggregated packet is delivered.

Aggregated Packet Structure

Once a valid set of network packets is identified for aggregation, according to the conditions

described above, the proxy layer coalesces them into an aggregated TCP packet for the network

stack to process.

The aggregated TCP packet is created by ‘chaining’ together individual TCP packets to form

the fragments of the aggregated packet, and by rewriting the TCP/IP header of the aggregated

packet. The TCP/IP header of the first TCP fragment in the chain becomes the header of

the aggregated packet, while the subsequent TCP fragments retain only their payload. The

chaining is done in an OS-specific manner. In Linux, for instance, chaining is done by setting

the fragment pointers in the sk buff structure to point to the payload of the TCP fragments.

Thus, there is no data copy involved in packet aggregation.

The TCP/IP header of the aggregated packet is rewritten to reflect the packet coalesc-

ing. The IP packet length field is set to the length of the total TCP payload (comprising all

fragments) plus the length of the header. The TCP sequence number field is set to the TCP

sequence number of the first TCP fragment, and the TCP acknowledgment number field is set

to the acknowledgment number of the last TCP fragment. The TCP advertised window size is

set to the window size advertised in the last TCP fragment. A new IP checksum is calculated

for the aggregated packet using its IP header and the new TCP pseudo-header. The TCP

timestamp in the aggregated packet is copied from the timestamp in the last TCP fragment of

the aggregated packet.

Finally, the aggregated TCP packet is augmented with information about its constituent

TCP fragments. Specifically, the TCP acknowledgment number of each TCP fragment is saved

in the packet metadata structure (sk buff, in the case of Linux). This information is later used

by the TCP layer for correct protocol processing.
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When Aggregation Stops

Network packets are aggregated as they are received from the NIC driver. The maximum

number of network TCP packets that get coalesced into an aggregated TCP packet is called the

Aggregation Limit. Once an aggregated packet reaches the Aggregation Limit, it is passed on

to the network stack.

The actual number of network packets that get coalesced into an aggregated packet may

be smaller than the Aggregation Limit, and depends on the network workload and the arrival

rate of the packets. If an aggregated packet contains less than the Aggregation Limit number

of network packets, and no more network packets are available for processing, then this semi-

aggregated packet is passed on to the network stack without further delay. Receive Aggregation

is thus work-conserving and does not add to the delay of packet processing.

We expect the performance benefits of Receive Aggregation to be proportional to the number

of network packets coalesced into an aggregated packet. However, the incremental performance

benefits of aggregation are expected to be marginal beyond a certain number of packets. Thus,

the Aggregation Limit serves as an upper bound on the maximum number of packets to aggre-

gate, and should be set to a reasonable value at which most of the benefits of aggregation are

achieved. We determine a good cut-off value for the Aggregation Limit experimentally.

Modifications to the TCP layer

There are two modifications that are required in the guest domain’s TCP layer processing, in

order to handle the aggregated TCP packets correctly:

Congestion Control: Since the congestion window computed on the TCP sender side is

typically updated based on the number of ACK packets received (and not on the total bytes

of data acknowledged), this computation can go wrong with Receive Aggregation, where TCP

packets with different ACK numbers are aggregated into a single packet. A relatively trivial

modification is required to compute the congestion window correctly in the guest domain’s TCP

layer, by making use of the ACK numbers of all the TCP fragments of the aggregated packet.
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TCP Acknowledgments: The TCP protocol specifies that an ACK packet must be gen-

erated for every alternate full TCP segment received by the receiver. If the guest domain’s TCP

layer considers the aggregated TCP packet as a single TCP packet, it would generate the wrong

number of ACK packets. Thus, a second modification is required in the TCP layer to generate

the correct number of ACK packets, based on actual the number of network TCP segments

coalesced in the aggregated TCP packet.

3.2.2 Acknowledgment Offload

We now describe our second optimization for improving receive side performance in Xen guest

domains.

The Acknowledgment Offload optimization allows guest domains to ‘batch’ together the

transmission of a sequence of TCP ACK packets (belonging to the same TCP connection) into

a single ‘template’ ACK packet. This amortizes the per-packet costs incurred in the transmission

of ACK packets from the guest domain, since all operations in the network virtualization stack

need to be performed only once for each template ACK packet, instead of once for every network

ACK packet. Individual TCP ACK packets are generated from the template ACK packet just

before the template ACK packet is queued for transmission on the physical NIC. This is done

either by the NIC driver or by a proxy sitting between the network bridge and the NIC driver.

Acknowledgment Offload is an important optimization for improving receive side perfor-

mance in guest domains. This is because, for a receive intensive TCP workload, at least one

third of the packets processed in the network stack are ACK packets (in accordance with the

TCP protocol, which mandates one TCP ACK packet to be generated for every two full TCP

packets received). Thus, reducing the per-packet overheads for processing TCP ACKs provides

non-trivial benefits.
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Template ACK packet

The template ACK packet for a sequence of consecutive TCP ACKs is represented by the

first ACK packet in the sequence, and is augmented with the ACK sequence numbers for the

subsequent ACK packets (this information is stored in the sk buff structure in Linux). The

TCP and IP headers of the successive TCP ACK packets share most of the fields of the header,

and only differ in the ACK sequence number field and the IP checksum field. Thus, the NIC

driver (or a proxy) can be modified to generate the correct sequence of TCP ACK packets from

the information present in the template ACK packet.

Acknowledgment Offload is preferably used in conjunction with the Receive Aggregation

optimization. Receive Aggregation effectively delivers input TCP packets to the network stack in

batches of aggregated packets. This allows the network stack to process a sequence of incoming

TCP packets simultaneously, and make use of the Acknowledgment Offload optimization to

transmit the sequence of TCP ACK packets in a batch.

3.3 Evaluation

Transmit Side Optimizations

The transmit side optimizations described in the previous sections have been implemented in

Xen version 2.0.6, running Linux guest operating systems version 2.6.11.

Experimental Setup

We use a transmit micro-benchmark to evaluate the transmit networking performance of guest

and driver domains. This benchmark is similar to the netperf [NET] TCP streaming benchmark,

which measures the maximum TCP streaming throughput over a single TCP connection. Our

benchmark is modified to use the zero-copy sendfile system call for transmit operations.

The ‘server’ system for running the benchmark is a Dell PowerEdge 1600 SC, 2.4 GHz Intel

Xeon machine. This machine has four Intel Pro-1000 Gigabit NICs. The ‘clients’ for running
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an experiment consist of Intel Xeon machines with a similar CPU configuration, and having one

Intel Pro-1000 Gigabit NIC per machine. All the NICs have support for TSO, scatter/gather

I/O and checksum offload. The clients and server machines are connected over a Gigabit switch.

The experiments measure the maximum transmit throughput achievable with the bench-

mark running on the server machine. The server is connected to each client machine over a

different network interface, and uses one TCP connection per client. We use as many clients

as required to saturate the server CPU, and measure the throughput under different Xen and

Linux configurations. All the profiling results presented in this section are obtained using the

Xenoprof system-wide profiler in Xen [MST+05].

Overall Results

We evaluate the following configurations: ‘Linux’ refers to the baseline unmodified Linux version

2.6.11 running native mode. ‘Xen-driver’ refers to the unoptimized XenoLinux driver domain.

‘Xen-driver-opt’ refers to the Xen driver domain with our optimizations. ‘Xen-guest’ refers to

the unoptimized, existing Xen guest domain. ‘Xen-guest-opt’ refers to the optimized version of

the guest domain.

Figure 3.2 compares the transmit throughput achieved under the above 5 configurations.

For the transmit benchmark, the performance of the Linux, Xen-driver and Xen-driver-opt

configurations is limited by the network interface bandwidth, and does not fully saturate the

CPU. All three configurations achieve an aggregate link speed throughput of 3760 Mb/s. The

CPU utilization values for saturating the network in the three configurations are, respectively,

40%, 46% and 43%.

The optimized guest domain configuration, Xen-guest-opt improves on the performance of

the unoptimized Xen guest by a factor of 4.4, increasing transmit throughput from 750 Mb/s

to 3310 Mb/s. However, Xen-guest-opt gets CPU saturated at this throughput, whereas the

Linux configuration has a CPU utilization of only 40% to saturate 4 NICs.

We now examine the contribution of individual optimizations for the transmit workload. Fig-

45



 0

 1000

 2000

 3000

 4000

 5000

Linux

X
en-driver

X
en-driver-opt

X
en-guest

X
en-guest-opt

T
h
ro

u
g
h
p
u
t 
(M

b
/s

)

Transmit Throughput

Figure 3.2: TCP transmit throughput under different configurations. The optimized Linux
guest domain achieves throughput very close to native Linux throughput.

ure 3.3 shows the transmit performance under different combinations of optimizations. ‘Guest-

none’ is the guest domain configuration with no optimizations. ‘Guest-ioc’ is the guest domain

configuration using only the I/O channel optimization. ‘Guest-high’ uses only the high level

virtual interface optimization. ‘Guest-high-ioc’ uses both high level interfaces and the optimized

I/O channel.

The greatest contribution to guest transmit performance comes from the use of a high-level

virtual interface (Guest-high configuration). This optimization improves guest performance

by 272%, from 750 Mb/s to 2794 Mb/s. The I/O channel optimization yields an incremen-

tal improvement of 439 Mb/s (15.7%) over the Guest-high configuration to yield 3230 Mb/s

(configuration Guest-high-ioc).

Benefits of a High level Interface

We explain the improved performance resulting from the use of a high level interface in figure

3.4. The figure compares the execution overhead incurred for running the transmit workload

on a single NIC (in millions of CPU cycles per second) in the guest domain, driver domain and

the Xen VMM, compared between the high-level Guest-high configuration and the Guest-none
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Figure 3.3: Contribution of individual transmit side optimizations to a Linux guest domain’s
transmit performance. The biggest improvement comes from the use of a high level virtual
interface.
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Figure 3.4: Breakdown of the execution costs for TCP transmit workload with and without
the high level virtual interface optimization. With a high-level interface, there is a reduction in
overhead on all components of the virtualization path.

The use of the high level virtual interface reduces the execution cost of the guest domain

by almost a factor of 4 compared to the execution cost with a low-level interface. Further, the

47



high-level interface also reduces the Xen VMM execution overhead by a factor of 1.9, and the

driver domain overhead by a factor of 2.1. These reductions are largely due to the reduced

per-packet overheads in the network virtualization stack, and the support for scatter/gather

DMA in the virtual NIC, which allows TCP transmits to be truly zero-copy.

The use of a high level virtual interface gives performance improvements for the guest domain

even when the offload features are not supported in the physical NIC. Figure 3.5 shows the

performance of the guest domain using a high level interface with the physical network interface

supporting varying capabilities. The capabilities of the physical NIC form a spectrum, at one

end the NIC supports TSO, SG I/O and checksum offload, at the other end it supports none

of the offload features, with intermediate configurations supporting some offload capabilities.
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Figure 3.5: Advantages of the HLVI interface for TCP transmit workloads in Xen guest domains.
Even when the physical NIC does not support offload, HLVI yields performance benefits.

Even in the case when the physical NIC supports no offload feature (bar labeled ‘None’),

the guest domain with a high level interface performs nearly twice as well as the guest using

the default interface (bar labeled Guest-none), viz. 1461 Mb/s vs. 750 Mb/s. Thus, even in the

absence of offload features in the NIC, the reductions in per-packet overheads achieved through

the use of a high level interface in the guest domain leads to improved transmit performance.
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Non Zero-copy Transmits

So far we have shown the performance of the guest domain when it uses a zero-copy transmit

workload. This workload benefits from the scatter/gather I/O capability in the network inter-

face, which accounts for a significant part of the improvement in performance when using a high

level interface. We now show the performance benefits of using a high level interface, and the

other optimizations, when using a benchmark that uses copying writes instead of the zero-copy

sendfile. Figure 3.6 shows the transmit performance of the guest domain for this benchmark

under the different combinations of optimizations.
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Figure 3.6: Transmit performance of Xen guest domains using an HLVI interface for non zero-
copy workloads

The breakup of the contributions of individual optimizations in this benchmark is similar to

that for the sendfile benchmark. The best case transmit performance in this case is 1848 Mb/s,

which is much less than the best sendfile throughput (3310 Mb/s), but still significantly better

than the unoptimized guest throughput.
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Receive Side Optimizations

We have implemented Receive Aggregation and Acknowledgment Offload in a stock 2.6.16.34

Linux kernel, and in the Xen VMM version 3.0.4 running Linux 2.6.16.38 guest operating

systems.

In this evaluation, we show that Receive Aggregation and Acknowledgment Offload are ef-

fective at improving receive side performance even in a native Linux environment. Although

we have performed extensive analysis of the receive side processing overheads in a native Linux

system, in this section, we restrict ourselves to the performance analysis in a virtualized envi-

ronment. More details of our work can be found in [MZ08].

We first evaluate the performance benefits of the receive optimizations for three systems: a

Xen guest operating system, a uniprocessor Linux system, and an SMP Linux system. Next, we

experimentally determine a good cut-off value for the Aggregation Limit. Finally, we demon-

strate that our optimizations do not affect the performance of latency-sensitive workloads.

Performance Benefits

We use a receive microbenchmark to evaluate the TCP receive performance of the system under

test. This microbenchmark is similar to the netperf [NET] TCP streaming benchmark and

measures the maximum TCP receive throughput which can be achieved over a single TCP

connection.

The server machine used for our experiments is a 3.0 GHz Intel Xeon machine, with 800

MHz FSB and 512 MB of DDR2-400 memory. The machine is equipped with five Intel Pro1000

Gigabit Ethernet cards, fitted in 133 MHz, 64 bit PCI-X slots. We run one instance of the

microbenchmark for each network card. The ‘receiver’ end of each microbenchmark instance

is run on the server machine and the ‘sender’ end is run on another client machine, which is

connected to the server machine through one of the Gigabit NICs. The sender continuously

sends data to the receiver at the maximum possible rate, for the duration of the experiment

(60s). The final throughput metric reported is the sum of the receive throughput achieved by
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all receiver instances.

Overall Results

Figure 3.7 shows the overall performance benefit of using Receive Aggregation and Acknowl-

edgment Offload in the three systems. The figure compares the receive performance of the three

systems (throughput, in Mb/s) with and without the use of the receive optimizations. The

‘Linux UP’ histograms show the performance for the uniprocessor Linux system, ‘Linux SMP’,

for the SMP Linux system, and ‘Xen’, for the Linux guest operating system running on the Xen

VMM.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Linux UP Linux SMP Xen

T
h
ro

u
g
h
p
u
t 
(M

b
/s

)

Original
Optimized

Figure 3.7: Overall performance improvements for a TCP receive workload in three configura-
tions: a Linux uniprocessor system, a Linux SMP system and a Linux guest domain running
on the Xen VMM.

The performance results for the three systems are as follows. For the uniprocessor Linux

system, the unmodified (Original) Linux TCP stack reaches full CPU saturation at a throughput

of 3452 Mb/s. With the use of the receive optimizations, the system (Optimized) is able to

saturate all the five Gigabit network links, to reach a throughput of 4660 Mb/s. The CPU is still

not fully saturated at this point and is at 93% utilization. The system is thus constrained by

the number of NICs, and with more NICs, it can theoretically reach a (CPU-scaled) throughput
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of 5050 Mb/s. The performance gain of the system is thus 35% in absolute units and 45% in

CPU-scaled units.

For the SMP Linux system, the performance of the Original system is 2988 Mb/s, whereas

the optimized system is able to saturate all five NICs to reach a throughput of 4660 Mb/s. As

in the uniprocessor case, the optimized SMP system is still not CPU saturated and is at 93%

CPU utilization. Thus, the performance gain in the SMP system is 55% in absolute terms and

67% in CPU-scaled units.

For the Linux guest operating system running on Xen, the unoptimized (Original) system

reaches full CPU saturation with a throughput of only 1088 Mb/s. With the receive opti-

mizations, the throughput is improved to 1877 Mb/s, which is 86% higher than the baseline

performance. In both cases, the CPU is at full saturation.

The contribution of Acknowledgment Offload to the above performance improvements is

non-trivial. Using just Receive Aggregation without Acknowledgment Offload, the performance

improvement to the three configurations is, respectively, 26%, 36% and 45%, with CPU utiliza-

tion reaching 100% in all three cases.

Analysis of the Results

We can better understand the performance benefits of the receive optimizations by comparing

the overhead profiles of the network virtualization stack, with and without the use of the

optimizations. Figure 3.8 shows the breakdown of the receive processing overhead in the Xen

guest domain, with and without receive optimizations, in terms of CPU cycles incurred per

packet. The different profile categories shown here are identical to the ones discussed in chapter

2, except that we have one extra category aggr, which measures the overhead of doing Receive

Aggregation.

Receive Aggregation and Acknowledgment Offload effectively reduce the number of packets

processed in the network stack by a factor of up to 20, which is the Aggregation Limit in our

system. This greatly reduces the overhead of all the per-packet components in the network
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Figure 3.8: Breakdown of receive processing overheads for a Linux guest domain running on
the Xen VMM. Receive aggregation and Acknowledgment offload greatly reduce the overhead
of per-packet operations.

stack.

Thus, the total overhead of the per-packet routines (non-proto, netback, netfront, tcp

rx, tcp tx and buffer) in the network virtualization stack is reduced by a factor of 3.7 with

the use of the receive optimizations. The greatest visible reduction is in the overhead of the

non-proto routines, which includes the bridging and netfilter routines in the driver domain

and the guest domain. The overheads of the netfront and netback paravirtual drivers are

reduced to a lesser extent, primarily because they incur a per-TCP fragment overhead instead

of a purely per-packet overhead. Other per-packet components, such as the TCP receive and

transmit routines (TCP rx and TCP rx) and buffer management (buffer) also show significant

reduction in overhead.

The overhead of Receive Aggregation (aggr) itself is small compared to the other overheads.

Choosing the Aggregation Limit

The performance benefit of Receive Aggregation is proportional to the number of TCP packets

which are combined to create the aggregated host TCP packet. A greater degree of aggregation
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results in a greater reduction in the per-packet overhead. However, beyond a limit, packet ag-

gregation does not yield further benefits. We determine a good cut-off value for this Aggregation

Limit experimentally.

Figure 3.9 shows the total CPU execution overhead (in CPU cycles per packet) incurred

for receive processing in a Linux system, as a function of Aggregation Limit. (We expect

qualitatively similar graphs for other systems, including the Xen guest domain.)
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Figure 3.9: Experimentally determining the Aggregation Limit to use with Receive Aggregation.
Even a small aggregation limit significantly reduces network processing overhead.

Increasing the Aggregation Limit initially yields a sharp reduction in the CPU processing

overhead of packets. The figure shows that most of the benefits of Receive Aggregation can be

achieved with a relatively small Aggregation Limit. We choose a value of 20 for the Aggregation

Limit as it can be seen that additional aggregation does not yield any substantial improvement.

The Aggregation Limit measured above can also be derived analytically, since it only depends

on the percentage overhead of the per-packet operations whose overhead can be scaled down by

aggregation. For instance, if x% of the overhead is constant, and y% is the per-packet overhead

that can be reduced by aggregation (with x + y = 100), then using an aggregation factor of

k should reduce the system CPU utilization from x + y to x + y/k. Figure 3.9 appears to

match the plot of x + y/k as a function of k fairly well. This gives us confidence that the
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Requests/sec (Original) (Optimized)

Linux UP 7874 7894
Linux SMP 7970 7985

Xen 6965 6953

Table 3.1: Impact of Receive aggregation and Acknowledgment offload on latency critical ap-
plications

Aggregation Limit chosen is quite robust and not arbitrary, and will hold across a number of

different systems.

Impact on Latency Sensitive Workloads

We use the netperf [NET] TCP Request/Response benchmark to evaluate the impact of the

receive optimizations on the latency of packet processing.

This benchmark measures the interactive request-response performance of a client and server

program connected by a TCP connection. The client sends the server a one-byte ‘request’, and

waits for a one-byte ‘response’ from the server. On receiving the response, the client immediately

sends another request. The benchmark measures the maximum request-response rate achieved

between the client and the server.

Table 3.1 compares the performance of the three systems on the TCP Request/Response

benchmark. The table shows that our receive optimizations have no noticeable impact on the

latency of packet processing in the network stack.

This is because of the work-conserving nature of Receive Aggregation. Since there is only

one network packet to process at a time, no packet aggregation is done, and the packet is passed

on to the network stack immediately to prevent it from being idle.

3.4 Summary and Discussion

In this chapter, we described transmit and receive optimizations the can be applied to the

existing Xen I/O architecture. The basic idea of these optimizations was to focus on reducing the

per-packet overhead of packet processing in the network stack, by using ‘batching’ or ‘coalescing’
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techniques that reduce the number of packets that the network stack has to process. These

optimizations are successful at improving overall network performance by amortizing the cost

of per-packet operations in the network virtualization stack that are not relevant to protocol

processing, such as buffer management, I/O channel transfers and bridging operations.

The optimizations presented in this chapter are best suited for transmit and receive work-

loads which are traffic-intensive, i.e., workloads which have a large amount of traffic flowing

on a small number of TCP connections. For other workloads, such as workloads which pro-

cess a large number of short-lived, low traffic connections, these optimizations are likely to be

less effective. This is because in our optimizations, we perform packet coalescing only when

the packets belong to the same TCP connection. Thus, our optimizations are able to reduce

per-packet overhead only when the workload consists of traffic intensive TCP connections.

Another ‘limitation’ of our optimizations is that they do not fundamentally alter the network

virtualization architecure used, i.e., we still use the Xen driver domain architecture. As discussed

in chapter 2, an important limitation of this architecture is that frequent context switches are

incurred between the guest and the driver domain for network I/O operations, which leads to

performance degradation. In the following two chapters, we present solutions which eliminate

the driver domain from the performance-critical path of network operations, either by running

the drivers directly in the hypervisor (chapter 4), or by performing the task of virtualization in

the network interface itself (chapter 5).
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Chapter 4

TwinDrivers

In this chapter, we present the TwinDrivers framework, which allows us to run device drivers

directly in the hypervisor in a safe and efficient manner.

The Xen VMM uses the driver domain architecture for reasons of safety and to reduce the

software engineering effort required to develop and maintain device drivers. By running the

drivers in the driver domain, a bug in the driver does not compromise the hypervisor or other

VMs. Furthermore, it avoids having to (re)implement either the device driver, or the driver

support infrastructure in the hypervisor. Instead, the driver simply re-uses the driver support

infrastructure already present in the driver domain.

However, as discussed in chapters 2 and 3, the drawback of this approach is loss of perfor-

mance. Since the device driver is located in a different driver VM, and thus a different address

space than the guest VM, extra context switching overhead is incurred in invoking the device

driver and in interrupt handling.

The alternative is to use a hypervisor based virtualization architecture, in which the device

drivers run directly in the hypervisor. This approach gives better performance because it avoids

context switches for calls between the hypervisor driver and the guest VM. Unfortunately, this

approach requires the entire driver and its support library to be either developed anew for

the hypervisor, or to be ported from an existing operating system. Both approaches incur a
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significant software development effort. In addition, this approach also leaves the hypervisor

vulnerable to bugs in the device driver.

The TwinDrivers approach tackles the tradeoff between performance on the one hand and

safety and reduction in coding effort on the other hand. Our goal is to combine the performance

benefits of the hypervisor-based driver approach with the safety and software engineering ben-

efits of the VM-based driver approach.

We take a driver developed for a guest operating system, such as Linux, and we semi-

automatically produce from it, by binary rewriting, a driver that efficiently and safely runs

in the hypervisor. At runtime, two instances of the driver are run at the same time: The

original one, which we call the VM instance, runs in a VM. The derived one, which we call the

hypervisor instance, runs in the hypervisor. The hypervisor instance takes care of performance-

critical operations of the device driver. For instance, for a network card driver, this includes

transmitting and receiving packets. The VM instance takes care of the other operations such

as device configuration, management, error handling, etc.

Although there are two separate instances of the driver running, there is only a single

instance of the driver data, residing in the VM address space. The hypervisor instance accesses

only the driver and VM data structures in the VM, and does not access any hypervisor data

structures. From this simple rule derives the safety of the approach: The hypervisor instance

cannot access, and therefore cannot corrupt the hypervisor data structures.

Although the driver data is located in the VM address space, the hypervisor instance can

access this data while running in any guest VM context by using an address translation mech-

anism called Software Virtual Memory (SVM). This allows the hypervisor to invoke its driver

instance while running in any guest context without switching address spaces. This is the key

to achieving good performance.

Keeping only a single copy of the data in the VM address space also allows the hypervisor

instance to invoke the driver support routines in the VM for operations on these data structures.

This is done through an upcall mechanism from the hypervisor to the VM. The upcall approach
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avoids the implementation in the hypervisor of the entire set of driver support routines. Instead,

the hypervisor only implements a small set of performance-critical support routines needed to

achieve good performance. This is the key to reducing the software engineering effort to support

the hypervisor driver instance.

Although, we have implemented the ideas described above in the the Xen hypervisor for

Linux network drivers, but we believe the ideas are generally applicable. We have used our

binary rewriting system to twin the Intel e1000 driver. The TwinDrivers system allows us to

improve the Xen guest domain networking throughput in CPU-scaled units by a factor of 2.4

for transmit workloads, and by a factor of 2.1 for receive workloads. The resulting throughput

is also within 64 to 67% of native Linux throughput.

The outline of the rest of this chapter is as follows. Section 4.1 presents the principles un-

derlying the TwinDrivers approach. Section 4.2 presents in more detail the design of the Twin-

Drivers approach, and Section 4.3 presents our current implementation. Section 4.4 presents

our performance results for network I/O.

4.1 Principles

We discuss the design and principles underlying the TwinDrivers approach in the context of the

Xen VMM, using the example of a network interface card driver. Figure 4.1 shows the overall

architecture of the TwinDrivers approach. TwinDrivers uses two driver instances, one running

in dom0 and one running in the hypervisor, but only one instance of the driver data, residing

in dom0.

4.1.1 Two Driver Instances

We take a device driver from the Linux driver domain, and rewrite the binary to produce a

driver that can execute in the hypervisor. At runtime, two instances of the driver are run at

the same time: the original VM driver instance runs in dom0, and the derived hypervisor driver

runs in the hypervisor. We first load the VM driver into the dom0 kernel where it performs the
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Figure 4.1: TwinDrivers Architecture

initialization of the NIC and the driver data structures. After the initialization is complete, we

load the hypervisor driver into the Xen hypervisor. TwinDrivers uses this driver for performing

the performance-critical send and receive operations on the NIC.

We develop a new paravirtual driver for guest domains, which interfaces with the Xen

hypervisor through a hypercall interface and allows it to invoke the hypervisor driver to transmit

and receive packets on its behalf. No context switch is incurred in invoking the hypervisor driver

from the guest context.

The VM driver instance continues to run in dom0 to provide support for all other NIC

operations which are not performance critical. These include reconfiguring NIC parameters

using ethtool-like tools, doing periodic error checks on the NIC using timers, collecting and

reporting device statistics, etc. Keeping the VM driver instance running in the driver domain

for these functions allows us to restrict the hypervisor interface to the driver to just the transmit

and receive functions, and avoids the need to port existing user-space tools (such as ethtool)

to use the new hypervisor driver instead of the VM driver.

4.1.2 Single Instance of Driver Data Structures

In the TwinDrivers architecture, although there are two instances of the driver running, there

is only a single instance of the driver data structures residing in the dom0 address space. The
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hypervisor driver instance accesses the shared dom0 driver data structures for all its operations.

We introduce a new mechanism called Software Virtual Memory (SVM) that allows the

hypervisor instance to access the dom0 data structures from any guest domain address space.

Software Virtual Memory is a runtime address translation and protection mechanism which is

incorporated into the hypervisor driver during binary rewriting of the VM driver.

The SVM mechanism is the key to combining efficiency and safety in the hypervisor driver.

By allowing the hypervisor instance to access the dom0 driver data structures from any guest

domain context, expensive context switches are avoided on driver invocation, and high perfor-

mance is achieved. By restricting all memory accesses from the hypervisor instance to the dom0

address space, safety is achieved and the hypervisor is protected from memory corruption bugs

in the driver.

A third advantage of keeping a single copy of all data in dom0 address space is that it allows

the hypervisor instance to reuse driver support routines present in the dom0 kernel. The driver

support routines form a large body of code in the VM (Linux) kernel, and it requires significant

engineering effort to provide identical support routines in the Xen hypervisor in order to run

the dom0 drivers [LUSG04].

However, since the driver data resides in the dom0 address space, the hypervisor instance can

reuse the driver support routines in the VM using an upcall mechanism. The upcall mechanism

allows the hypervisor to avoid having to implement the majority of the driver support routines

which are invoked only infrequently by the driver. Instead, the hypervisor implements only a

small set of performance-critical support routines which are needed for good performance. The

upcall mechanism thus allows us to reduce the software engineering effort needed to support the

driver while retaining the performance benefits.

We now describe these mechanisms in more detail in the following sections.
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4.2 Detailed Design

4.2.1 Software Virtual Memory

Software Virtual Memory (SVM) is the key mechanism that enables the hypervisor driver in-

stance to access the driver data residing in dom0 address space. SVM uses a combination of

runtime virtual address translation and page remapping to allow memory accesses to the dom0

address space from the hypervisor without a context switch, and to prevent invalid access to

the hypervisor address space.

At the core of the SVM mechanism is a Software translation table (stlb) which maps from

virtual memory page addresses in dom0 address space to mapped virtual page addresses in the

hypervisor address space. The mapped page address in an stlb entry is a hypervisor page which

maps to the same physical page as the corresponding dom0 page address.

To produce the hypervisor driver, every instruction which references memory locations in

the original VM driver is rewritten to make use of SVM to perform the memory access (except

for stack-relative memory references). Thus, at runtime, every memory access to dom0 address

space from the hypervisor driver instance is first translated using the stlb table into a mapped

address, and the memory access is made using the translated address. Attempts to access the

hypervisor address space by the driver are detected and prevented because the stlb table does

not contain valid mappings for hypervisor addresses. On such an illegal memory access by the

driver, it is aborted.

Figures 4.2 and 4.3 give an example of how rewriting works, using an example (figure 4.2)

of an indirect memory reference instruction which loads the value at the memory location in

r src into the register r dest. Figure 4.3 shows how the rewritten code translates the address

using the stlb table and uses the translated address to load the value. 1

The stlb table acts as a hashtable storing translations from dom0 virtual page addresses

to the mapped virtual page addresses in the hypervisor. In lines 1 to 6, the lower 12 bits of the

1We discuss how the instruction rewriting works for more complicated x86 instructions in section 4.3.
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movl %( r_src), %r_dest

Figure 4.2: Indirect memory reference in original code

1. leal %( r_src), %r1

2. movl %r1 , %r2

3. andl 0xfffff000 , %r1

4. movl %r1 , %r3

5. andl 0xfff000 , %r1

6. shrl $9 , %r1

7. cmpl stlb(%r1), %r3

8. jne .L_slow_path

9. xorl 4+stlb(%r1), %r2

10. movl (%r2), %r_dest

Figure 4.3: Rewritten code using SVM

dom0 page address (for a 32 bit system) are used as an index into the stlb table. In line 7, we

check if the indexed stlb entry for the dom0 page is valid, i.e., if the page has been previously

mapped into the hypervisor address space (and there are no hash collisions). If so, the stlb

entry is used to compute the final translated address and this address is used for the memory

reference (lines 9 and 10).

If the stlb translation entry for the virtual address accessed is not valid (line 8), control is

transferred to a slow-path lookup routine. If the stlb lookup failed because of a hash collision,

the slow-path routine looks up a hash chain and fills in the correct mapped virtual page address.

If, however, the lookup failed because the virtual address was being accessed for the first

time, the slow-path routine checks the permissions of the memory access and, if the access is

permitted (i.e., the memory page belongs to dom0 address space), it creates a new hypervisor

mapping for the dom0 address. It allocates a new hypervisor virtual page, and maps it to the

physical page corresponding to the accessed page. It then fills in the stlb table with the new

translation entry. Subsequent accesses to this dom0 page are translated directly from the stlb

table. 2 Entries in the stlb table are thus dynamically filled in as memory accesses to dom0

2Actually, two consecutive dom0 pages are mapped into the hypervisor for each stlb ‘miss’. This is because

the Intel instruction set permits unaligned memory accesses, so a memory access may straddle two pages.
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address space are made by the hypervisor driver instance. In our implementation, we use an

stlb hashtable with 4096 entries, mapping up to 16MB of dom0 virtual memory.

The fast path of the SVM-based memory access replaces one memory instruction in the

original code with ten instructions in the rewritten code. 3 While this may seem prohibitive

at first, in practice its impact on overall performance is much smaller. Firstly, in a typical

driver, only roughly 25% of the instructions reference memory, and are rewritten to use SVM

(we measured this for some network drivers). Secondly, in a typical network-intensive workload,

the device driver itself incurs roughly 10-15% of the total overhead. As we show in section 4.4,

the overall performance impact of using an SVM-based device driver is quite small.

The stlb based SVM memory access is not used for stack-relative memory accesses (i.e., it

is used only to translate heap memory access and not stack memory access). This is because

the hypervisor driver instance uses a separate stack of its own in the hypervisor address space,

and overflow on this stack is prevented by the use of guard pages.

4.2.2 Upcalls from the hypervisor into dom0

The hypervisor uses the upcall mechanism to reuse the driver support routines present in dom0.

An upcall is a synchronous, cross-address-space function invocation and return mechanism.

Upcalls are used by the hypervisor to link infrequently called support routines from the driver

to the corresponding routines in the driver VM using special stub routines in the hypervisor.

On a call to a stub routine by the hypervisor driver, the stub routine first saves the parameters

of the call and then initiates an upcall into the driver domain by sending a special synchronous

virtual interrupt to dom0. If the support routine is invoked while the driver is running in a

guest domain context, a synchronous context switch to dom0 is done first. Additionally, before

the virtual interrupt is sent to dom0, the stub routine also switches from the hypervisor stack

to an ‘upcall’ stack. This is because, in the Xen hypervisor, the state of the hypervisor stack is

3Additional scratch registers are needed for computing the address translation, which may require spilling

some registers to memory, and can increase the length of the fast path. However, we avoid the cost of spilling

registers most of the time by doing a register liveness analysis to determine the set of free registers available at

each instruction.
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not saved on transition to the guest domain.

An upcall handler is registered in the driver domain to receive upcall requests via syn-

chronous virtual interrupts. It recovers the upcall parameters, sets up the stack and register

parameters, and then invokes the driver support routine. On return from the driver support

routine, the upcall handler saves the return values of the routine and ‘returns’ to the stub

routine via a hypercall. The stub routine eventually returns to the hypervisor driver with the

support routine’s return values (possibly after doing another domain switch back to the guest

domain).

For the upcall mechanism to work correctly, the environment in which the driver support

routine is called from the upcall handler in dom0 must be identical to the environment in which

it is called from the hypervisor driver. The call environment of the routine comprises of three

components: the heap, the stack and the registers. The heap environment is identical in the two

invocations because there is a single driver data instance which resides in dom0 address space.

The register values for the two calls are made identical by the upcall mechanism. Although the

stack parameters passed are identical in the two cases, the stack address is different. This could

be problematic, for instance, if the hypervisor driver passes addresses of its stack variables as

parameters to the dom0 support routines. In this case, the dom0 support routine would try to

dereference a hypervisor driver stack address and would cause a protection fault. One possible

solution would be to use instruction emulation to trap and emulate the access from the dom0

support routine to the hypervisor driver stack, after making appropriate validity checks. In

practice, since it is uncommon to pass stack variables by reference, we have not encountered

the stack dereference problem for any upcall to driver support routines from network drivers.

Thus, currently we have not implemented the proposed solution.

4.2.3 Support routines in the hypervisor

Upcalls can be expensive because they potentially involve a context switch and transition to

the driver domain. To avoid the cost of an upcall on invocation of every driver support routine
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called by the driver, the hypervisor provides implementations of some support routines which are

frequently called during the execution of performance-critical parts of the driver. For a typical

driver, the set of such routines is a small fraction of the total number of support routines that

are called by the driver.

For instance, table 4.1 lists the Linux driver support routines that are called during error-

free execution of the transmit and receive routines of the Intel e1000 driver. There are only 10

such functions, compared to the 97 routines called by the e1000 driver for all its operations.

Routine name Description

netdev alloc skb allocate sk buffs
dev kfree skb any free sk buffs

netif rx receive network packets
dma map single map DMA buffer
dma map page map DMA page

dma unmap single unmap DMA buffer
dma unmap page unmap DMA page

spin trylock acquire spinlock
spin unlock irqrestore release spinlock, restore interrupts

eth type trans process MAC header

Table 4.1: Functions called frequently from the e1000 network driver

The support routines which are implemented in the hypervisor make use of the stlb trans-

lation table explicitly while accessing driver data in dom0 address space. For support routines

that need to allocate and free memory in the dom0 heap, such as netdev alloc skb and

dev kfree skb any, we use a preallocated pool of buffers from dom0 heap which are reserved

for use by the hypervisor routines. We use a simple reference counter trick to prevent other

routines in the dom0 kernel from accessing these buffers.

4.2.4 Synchronization

Concurrent access to the shared data instance from the hypervisor and VM driver instances

introduces the issue of synchronization. Fortunately, this is easily resolved. If the original

driver is compiled for an SMP environment, then it already uses the correct synchronization
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primitives to access shared data. These synchronization operations continue to work correctly

for the hypervisor driver instance since they operate on atomic synchronization variables which

are also shared between the hypervisor and VM driver.

Disabling interrupts is a common synchronization mechanism used when sharing data struc-

tures between the device driver and the operating system. Since the original VM driver runs

inside dom0, the dom0 kernel masks and unmasks a virtual interrupt flag instead of the real

CPU interrupt flag, when it wants to prevent the driver interrupt handler from running. Thus,

the hypervisor must respect the virtual interrupt flag of the dom0 kernel before invoking the

interrupt handler of the hypervisor driver. This is ensured by invoking the hypervisor driver

interrupt handler routine in a schedulable ‘softirq’ context, instead of directly in the interrupt

context.

4.2.5 Safety of Derived Hypervisor Driver

The SVM mechanism ensures memory safety of the derived hypervisor driver. Since every heap

access from the hypervisor driver is translated before the access is made, invalid accesses to the

hypervisor address space, or to other domain memory, are detected and prevented by SVM.

Although the derived hypervisor driver is secure against the most common kind of driver

bugs, namely memory corruption bugs, it still suffers from some safety issues that are already

present in the current Xen driver domain architecture. Specifically, since the network driver has

full, privileged access to the network interface, a buggy or malicious driver can set up illegal

DMA transfers that allow it to read from or write to memory regions it is not allowed to access.

This is a safety violation that already exists with the current Xen driver domain model, where

the dom0 driver has privileged access to the NIC. A complete solution to this problem requires

the use of an IOMMU that can be programmed to restrict the memory regions accessible from

the network card.

There are some additional unsafe situations that are not currently handled in the Twin-

Drivers framework. However, these can be handled using existing mechanisms. We describe
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some of these below.

Stack Corruption

Currently, the SVM memory protection mechanism is applied only to heap accesses, and not

for stack-relative accesses. This is done because the hypervisor driver does not require address

translation in order to access its hypervisor stack. However, this mechanism is not sufficient to

prevent stack corruption errors. For instance, a buffer overflow error in the hypervisor driver

can cause the driver to return to an invalid address, which is a security violation.

The stack corruption problem can be addressed by using SVM-like mechanisms to insert

checks in the hypervisor driver to ensure the safety of stack-relative memory accesses. These

checks are required only for those memory accesses that cannot be statically determined to

be safe. For instance, accesses to constant offsets from the stack pointer can be potentially

statically verified. For the small number of variable-offset accesses from the stack pointer,

additional validity checks would need to be inserted. Alternatively, the problem of control flow

integrity can also be solved using techniques similar to those used in XFI [EAV+06].

Non-memory related errors

The TwinDrivers framework does not currently handle non-memory related errors in the hyper-

visor driver. For instance, if the hypervisor driver goes into a deadlock or an infinite loop, it can

prevent the hypervisor from regaining control. Such resource hoarding bugs can be prevented

by mechanisms similar to those used, for instance, in VINO [SESS96]. The VINO extensible

kernel makes use of timeouts to limit the duration of execution of the extension code. Similar

mechanisms can be used to limit the execution time of the hypervisor driver.

Another category of bugs that is not currently handled is the use of privileged instructions,

such as modifying the page tables to corrupt the system. These kinds of bugs can be detected

and prevented by static inspection of the driver code during binary translation.
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4.3 Implementation

4.3.1 Deriving the hypervisor driver

The hypervisor driver is created by binary rewriting of the VM driver. In the first step, we

produce the assembly file of the VM driver, either by disassembling the VM driver binary, or,

if the driver source is available, by directly compiling the driver into assembly. Since we work

with Linux drivers, which are available in source form, we take the latter approach.

This VM driver assembler file is fed into an assembler-level rewriting tool, which generates

the hypervisor assembler file as output. Conceptually, assembler-level rewriting is equivalent to

binary rewriting, although working at the assembly level significantly simplifies the implemen-

tation of parsing and code generation. The hypervisor assembler file generated is eventually

compiled into the hypervisor driver binary.

The rewriting tool performs a set of transformations to incorporate the SVM mechanism

into the hypervisor driver. For memory reference instructions in the VM driver, the transfor-

mation applied is described in section 4.2.1. We now describe the transformations for other x86

instructions in the VM driver that reference memory in more complex ways.

String instructions

The x86 instruction set contains a number of ‘string’ instructions that can be used to perform

string operations on blocks of contiguous data in memory, such as copying, string comparison,

etc. Examples of such instructions include movs, cmps, lods, stos, scas, etc. These instructions

take as operands the source and/or destination memory address, and an implicit length operand.

For instance, the rep; movs instruction copies ecx bytes of data from source address esi to

destination address edi.

When translating such instructions to use the SVM mechanism, it is not sufficient to simply

translate the source and destination address operands. This is because the string operands of

these instructions may span multiple pages, whereas the stlb translations for the string ad-
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dresses may not necessarily map the contiguous dom0 pages containing the string to contiguous

hypervisor pages.

Thus, for translating string instructions, we generate code that loops over the entire string

in chunks of page length, and use the string instruction on the individual string chunks that are

guaranteed to lie within a single page. Within the loop body, the regular address translation

mechanism is used for the starting string source and destination addresses.

Indirect calls

The x86 instruction set allows routines to be ‘indirectly’ called by specifying the address of the

routine as a register or memory operand. For example, the instruction ‘call %eax’ makes an

indirect call to the routine whose address is given in the eax register. Since all data is shared

between the hypervisor driver and the VM driver (including the values of function pointers), the

address of the indirectly called routine in the hypervisor driver actually points to the routine

in the VM driver.

Thus, for indirect calls, the address of the called VM driver routine is first translated to the

address of the corresponding hypervisor driver routine, and then the actual call is made. Similar

to the stlb table for memory addresses, an stlb call table caches translations from VM-driver

routine addresses to hypervisor-driver routine addresses. In order to translate from VM-driver

routine addresses to hypervisor-driver routine addresses the first time, we need to know the

correspondence between the original driver’s code addresses and the translated driver’s code

addresses. Although this information can be generated while creating the hypervisor driver

from the VM driver, overall, this approach is quite cumbersome.

We reduce the complexity of translating from the VM driver’s addresses to the hypervisor

driver’s addresses by using the same rewritten driver for both the VM driver instance and

hypervisor driver instance. For running the rewritten driver as the VM driver, the stlb table

for the VM driver instance is filled with identify mappings. Thus, the VM driver instance

continues to use its original data addresses and functions correctly as before, except that it runs
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a little slower.

Using this approach, the code addresses in the VM driver and the hypervisor driver always

differ by a constant offset for all routines, and thus address translations between the two can

be done in a simple manner.

4.3.2 Loading the hypervisor driver

The rewritten hypervisor driver is loaded into the Xen address space using a modified ELF

loader.

During loading, all data references in the hypervisor instance (i.e., the driver’s data symbols

and the ‘imported’ Linux data symbols) are resolved to the corresponding symbol addresses of

the driver and Linux variables in the dom0 address space. This is done with the help of the

module loader in the dom0 kernel, which saves the necessary driver relocation information at

the time the original driver is loaded into the dom0 kernel. This ensures that all hypervisor

driver data references point only to memory locations in dom0 address space.

Hypervisor driver calls to external driver support routines are also resolved in a special way.

Calls to support routines which are implemented in the hypervisor itself are resolved to the

hypervisor’s implementation. For other driver support routines which are not implemented by

the hypervisor, the driver calls are resolved to ‘stub’ routines in the hypervisor. A separate

stub routine is provided for each unimplemented driver support routine. The mapping between

the stub routine number and the corresponding support routine in dom0 is saved by the loader.

At runtime, when the stub routine is invoked, it initiates a cross-address-space call to the

corresponding dom0 routine using the upcall mechanism described in section 4.2.2.

The hypervisor needs some additional information for actually invoking the transmit and

interrupt handler routines in the hypervisor driver. It needs to know the driver entry points

for the transmit and interrupt routines, and also some additional parameters that the driver

expects to be passed on each invocation (such as a pointer to the Linux netdev structure for the

transmit routine). This information is passed to the hypervisor from the dom0 process which
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initiates the driver loading.

4.3.3 Invoking the hypervisor driver

The hypervisor transmits and receives packets on behalf of the guest domains by invoking the

transmit and interrupt handler routines of the hypervisor driver respectively. The guest domains

interface with the hypervisor driver using a new paravirtualized network driver.

For all invocations of the hypervisor driver, all parameters passed to the driver must be

valid heap addresses in dom0 address space. Thus, all packet buffers (sk buff structures in

Linux) allocated to the hypervisor driver reside in dom0 address space, and are also persistently

mapped into hypervisor address space using the stlb mapping mechanism.

For transmit operations from guest domains, the hypervisor acquires a pre-allocated sk buff

in dom0 address space, copies the header of the guest packet (up to the first 96 bytes) into the

sk buff header, and chains together the rest of the guest packet using the page fragment pointers

in the sk buff (using pre-allocated page frames from dom0). It then invokes the hypervisor

driver transmit routine with the dom0 sk buff parameter.

The DMA transfers set up by the hypervisor driver work correctly because the hypervisor

implementation of the DMA mapping functions, dma map single and dma map page return the

correct guest machine page addresses. 4

For receive operations, the hypervisor calls the driver interrupt routine on receiving an inter-

rupt from the NIC. Network packets are received by the hypervisor driver into dom0 sk buffs

which are persistently mapped into the hypervisor. The hypervisor demultiplexes the received

packets based on the destination MAC address, and queues the packet to the appropriate guest

domain. When the guest domain is scheduled next, the hypervisor copies the packets into guest

domain buffers, and raises a virtual interrupt to notify the guest domain paravirtual driver.

4Alternatively, the hypervisor makes use of the physical to machine mapping table in the dom0 kernel to map

from physical page frames of the skb in dom0 to the correct machine page frames in guest domains. This way,

the DMA mapping driver functions can be even invoked using upcalls and would still work correctly.
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4.4 Evaluation

4.4.1 Experimental setup

We have implemented TwinDrivers in Xen-3.2.1 (changeset 16485) running Linux version 2.6.18.8

in dom0 and in the guest domains. We evaluate the network performance of a guest domain

using TwinDrivers, comparing it with the performance of an unoptimized Xen guest domain,

Xen dom0, and native Linux. We evaluate the performance for two workloads. Our first work-

load uses a netperf [NET] like microbenchmark to measure the transmit and receive network

performance in guest domains. Our second workload consists of a web server serving concurrent

HTTP requests for files from a SPECweb99 [spe] like file-set.

The testbed consists of a 3.0 GHz Intel Xeon server machine equipped with five Intel Pro1000

Gigabit Ethernet cards. This machine is connected to five client machines (3.0 GHz Intel Xeon)

equipped with one Intel Pro1000 Gigabit Ethernet card each.

4.4.2 Microbenchmark Results

The microbenchmark workload measures the maximum TCP streaming throughput achievable

over a small set of TCP connections. In the experiments (both transmit and receive), the server

machine is connected to each client machine using a separate TCP connection over a different

NIC. The experiment measures the maximum aggregate TCP throughput (transmit or receive)

the server can achieve using all five NICs.

Figures 4.4 and 4.5 show the transmit and receive performance of a Xen guest domain using

TwinDrivers (“domU-twin”) and compare it with the performance achieved in an unoptimized

guest domain using standard Xen networking (“domU”), the driver domain (“dom0”), and a

native Linux system (“Linux”). For the domU-twin configuration, all 10 functions required for

fast-path operation of the hypervisor driver (see table 4.1) were implemented in the hypervisor,

and no upcalls were made.

For the transmit benchmark (figure 4.4), the native Linux system saturates all 5 NICs to
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Figure 4.4: Transmit Performance for netperf Benchmark
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Figure 4.5: Receive Performance for netperf Benchmark

achieve an aggregate throughput of 4690 Mb/s while using only 76.9% of the CPU, while Xen

dom0 achieves a throughput of 4683 Mb/s with full CPU saturation. The performance of

the TwinDrivers guest domain (domU-twin) is 3902 Mb/s with full CPU saturation, which is

within 83% of the dom0 performance, and is within 64% of the native Linux performance, in

CPU-scaled units.

The performance of the unoptimized guest domain (domU) itself is only 1619 Mb/s at 100%
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CPU saturation. Thus, compared to the unoptimized guest domain, the TwinDriver guest

domain achieves a performance improvement of a factor of 2.41.

For the receive benchmark (figure 4.5), the native Linux performance is 3010 Mb/s at full

CPU saturation, and the Xen dom0 performance is 2839 Mb/s. The performance of the Twin-

Drivers guest domain (domU-twin) is 2022 Mb/s at full CPU saturation, which is roughly 71%

of the dom0 performance, and close to 67% of the native Linux performance.

The performance of the unoptimized guest domain is only 928 Mb/s at 100% CPU saturation.

Thus, the TwinDrivers guest domain improves upon the guest domain performance by a factor

of 2.17.

Figure 4.6 shows the breakdown of packet processing overhead for the transmit workload

in the four systems. This profile was obtained with the microbenchmark running only on a

single Gigabit NIC. Thus, the relative numbers obtained here differ a little from the throughput

results. We show the CPU overhead in terms of cycles per packet incurred in four categories:

the dom0 kernel (dom0), the guest domain kernel (domU), the Xen hypervisor (Xen) and the

network driver (e1000). For the native Linux case, we show the Linux kernel overhead in the

dom0 kernel.
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Figure 4.6: CPU cycles per packet for transmit workload
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The unoptimized guest domain per-packet overhead is more than twice the overhead of the

TwinDriver guest domain (21159 cycles/packet vs. 9972 cycles/packet). Most of this overhead

is incurred in invoking dom0 (8394 cycles/packet) and in the additional hypervisor overhead

for switching and transferring packets between the guest and driver domain [STJP08]. The

TwinDrivers guest avoids both these overheads by directly invoking the hypervisor driver.

Compared to native Linux, both the dom0 and the TwinDrivers guest incur the virtualization

overhead of running on top of a hypervisor (1184 cycles/packet for dom0, and 1726 cycles/packet

for domU-twin). In the TwinDrivers configuration, there is additional overhead relative to dom0

in two main areas: the overhead of running a rewritten driver instead of native driver (2218

cycles/packet vs. 960 cycles/packet), and the additional hypervisor overhead of the hypercall

interface between the paravirtual driver and the hypervisor driver. Overall, the TwinDrivers

guest incurs roughly 20% higher overhead than dom0.

Figure 4.7 shows a similar breakdown of the overhead for the receive workload.
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Figure 4.7: CPU cycles per packet for receive workload

Here again, the unoptimized guest domain incurs almost twice the per-packet overhead as

the TwinDrivers guest domain (35905 cycles/packet vs. 20089 cycles/packet), and most of

this overhead is incurred in invoking dom0 (14384 cycles/packet) and in additional hypervisor
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overheads. By invoking the hypervisor driver directly, the TwinDrivers guest avoids most of

these overheads.

Compared to dom0 and native Linux performance, the TwinDrivers per-packet overhead

is quite large (20089 cycles/packet vs. 14308 and 11166 cycles/packet). Part of this can be

explained as the overhead of running the rewritten driver (2445 cycles/packet vs. 972-1422

cycles/packet), but a large part of the TwinDriver receive overhead is incurred in the hypervisor

itself (6514 cycles/packet). More detailed profiling shows that most of this overhead (3525

cycles/packet) is incurred in copying the packet from the hypervisor driver to the guest domain

driver.

For both the transmit and receive workloads, the overhead incurred by running a binary

rewritten driver instead of a native driver is relatively small. The rewritten driver runs slower

by a factor of roughly 2 to 3, but, the impact of this slowdown on the overall overhead of the

guest domain is relatively low, less than 15%.

4.4.3 Web Server Workload

We now compare the performance of the guest domain using TwinDrivers with the original

guest domain, dom0 and a native Linux system, for a web server workload. In this experiment,

the server machine runs the knot web server, a bare-bones, lightweight web server developed as

part of the Capriccio project [vBCZ+03]. It serves a static set of files generated from the file

size distribution specified in the static content part of SPWECweb’99 [spe]. Since we are only

interested in the network performance, we use a file-set consisting of only a single directory.

This entire file-set fits in memory and does not stress the disk I/O subsystem.

The workload for the web server is generated by running httperf [MJ98] on a set of client

machines. Requests are generated in an ‘open’ loop, and responses from the server are discarded

if they are not received within a certain timeout.

Figure 4.8 compares the performance of the web server running in the guest domain using

TwinDrivers (“domU-twin”), the original guest domain (“domU”), dom0 (“dom0”), and a native
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Figure 4.8: Web Server Workload

Linux system (“Linux”). The figure plots the aggregate throughput of responses received by

all httperf clients (in Mb/s) as a function of the total connection request rate issued by the

clients. In the figure, all configurations could not be tested to the same request rate because

some configurations could not sustain high connection rates, and thus effectively ran at a lower

connection rate even when a higher rate was requested.

The overall trends seen in the web server workload are similar to the trends seen for the

microbenchmarks. The maximum throughput achieved by the native Linux configuration is is

855 Mb/s. dom0 achieves a peak throughput of 712 Mb/s. The original Xen guest domain

achieves a peak throughput of 269 Mb/s, which is only 31% of the native Linux performance.

The TwinDrivers guest domain achieves a peak throughput of 572 Mb/s, which is a more than

factor of 2 improvement over the unoptimized guest domain performance, and is roughly within

67% of native Linux performance.

4.4.4 Cost of Upcalls

To achieve good performance in the hypervisor driver, upcalls to driver support routines must

be avoided during the performance critical parts of the driver. Table 4.1 shows that for the
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Intel e1000 driver, there are 10 driver support routines that are called on the fast path. Figure

4.9 shows how the transmit performance of a TwinDrivers guest domain drops when not all the

necessary upcalls are implemented in the hypervisor.
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Figure 4.9: Transmit throughput as a function of number of upcalls

The X axis shows the number of performance-critical support routines for which the hyper-

visor has to make an upcall. When no upcalls are made (first bar), transmit performance is

3902 Mb/s. As soon as the hypervisor has to make even one upcall per driver invocation, the

performance drops to 1638 Mb/s (second bar). The performance drops progressively as more

and more upcalls are needed, until finally it drops to 359 Mb/s when all but the network receive

function (netif rx in Linux) are implemented as upcalls.

4.4.5 Engineering Effort

The 10 driver support routines listed in table 4.1 were implemented in the Xen hypervisor. The

entire implementation took 851 lines of commented C code and header files. This is a very small

development effort compared to the effort that would be needed to support the entire driver

support interface.
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4.5 Summary

In this chapter, we presented TwinDrivers, an I/O architecture for virtual machines which

combines the performance benefits of hypervisor based VMMs with the safety and software en-

gineering benefits of hosted VMMs. TwinDrivers uses binary rewriting techniques to automat-

ically derive safe and efficient hypervisor drivers from the host OS driver. In contrast with the

per-packet optimizations discussed in chapter 3, the TwinDrivers approach is more general, be-

cause it provides performance improvement for all network workloads, not just single-connection

oriented traffic intensive workloads.
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Chapter 5

Concurrent Direct Network Access

The optimizations discussed so far were software-only optimizations, meaning that they could

be implemented without the need for any specialized hardware support, such as from the NIC

or the CPU. Thus these optimizations were applicable across all hardware platforms.

In this chapter, we discuss a network virtualization architecture in which we loosen this

restriction and allow modifications to the NIC hardware in order to provide better support for

networking in virtual machines. We present the concurrent direct network access (CDNA) archi-

tecture, a new I/O virtualization technique combining both software and hardware components

for reducing the overhead of network virtualization in Xen.

The CDNA network virtualization architecture provides guest domains running on the Xen

VMM with a safe direct access to the network interface. With CDNA, each guest domain is

allocated a unique context on the network interface and communicates directly with the network

interface with that context. In this manner, the guest domains running on Xen operate as if

each has access to its own dedicated network interface.

The CDNA network virtualization architecture achieves dramatic increase in network effi-

ciency by dividing the tasks of traffic multiplexing, interrupt delivery and memory protection

among hardware and software in a novel way. Traffic multiplexing is performed directly on the

network interface, whereas interrupt delivery and memory protection are performed by the Xen
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VMM with support from the network interface. This division of tasks into hardware and soft-

ware components simplifies the overall software architecture, minimizes the hardware additions

to the network interface, and addresses the network performance bottlenecks.

We describe the design of the CDNA architecture in section 5.1, and its implementation on

an FPGA based network interface card in section 5.2. We evaluate the performance benefits of

the CDNA architecture in section 5.3.

5.1 Concurrent Direct Network Access

In CDNA, the network interface and the hypervisor collaborate to provide the abstraction that

each guest domain is connected directly to its own network interface. Figure 5.1 shows the

CDNA architecture. The network interface must support multiple contexts in hardware. Each

context acts as if it is an independent physical network interface and can be controlled by a

separate device driver instance. Instead of assigning ownership of the entire network interface

to the driver domain, the hypervisor treats each context as if it were a physical NIC and assigns

ownership of contexts to guest domains. Notice the absence of the driver domain from the figure:

each guest can transmit and receive network traffic using its own private context without any

interaction with other guest domains or the driver domain. The driver domain, however, is still

present to perform control functions and allow access to other I/O devices. Furthermore, the

hypervisor is still involved in networking, as it must guarantee memory protection and deliver

virtual interrupts to the guest domains.

With CDNA, the communication overheads between guest and driver domains and the

software multiplexing overheads within the driver domain are eliminated entirely. However, the

network interface must now multiplex the traffic across all of its active contexts. The following

subsections describe how CDNA performs traffic multiplexing, interrupt delivery and DMA

memory protection.

82



NIC Driver

CDNA NIC

NIC Driver

Guest Domain Guest Domain

VMM

Data/Control

Interrupt/Control

Virtual Interrupts

Figure 5.1: CDNA Architecture. Each guest domain running on Xen is given direct access to
its own private virtual context on the CDNA NIC.

5.1.1 Multiplexing Network Traffic

CDNA eliminates the software multiplexing overheads within the driver domain by multiplexing

network traffic on the NIC. The network interface must be able to identify the source or target

guest domain for all network traffic. The NIC accomplishes this by providing independent

hardware contexts and associating a unique Ethernet MAC address with each context. The

hypervisor assigns a unique hardware context on the NIC to each guest domain. The device

driver within the guest domain then interacts with its context exactly as if the context were

an independent physical network interface. As in a typical driver, these interactions consist of

creating DMA descriptors and updating a mailbox on the NIC via PIO.

Each context on the network interface therefore must include a unique set of mailboxes. This

isolates the activity of each guest domain, so that the NIC can distinguish between the different

guests. The hypervisor assigns a context to a guest simply by mapping the I/O locations for

that context’s mailboxes into the guest’s address space. The hypervisor also notifies the NIC

that the context has been allocated and is active. As the hypervisor only maps each context into

a single guest’s address space, a guest cannot accidentally or intentionally access any context

on the NIC other than its own. When necessary, the hypervisor can also revoke a context at
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any time by notifying the NIC, which will shut down all pending operations associated with the

indicated context.

To multiplex transmit network traffic, the NIC simply services all of the hardware contexts

fairly and interleaves the network traffic for each guest. When network packets are received by

the NIC, it uses the Ethernet MAC address to demultiplex the traffic, and transfers each packet

to the appropriate guest using available DMA descriptors from that guest’s context.

5.1.2 Interrupt Delivery

In addition to isolating the guest domains and multiplexing network traffic, the hardware con-

texts on the NIC must also be able to interrupt their respective guests. As the NIC carries out

network requests on behalf of any particular context, the CDNA NIC updates that context’s

consumer pointers for the DMA descriptor rings. Normally, the NIC would then interrupt the

guest to notify it that the context state has changed. However, in Xen all physical interrupts are

handled by the hypervisor. Therefore, the NIC cannot physically interrupt the guest domains

directly. Even if it were possible to interrupt the guests directly, that could create a much higher

interrupt load on the system, which would decrease the performance benefits of CDNA.

Under CDNA, the NIC keeps track of which contexts have been updated since the last

physical interrupt, encoding this set of contexts in an interrupt bit vector. The NIC transfers

an interrupt bit vector into the hypervisor’s memory space using DMA. The interrupt bit

vectors are stored in a circular buffer using a producer/consumer protocol to ensure that they

are processed by the host before being overwritten by the NIC. After an interrupt bit vector is

transferred, the NIC raises a physical interrupt, which invokes the hypervisor’s interrupt service

routine. The hypervisor then decodes all of the pending interrupt bit vectors and schedules

virtual interrupts to each of the guest domains that have pending updates from the NIC. When

the guest domains are next scheduled by the hypervisor, the CDNA network interface driver

within the guest receives these virtual interrupts as if they were actual physical interrupts from

the hardware. At that time, the driver examines the updates from the NIC and determines
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what further action, such as processing received packets, is required.

5.1.3 DMA Memory Protection

In the x86 architecture, network interfaces and other I/O devices use physical addresses when

reading or writing host system memory. The device driver in the host operating system is re-

sponsible for doing virtual-to-physical address translation for the device. The physical addresses

are provided to the network interface through read and write DMA descriptors. By exposing

physical addresses to the network interface, the DMA engine on the NIC can be co-opted into

compromising system security by a buggy or malicious driver. There are two key I/O protection

violations that are possible in the x86 architecture. First, the device driver could instruct the

NIC to transmit packets containing a payload from physical memory that does not contain

packets generated by the operating system, thereby creating a security hole. Second, the device

driver could instruct the NIC to receive packets into physical memory that was not designated

as an available receive buffer, possibly corrupting memory that is in use.

In the conventional Xen network architecture discussed in chapter 2, Xen trusts the device

driver in the driver domain to only use the physical addresses of network buffers in the driver

domain’s address space when passing DMA descriptors to the network interface. This ensures

that all network traffic will be transferred to/from network buffers within the driver domain.

Since guest domains do not interact with the NIC, they cannot initiate DMA operations, so

they are prevented from causing either of the I/O protection violations in the x86 architecture.

This solution is insufficient for the CDNA architecture. In a CDNA system, device drivers

in the guest domains have direct access to the network interface and are able to pass DMA

descriptors with physical addresses to the device. Thus, the untrusted guests could read or write

memory in any other domain through the NIC, unless additional security features are added.

To maintain isolation between guests, the CDNA architecture validates and protects all DMA

descriptors and ensures that a guest maintains ownership of physical pages that are sources or

targets of outstanding DMA accesses. Although the hypervisor and the network interface share
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the responsibility for implementing these protection mechanisms, the more complex aspects are

implemented in the hypervisor.

The most important protection provided by CDNA is that it does not allow guest domains

to directly enqueue DMA descriptors into the network interface descriptor rings. Instead, the

device driver in each guest must call into the hypervisor to perform the enqueue operation.

This allows the hypervisor to validate that the physical addresses provided by the guest are, in

fact, owned by that guest domain. This prevents a guest domain from arbitrarily transmitting

from or receiving into another guest domain. The hypervisor prevents guest operating systems

from independently enqueueing unauthorized DMA descriptors by establishing the hypervisor’s

exclusive write access to the host memory region containing the CDNA descriptor rings during

driver initialization.

5.1.4 Discussion

The handling of the DMA descriptors within the hypervisor is linked to a particular network

interface only because the format of the DMA descriptors and their rings is likely to be different

for each device. As the hypervisor must validate that the host addresses referred to in each

descriptor belong to the guest operating system that provided them, the hypervisor must be

aware of the descriptor format. Fortunately, there are only three fields of interest in any DMA

descriptor: an address, a length, and additional flags. This commonality should make it possible

to generalize the mechanisms within the hypervisor by having the NIC notify the hypervisor

of its preferred format. The NIC would only need to specify the size of the descriptor and the

location of the address, length, and flags. The hypervisor would not need to interpret the flags,

so they could just be copied into the appropriate location.

CDNA’s DMA memory protection is specific to Xen only insofar as Xen permits guest

domains to use physical memory addresses. Consequently, the current implementation must

validate the ownership of those physical addresses for every requested DMA operation. For

VMMs that only permit the guest to use virtual addresses, the hypervisor could just as easily
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translate those virtual addresses and ensure physical contiguity. The current CDNA implemen-

tation does not rely on physical addresses in the guest at all; rather, a small library translates

the driver’s virtual addresses to physical addresses within the guest’s driver before making a

hypercall request to enqueue a DMA descriptor. For VMMs that use virtual addresses, this

library would do nothing.

5.2 CDNA NIC Implementation

To evaluate the CDNA concept in a real system, RiceNIC, a programmable and reconfigurable

FPGA-based Gigabit Ethernet network interface [SR06], was modified to provide virtualization

support. RiceNIC contains a Virtex- II Pro FPGA with two embedded 300MHz PowerPC pro-

cessors, hundreds of megabytes of on-board SRAM and DRAM memories, a Gigabit Ethernet

PHY, and a 64- bit/66 MHz PCI interface [ADS03]. Custom hardware assist units for acceler-

ated DMA transfers and MAC packet handling are provided on the FPGA. The RiceNIC archi-

tecture is similar to the architecture of a conventional network interface. With basic firmware

and the appropriate Linux or FreeBSD device driver, it acts as a standard Gigabit Ethernet

network interface that is capable of fully saturating the Ethernet link while only using one of

the two embedded processors.

To support CDNA, both the hardware and firmware of the RiceNIC were modified to pro-

vide multiple protected contexts and to multiplex network traffic. The network interface was

also modified to interact with the hypervisor through a dedicated context to allow privileged

management operations. The modified hardware and firmware components work together to

implement the CDNA interfaces.

To support CDNA, the most significant addition to the network interface is the specialized

use of the 2 MB SRAM on the NIC. This SRAM is accessible via PIO from the host. For CDNA,

128 KB of the SRAM is divided into 32 partitions of 4 KB each. Each of these partitions is an

interface to a separate hardware context on the NIC. Only the SRAM can be memory mapped

into the host’s address space, so no other memory locations on the NIC are accessible via PIO.
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As a context’s memory partition is the same size as a page on the host system and because

the region is page-aligned, the hypervisor can trivially map each context into a different guest

domain’s address space. The device drivers in the guest domains may use these 4 KB partitions

as general purpose shared memory between the corresponding guest operating system and the

network interface.

Within each context’s partition, the lowest 24 memory locations are mailboxes that can be

used to communicate from the driver to the NIC. When any mailbox is written by PIO, a global

mailbox event is automatically generated by the FPGA hardware. The NIC firmware can then

process the event and efficiently determine which mailbox and corresponding context has been

written by decoding a two level hierarchy of bit vectors. All of the bit vectors are generated

automatically by the hardware and stored in a data scratchpad for high speed access by the

processor. The first bit vector in the hierarchy determines which of the 32 potential contexts

have updated mailbox events to process, and the second vector in the hierarchy determines

which mailbox(es) in a particular context have been updated. Once the specific mailbox has

been identified, that off-chip SRAM location can be read by the firmware and the mailbox

information processed.

Each context requires 128 KB of storage on the NIC for metadata, such as the rings of

transmit- and receive- DMA descriptors provided by the host operating systems. Furthermore,

each context uses 128 KB of memory on the NIC for buffering transmit packet data and 128

KB for receive packet data. However, the NIC’s transmit and receive packet buffers are each

managed globally, and hence packet buffering is shared across all contexts.

The modifications to the RiceNIC to support CDNA were minimal. The major hardware

change was the additional mailbox storage and handling logic. This could easily be added

to an existing NIC without interfering with the normal operation of the network interface –

unvirtualized device drivers would use a single context’s mailboxes to interact with the base

firmware. Furthermore, the computation and storage requirements of CDNA are minimal.

Only one of the RiceNIC s two embedded processors is needed to saturate the network, and
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only 12 MB of memory on the NIC is needed to support 32 contexts. Therefore, with minor

modifications, commodity network interfaces could easily provide sufficient computation and

storage resources to support CDNA.

5.3 Evaluation

5.3.1 Experimental Setup

The performance of Xen and CDNA network virtualization was evaluated on an AMD Opteron-

based system running Xen 3 Unstable. This system used a Tyan S2882 motherboard with a

single Opteron 250 processor and 4GB of DDR400 SDRAM. Xen 3 Unstable was used because

it provides the latest support for high-performance networking, including TCP segmentation

offloading, and the most recent version of Xenoprof [MST+05] for profiling the entire system.

In all experiments, the driver domain was configured with 256MB of memory and each of 24

guest domains were configured with 128MB of memory. Each guest domain ran a stripped-down

Linux 2.6.16.29 kernel with minimal services for memory efficiency and performance. For the

base Xen experiments, a single dual-port Intel Pro/1000MT NIC was used in the system. In

the CDNA experiments, two RiceNICs configured to support CDNA were used in the system.

Linux TCP parameters and NIC coalescing options were tuned in the driver domain and guest

domains for optimal performance. For all experiments, checksum offloading and scatter/gather

I/O were enabled. TCP segmentation offloading was enabled for experiments using the Intel

NICs, but disabled for those using the RiceNICs due to lack of support. The Xen system was

setup to communicate with a similar Opteron system that was running a native Linux kernel.

This system was tuned so that it could easily saturate two NICs both transmitting and receiving

so that it would never be the bottleneck in any of the tests.

To validate the performance of the CDNA approach, multiple simultaneous connections

across multiple NICs to multiple guests domains were needed. A multithreaded, event-driven,

lightweight network benchmark program was developed to distribute traffic across a configurable
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number of connections. The benchmark program balances the bandwidth across all connections

to ensure fairness and uses a single buffer per thread to send and receive data to minimize the

memory footprint and improve cache performance.

5.3.2 Single Guest Performance

Tables 5.1 and 5.2 show the transmit and receive performance of a single guest operating system

over two physical network interfaces using Xen and CDNA. The first two rows of each table show

the performance of the Xen I/O virtualization architecture using both the Intel and RiceNIC

network interfaces. The third row of each table shows the performance of the CDNA I/O

virtualization architecture.

System NIC Mb/s Hyp Driver domain Guest domain Idle

Xen Intel 1602 19.8% 35.7% 39.7% 3.0%
Xen RiceNIC 1674 13.7% 41.5% 39.5% 3.8%

CDNA RiceNIC 1867 10.2% 0.3% 37.8% 50.8%

Table 5.1: Comparison of transmit performance for a single Xen guest domain with 2 NICs
using the Xen I/O architecture and the CDNA architecture

System NIC Mb/s Hyp Driver domain Guest domain Idle

Xen Intel 1112 25.7% 36.8% 31.0% 5.0%
Xen RiceNIC 1075 30.6% 39.4% 28.8% 0%

CDNA RiceNIC 1874 9.9% 0.3% 48.0% 40.9%

Table 5.2: Comparison of receive performance for a single Xen guest domain with 2 NICs using
the Xen I/O architecture and the CDNA architecture

The Intel network interface is used with Xen only through the use of software virtualization.

However, the RiceNIC can be used with both CDNA and software virtualization. To use the

RiceNIC interface with software virtualization, a context was assigned to the driver domain and

no contexts were assigned to the guest operating system. Therefore, all network traffic from the

guest operating system is routed via the driver domain as it normally would be, through the use

of software virtualization. Within the driver domain, all of the mechanisms within the CDNA

NIC are used identically to the way they would be used by a guest domain when configured to

90



use concurrent direct network access. As the tables show, the Intel network interface performs

similarly to the RiceNIC network interface. Therefore, the benefits achieved with CDNA are

the result of the CDNA I/O virtualization architecture, not the result of differences in network

interface performance.

Table 5.1 shows that using all of the available processing resources, Xen’s software virtu-

alization is not able to transmit at line rate over two network interfaces with either the Intel

hardware or the RiceNIC hardware. However, only 41% of the processor is used by the guest

domain. The remaining resources are consumed by Xen overheads using the Intel hardware,

approximately 20% in the hypervisor and 37% in the driver domain performing software multi-

plexing and other tasks.

As the table shows, CDNA is able to saturate two network interfaces, whereas traditional

Xen networking cannot. Additionally, CDNA performs far more efficiently, with 51% processor

idle time. The increase in idle time is primarily the result of two factors. First, nearly all of the

time spent in the driver domain is eliminated. The remaining time spent in the driver domain is

unrelated to networking tasks. Second, the time spent in the hypervisor is decreased. With Xen,

the hypervisor spends the bulk of its time managing the interactions between the front-end and

back-end virtual network interface drivers. CDNA eliminates these communication overheads

with the driver domain, so the hypervisor instead spends the bulk of its time managing DMA

memory protection.

Table 5.2 shows the receive performance of the same configurations. Receiving network

traffic requires more processor resources, so Xen only achieves 1112 Mb/s with the Intel network

interface, and slightly lower with the RiceNIC interface. Again, Xen overheads consume the

bulk of the time, as the guest domain only consumes about 32% of the processor resources when

using the Intel hardware.

In summary, the CDNA I/O virtualization architecture provides significant performance

improvements over Xen for both transmit and receive. On the transmit side, CDNA requires

half the processor resources to deliver about 200 Mb/s higher throughput. On the receive side,
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CDNA requires 60% of the processor resources to deliver about 750 Mb/s higher throughput.

5.3.3 Memory Protection

The software-based protection mechanisms in CDNA can potentially be replaced by a hardware

IOMMU. For example, AMD has proposed an IOMMU architecture for virtualization that

restricts the physical memory that can be accessed by each device [AMD05]. AMD’s proposed

architecture provides memory protection as long as each device is only accessed by a single

domain. For CDNA, such an IOMMU would have to be extended to work on a per-context

basis, rather than a per-device basis. This would also require a mechanism to indicate a context

for each DMA transfer. Since CDNA only distinguishes between guest domains and not traffic

flows, there are a limited number of contexts, which may make a generic system-level context

aware IOMMU practical.

System DMA Protection Mb/s Hyp Driver domain Guest domain Idle

CDNA (Transmit) Enabled 1867 10.2% 0.3% 37.8% 50.8%
CDNA (Transmit) Disabled 1867 1.9% 0.2% 37.0% 60.4%
CDNA (Receive) Enabled 1874 9.9% 0.3% 48.0% 40.9%
CDNA (Receive) Disabled 1874 1.9% 0.2% 47.2% 50.2%

Table 5.3: CDNA 2-NIC Transmit and Receive performance with and without DMA protection

Table 5.3 shows the performance of the CDNA I/O virtualization architecture both with and

without DMA memory protection. (The performance of CDNA with DMA memory protection

enabled was replicated from Tables 5.1 and 5.2 for comparison purposes.) By disabling DMA

memory protection, the performance of the modified CDNA system establishes an upper bound

on achievable performance in a system with an appropriate IOMMU. However, there would be

additional hypervisor overhead to manage the IOMMU that is not accounted for by this exper-

iment. Since CDNA can already saturate two network interfaces for both transmit and receive

traffic, the effect of removing DMA protection is to increase the idle time by about 9%. As the

table shows, this increase in idle time is the direct result of reducing the number of hypercalls

from the guests and the time spent in the hypervisor performing protection operations.
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5.4 Discussion

The CDNA architecture and the TwinDrivers architecture represent two different approaches

to solving the problem of optimizing network performance in a virtual machine environment.

While the TwinDrivers architecture takes a software approach towards eliminating the switching

overheads of a hosted VMM architecture, the CDNA approach tackles the same problem by

modifying the NIC hardware to eliminate the driver domain from the performance critical path.

The relative merits of using a hardware vs. a software approach to solving the problem of

network performance are debatable. The CDNA approach to network interface virtualization

may be slightly more efficient than the software TwinDrivers approach, especially for receive

workloads where CDNA DMAs the received packets directly into guest memory and avoids the

double data copy inherent in the TwinDrivers approach. On the other hand, using a software

approach like TwinDrivers allows us to completely decouple the guest domain from any hardware

dependency. This allows for greater flexibility in the management of VMs for operations such

as VM migration. More importantly, the benefits of the CDNA approach are tied to using a

particular network interface, whereas the TwinDrivers approach provides performance benefits

irrespective of the underlying hardware.
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Chapter 6

Related Work

This thesis explores the space of software and hardware techniques for optimizing network I/O

performance in virtual machines. As such, it relates to research work in the areas of VMMs,

network optimizations, device drivers and user-level networking.

6.1 Virtual machine monitors

Virtualization first became available with the IBM VM/370 [Gum83, SM79] to allow legacy

code to run on new hardware platform. Currently, a number of software vendors provide x86

virtualization solutions, such as VMware, XenSource (Citrix) and Microsoft Hyper-V. Several

studies have documented the cost of full virtualization, especially on architectures such as

the Intel x86 [AA06]. To address these performance problems, paravirtualization has been

introduced, with Xen [BDF+03, FHN+04] as its most popular representative. Denali [WSG02]

similarly attempts to support a large number of virtual machines.

The use of driver domains to host device drivers has become popular for reasons of reliability

and extensibility. Examples include the Xen 2.0 architecture and VMware’s hosted workstation

[SVL01]. The downside of this approach is a performance penalty for device access, documented,

among others, in Sugerman et al. [SVL01] and in Menon et al. [MST+05]. Sugerman et

al. describe the VMware hosted virtual machine monitor in [SVL01], and describe the major
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sources of network virtualization overhead in this architecture. In a fully virtualized system,

‘world switches’ incurred for emulating I/O access to virtual devices are the biggest source of

overhead.

King et al. [KDC03] describe optimizations to improve overall system performance for Type-

II virtual machines. Their optimizations include reducing context switches to the VMM process

by moving the VM support into the host kernel, reducing memory protection overhead by using

segment bounds, and reducing context switch overhead by supporting multiple addresses spaces

within a single process.

6.2 Networking optimizations

There is a huge body of research in the networking literature focusing on analysis and optimiza-

tion of the network stack. Initial analysis of TCP performance [CJRS89] identified the per-byte

data touching operations to be the major source of overhead for TCP. This led to the develop-

ment of a number of techniques for avoiding data copy, both in software [PDZ00] [KC96], and

hardware [MRK+03, KSZ95]. Techniques such as zero-copy transmit and hardware checksum

offload have now become common in modern network cards [MI04, Cor03, FHH+03].

Later work [KP96] identified the per-packet overhead as the dominant source of overhead for

real-world workloads, which are dominated by small message sizes. This led to the development

of offloading techniques for reducing per-packet overheads, such as TCP segmentation offload.

Recently, some high end network cards have started providing more complex offload support

for TCP receive processing, such as Large Receive Offload (LRO) in Neterion NICs [Gro05].

The idea of LRO is similar to that of Receive Aggregation, except that it is performed in the

NIC, and thus it can reduce the per-packet overhead incurred in the network driver. However,

a pure-software approach such as Receive Aggregation is much more generic, and can yield

much of the benefit of packet aggregation in a hardware independent manner. Additionally, the

Neterion NIC does not support Acknowledgment Offload, and thus does not offer support for

reducing the overhead on the ACK transmit path.
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Jumbo frames, which allow the Ethernet MTU size to be set to 9000 bytes, can also ef-

fectively help reduce the per-packet overheads for bulk data transfers. However, they require

the whole LAN network to be upgraded to use the same MTU size. Receive Aggregation and

Acknowledgment Offload are effective at improving the network stack performance irrespective

of the network MTU size or networking hardware used.

6.3 Device driver safety and reuse

Device drivers have received an enormous amount of interest from the research community. The

TwinDrivers architecture builds on the notion of running device drivers in a virtual machine

[FHN+04, LUSG04], but we go beyond that work in allowing safe execution of the performance-

critical parts of the driver in the hypervisor. The idea of executing device drivers in user-level

processes is similar, and we project that it can benefit from our techniques as well [HBG+06].

Reusing drivers developed for one environment in a new environment is a difficult task.

In the Flux OSkit [FBB+97], driver sources are ported from the original OS into a new OS

by re-implementing the entire driver-kernel API support library. The kernel driver support

library is a large and poorly documented body of code. Reimplementing this library requires

a deep understanding of the internals of the original OS, and can be a a source of subtle bugs.

The issues arising from the semantic differences between the old and new OS environments are

discussed in detail in [LUSG04].

The VMware ESX server [Wal02] runs selected drivers in the hypervisor by porting the

drivers and their support routines to the VMM. Not only does this involve significant develop-

ment effort, it also leaves the hypervisor vulnerable to bugs in the driver. Our work ensures

that the rewritten hypervisor driver executes safely in the hypervisor. Additionally, since the

number of driver support routines needed to run the error-free performance-critical path in the

driver is very small, the software development costs of our approach are significantly smaller.

Numerous attempts have been made to reduce the vulnerability of the kernel to device

driver crashes, without going all the way to running the device driver in a virtual machine
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[SBL03, WLAG93]. These approaches typically constrain memory accesses by the drivers to

prevent wild writes that corrupt the kernel data structures, either by erecting address space

barriers or by checking memory accesses. In our approach, we avoid any vulnerability of this

nature as a by-product of leaving all the driver data structures in the virtual machine and not

allowing the driver any access to the hypervisor data structures.

A number of research efforts have looked at mechanisms to safely extend operating sys-

tem functionality with third-party extensions [BSS+95, SESS96]. The SPIN extensible kernel

[BSS+95] guarantees safe execution of extension code by requiring that the kernel and all ex-

tensions be written in a type-safe language (Modula-3). In contrast, the TwinDrivers approach

does not requires extensions to be written in any particular language, and works with existing

compiled driver binaries. The VINO extensible kernel [SESS96] uses software fault isolation

[WLAG93] as its safety mechanism. It does not require a translation mechanism such as SVM,

because the extension executes in the same address space as the kernel. In contrast, Twin-

Drivers uses SVM to implement both a protection and a translation mechanism, and this is

required because the device driver data is located in an address space that is different from the

hypervisor address space.

We borrow from the Microdrivers project [GRB+08] the idea of running performance-critical

parts of the driver in the kernel/hypervisor and other parts in user-space processes or in a virtual

machine. Many differences, however, exist between the two approaches. First, our hypervisor

instance cannot corrupt the hypervisor data structures, while the part of the Microdrivers that

runs in the kernel has the potential of crashing the kernel. Methods like those used in SFI

[WLAG93] or Nooks [SBL03] have to be used to reduce this vulnerability, potentially leading to

extra performance overhead. Second, the Microdrivers approach requires manual annotations

for all kernel and driver data structures that can be shared between the user-space and kernel-

space driver. These annotations are necessary because Microdrivers use explicit data marshaling

to keep the (separate) data structures of the kernel and user driver consistent with each other.

In contrast, we use a single copy of all data structures mapped at different virtual addresses
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in the hypervisor and the VM, providing us trivially with consistency and obviating the need

for marshaling and annotations. Thus, no driver-specific knowledge or engineering effort is

required in out approach; our framework works with unmodified binary drivers. Third, unlike

Microdrivers we do not split the driver. Both instances of our driver are complete, and we can

choose what instance to use for what aspects of the functionality of the driver. This allows us,

for instance, to leave all of the support functionality for the error handling code in the transmit

and receive parts of the network driver out of the hypervisor.

6.4 User-level networking

The CDNA architecture is similar to that of user-level networking architectures that allow pro-

cesses to bypass the operating system and access the NIC directly [DRM+98, PF01, vEBBV95,

vEW98]. Like CDNA, these architectures require DMA memory protection, an interrupt de-

livery mechanism, and network traffic multiplexing. Both user-level networking architectures

and CDNA handle traffic multiplexing on the network interface. The only difference is that

user-level NICs handle flows on a per-application basis, whereas CDNA deals with flows on a

per-OS basis. However, as the networking software in the operating system is quite different

than that for user-level networking, CDNA relies on different mechanisms to implement DMA

memory protection and interrupt delivery.

To provide DMA memory protection, user-level networking architectures rely on memory

registration with both the operating system and the network interface hardware. CDNA pro-

vides DMA memory protection without actively registering buffers on the NIC. Instead, CDNA

relies on the hypervisor to enqueue validated buffers to the NIC by augmenting the hypervi-

sor’s existing memory-ownership functionality. This avoids costly runtime registration I/O and

permits safe DMA operations to and from arbitrary physical addresses.
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Chapter 7

Conclusion

In this thesis, we studied the problem of efficiently virtualizing the network interface in Type-II

virtual machine monitors, using the Xen VMM as an example of this architecture. We identified

the fundamental performance bottlenecks in the network virtualization architecture of Type-II

VMMs, and proposed a number of solutions to address these problems. Although the solutions

presented in this thesis were implemented and evaluated in the Xen VMM, they are general

enough to be applicable to other VMMs which use the same I/O architecture, such as Microsoft

Hyper-V.

We showed that locating the device drivers in a separate host VM is the primary reason

for performance degradation in Type-II VMMs. This is because of two reasons: 1) switching

overheads are incurred for every transition between the host OS and the guest VMs for invoking

the device driver in the host OS, and, 2) the overhead incurred by the I/O virtualization

operations required to transfer packets between the guest and the host address spaces. In

the Xen VMM, these overheads degrade network performance in guest domains by a factor of

five relative to the native performance. We presented a detailed analysis of the virtualization

overheads incurred in the Xen network virtualization stack, and proposed three solutions to

address these performance bottlenecks. The three solutions explore the networking performance

that can be achieved while performing network virtualization in the host OS, in the VMM, and
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in the NIC hardware.

Our first solution consists of set of packet aggregation optimizations that can be applied

without modifying the existing Type-II I/O architecture of the Xen VMM. This solution retains

the core functionality of I/O virtualization, including device driver execution, in the Xen driver

domain. The main idea of these optimizations was to reduce network virtualization overheads

in the Xen I/O stack by using packet ‘coalescing’ techniques to reduce the per-packet processing

overheads. Using these optimizations, we demonstrated performance improvements by a factor

of 4 for TCP transmit workloads running in Xen guest domains, and by a factor of 2 for TCP

receive workloads.

In our second solution, we proposed a new I/O virtualization architecture, called Twin-

Drivers, which moved the task of I/O virtualization and device driver execution from the host

OS into the Xen hypervisor. This architecture thus combines the performance advantages of

Type-I VMMs with the safety and software engineering benefits of Type-II VMMs. The Twin-

Drivers approach makes use of binary rewriting techniques to derive safe hypervisor drivers

automatically from host OS drivers, and runs these directly in the hypervisor to achieve good

performance. The TwinDrivers approach improves networking performance in Xen guest do-

mains by another factor of 2.

Finally, in our third solution, we proposed a hardware based approach for improving network

performance in Type-II VMMs. This work was done in collaboration with researchers at Rice

University [WSC+07]. The basic idea of this work was to develop a specialized CDNA network

interface which supported direct, concurrent access from Xen guest domains to the NIC. The

CDNA architecture moves the task of network virtualization into the NIC, and provides each

guest domain with a virtual NIC context which it can access directly. Thus, by bypassing

the driver domain for network I/O operations, the CDNA architecture achieves performance

improvements similar to a Type-I VMM.

Overall, our solutions help significantly bridge the gap between the network performance

in a virtualized environment and native environment, eventually achieving within 70% of the
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native performance.
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