
The Semantics of Progress in Lock-Based Transactional Memory∗

Rachid Guerraoui Michał Kapałka
School of Computer and Communication Sciences, EPFL,

Lausanne, Switzerland

July 15, 2008 (revised: October, 2008)

Abstract

Transactional memory (TM) is a promising paradigm for
concurrent programming. Whereas the number of TM
implementations is growing, however, little research has
been conducted to precisely define TM semantics, espe-
cially their progress guarantees. This paper is the first
to formally define the progress semantics of lock-based
TMs, which are considered the most effective in practice.

We use our semantics to reduce the problems of rea-
soning about the correctness and computability power
of lock-based TMs to those of simple try-lock objects.
More specifically, we prove that checking the progress of
any set of transactions accessing an arbitrarily large set
of shared variables can be reduced to verifying a sim-
ple property of each individual (logical) try-lock used by
those transactions. We use this theorem to determine the
correctness of state-of-the-art lock-based TMs and high-
light various configuration ambiguities. We also prove
that lock-based TMs have consensus number 2. This
means that, on the one hand, a lock-based TM cannot be
implemented using only read-write memory, but, on the
other hand, it does not need very powerful instructions
such as the commonly used compare-and-swap.

We finally use our semantics to formally capture an in-
herent trade-off in the performance of lock-based TM im-
plementations. Namely, we show that the space complex-
ity of every lock-based software TM implementation that
uses invisible reads is at least exponential in the number
of objects accessible to transactions.

Keywords. Transactional memory, lock, try-lock, con-
sensus number, impossibility, lower bound, reduction,
semantics, verification

1 Introduction

Multi-core processors are predicted to be common in
home computers, laptops, and maybe even smoke detec-
tors. To exploit the power of modern hardware, applica-
tions will need to become increasingly parallel. However,
writing scalable concurrent programs is hard and error-
prone with traditional locking techniques. On the one

∗EPFL Technical Report. Submitted for publication.

hand, coarse-grained locking throttles parallelism and
causes lock contention. On the other hand, fine-grained
locking is usually an engineering challenge, and as such
is not suitable for use by the masses of programmers.

Transactional memory (TM) [14] is a promising tech-
nique to facilitate concurrent programming while de-
livering comparable performance to fine-grained lock-
ing implementations. In short, a TM allows concurrent
threads of an application to communicate by executing
lightweight, in-memory transactions. A transaction ac-
cesses shared data and then either commits or aborts. If
it commits, its operations are applied to the shared state
atomically. If it aborts, however, its changes to the shared
data are lost and never visible to other transactions.

While a large number of TM implementations have
been proposed so far, there is still no precise and com-
plete description of the semantics of a TM. Indeed, a cor-
rectness criterion for TM, called opacity, has been pro-
posed [10], and the progress properties of obstruction-free
TM implementations have been defined [9]. However,
opacity is only concerned with safety—it does not spec-
ify when transactions need to commit. (For example, a
TM that aborts every transaction could trivially ensure
opacity.) Moreover, TM implementations that are con-
sidered effective [5], e.g., TL2 [4], TinySTM [7], a ver-
sion of RSTM [20], BartokSTM [12], or McRT-STM [2] are
not obstruction-free. They internally use locking, in order
to reduce the overheads of TM mechanisms, and do not
ensure obstruction-freedom, which inherently precludes
the use of locks.

Lock-based TMs do ensure some progress for transac-
tions, for otherwise nobody would use them. However,
this has never been precisely defined. The lack of such
a definition hampers the portability of applications that
use lock-based TMs, and makes it difficult to reason for-
mally about their correctness or to establish whether any
performance limitation is inherent or simply an artifact of
a specific implementation.

This paper defines the progress semantics of lock-
based TMs. We do so by introducing a new property,
which we call strong progressiveness,1 and which stipu-
lates the two following requirements.

1We call it “strong” by opposition to a weaker form of progressive-
ness that we also introduce in this paper.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147945035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. A transaction that encounters no conflict must be able
to commit. (Basically, a conflict occurs when two or
more concurrent transactions access the same trans-
actional variable and at least one of those accesses is
not read-only.)

2. If a number of transactions have only a “simple” con-
flict, i.e., on a single transactional variable, then at
least one of them must be able to commit.

The former property captures the common intuition
about the progress of any TM (see [25]). The second
property ensures that conflicts that are easy to resolve
do not cause all conflicting transactions to be aborted.
This is especially important when non-transactional ac-
cesses to shared variables are encapsulated inside unit
transactions to ensure strong atomicity [3]. Strong pro-
gressiveness, together with opacity and operation-level
wait-freedom,2 is ensured by state of the art lock-based
implementations, such as TL2, TinySTM, RSTM, Bartok-
STM, and McRT-STM.3

We use our strong progressive semantics to reduce the
problems of reasoning about the correctness and com-
putability power of lock-based TMs to those of simple
try-lock objects [26, 17]. We first show that proving strong
progressiveness of a set of transactions accessing any
number of shared variables can be reduced to proving a
simple property of every individual logical try-lock that
protects those variables. Basically, we prove that if it is
possible to say which parts of a TM algorithm can be
viewed as logical try-locks (in a precise sense we define in
the paper), and if those logical try-locks are strong, then
the TM is strongly progressive. Intuitively, a try-lock is
strong if it guarantees that among processes that compete
for the unlocked try-lock, one always acquires the try-
lock (most try-locks in the literature that are implemented
from compare-and-swap or test-and-set are strong). We
illustrate our reduction approach on state-of-the-art lock-
based TMs. We formally establish and prove their cor-
rectness while highlighting some of their configurations
that, maybe unexpectedly, violate the progress semantics.

Then, still using the try-lock reduction, we show that
a lock-based TM has consensus number 2 in the parlance
of [13]. The consensus number is a commonly used met-
ric for the computational power of a shared-memory ab-
straction, and is expressed as the maximum number of
processes that can solve a non-trivial agreement problem
(namely consensus [13]) in a wait-free manner using this
abstraction. The fact that a lock-based TM has consensus
number 2 means that such a TM cannot be implemented
using only read-write memory instructions, but, on the

2Wait-freedom [13] requires threads executing operations on trans-
actional data within transactions to make progress independently, i.e.,
without waiting for each other. Maybe surprisingly, this property can
easily be ensured by lock-based TMs.

3The source code of the implementations of BartokSTM and McRT-
STM is not publicly available. We could thus verify strong progressive-
ness of those TMs only from their algorithm descriptions in [12] and [2],
respectively.

other hand, powerful instructions such as compare-and-
swap are not necessary to implement a lock-based TM.

In fact, we give an implementation of a lock-based TM
using read-write and test-and-set instructions. This im-
plementation might be interesting in its own right when
compare-and-swap instructions are not available or sim-
ply too expensive. Interestingly, we highlight an alterna-
tive semantics we call weak progressiveness which enables
TMs with consensus number 1 and can thus be imple-
mented using only read-write memory. Intuitively, weak
progressiveness requires only that a transaction that en-
counters no conflicts commits. This might be consid-
ered a viable alternative to strong progressiveness for
“lightweight” lock-based implementations.

We finally use our progress semantics to determine an
inherent trade-off between the required memory and the
latency of reads in lock-based TMs. This trade-off im-
pacts the performance and/or progress guarantees of a
TM but it was never formally established, precisely be-
cause of the lack of any precise semantics. We show that
the space complexity of every lock-based TM that uses
the invisible reads strategy4 is at least exponential in the
number of variables available to transactions. This might
seem surprising, since it is not obvious that modern lock-
based TMs have non-linear space complexity. The expo-
nential (or, in fact, unbounded) complexity comes from
the use of timestamps that determine version numbers of
shared variables. TM implementations usually reserve a
constant-size word for each version number (which gives
linear space complexity). However, an overflow can hap-
pen and has to be handled in order to guarantee correct-
ness (opacity). As we explain in Section 6.3, this requires
(a) limiting the progress of transactions when overflow
occurs and (b) preventing read-only transactions from be-
ing completely invisible. Concretely speaking, our result
means that efficient TM implementations (the ones that
use invisible reads) must either intermittently (albeit very
rarely) violate progress guarantees, or use unbounded
timestamps.

Summary of contributions. To summarize, this paper
contributes to the understanding of TM design and im-
plementations by presenting the first precise semantics of
a large class of popular TMs—lock-based ones. We pre-
cisely define the progress semantics of such TMs and pro-
pose reduction approaches to simplify their verification
and computational study. We also use our semantics to
study their inherent performance bottlenecks.

Roadmap. The rest of the paper proceeds as follows.
First, in Section 2, we describe the basic model and termi-
nology used to state our semantics and prove our results.
Then, in Section 3, we define the progress semantics of

4With invisible reads, the reading of transactional variables is per-
formed optimistically, without any (shared or exclusive) locking or up-
dates to shared state. Invisible reads are used by most TM implementa-
tions and considered crucial for good performance in read-dominated
workloads.

2

lock-based TMs. In Section 4, we show how to simplify
the verification of strong progressiveness. Next, in Sec-
tions 5 and 6, we establish the fundamental power and
limitations of lock-based TMs. We also discuss in those
sections the impact of weakening progress properties. Fi-
nally, in Section 7, we discuss possible extensions of the
results presented in this paper.

Related work. It is worth noting that there has been an
attempt to describe the overall semantics of TMs [25] (in-
cluding lock-based ones). However, the approach taken
there is very low-level—the properties are defined with
respect to specific TM protocols and strategies. Our
approach is more general: we define semantics that is
implementation-agnostic and that is visible through the
public interface of a TM to a user. We also show how this
semantics can be verified.

There have also been other attempts to describe the se-
mantics of a TM, e.g., in [27, 16, 1, 22, 21]. Those papers,
however, focus on safety, i.e., serializability. In [22] there
is a notion of progress, but it refers to deadlock-freedom
of the whole system (i.e., making sure at least one thread
can execute a step at any given time) rather than progress
of individual transactions.

2 Preliminaries

2.1 Shared Objects and their
Implementations

We consider an asynchronous shared memory system of
n processes (threads) p1, . . . , pn that communicate by ex-
ecuting operations on (shared) objects. (At the hardware
level, a shared object is simply a word in shared mem-
ory with the instructions supported by a given processor,
e.g., read, write, or compare-and-swap.) An example of
a very simple shared object is a register,5 which exports
only read and write operations. Operation read returns the
current state (value) of the register, and write(v) sets the
state of the register to value v. Hence, a register provides
the basic read-write memory semantics.

Consider a single run of any algorithm. A history is a
sequence of invocations and responses of operations that
were executed by processes on (shared) objects in this
run. A history of an object x is a history that contains
only operations executed on x. (Note here that we as-
sume that events executed in a given run can be totally
ordered by their execution time; events that are issued at
the same time, e.g., on multi-processor systems, can be
ordered arbitrarily.)

An object x may be implemented either directly in
hardware, or from other, possibly more primitive, objects,
which we call base objects. If Ix is an implementation of an
object x, then an implementation history of Ix is a sequence
of (1) invocations and responses of operations on x, and

5Note that we use here the term “register” in its distributed comput-
ing sense: a read-write abstraction.

(2) corresponding operations on base objects (called steps)
that were executed by Ix (i.e., by processes executing Ix)
in some run. Hence, intuitively, a history of an object x
represents what happened in some run at the (public)
interface of x. An implementation history, in addition,
shows what steps the implementation of x executed in
response to the operations invoked on x.

In algorithms, for simplicity, we assume that base ob-
jects such as registers and test-and-set objects are atomic,
i.e., linearizable [15]. That is, operations on those objects
appear (to the application) as if they happened instanta-
neously at some unique point in time between their in-
vocation and response events. (For example, in Java, a
“volatile” variable is an atomic register, while an object
of class AtomicInteger is an atomic object that supports
operations such as get, set, incrementAndGet, etc.)

However, assuming a weaker memory model does not
impact our results: the progress properties we define do
not rely on atomicity, strong try-lock objects are not lin-
earizable, and atomic registers of any size can be im-
plemented out of 1-bit safe (the most primitive) regis-
ters [19].

If E is an (implementation) history, then E|pi denotes
the restriction of E to events (including steps) executed by
process pi, and E|x denotes the restriction of E to events
on object x and steps of the implementation of x. We
assume that processes execute operations on objects se-
quentially. That is, in every restriction E|pi of an (imple-
mentation) history E, no two operations and no two steps
overlap.

We focus on object implementations that are wait-
free [13]. Intuitively, an implementation Ix of an object x
is wait-free if a process that invokes an operation on x is
never blocked indefinitely long inside the operation, e.g.,
waiting for other processes. Hence, processes can make
progress independently of each other. More precisely:

Definition 1 An implementation Ix of an object x is wait-
free, if whenever any process pi invokes an operation on x, pi
returns from the operation within a finite number of its own
steps.

2.2 Transactional Memory (TM)

A TM enables processes to communicate by executing
transactions. For simplicity, we will say that a transac-
tion T performs some action, meaning that the process
executing T performs this action within the transactional
context of T. A transaction T may perform operations on
transactional variables, which we call t-variables for short.
For simplicity, we assume that every t-variable x sup-
ports only two operations: read that returns the current
state (value) of x, and write(v) that sets the state of x to
value v. We discuss in Section 7 what changes when t-
variables are arbitrary objects, i.e., objects that have op-
erations beyond read and write (e.g., incrementAndGet).
Note, however, that most existing TMs either provide
only read-write t-variables (e.g., word-based TMs), or ef-

3

fectively treat all operations on t-variables as reads and
writes (e.g., without exploiting the commutativity rela-
tions between non-read-only operations).

Each transaction has its own unique identifier, e.g., T1,
T2, etc. A transaction Tk may access (read or write) any
number of t-variables. Then, Tk may either commit or
abort. We assume that once Tk commits or aborts Tk does
not perform any further actions. In this sense, restarting
a transaction Tk (i.e., the computation Tk was supposed to
perform) is considered in our model as a different trans-
action (with a different identifier).

We can treat a TM as an object with the following oper-
ations:

• treadk(x) and twritek(x, v) that perform, respectively,
a read or a write(v) operation on a t-variable x within
a transaction Tk,

• tryCk that is a request to commit transaction Tk,

• tryAk that is a request to abort transaction Tk.

Each of the above operations can return a special value Ak
that indicates that the operation has failed and the respec-
tive transaction Tk has been aborted. Operation tryCk re-
turns value Ck if committing Tk has been successful. Op-
eration tryAk always returns Ak (i.e., it always succeeds
in aborting transaction Tk).

The above operations of a TM, in some form, are either
explicitly used by a programmer (e.g., in TL2, TinySTM,
RSTM), or inserted by a TM-aware compiler (e.g., in
McRT-TM, Bartok-STM). Even if the compiler is responsi-
ble for inserting those operations, the programmer must
specify which blocks of code are parts of transactions,
and retains full control of what operations on which t-
variables those transactions perform. Hence, in either
case, this TM interface is visible to a programmer, and
so are properties defined with respect to this interface.

If H is an (implementation) history of a TM object, then
H|Tk denotes the restriction of H to only events of trans-
action Tk. We say that a transaction Tk is in a history H,
and write Tk ∈ H, if H|Tk is a non-empty sequence.

Let H be any history and Tk be any transaction in H.
We say that Tk is committed in H, if H contains response
Ck of operation tryCk. We say that Tk is aborted in H, if H
contains response Ak of any TM operation.

We say that a transaction Tk follows a transaction Ti in
a history H, if Ti is committed or aborted in H and the
first event of Tk in H follows the last event of Ti in H. If
neither Tk follows Ti in H, nor Ti follows Tk in H, then we
say that Ti and Tk are concurrent in H.

We assume that every transaction itself is sequential.
That is, for every history H of a TM and every transaction
Tk ∈ H, H|Tk is a sequence of non-overlapping TM op-
erations. Clearly, operations of different transactions can
overlap. We also assume that each transaction is executed
by a single process, and that each process executes only
one transaction at a time (i.e., transactions at the same
process are never concurrent).

2.3 Try-Locks

All lock-based TMs we know of use (often implicitly) a
special kind of locks, usually called try-locks [26]. Intu-
itively, a try-lock is an object that provides mutual ex-
clusion (like a lock), but does not block processes indefi-
nitely. That is, if a process pi requests a try-lock L but L
is already acquired by a different process, pi is returned
the information that its request failed instead of being
blocked waiting until L is released.

Try-locks keep the TM implementation simple and
avoid deadlocks. Moreover, if any form of fairness is
needed, it is provided at a higher level than at the level of
individual locks—then more information about a transac-
tion can be used to resolve conflicts and provide progress.
Ensuring safety and progress can be effectively separate
tasks.

More precisely, a try-lock is an object with the follow-
ing operations:

1. trylock, that returns true or false; and

2. unlock, that always returns ok.

Let L be any try-lock. If a process pi invokes trylock on
L and is returned true, then we say that pi has acquired
L. Once pi acquires L, we say that (1) pi holds L until pi
invokes operation unlock on L, and (2) L is locked until pi
returns from operation unlock on L. (Hence, L might be
locked even if no process holds L—when some process
that was holding L is still executing operation unlock on
L.)

Every try-lock L guarantees the following property,
called mutual exclusion: no two processes hold L at the
same time.

For simplicity, we assume that try-locks are not reen-
trant. That is, a process pi may invoke trylock on a try-
lock L only when pi does not hold L. Conversely, pi may
invoke unlock on L only when pi holds L.

Intuitively, we say that a try-lock L is strong if when-
ever several processes compete for L, then one should be
able to acquire L. This property corresponds to deadlock-
freedom, livelock-freedom, or progress [24] properties of
(blocking) locks.

Definition 2 We say that a try-lock L is strong, if L ensures
the following property, in every run: if L is not locked at some
time t and some process invokes operation trylock on L at t,
then some process acquires L after t.

While there exists a large number of lock implementa-
tions, only a few are try-locks or can be converted to try-
locks in a straightforward way. The technical problems
of transforming a queue (blocking) lock into a try-lock
are highlighted in [26]. It is trivial to transform a typical
TAS or TATAS lock [24] into a strong try-lock (e.g., Algo-
rithm 4 in Section 5.2).

4

3 Progress of a Lock-Based TM

Lock-based TMs are TM implementations that use (inter-
nally) mutual exclusion to handle some phases of a trans-
action. Most of them use some variant of the two-phase
locking protocol, well-known in the database world [6].

From the user’s perspective, however, the choice of the
mechanism used internally by a TM implementation is
not very important. What is important is the seman-
tics the TM manifests on its public interface, and the
time/space complexities of the implementation. If those
properties are known, then the designer of a lock-based
TM is free to choose the techniques that are best for a
given hardware platform, without the fear of breaking
existing applications that use a TM.

As we already mentioned, the correctness criterion for
TMs, including lock-based ones, is usually opacity [10].
This property says, intuitively, that (1) committed trans-
actions should appear as if they were executed sequen-
tially, in an order that agrees with their real-time order-
ing, (2) no transaction should ever observe the modifica-
tions to shared state done by aborted or live transactions,
and (3) all transactions, including aborted and live ones,
should always observe a consistent state of the system.
The first two properties correspond, roughly, to the clas-
sical database properties: strict serializability [23] and the
strongest variant of recoverability [11], respectively. The
last property is unique to TMs, and needs to be ensured to
prevent unexpected crashes or incorrect behavior of ap-
plications that use a TM.

However, opacity is not enough. A TM that always
aborts every transaction, or that blocks transactions in-
finitely long, could ensure opacity and still be useless
from the user’s perspective. In this section, we define
the progress properties of a lock-based TM. These involve
individual operations of transactions, where it is typical
to require wait-freedom, and entire transactions, for which
we will require our notion of strong progressiveness.

3.1 Liveness of TM Operations

If a process pi invokes an operation (tread, twrite, tryC,
or tryA) on a TM, we expect that pi eventually gets a re-
sponse from the operation. The response might be the
special value Ak that informs pi that its current transac-
tion Tk has been aborted.

We assume that each implementation of a TM is a wait-
free object. That is, a TM ensures wait-freedom on the
level of its operations. This property is indeed ensured by
many current lock-based TMs: if a transaction Tk encoun-
ters a conflict, Tk is immediately aborted and the control
is returned to the process executing Tk.

Note that a TM may use a contention manager to de-
cide what to do in case of a conflict. A contention man-
ager is a logically external module that can reduce con-
tention by delaying or aborting some of the transactions
that conflict. In principle, a contention manager could
make transactions wait for each other, in which case wait-

freedom would be violated. However, such contention
managers change the progress properties of a TM signifi-
cantly and as such should be considered separately.

Operation wait-freedom may also be violated period-
ically by some TM mechanisms that handle overflows.
While those can be unavoidable, as we discuss in Sec-
tion 6.3, they are executed very rarely. Moreover, one can
easily predict when they could start. In this sense, wait-
freedom can be guaranteed except for some short periods
that can be signalled in advance to processes by, e.g., set-
ting a global flag.

3.2 Progress of Transactions

Intuitively, a transaction makes progress when it com-
mits. One would like most transactions to commit, except
those that were explicitly requested by the application to
be aborted (using a tryA operation of a TM). However, a
TM may be often forced to abort some transactions when
the conflicts between them cannot be easily resolved. We
will call such transactions forcefully aborted. The strong
progressiveness property we introduce here defines when
precisely a transaction can be forcefully aborted.

Intuitively, strong progressiveness says that (1) if a
transaction has no conflict then it cannot be forcefully
aborted, and (2) if a group of transactions conflict on a
single t-variable, then not all of those transactions can be
forcefully aborted. Roughly speaking, two or more trans-
actions conflict if they access the same t-variable in a con-
flicting way, i.e., if at least one of those accesses is a write
operation. (It is worth noting that the notion of a conflict
can be easily generalized to t-variables with arbitrary op-
erations, and to arbitrary mappings between t-variables
and locks that may allow false conflicts. We discuss this
in Section 7.)

Strong progressiveness is not the strongest possible
progress property. The strongest one, which requires that
no transaction is ever forcefully aborted, cannot be imple-
mented without throttling significantly the parallelism
between transactions, and is thus impractical in multi-
processor systems.

Strong progressiveness, however, still gives a program-
mer the following important advantages. First, it guar-
antees that if two independent subsystems of an applica-
tion do not share any memory locations (or t-variables),
then their transactions are completely isolated from each
other (i.e., a transaction executed by a subsystem A does
not cause a transaction in a subsystem B to be forcefully
aborted). Second, it avoids “spurious” aborts: the cases
when a transaction can abort are strictly defined. Third, it
ensures global progress for single-operation transactions,
which is important when non-transactional accesses to t-
variables are encapsulated into transactions in order to
ensure strong atomicity [3]. Finally, it ensures that pro-
cesses are able to eventually communicate via transac-
tions (albeit in a simplified manner—through a single t-
variable at a time). Nevertheless, one can imagine many
other reasonable progress properties, for which strong

5

progressiveness can be a good reference point.
More precisely, let H be any history of a TM and Tk be

any transaction in H. We say that Tk is forcefully aborted
in H, if Tk is aborted in H and there is no invocation
of operation tryAk in H. We denote by WSetH(Tk) and
RSetH(Tk) the sets of t-variables on which Tk executed, re-
spectively, a write or a read operation in H. We denote by
RWSetH(Tk) the union of sets RSetH(Tk) and WSetH(Tk),
i.e., the set of t-variables accessed (read or written) by Tk
in history H. We say that two transactions Ti and Tk in
H conflict on a t-variable x, if (1) Ti and Tk are concurrent
in H, and (2) either x is in WSetH(Tk) and in RWSetH(Ti),
or x is in WSetH(Ti) and in RWSetH(Tk). We say that Tk
conflicts with a transaction Ti in H if Ti and Tk conflict in H
on some t-variable.

Let H be any history, and Ti be any transaction in H.
We denote by CVarH(Ti) the set of t-variables on which Ti
conflicts with any other transaction in history H. That is,
a t-variable x is in CVarH(Ti) if there exists a transaction
Tk ∈ H, k 6= i, such that Ti conflicts with Tk on t-variable
x.

Let Q be any subset of the set of transactions in a
history H. We denote by CVarH(Q) the union of sets
CVarH(Ti) for all Ti ∈ Q.

Let CTrans(H) be the set of subsets of transactions in a
history H, such that a set Q is in CTrans(H) if no trans-
action in Q conflicts with a transaction not in Q. In
particular, if Ti is a transaction in a history H and Ti
does not conflict with any other transaction in H, then
{Ti} ∈ CTrans(H).

Definition 3 A TM implementation M is strongly progres-
sive, if in every history H of M the following property is satis-
fied: for every set Q ∈ CTrans(H), if |CVarH(Q)| ≤ 1, then
some transaction in Q is not forcefully aborted in H.

4 Verifying Strong Progressiveness

Verifying that a given TM implementation M ensures a
given property P might often be difficult as one has to
reason about a large number of histories involving an
arbitrary number of transactions accessing an arbitrary
number of t-variables. This complexity is greatly reduced
if one can reduce the verification task to some small sub-
set of histories of M, e.g., involving a limited number of
t-variables or transactions. This approach has been used,
e.g., in [8] to automatically check opacity, obstruction-
freedom, and lock-freedom of TMs that feature certain
symmetry properties.

In this section, we show how to reduce the problem of
proving strong progressiveness of histories with arbitrary
numbers of transactions and t-variables to proving a sim-
ple property of each individual (logical) try-lock used in
those histories. Basically, we show that if a TM imple-
mentation M uses try-locks, or if one can assign “logical”
try-locks to some parts of the algorithm of M, and if each
of those try-locks is strong, then M ensures strong pro-

gressiveness. Unlike in [8], we do not assume any sym-
metry properties of a TM. Our result is thus complemen-
tary to that of [8], not only because it concerns a different
property, but also because it uses a different approach.

Our reduction theorem is general as it encompasses
lock-based TMs that use invisible reads, i.e., in which
readers of a t-variable are not visible to other transactions,
as well as those that use visible ones. We show also how
the theory presented here can be used to prove strong
progressiveness of TL2, TinySTM, RSTM, and McRT-
STM. Finally, we point out one of the ambiguities of en-
suring strong progressiveness with visible reads.

4.1 Reduction Theorem

Let M be any TM implementation, and E be any imple-
mentation history of M. Let E′ be any implementation
history that is obtained from E by inserting into E any
number of invocations and responses of operations of a
try-lock Lx for every t-variable x. We say that E′ is a strong
try-lock extension of E, if the following conditions are sat-
isfied in E′:

STLE1. For every t-variable x, E′|Lx is a valid history of
a strong try-lock object;

STLE2. For every process pi and every t-variable x, if, at
some time t, pi invokes trylock on Lx or pi holds Lx,
then pi executes at t in E′ a transaction Tk such that
x ∈ WSetE′(Tk);

STLE3. For every process pi and every transaction Tk ∈
E′|pi, if Tk is forcefully aborted in E′, then either (1) pi
while executing Tk is returned false from every op-
eration trylock on some try-lock Lx, or (2) there is a
t-variable x ∈ RSetE′(Tk), such that some process
other than pi holds Lx at some point while pi exe-
cutes Tk but before Tk acquires Lx (if at all).

Theorem 4 For any TM implementation M, if there exists a
strong try-lock extension of every implementation history of
M, then M is strongly progressive.

Proof. Assume, by contradiction, that there exists a TM
implementation M, such that some implementation his-
tory E of M has a strong try-lock extension E′, but E vi-
olates strong progressiveness. This means that there is a
set Q in CTrans(E), such that |CVarE(Q)| ≤ 1 and every
transaction in Q is forcefully aborted in E. Recall that Q
is a subset of transactions, such that no transaction in Q
has a conflict with a transaction outside of Q.

Assume first that CVarE(Q) = ∅. But then no trans-
action in set Q has a conflict, and so, by STLE1–2, no
transaction in Q can fail to acquire a try-lock, or read a
t-variable x such that try-lock Lx is held by a concurrent
transaction. Hence, by STLE3, no transaction in Q can be
forcefully aborted—a contradiction.

Let x be the t-variable that is the only element of set
CVarE(Q). Note first that if a transaction Tk in Q invokes

6

operation trylock on some try-lock Ly (where y is a differ-
ent t-variable than x) then, by STLE2, no other transaction
concurrent to Tk invokes trylock on Ly or reads t-variable
y. This is because no transaction in Q conflicts on a t-
variable different than x.

Assume first that no transaction in set Q acquires try-
lock Lx. But then, by STLE1–3, no transaction in Q can be
forcefully aborted—a contradiction.

Let Tk be the first transaction from set Q to acquire try-
lock Lx. By STLE3, and because Tk is forcefully aborted,
there is a transaction Ti that holds Lx after Tk starts and
before Tk acquires Lx. Clearly, by STLE2, x must be in
WSetE(Ti), and so Ti must be in set Q. But then Ti ac-
quires Lx before Tk—a contradiction with the assumption
that Tk is the first transaction from set Q to acquire Lx. �

4.2 Examples

We show here how our reduction theorems can be used to
prove the strong progressiveness of TL2, TinySTM, RSTM
(one of its variants), and McRT-STM. None of those TM
implementations explicitly use try-locks, and so we need
to show which parts of their algorithms correspond to op-
erations on “logical” try-locks for respective t-variables.
We assume the use of a simple contention manager that
makes each transaction that encounters a conflict abort it-
self. Such a contention manager (possibly with a back-off
protocol) is usually the default one in word-based TMs.
We also assume that the mapping between t-variables
and locks is a one-to-one function (which is the default
in RSTM). This assumption is revisited in Section 7.

TL2. This TM uses commit-time locking and deferred
updates. That is, locking and updating t-variables is de-
layed until the commit time of transactions. The TL2 al-
gorithm is roughly the following (for a process pi execut-
ing a transaction Tk):

1. When Tk starts, pi reads the read timestamp of Tk from
a global counter C.

2. If Tk reads a t-variable x, pi checks whether x is not
locked and whether the version number of x is lower
or equal to the read timestamp of Tk. If any of those
conditions is violated then Tk is aborted.

3. Once Tk invokes tryCk, pi first tries to lock all t-
variables that were written to by Tk. Locking of a t-
variable x is done by executing a compare-and-swap
(CAS) operation on a memory word w(x) that con-
tains, among other information, a locked flag. If pi
successfully changes the locked flag from false to true,
then pi becomes the exclusive owner of x and can
update x. If CAS fails, however, Tk is aborted.

4. Once all t-variables written to by Tk are locked, pi
atomically increments and reads the value of the
global counter C. The read value is the write times-
tamp of Tk.

5. Next, pi validates transaction Tk by checking, for ev-
ery t-variable x read by Tk, whether x is not locked by
a transaction other than Tk and whether the version
number of x is lower or equal to the read timestamp
of Tk. Again, if any of those conditions is violated
then transaction Tk is aborted (and its locks released).

6. Then, pi updates all the states of the locked t-
variables with the values written by Tk and the write
timestamp of Tk.

7. Finally, Tk releases all the locked t-variables.

It is easy to assign logical try-locks to the above algorithm
of TL2, i.e., to build a try-lock extension of every imple-
mentation history E of TL2. Basically, we put an invo-
cation and response of operation trylock on a try-lock Lx
around any CAS operation that operates on the locked flag
of any t-variable x. The response is true if CAS succeeds,
and false otherwise. We also put an invocation and re-
sponse of operation unlock on Lx around the write opera-
tion that sets the locked flag of x to false. It is straightfor-
ward to see that this way we indeed obtain a valid try-
lock extension of any implementation history E of TL2:

1. Property STLE1 is ensured because a CAS on a word
w(x) can fail only when some other CAS on w(x) al-
ready succeeded, and once a CAS on w(x) succeeds,
no other CAS on w(x) can succeed until the locked
flag is reset. Hence, the single CAS operation indeed
implements a strong try-lock.

2. Property STLE2 is ensured because a transaction Ti
invokes CAS on a word w(x) only when (1) Ti wrote
to t-variable x, and (2) Ti is in its commit phase.

3. To prove that TL2 ensures property STLE3, consider
any forcefully aborted transaction Tk executed by
some process pi (in some implementation history E
of TL2). Assume first that a CAS operation executed
by Tk (i.e., by pi while executing Tk) on some word
w(x) fails. But then (1) Tk could not have locked
try-lock Lx before, and (2) Tk is immediately aborted
afterwards. Hence, property STLE3 is trivially en-
sured. This means that Tk reads some t-variable x
and either (1) w(x) has the locked flag set to true when
Tk reads x (and w(x) is not locked by Tk), or (2) the
version number of x is larger than the read times-
tamp of Tk. In case (1) property STLE3 is trivially en-
sured. Assume then case (2). This means that some
transaction Tm that has a write timestamp greater
than the read timestamp of Tk wrote to x either (a) be-
fore Tk read x, or (b) after Tk read x and before Tk
locked w(x). But then Tm must have acquired its
write timestamp, while holding try-lock Lx, after Tk
acquired its read timestamp and before Tk locked Lx
(if at all). Hence, STLE3 is ensured.

We thus obtain the following theorem:

Theorem 5 TL2 (with a one-to-one t-variable to try-lock map-
ping) is strongly progressive.

7

TinySTM. There are two major differences with TL2.
First, TinySTM locks a t-variable x already inside any
write operation on x, i.e., locking is not delayed until the
commit time of transactions. Second, if a transaction Tk
reads a t-variable x that has a version number higher than
the read timestamp of Tk, then Tk tries to validate itself to
avoid being aborted, instead of aborting itself immedi-
ately. TinySTM uses CAS for locking, in the same way as
TL2. Hence, we can insert the invocations and responses
of operations on logical try-locks into any implementa-
tion history of TinySTM in the same way as for TL2.

It is worth noting, however, that the overflow han-
dling mechanism, which can be turned on at compile
time, breaks strong progressiveness in very long histo-
ries. As we discuss in Section 6.3, this mechanism is nec-
essary to overcome the complexity lower bound and still
guarantee correctness. However, strong progressiveness
is still ensured in histories with the number of transac-
tions lower than the maximum value of the t-variable ver-
sion number, or between version number overflows.

Theorem 6 TinySTM (with the overflow handling mecha-
nism turned off, and with a one-to-one t-variable to try-lock
mapping) is strongly progressive.

RSTM. This TM is highly configurable: currently there
are four TM backends to choose from, and each has a
number of configuration options. The two backends that
are of interest here are LLT and RedoLock. LLT is virtually
identical to TL2. RedoLock has object-level lock granu-
larity. That is, transactions conflict if they access (in a
conflicting way) the same object, not necessarily the same
memory location (i.e., t-variables in RSTM are objects, not
single memory words as in TL2 and TinySTM). However,
the algorithm of RedoLock is, depending on the configu-
ration option, similar to either TL2 or TinySTM. The main
difference is in the validation heuristic that decides when
a transaction needs to validate its read set, but this does
not impact strong progressiveness (the heuristic does not
by itself abort any transaction—it just determines when
to validate the read set of a transaction). Like in TL2
and TinySTM, RedoLock uses CAS for locking, and so
the same technique as for TL2 and TinySTM can be used
to prove that RSTM with RedoLock backend is strongly
progressive.

Theorem 7 RSTM with the RedoLock backend is strongly
progressive.

McRT-STM. The algorithm of McRT-STM (as described
in [2]) is essentially the same as the one of TinySTM, ex-
cept that McRT-STM does not validate reads until the
commit time of a transaction (and so the timestamp-
based read validation technique is not necessary). McRT-
STM also does not handle timestamp overflows. Hence,
as McRT-STM uses CAS for locking, it is immediate that
McRT-STM is strongly progressive.

Theorem 8 McRT-STM is strongly progressive.

Visible reads. It may seem that the simplest way of im-
plementing a strongly progressive TM that uses visible
reads is to use read-write try-locks. Then, if a transac-
tion Ti wants to read a t-variable x, Ti must first acquire a
shared (read) try-lock on x, and if Ti wants to write to x,
Ti must acquire an exclusive (write) try-lock on x. How-
ever, this simple algorithm does not ensure strong pro-
gressiveness, even if the read-write try-locks are (in some
sense) strong. Consider transactions Ti and Tk that read
a t-variable x. Clearly, both transaction acquire a shared
lock on x. But then, if both Ti and Tk want to write to x,
it may happen that both get aborted. This is because a
transaction Tk cannot acquire an exclusive try-lock on x if
any other transaction holds a shared try-lock on x.

A simple way to implement a strongly progressive TM
with invisible reads is to use (standard) try-locks. Then,
only the writing to a t-variable x requires acquiring a try-
lock on x. A transaction that wants to reads x simply
adds itself to the list of readers of x (if the try-lock of x
is unlocked). This list, however, is not used to implement
a read-write try-lock semantics, but to allow a transac-
tion that writes to x to invalidate and abort all the current
readers of x. Such a TM can be verified to be strongly
progressive using our reduction theorem. A separate re-
duction theorem, based on read-write try-locks, is thus
not necessary, and would probably be incorrect (trying to
provide such a theorem allowed us to discover this ambi-
guity).

5 The Power of a Lock-Based TM

In this section, we use our semantics to determine the
computational power of lock-based TMs. We use the no-
tion of consensus number [13] as the metric of power of an
object. The consensus number of an object x is defined as
the maximum number of processes for which one can im-
plement a wait-free consensus object using any number of
instances of x (i.e., objects of the same type as x) and reg-
isters. A consensus object, intuitively, allows processes to
agree on a single value chosen from the values those pro-
cesses have proposed. More formally, a consensus object
implements a single operation: propose(v). When a pro-
cess pi invokes propose(v), we say that pi proposes value v.
When pi is returned value v′ from propose(v), we say that
pi decides value v′. Every consensus object ensures the
following properties in every execution: (1) no two pro-
cesses decide different values (agreement), and (2) every
value decided is a value proposed by some process (va-
lidity).

According to [13], if an object x has consensus num-
ber k, then one cannot implement x using objects with
consensus number lower than k. For example, a queue
and test-and-set have consensus number 2, and so they
cannot be implemented from only registers (which have
consensus number 1).

We prove here that the consensus number of a strongly
progressive TM is 2. We do so in the following way. First,

8

we prove that a strongly progressive TM is computation-
ally equivalent to a strong try-lock. That is, one can im-
plement a strongly progressive TM from (a number of)
strong try-locks and registers, and vice versa. Second, we
determine that the consensus number of a strong try-lock
is 2.

The equivalence to a strong try-lock is interesting in its
own right. It might also help proving further impossibil-
ity results as a strong try-lock is a much simpler object to
reason about than a lock-based TM.

5.1 Equivalence between Lock-Based TMs
and Try-Locks

To prove that a strongly progressive TM is (computation-
ally) equivalent to a strong try-lock, we exhibit two al-
gorithms: Algorithm 1 that implements a strong try-lock
from a strongly progressive TM object and a shared mem-
ory register, and Algorithm 2 that implements a strongly
progressive TM from a number of strong try-locks and
registers. Both algorithms are not meant to be efficient or
practical: their sole purpose is to prove the equivalence
result.

The intuition behind Algorithm 1 is the following. We
use an unbounded number of binary t-variables x1, x2, . . .
(each initialized to false) and a single register V holding
an integer (initialized to 1). If the value of V is v, then
the next operation (trylock or unlock) will use t-variable
xv. If xv equals true, then the lock is locked. A process
pi acquires the lock when pi manages to execute a trans-
action Tk that changes the value of xv from false to true.
Then, pi releases the lock by incrementing the value of
register V, so that xv′ = false where v′ is the new value
of V. (Note that incrementing V in two steps is safe here,
as only one process—the one that holds the lock—may
execute lines 2–12 at a time.) The implemented try-lock
is strong because whenever several processes invoke try-
lock, at least one of those processes will commit its trans-
action (as the TM is strongly progressive) and acquire the
try-lock.

Lemma 9 Algorithm 1 implements a strong try-lock.

Proof. We need to show that Algorithm 1, which we de-
note by A, is wait-free, ensures mutual exclusion, and im-
plements a try-lock that is strong.

First, because there is no loop in A, and because both
the TM object M and the register V are wait-free, algo-
rithm A implements a wait-free object.

To prove mutual exclusion, observe that if several pro-
cesses invoke operation trylock implemented by A and
read the same value v in line 2, then, because TM object
M ensures opacity, only one of them can commit a trans-
action that changes the value of t-variable xv from false
to true. Hence, only one of those processes can return
true from the operation, i.e., acquire the try-lock. Observe
also that only a process that holds the try-lock and then
invokes operation unlock can change the value of register
V. Hence, mutual exclusion is ensured.

Algorithm 1: An implementation of a strong try-lock
from a strongly progressive TM object (k is a unique
transaction identifier generated for every operation
call)

uses: M—TM object, x1, x2, . . .—binary t-variables,
V—register

initially: x1, x2, . . . = false, V = 1

operation trylock1

v← V.read;2

locked← M.treadk(xv);3

if locked = Ak or locked = true then return false;4

s← M.twritek(xv, true);5

if s = Ak then return false;6

s← M.tryCk;7

if s = Ak then return false;8

else return true;9

operation unlock10

v← V.read;11

V.write(v + 1);12

return ok;13

If a process pi acquires a try-lock L implemented by A,
then, by mutual exclusion, no process can acquire L and,
a fortiori, invoke unlock on L until pi invokes unlock on
L. However, the operation unlock of pi is not visible to
other processes until pi changes the value of V in line 12.
Hence, only one process can execute lines 11–12 at any
time, and so incrementing V in those lines is atomic.

This means that if L is unlocked and the value of V is
v then xv = false. Thus, if L is unlocked and several pro-
cesses invoke trylock on L, then, by strong progressive-
ness of M, one of them, say pi, observes in a transaction
Tk that xv = false, sets xv to true, and commits Tk. Hence,
pi acquires L, and so L is a strong try-lock. �

The intuition behind Algorithm 2 is the following. We
use a typical two-phase locking scheme with eager up-
dates, optimistic (invisible) reads, and incremental val-
idation (this can be viewed as a simplified version of
TinySTM that explicitly uses strong try-locks). Basically,
whenever a transaction Ti invokes operation write on a
t-variable x for the first time, Ti acquires the correspond-
ing try-lock Lx (line 13) and marks x as locked (line 21).
Then, Ti may update the state of x in TVar[x] any number
of times. The original state of x is saved by Ti in oldval[x],
so that if Ti aborts then all the updates of t-variables done
by Ti can be rolled back (line 39). If, at any time, Ti fails to
acquire a try-lock, Ti aborts. This ensures freedom from
deadlocks.

If Ti invokes operation read on a t-variable y that Ti
has not written to before, Ti reads the current value of
y (line 2) and validates itself (function validate). Valida-
tion ensures that none of the t-variables that Ti read so
far has changed or has been locked, thus preventing Ti
from having an inconsistent view of the system. If vali-
dation fails, Ti is aborted. Because values written to any

9

Algorithm 2: An implementation of a strongly pro-
gressive TM from strong try-locks and registers
uses: Lx—strong try-lock (for each t-variable x),

TVar—array of registers (other variables are
local)

initially: TVar[x] = (0, 0, false) for each t-variable x,
rset = wset = ∅

operation treadk(x)1

(v, ts, locked)← TVar[x].read;2

if x ∈ wset then return v;3

if x /∈ rset then4

readts[x]← ts;5

rset← rset∪ {x};6

if (not validate) or locked then7

abort;8

return Ak;9

return v;10

operation twritek(x, v)11

if x /∈ wset then12

locked← Lx.trylock;13

if not locked then14

abort;15

return Ak;16

(v′, ts, locked)← TVar[x].read;17

if x /∈ wset then18

oldval[x]← v′;19

wset← wset∪ {x};20

TVar[x].write(v, ts, true);21

return ok;22

operation tryCk23

if not validate then24

abort;25

return Ak;26

for x ∈ wset do27

(v, ts, locked)← TVar[x].read;28

TVar[x].write(v, ts + 1, false);29

Lx.unlock;30

wset← rset← ∅;31

return Ck;32

operation tryAk33

abort;34

return Ak;35

function abort36

for x ∈ wset do37

(v, ts, locked)← TVar[x].read;38

TVar[x].write(oldval[x], ts, false);39

Lx.unlock;40

wset← rset← ∅;41

function validate42

for x ∈ rset do43

(v, ts, locked)← TVar[x];44

if (locked and x /∈ wset) or ts 6= readts[x] then45

return false;46

return true;47

t-variable are not guaranteed to be unique, and because,
in our simplified model, a try-lock does not have an oper-
ation that would read its state, we store with the state of
each t-variable x a (unique) timestamp (version number)
of x and a locked flag that is set to true if x is being written
to by some transaction. The timestamps and locked flags
are used for validation.

To commit a transaction Ti, the algorithm first validates
Ti (line 24). Then, for each t-variable x written to by Ti,
the timestamp of x is incremented by 1, the locked flag of
x is set to false (line 29), and finally the try-lock Lx of x
is unlocked (line 30). Aborting Ti requires rolling back
all the updates done by Ti (line 39) and unlocking all the
try-locks acquired by Ti (line 40).

Lemma 10 Algorithm 2 implements a strongly progressive
TM.

Proof. Denote Algorithm 2 by A, and by M—an object im-
plemented by A. Observe first that A is wait-free, because
it contains no unbounded loops or waiting statements
and because all the objects (try-locks and registers) used
by A are wait-free. It is also straightforward to see that
every implementation history E of A is its own strong try-
lock extension, i.e., E ensures properties STLE1–4. Hence,
M is strongly progressive.

Let us prove that A ensures opacity. Let Ti be any trans-
action, and x—any t-variable. We say that Ti: (1) reads x
if Ti executes line 2 for x and does not abort after the
subsequent validation in line 7, (2) locks x if Ti executes
line 21 for x, (3) commits x if Ti executes line 29 for x, and
(4) aborts x if Ti executes line 39 for x.

Observe first that if Ti writes value v to x, then the sub-
sequent read operations of Ti on x will return v. Also, if
Ti locks x, then no other transaction can read any value
from x until Ti commits or aborts x, and so only the last
value written to x by Ti may be read by other transac-
tions. Hence, we can consider only those histories of A
in which a transaction Ti that writes to a t-variable x does
not invoke any further operations on x.

Let E be any such implementation history of A. Let Ti
be any transaction in E. Whenever Ti reads a t-variable
x, Ti re-reads (validates) all the t-variables that Ti read
so far, including x. Hence, Ti always observes a consis-
tent state of t-variables: if any validation fails, Ti is im-
mediately aborted without being returned the inconsis-
tent new value. This means that read operations of Ti are
atomic: they appear as if they took place instantaneously
at some time t in E. Moreover, this time t must be some-
where within the lifespan of Ti, because Ti observes up-
dates of transactions that committed before Ti started.

If Ti is a transaction in E that has not committed any
t-variable, then A ensures that no value written to any
t-variable by Ti is visible to other transactions. That is
because of the following. First, a transaction Tk may
read a t-variable x only if Tk reads in line 2 a value with
locked field set to false. Second, whenever Ti writes to a t-
variable x, Ti always writes to TVar[x] a value with locked

10

field set to true (line 21), and then, inside function abort,
Ti restores the value of TVar[x] to the original one, with
locked field set to false(line 39).

As the reads of every transaction are atomic, and the
writes of every transaction that has not committed any t-
variable are not visible to other transactions, we can focus
only on those transactions in E that have committed at
least one t-variable.

Let Ti be any transaction in E that has committed at
least one t-variable. We denote by t(Ti) the longest period
(t1, t2), such that Ti does not read or lock any t-variable
after t1, and Ti has not invoked function validate in line 24
by t2. If Ti reads x, then no transaction can commit x
in t(Ti); otherwise, the validation of Ti that follows t(Ti)
would fail and Ti would not commit any t-variable. This
also means that no transaction Tk other than Ti that com-
mits x in E can lock x during t(Ti), and if Tk locks x before
t(Ti), then Tk must also commit x before t(Ti); otherwise,
Ti would observe in its validation phase after t(Ti) that ei-
ther x is locked or x has been committed, and so Ti would
abort. If Ti locks x, then no transaction can lock or com-
mit x in t(Ti), because try-lock L(x) is held by Ti during
t(Ti).

Therefore, if a transaction Ti (that commits some t-
variable) reads or commits a t-variable x, and a transac-
tion Tk commits x, then t(Ti) and t(Tk) do not overlap.
Hence, Ti appears to execute atomically either before Tk
or after Tk. Thus, transactions that commit at least one
t-variable are also atomic.

�
From Lemma 9 and Lemma 10, we immediately ob-

tain the following result (recall that an object x is (com-
putationally) equivalent to an object y, if y can be imple-
mented from any number of instances of x and registers,
and x can be implemented from any number of instances
of y and registers):

Theorem 11 Every strongly progressive TM is equivalent to
a strong try-lock.

5.2 Consensus Number of Strong Try-Locks

To prove that the consensus number of a strong try-lock
is 2, we show that (1) a strong try-lock can implement
consensus in a system of 2 processes, and (2) there is no
algorithm that implements consensus using (any num-
ber of) strong try-locks and registers in a system of 3 (or
more) processes.

Algorithm 3 shows an implementation of consensus for
two processes (p1 and p2) using a single strong try-lock
(L) and two registers (V1 and V2). The process pi that
acquires L is the winner: the value proposed by pi, and
written by pi to register Vi, is decided by both p1 and p2.
Because L is a strong try-lock, if both processes concur-
rently execute operation propose, at least one of them ac-
quires L. Because no process ever unlocks L, at most one
process acquires L. Hence, exactly one process is the win-
ner.

Algorithm 3: An implementation of wait-free consen-
sus from a strong try-lock in a system of 2 processes
(code for process pi, i = 1, 2)

uses: L—strong try-lock, V1, V2—registers

operation propose(v)1

Vi.write(v);2

locked← L.trylock;3

if locked then return v;4

else return V(3−i).read;5

Lemma 12 Algorithm 3 implements wait-free consensus in a
system of 2 processes.

Proof. Denote Algorithm 3 by A. First, A is a wait-free
implementation, because it does not contain any loop or
waiting statement, and the base objects used by A (L, V1,
and V2) are wait-free.

Second, a value returned by operation propose executed
by a process pi may be either the value proposed by pi (in
which case validity is trivially ensured) or the value of
register V(3−i). The latter case is possible only if pi is re-
turned false from operation trylock on L, and this, in turn,
is only possible if process p(3−i) is concurrently execut-
ing trylock on L. Then, however, p(3−i) must have already
written its proposed value to V(3−i), and so also in this
case validity is ensured at pi.

Finally, assume, by contradiction, that there is some im-
plementation history E of A in which agreement is vio-
lated. That is, process p1 decides value v1 and p2 decides
value v2 6= v1. But then both processes must have ei-
ther returned true or false from operation trylock on L. If
p1 and p2 both return true from trylock, then both pro-
cesses hold L, which violates mutual exclusion. If p1 and
p2 both return false from trylock, then, as there is no other
invocation of trylock on L, this means that try-lock L is not
strong. Hence, agreement must be ensured. �

To prove that there is no algorithm that implements
consensus using strong try-locks and registers in a sys-
tem of 3 (or more) processes, we show in Algorithm 4
that a strong try-lock can be implemented from a single
test-and-set object.6 Because a test-and-set object has con-
sensus number 2, the algorithm proves that a strong try-
lock cannot have consensus number higher than 2. Note
that the presented algorithm is a non-blocking version of
a simple and well-known TAS lock [24]. The following
lemma is thus trivial to verify:

Lemma 13 Algorithm 4 implements a strong try-lock.

From Lemma 12 and Lemma 13, we immediately ob-
tain the following result:

Theorem 14 A strong try-lock has consensus number 2.

6A test-and-set object has two operations: test-and-set, which atomi-
cally reads the state of the object, sets the state to true, and returns the
state read, and reset, which sets the state to false.

11

Algorithm 4: An implementation of a strong try-lock
from a test-and-set object
uses: S—test-and-set object
initially: S = false

operation trylock1

locked← S.test-and-set;2

return ¬ locked;3

operation unlock4

S.reset;5

Hence, by Theorem 11 and Theorem 14, the following
theorem holds:

Theorem 15 Every strongly progressive TM has consensus
number 2.

Corollary 16 There is no algorithm that implements a
strongly progressive TM using only registers.

5.3 Weakening Strong Progressiveness

Interestingly, nailing down precisely the progress prop-
erty of a lock-based TM also helps consider alternative
semantics and their impacts. We discuss here how one
has to weaken the progress semantics of a lock-based TM
so that it could be implemented with registers only. We
define a property called weak progressiveness that enables
(lightweight) TM implementations with consensus num-
ber 1.

Intuitively, a TM is weakly progressive if it can force-
fully abort a transaction Ti only if Ti has a conflict with
another transaction. More precisely:

Definition 17 A TM implementation M is weakly progres-
sive, if in every history H of M the following property is sat-
isfied: if a transaction Ti ∈ H is forcefully aborted, then Ti
conflicts with some transaction in H.

We correlate this notion with the concept of a weak try-
lock: a try-lock which operation trylock executed by a pro-
cess pi may always return false if another process is con-
currently executing trylock on the same try-lock object.
That is, pi is guaranteed to acquire a weak try-lock L only
if L is not locked and no other process tries to acquire L
at the same time. More precisely:

Definition 18 We say that a try-lock L is weak if L has the
following property: if a process pi invokes trylock on L at some
time t, L is not locked at t, and no process other than pi executes
operation trylock on L at time t or later, then pi is returned
true.

While we do not know of any existing implementation
of a weak try-lock, such an implementation can be eas-
ily obtained from several well-known (blocking) mutual

exclusion algorithms, e.g., those proposed in [18] that en-
sure at least the shutdown safety property introduced in
the same paper.

An example implementation of a weak try-lock using
only registers, similar in concept to some of the lock im-
plementations in [18], is given in Algorithm 5. The intu-
ition behind the algorithm is the following. If a process
pi invokes operation trylock on a try-lock L implemented
by the algorithm, pi first checks whether any other pro-
cess holds L (lines 2–3). If not, pi announces that it wants
to acquire L by setting register R[i] to 1 (line 4). Then, pi
checks whether it is the only process that wants to acquire
L (lines 5–6). If yes, then pi acquires L (returns true). Oth-
erwise, pi resets R[i] back to 0 (so that future invocations
of trylock may succeed) and returns false. Clearly, if two
processes execute trylock in parallel, then both can reach
line 6. However, then at least one of them must observe
that more than one register in array L is set to 1, and re-
turn false.

Lemma 19 Algorithm 5 implements a weak try-lock.

Proof. Denote Algorithm 5 by A, and by L—a try-lock ob-
ject implemented by A. First, it is straightforward to see
that A is wait-free: it does not have any loops or waiting
statements and all base objects used by A are wait-free.

Assume, by contradiction, that A does not ensure mu-
tual exclusion. Hence, there is an implementation history
E of A in which some two processes, say pi and pk, hold L
at some time t. Consider only the latest trylock operations
of pi and pk on L before t. Both of those operations must
have returned true. Process pi observes that R[k] = 0 in
line 5, and so pi reads R[k] before pk writes 1 to R[k] in
line 4. Hence, pk reads R[i] (in line 5) after pi writes 1 to
R[i]. Thus, pk reads that R[i] and R[k] equal 1 and returns
false in line 6—a contradiction.

It is easy to see that, for any process pi, if R[i] = 1 then
either pi holds L or pi is executing operation trylock on
L. Hence, if a process pi returns false from trylock, then
either L is held by another process or another process is
executing trylock concurrently to pi. This means that L is
a weak try-lock. �

From Lemma 19, we obtain the following result:

Theorem 20 A weak try-lock has consensus number 1.

It is straightforward to see that using weak try-locks in-
stead of strong ones in the TM implementation shown in
Algorithm 2 gives a TM that ensures weak progressive-
ness. Hence, by Theorem 20, we immediately prove the
following result:

Theorem 21 Every weakly progressive TM has consensus
number 1.

6 Performance Trade-Off

We prove that the space complexity of every weakly
(and, a fortiori, strongly) progressive TM that uses in-

12

Algorithm 5: An implementation of a weak try-lock
using registers (code for process pi)

uses: R[1, . . . , n]—array of registers
initially: R[k] = 0 for k = 1, . . . , n

operation trylock1

s← getsum;2

if s > 0 then return false;3

R[i].write(1);4

s← getsum;5

if s = 1 then return true;6

R[i].write(0);7

return false;8

operation unlock9

R[i].write(0);10

return ok;11

function getsum12

s← 0;13

for k = 1 to n do s← s + R[k].read;14

return s;15

visible reads is at least exponential with the number
of t-variables available to transactions. The invisible
reads strategy is used by a majority of TM implementa-
tions [4, 20, 12, 2, 7] as it allows efficient optimistic read-
ing of t-variables. Intuitively, if invisible reads are used,
a transaction that reads a t-variable does not write any
information to base objects. Hence, many processors can
concurrently execute transactions that read the same t-
variables, without invalidating each other’s caches and
causing high traffic on the inter-processor bus. However,
transactions that update t-variables do not know whether
there are any concurrent transactions that read those vari-
ables.

6.1 Semantics of Invisible Reads

We state our lower bound result assuming a simpli-
fied definition of the notion of invisible reads. This is
sufficient for our lower bound proof, and is in agree-
ment with what is ensured by various TM implementa-
tions [4, 20, 7]. Intuitively, we say that a TM implementa-
tion M uses invisible reads, if it does not modify the state
of any base object when processing a read operation on
any t-variable.

We capture this more precisely using the notion of a
configuration. A configuration is the state of all base ob-
jects at a given point in time. Assuming that the initial
state of base objects is fixed, and that base objects are de-
terministic, the configuration after any implementation
history E can be precisely determined.

Let E be any implementation history of a TM. We de-
fine an operation execution of a process pi in E to be any
pair of (a) an invocation of operation tread or twrite and
(b) the subsequent response of this operation in the sub-

history E|pi. If e is an operation execution of some pro-
cess pi in E, then every step in E|pi between the invoca-
tion and the response of e is said to be corresponding to e.

Definition 22 A TM implementation M uses invisible
reads if, for every implementation history E of M, no step cor-
responding to an execution of operation tread in E changes the
configuration.

6.2 The Lower Bound

The size of a t-variable or a base object x can be defined
as the number of distinct, reachable states of x. In partic-
ular, if x is a t-variable or a register object, then the size
of x is the number of values that can be written to x. For
example, the size of a 32-bit register is 232.

Theorem 23 Every weakly progressive TM implementation
that uses invisible reads and provides to transactions Ns t-
variables of size Ks uses Ω

(
Ks

Ns /Kb

)
base objects of size Kb.

Proof. Let M be any weakly progressive TM implementa-
tion that uses invisible reads and provides Ns t-variables
of size Ks. Assume that M uses Nb base objects of size Kb.
Clearly, if Kb = ∞ or Nb = ∞, the theorem trivially holds.
Assume then, that Kb and Nb are finite numbers. Also, if
Ks = ∞ or Ns = ∞, then one obviously needs either an
infinite number of base objects, or a base object of infinite
size to store the states of all the t-variables provided by I.
In either case, the theorem trivially holds. Hence, assume
that Ks and Ns are finite numbers.

Let x1, . . . , xNs be the t-variables provided by M. For
simplicity, but without loss of generality, assume that ev-
ery t-variable xk has the same domain of values D (|D| =
Ks). Let S = {s1, s2, . . . , sL} (L = Ks

Ns) be the set of all
tuples (v1, . . ., vNs), where each value vm, m = 1, . . . , Ns,
is in D. We say that a transaction Tk writes tuple s ∈ S,
if Tk writes to every t-variable xm, m = 1, . . . , Ns, the mth

value from s.
Let U be the set of all implementation histories of M, in

which process p1 executes infinitely many transactions,
each of which writes a tuple from set S and commits, and
no other process takes steps. Note that no transaction
can be forcefully aborted in any implementation history
E ∈ U, because all transactions in E are executed by a
single process, and so no two transactions in E are con-
current. Let Q be the set that contains a configuration
after every complete prefix of every implementation his-
tory from set U. (A prefix E′ of an implementation history
E is complete if every transaction in E′ is either commit-
ted or aborted.)

Consider a set of configurations W ⊆ Q, and two con-
figurations c and c′ in W. We write c→W c′, if there exists
an implementation history E ∈ U, a complete prefix Et of
E, and a complete prefix Ef of Et, such that the configu-
ration after Ef is c, the configuration after Et is c′, and a
configuration after every complete prefix of Et that con-
tains Ef is in set W.

13

Let si be a tuple in set S. We denote by C∗(si) the set of
configurations in Q that occur after any complete prefix
E of any implementation history in U, such that the last
transaction in E writes tuple si. Clearly, if E is a finite,
complete implementation history of M the configuration
after which is in C∗(si), and E′ is an extension of E, in
which no transaction writes to any t-variable after E, then
every read operation on a t-variable xj invoked after E
must return the jth value from tuple si; otherwise the real-
time ordering required by opacity would be violated.

Let Si = {si, . . . , sL} ⊆ S, where i = 1, . . . , L. We prove
the following claim:

Claim 24 There exist subsets Q1, . . ., QL of Q, such that
QL ⊂ . . . ⊂ Q1, and the following conditions are satisfied
by every set Qk, k = 1, . . . , L:

1. For every tuple s ∈ Sk, C∗(s) ∩Qk 6= ∅,

2. For every tuple s ∈ S− Sk, C∗(s) ∩Qk = ∅, and

3. For every pair of configurations c, c′ ∈ Qk, c→Qk c′.

Proof. Consider an implementation history E ∈ U
constructed in the following way (all transactions in E
are executed by process p1 and are committed; initially
round = 1):

1. Transaction Tround
L,0 writes tuple sL.

2. For setnum ← L, . . . , 1 the following scenario is re-
peated:

(a) Transaction Tround
setnum,1 writes tuple ssetnum. Denote

by cround
setnum,1 the configuration after Tround

setnum,1 is ex-
ecuted.

(b) Let G be a finite sequence of tuples in set Ssetnum,
such that if a sequence of transactions is exe-
cuted, each writing the subsequent tuple from
G, then the resulting configuration is the same
as cround

setnum,1.

• If no such sequence G exists, denote by
f round the current value of setnum, increase
round by 1, and go back to step 1.

• If such G exists, execute a sequence of
transactions Tround

setnum,2, . . . , Tround
setnum,m, m =

|G| + 1, each writing the subsequent tu-
ple from G. Clearly, the configuration after
Tround

setnum,m is executed is the same as cround
setnum,1.

Note first that because process p1 executes transactions in
E alone, and M is weakly progressive, no transaction in
E can be forcefully aborted. Thus, E indeed contains only
committed transactions. Note also that in each round q
(i.e., for each round = q) transactions write tuples only
from set S f q (or S in the last round). That is because each
set Si is a superset of every set Sk, where k = i + 1, . . . , L,
and SL = {sL}.

Let us show that E is finite, i.e., that the above algo-
rithm always terminates. By contradiction, assume that E

is infinite. Denote by cround
L,k , k = 0, 1, . . ., the configuration

after transaction Tround
L,k is executed in E. As the number

of configurations is finite, there must be some two trans-
actions Tq

L,0 and Tw
L,0 in E, q < w, such that the configura-

tions cq
L,0 and cw

L,0 are the same. Let m, q ≤ m < w, be a
value for which f m is minimal. Because f m is a minimal
value of f q, . . . , f w−1, all transactions between Tq

L,0 and
Tw

L,0 (including Tq
L,0 and Tw

L,0) write tuples from set S f m .
Note also that, by the definition of value f m, a sequence
G of tuples could not be found in step 2b of the algorithm
after transaction Tm

f m ,1 was executed.
Consider the sequence W of transactions executed af-

ter transaction Tm
f m ,1 and up to, and including, transaction

Tw
L,0 in E. Sequence W, in which all transactions write tu-

ples from set S f m , changes the configuration from cm
f m ,1 to

cw
L,0 = cq

L,0. Hence, a sequence G of tuples that satisfies
the condition in step 2b of the algorithm after transaction
Tm

f m ,1 is executed exists, and we reach a contradiction.
Let t be the value of round at which the algorithm ter-

minated. Let Qk, k = 1, . . . , L, be the set of configurations
after every complete prefix of E that contains transaction
Tt

L,0 and does not contain transaction Tt
k−1,1. It is straight-

forward to see that each set Qk satisfies the conditions in
the claim:

1. Every configuration ct
m,1, m = k, . . . , L, is in set Qk

and must be in set C∗(sm) because transaction Tt
m,1

writes tuple sm.

2. No configuration in Qk can be in any set C∗(si),
i = 1, . . . , k− 1, because no transaction after and in-
cluding Tt

L,0 and before Tt
k−1,1 in E writes tuple si.

3. Let sq1 , . . . , sqm be the sequence of respective tuples
written by transactions executed after Tt

L,0 and before
transaction Tt

k−1,1 in E. Let c be the configuration af-
ter a transaction T that writes tuple sqk , and c′ be the
configuration after a transaction T′ that writes tuple
sqj (we assume that both T and T′ are between Tt

L,0
and Tt

k−1,1 in E). Clearly, both c and c′ are in set Qk. If
T precedes T′, then a sequence of transactions (exe-
cuted by process p1) that write, subsequently, tuples
sqj+1 , . . . , sqk changes the configuration from c to c′. If
T′ precedes T, then a sequence of transactions that
write, subsequently, tuples sqk+1 , . . . , sm, sq1 , . . . , sqj

changes the configuration from c to c′. In either case,
we have that c→Qk c′.

�
If c is a configuration and b is any base object, then we

denote by c(b) the state of b in configuration c. If c1, . . .,
ct are configurations, then C(c1, . . . , ct) denotes the set of
configurations, such that c ∈ C(c1, . . . , ct) if, for every
base object b, c(b) ∈ {c1(b), . . ., ct(b)}. We prove the
following claim:

Claim 25 For every tuple si ∈ S, i < L, every k ∈ {i +
1, . . . , L}, and every subset {c1, . . ., ct} of Qk, C(c1, . . . , ct)∩
C∗(si) = ∅.

14

Proof. By contradiction, assume that there exists a tu-
ple si ∈ S, a configuration c ∈ C∗(si), a value k ∈
{i + 1, . . . , L}, and a subset {c1, . . ., ct} of Qk, such that
c ∈ C(c1, . . . , ct). Consider an infinite implementation
history Ek ∈ U, in which process p1 executes infinitely
many transactions, such that (1) every configuration in
Qk occurs after infinitely many complete prefixes of Ek,
and (2) there exists a finite prefix Ep

k of Ek such that the
configuration after every prefix of Ek that contains Ep

k is
in set Qk. By Claim 24, such an implementation history
Ek indeed exists. Let E′k be an implementation history of
M, such that E′k|p1 = Ek, in which process p2 executes a
single transaction T0, started after Ep

k , that reads from all
t-variables. We will lead to a contradiction by showing
that there exists such an interleaving of steps of p1 and
p2 in E′k for which T0 is not forcefully aborted before T0
invokes tryC0, and for which T0 is returned values from
tuple si /∈ Sk. This means that opacity is violated in E′k
because si is not written by any transaction in E′k after Ep

k
(as C∗(si) ∩Qk = ∅).

We construct E′k in the following way. Before each step
of p2, we make p1 execute and complete a number of
transactions, such that p2 always observes the states of
base objects as in configuration c. More precisely, if p2 is
about to access a base object b in its next step, we make
p1 execute and complete transactions, until the system
reaches a configuration c′, such that c′(b) = c(b). This
is possible, because of the following:

1. By our assumption, for each base object b′, there
exists a configuration c′ ∈ {c1, . . ., ct}, such that
c′(b′) = c(b′).

2. The set {c1, . . ., ct} is a subset of Qk, and every con-
figuration in Qk occurs infinitely many times in Ek.

3. Until p2 changes the state of any base object, E′k is
indistinguishable for p1 from Ek (i.e. ,p1 executes
the same steps and receives the same responses in
E′k as in Ek), and so p1 changes the configuration in
the same way in both Ek and E′k.

4. E′k is indistinguishable for p2 from an implementa-
tion history in which p2 executes steps alone, starting
from configuration c (i.e., in which p1 first executes a
series of transactions, the last of which writes tuple
si, leaving the system in configuration c ∈ C∗(si),
and then p2 executes T0 alone until tryC0). Thus,
as M is weakly progressive, T0 cannot be forcefully
aborted before tryC0. Moreover, as M uses invisible
reads, p2 does not change the state of any base object
until T0 invokes tryC0.

In E′k, T0 reads from all t-variables, and, as p2 observes a
configuration from set C∗(si), T0 is returned values from
tuple si that is never written in E′k after prefix Ep

k —a con-
tradiction with opacity. �

If c is a configuration in C∗(sk), k < L, then we de-
note by Ik(c) the set of pairs (bl , vq), where bl is a base

object and vq is a state of bl , such that (1) c(bl) = vq, and
(2) c′(bl) 6= vq for every c′ ∈ Qk+1.

Claim 26 For every tuple sk, k < L, and every configuration
c ∈ C∗(sk), Ik(c) 6= ∅.

Proof. The proof follows directly from Claim 25: if it was
that Ik(c) = ∅ for some k < L and c ∈ C∗(sk), it would
mean that configuration c is also in set C(c1, . . . , ct), for
some configurations c1, . . ., ct ∈ Qk+1. �

Claim 27 For every 1 < k < L, there is a configuration c ∈
C∗(sk) and a pair (bl , vq) ∈ Ik(c), such that (bl , vq) /∈ Im(c′)
for every m < k and every c′ ∈ C∗(sm).

Proof. Consider any k, 1 < k < L. By the properties of set
Qk, there exists a configuration c ∈ C∗(sk) that is also in
Qk. Furthermore, there is no m < k for which C∗(sm) ∩
Qk 6= ∅. Thus, c /∈ C∗(sm) for every m < k. By Claim 26,
Ik(c) 6= ∅. Let (bl , vq) be some element of Ik(c). Clearly,
c(bl) = vq. But for every m < k, every configuration
c′ ∈ C∗(sm) and every pair (b′l , v′q) ∈ Im(c′), c(b′l) 6= v′q
because c ∈ Qk ⊆ Qm+1. Thus, (bl , vq) /∈ Im(c′). �

By Claim 26 and Claim 27, we have that there is at least
as many unique pairs (bl , vq), where bl is a base object
and vq is a state of bl , as tuples in S. Thus, M needs at
least L/Kb = Ks

Ns /Kb base objects. �

6.3 Overcoming the Lower Bound

Our lower bound relies on three properties of a TM: weak
progressiveness, operation wait-freedom, and invisible
reads. It could seem that weakening (reasonably) any
of those properties would allow overcoming the lower
bound. We explain (informally) in the following para-
graphs why this is not the case, and what has to be done
in order for the lower bound not to hold.

Consider the following progress property, which is
strictly weaker than weak progressiveness: if a transac-
tion Ti is forcefully aborted, then there must be a trans-
action concurrent to Ti. We say that a TM that ensures
this property is non-trivial—indeed, this seems like a ba-
sic requirement for a TM. However, non-trivial TMs do
not overcome the complexity bound if they ensure oper-
ation wait-freedom and use invisible reads. Basically, in
the proof of Theorem 23, transactions executed by pro-
cesses p1 and p2 are not aware of any concurrent trans-
actions, and so they will not be forcefully aborted in a
non-trivial TM.

Consider the following liveness property, which we
call termination: if a process pi invokes an operation on a
TM object, then pi eventually returns from the operation.
Clearly, termination is strictly weaker than wait-freedom.
Consider a TM that ensures weak progressiveness and
termination, and that uses invisible reads. Again, the
complexity lower bound holds for such a TM: as in the
proof of Theorem 23 process p1 and p2 is not aware of the
operations executed by the other process, no process can
block waiting for the other one to execute steps. Hence,

15

in the particular execution used in the proof, termination
would be sufficient.

Assume now that we allow a TM that uses invisible
reads to update the state of a constant number of base
objects in the first operation of every transaction, even if
this operation is a read. We say then that such a TM uses
weak invisible reads. Hence, each transaction is allowed
to announce its start. This means that, in the proof of
Theorem 23, process p1 can be aware of transaction T2
executed by process p2. However, if the transactions exe-
cuted by p1 and p2 access not all but almost all t-variables
(all except for a constant number), then p2 would not be
allowed (in general) to forcefully abort its transactions,
as there would be no guarantee that there is a conflict be-
tween those transactions and transaction T2.

This means that to overcome the lower bound we need
to weaken more than one property of the TM. For exam-
ple, TinySTM can be compiled with an option to enable
a mechanism that handles timestamp overflows. (With-
out such a mechanism TinySTM can violate opacity in
very long executions, as can TL2 or the LLT backend of
RSTM.) Then, TinySTM uses weak invisible reads and
may periodically violate both strong progressiveness and
operation wait-freedom. Roughly speaking, once a trans-
action overflows a version number of a t-variable x, all
transactions that access x are aborted, and all transactions
that start afterwards are blocked on a barrier. Once there
is no running transaction, the version number of x can
be reset and transactions can proceed. This means that
TinySTM ensures strong progressiveness and operation
wait-freedom between timestamp overflows, but when
an overflow happens the TM becomes only non-trivial
and its operation-level liveness is reduced to termination.

7 Concluding Remarks

The two major assumptions we made in this paper were
that t-variables support only read and write operations,
and that the mapping between t-variables and corre-
sponding try-locks is a one-to-one relation. We discuss
here how those assumptions can be relaxed (at the price
of increasing the complexity of the model and defini-
tions). We also discuss the problem of model checking
TMs for strong progressiveness.

Arbitrary t-variables. Object-based TMs support t-
variables of arbitrary type. However, most of them clas-
sify all the operations of t-variables as either read-only or
update ones. In those cases, there is no need to extend our
simplified model, because read-only operations are effec-
tively reads, and update operations are effectively pairs of
reads and writes.

We can, however, imagine a TM that exploits the
commutativity relations between some operations of t-
variables of any type. In this case, one can extend the
model of a TM to allow for arbitrary operations on t-
variables, and redefine the notion of a conflict. Indeed,

operations that commute should not conflict. Consider
for example a counter object and its operation inc that in-
crements the counter and does not return any meaning-
ful value. It is easy to see that there is no real conflict be-
tween transactions that concurrently invoke operation inc
on the same counter: the order of those operations does
not matter and is not known to transactions (it would be,
however, if inc returned the current value of the counter).

Once the notion of a conflict is defined, our definitions
of progress properties remain correct even for t-variables
with arbitrary operations. If we assume that a TM must
support t-variables with operations read and write (in ad-
dition to other t-variables), then also the consensus num-
ber and complexity lower bound results hold for those
TMs. However, the question of how to verify strong
progressiveness of TM implementations with arbitrary t-
variables is an open problem.

Arbitrary t-variable to try-lock mappings. Many lock-
based TMs employ a hash function to map a t-variable
to the corresponding try-lock. It may thus happen that a
false conflict occurs between transactions that access dis-
joint sets of t-variables, and so, a priori, strong progres-
siveness might be violated. However, it is easy to take
the hash function h of a TM implementation M into ac-
count in the definition of strong progressiveness. Basi-
cally, when a transaction Ti reads or writes a t-variable x
in a history H of M, we add to, respectively, the read set
(RSetH(Ti)) or the write set (WSetH(Ti)) of Ti not only x,
but also every t-variable y such that h(x) = h(y). The
definition of a conflict hence also takes into account false
conflicts between transactions, and the strong progres-
siveness property can be ensured by M. (Such a prop-
erty could be called h-based strong progressiveness.) It is
important to note, however, that the hash function must
be known to a user of a TM, or even provided by the user.
Otherwise, strong progressiveness (and, for that matter,
any other property that relies on the notion of a conflict)
would no longer be visible, and very meaningful, to a
user.

Model checking. While our reduction theorem simpli-
fies proving strong progressiveness of a TM implemen-
tation, it might still be difficult to verify this property in
an automatic manner. Indeed, even when verifying histo-
ries from the perspective of individual try-locks, we have
to deal with an unbounded number of states. A solution
would be to propose a reduction theorem along the lines
of [8], assuming that a TM implementation has certain
symmetry properties. Two problems arise then. First, one
has to express those properties in the fine-grained model
we use ([8] assumes operations like validate or commit to
be atomic). Second, one has to prove that a given TM
implementation ensures those properties, which is not al-
ways trivial (e.g., properties P6 and P7 in [8]). Both prob-
lems remain open.

16

References

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Seman-
tics of transactional memory and automatic mutual
exclusion. In Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2008.

[2] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R.
Murphy, B. Saha, and T. Shpeisman. Compiler and
runtime support for efficient software transactional
memory. In Proceedings of the ACM SIGPLAN 2006
Conference on Programming Language Design and Im-
plementation (PLDI), 2006.

[3] C. Blundell, E. C. Lewis, and M. M. K. Martin. Sub-
tleties of transactional memory atomicity semantics.
IEEE Computer Architecture Letters, 5(2), 2006.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional lock-
ing II. In Proceedings of the 20th International Sympo-
sium on Distributed Computing (DISC), 2006.

[5] R. Ennals. Software transactional memory should
not be obstruction-free. Technical Report IRC-TR-
06-052, Intel Research Cambridge Tech Report, Jan
2006.

[6] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger. The notions of consistency and predi-
cate locks in a database system. Commun. ACM,
19(11):624–633, 1976.

[7] P. Felber, T. Riegel, and C. Fetzer. Dynamic perfor-
mance tuning of word-based software transactional
memory. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), Feb 2008.

[8] R. Guerraoui, T. Henzinger, B. Jobstmann, and
V. Singh. Model checking transactional memories.
In Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation
(PLDI), 2008.

[9] R. Guerraoui and M. Kapałka. On obstruction-free
transactions. In Proceedings of the 20th ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA). ACM, June 2008.

[10] R. Guerraoui and M. Kapałka. On the correctness
of transactional memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), 2008.

[11] V. Hadzilacos. A theory of reliability in database sys-
tems. Journal of the ACM, 35(1):121–145, 1988.

[12] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Op-
timizing memory transactions. In Proceedings of the
ACM SIGPLAN 2006 Conference on Programming Lan-
guage Design and Implementation (PLDI), 2006.

[13] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems,
13(1):124–149, January 1991.

[14] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures.
In Proceedings of the 20th Annual International Sympo-
sium on Computer Architecture, pages 289–300, May
1993.

[15] M. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems,
12(3):463–492, June 1990.

[16] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking.
A transactional object calculus. Science of Computer
Programming, 57(2):164–186, 2005.

[17] P. Jayanti. Adaptive and efficient abortable mu-
tual exclusion. In Proceedings of the 22nd Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC), 2003.

[18] L. Lamport. The mutual exclusion problem—part II:
Statement and solutions. Journal of the ACM, 33(2),
1985.

[19] L. Lamport. On interprocess communication—part
II: Algorithms. Distributed Computing, 1(2), 1986.

[20] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer III, and M. L. Scott. Low-
ering the overhead of software transactional mem-
ory. In 1st ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT), Jun 2006.

[21] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-
Tabatabai, R. L. Hudson, B. Saha, and A. Welc. Prac-
tical weak-atomicity semantics for java stm. In Pro-
ceedings of the 20th Annual Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2008.

[22] K. F. Moore and D. Grossman. High-level small-step
operational semantics for transactions. In Proceed-
ings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), 2008.

[23] C. H. Papadimitriou. The serializability of concur-
rent database updates. Journal of the ACM, 26(4):631–
653, 1979.

[24] M. Raynal. Algorithms for Mutual Exclusion. The MIT
Press, 1986.

[25] M. L. Scott. Sequential specification of transactional
memory semantics. In 1st ACM SIGPLAN Workshop
on Transactional Computing (TRANSACT), 2006.

[26] M. L. Scott and W. N. Scherer III. Scalable queue-
based spin locks with timeout. In Proceedings of the
8th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP), 2001.

17

[27] J. Vitek, S. Jagannathan, A. Welc, and A. Hosking.
A semantic framework for designer transactions. In
Proceedings of the European Symposium on Program-
ming (ESOP), Mar. 2004.

18

