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We propose a compositional model for predicting the reflectance and the transmittance of multilayer specimens
composed of layers having possibly distinct refractive indices. The model relies on the laws of geometrical op-
tics and on a description of the multiple reflection–transmission of light between the different layers and in-
terfaces. The highly complex multiple reflection–transmission process occurring between several superposed
layers is described by Markov chains. An optical element such as a layer or an interface forms a biface. The
multiple reflection–transmission process is developed for a superposition of two bifaces. We obtain general
composition formulas for the reflectance and the transmittance of a pair of layers and/or interfaces. Thanks to
these compositional expressions, we can calculate the reflectance and the transmittance of three or more su-
perposed bifaces. The model is applicable to regular compositions of bifaces, i.e., multifaces having on each face
an angular light distribution that remains constant along successive reflection and transmission events.
Kubelka’s layering model, Saunderson’s correction of the Kubelka–Munk model, and the Williams–Clapper
model of a color layer superposed on a diffusing substrate are special cases of the proposed compositional
model. © 2007 Optical Society of America

OCIS codes: 000.3860, 230.4170, 120.5700, 120.7000, 330.1710.
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. INTRODUCTION
rinted and painted colored specimens are generally com-
osed of several layers having possibly distinct refractive
ndices. Light may be scattered and/or absorbed in the
ayers, as well as reflected and transmitted at the inter-
aces between layers of distinct refractive indices. The col-
ration of light interacting with a specimen results from
he combined effects of scattering, absorption, reflection,
nd transmission, depending on the nature of the super-
osed layers, the angular distribution of light, and the ge-
metry of observation. Existing reflectance and transmit-
ance prediction models are dedicated to specific
ultilayer specimens. The reflectance and transmittance
odel we propose is applicable to all multilayer speci-
ens comprising nonscattering and strongly scattering

ayers. Let us first present specific multilayer specimens
nd the corresponding classical spectral prediction mod-
ls.

. Strongly Scattering Layers
he well-known Kubelka–Munk theory [1,2] enables pre-
icting the reflection and the transmission spectra of lay-
rs having at every point the same high-scattering and
ow-absorbing properties [3]. When several layers with
dentical refractive indices are superposed, their global
eflectance and transmittance can be computed according
o Kubelka’s layering model [4] and expressed as func-
ions of the individual layer reflectances and transmit-
ances. Since the layers have the same refractive index
nd are strongly scattering, the light penetrating the
ultilayer loses its angular distribution and becomes im-
1084-7529/07/092628-17/$15.00 © 2
ediately diffuse. Kubelka’s multilayer reflectance and
ransmittance model is therefore independent of the an-
ular distribution of the incident light.

Let us introduce Kubelka’s layering model by consider-
ng two superposed strongly scattering layers having the
ame refractive index, identical to the refractive index of
he surrounding medium. When light is incident on their
pper side, the layers have a reflectance R1 (resp. R2) and
transmittance T1 (resp. T2). When light is incident on

heir lower side, they have a reflectance R1� (resp. R2�) and
transmittance T1� (resp. T2�). Figure 1 shows the multiple

eflection–transmission process of light taking place
ithin the bilayer, with the incident light coming at the
pper side. By summing the different fractions of light
merging at the upper side, we obtain a geometric series
xpressing the bilayer’s global reflectance R:

R = R1 + T1R2T1� + T1R2R1�R2T1� + T1R2�R1�R2�2T1� + ¯

= R1 + T1T1�R2

1

1 − R1�R2
. �1�

he fractions of light emerging at the lower side also form
geometric series, expressing the bilayer’s global trans-
ittance T:

T = T1T2 + T1R2R1�T2 + T1�R2R1��2T2 + ¯

= T1T2

1

1 − R1�R2
. �2�
007 Optical Society of America
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. Saunderson Correction
n most cases, the refractive index of the specimen is dif-
erent from the one of air. Light is reflected and transmit-
ed at both sides of the air–specimen interface, according
o Snell’s laws and Fresnel’s formulas [5]. Saunderson [6]
roposed a correcting formula giving the reflectance of a
pecimen interfaced with air as a function of the intrinsic
eflectance of the specimen without interface. This cor-
ecting formula was established by describing the mul-
iple reflections of light between the specimen and the in-
erface. The same graph as in Fig. 1 may be used. Instead
f two superposed layers, we have at the lower position a
iffusing specimen of intrinsic reflectance R. At the upper
osition, we have the specimen–air interface, which has a
eflectance k1 and a transmittance �1−k1� at the air side,
nd a reflectance k2 and a transmittance �1−k2� at the
pecimen side. The global reflectance R� of the specimen
nterfaced with air is expressed as in Eq. (1), i.e.,

R� = k1 + �1 − k1�R�1 − k2� + �1 − k1�Rk2R�1 − k2� + ¯

= k1 + �1 − k1��1 − k2�
R

1 − k2R
. �3�

In the case of a sheet of a diffusing medium surrounded
n both sides by a medium of distinct refractive index, we
ave a central diffusing layer bounded by two interfaces.
he global reflectance and the transmittance of the slice
an be obtained by describing the multiple reflection–
ransmission process of light among these three elements
7–9].

. Diffusing Background Coated with a Transparent
ayer
ince it is restricted to strongly scattering layers, Kubel-
a’s theory cannot be used for modeling a diffuse back-
round coated with a nonscattering layer. A photograph,
or example, is composed of a diffusing background (paper
ulk) coated with a transparent possibly absorbing layer
aving the same refractive index as the diffusing back-
round. One can follow the approach of Williams and
lapper and describe the multiple reflection–

ransmission process between the diffuse background and
he coating–air interface. The transparent coating may be
rouped together with the coating–air interface so as to
orm a single light reflector–transmitter called colored in-
erface. For directional incident light, the reflectance

ig. 1. Multiple reflection–transmission of light within two su-
erposed nonsymmetrical layers.
resp. transmittance) of this colored interface is given by a
irectional reflection function (resp. transmission func-
ion) derived from Fresnel’s formulas and Beer’s law.

hen the incident light is diffuse, the reflectance (resp.
ransmittance) of the colored interface is obtained by
umming up the contribution of each incident ray, i.e., by
ntegrating angularly the directional reflection function
resp. transmission function) over the hemisphere [9,10].
or the colored interface superposed on a diffusing back-
round, the reflectance and transmittance are computed
n a similar manner as the Saunderson correction, i.e., by
escribing the multiple reflection–transmission process
ccording to Fig. 1. The resulting analytical expression
or the reflectance is similar to Eq. (3).

This approach was followed by Williams and Clapper
11], who considered directional incident light at 45° and
radiance detector capturing light at 0° (45° /0° measur-

ng geometry). Shore and Spoonhower adapted the
illiams–Clapper reflectance expression to other measur-

ng geometries [12]. Simonot et al. [13] extended the
illiams–Clapper model to the case where the coating is

eplaced by a stack of partly absorbing transparent layers
aving distinct refractive indices and flat interfaces. Even
hough light is multiply reflected and transmitted inside
he transparent layer stack, according to Snell’s laws, di-
ectional incident light remains directional without being
iffused. The directional reflection and transmission func-
ions are calculated as functions of the angle of incidence.
or diffuse incident light, the diffuse reflectance and

ransmittance of the transparent layer stack are obtained
y integrating angularly over the hemisphere the layer
tack’s directional reflection function (resp. the direc-
ional transmission function). The transparent layer
tack may be superposed on a diffusing background. By
escribing the multiple reflection–transmission process of
ight between the transparent layer stack and the diffus-
ng background, the analytical expression for the global
eflectance of the specimen is derived in the same manner
s when deriving Eq. (3).

. Prints
he same multiple reflection–transmission approach can
e applied to halftone prints. A halftone print is composed
f a diffusing background (paper) and of a coating formed
y juxtaposed colorant areas. We assume that the juxta-
osed colorant areas form a single layer, called inked
ayer, which has the same refractive index as the paper
ackground and has a flat interface with air. The trans-
ission of light across the inked layer is attenuated by

he colorants according to their surface ratio. A transpar-
nt inked layer is considered together with the ink–air in-
erface and forms a colored interface as in the case of a
hotograph. The reflectance of the print is thus obtained
y considering the multiple reflection–transmission pro-
ess of light between this colored interface and the paper
ackground. In a recent contribution [9], the reflectance
nd the transmittance of recto–verso halftone prints is
odeled by considering the multiple reflection–

ransmission of light among the central paper bulk layer,
colored interface at its upper side, and a different col-
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red interface at its lower side. This model is also valid for
aper sheets, whose colored interfaces are simply the
aper–air interface.
The classical model introduced by Clapper and Yule for

alftone prints [14] also relies on a multiple reflection–
ransmission approach. However, light is assumed to
ave always the same angular distribution each time it
rosses the inked layer. Thus, the attenuation of light due
o absorption in the inked layer is modeled without con-
ideration of its orientation [9,10].

. Other Multilayer Specimens
n all the models mentioned above, light is reflected and
ransmitted multiple times between less than three lay-
rs and/or interfaces. In the special case of specimens
omposed of several strongly scattering layers of identical
efractive index, Kubelka’s model enables applying itera-
ively the two-layer reflectance and transmittance formu-
as [4]. One computes the reflectance and the transmit-
ance of two layers, then the reflectance and the
ransmittance of these two layers plus a third layer and
o on.

However, in many specimens, we have an alternation of
cattering and nonscattering layers possibly having dif-
erent refractive indices. For example, when we fold a
heet of paper, we have a first sheet of paper, a central
lice of air, and a second sheet of paper. Since paper and
ir have different refractive indices, each of the four
aper–air interfaces creates light reflections and trans-
issions. For such a specimen, we should model the mul-

iple reflection–transmission of light among these seven
lements (two strongly scattering layers, one transparent
ayer, and four interfaces) by taking care of their different
ptical properties. Such a multiple reflection–
ransmission process is extremely complex and very diffi-
ult to describe without an appropriate mathematical
odel.

. Compositional Approach
e develop a methodology relying on Markov chains for
odeling the multiple reflection–transmission process

nd for computing the reflectance and the transmittance
f any multilayer specimen composed of scattering layers
nd/or nonscattering layers having possibly distinct re-
ractive indices. In order to describe every multiple
eflection–transmission process, we introduce a special
ormalism. We represent every layer and every interface
etween layers by the single concept of biface. Bifaces are
haracterized by their upper-side reflectance, their upper-
ide transmittance, their lower-side reflectance, and their
ower-side transmittance. These four terms are gathered
nto a 2�2 matrix called transfer matrix. Every

ultilayer specimen is seen as a superposition of bifaces
nd is called a multiface. For describing the multiple
eflection–transmission process between the different bi-
aces, we use Markov chains. Their graphical representa-
ion as finite graphs provides a very synthetic overview of
he multiple reflection–transmission process. Moreover,
sing the Markov matrix formalism, a single matrix com-
utation is sufficient for obtaining the global reflectance
nd the global transmittance of multifaces for upper and
ower illuminations. The computation method is indepen-
ent of the number of superposed bifaces.
In practice, we need to compute the multiple reflection–

ransmission process for only two bifaces. Thanks to the
stablished matrix composition rules, we calculate the
lobal transfer matrix of a multiface. The composition of
wo transfer matrices is associative. Thus, for multifaces
omposed of three or more layers, we can compose succes-
ively, two by two, the transfer matrices of the corre-
ponding superposed bifaces and multifaces.

This paper is structured as follows. In Section 2, we re-
all the definitions of reflectance and transmittance. The
oncepts of biface and multiface are introduced in Section
. We establish the correspondence between multiple
eflection–transmission processes and Markov chains in
ection 4. In Section 5, by applying Markov’s theory, we
evelop the expressions for the reflectances and the trans-
ittances of two superposed bifaces. The algebraic com-

osition operation is defined in Section 6. In Section 7, we
onsider the case of three superposed bifaces and show
he associativity of the composition operation. In Section
, we introduce a decomposition operation useful for sepa-
ating the parameters depending on the illumination and
easuring geometry. The application of the compositional
odel is illustrated in Section 9 by examples of prints on
onolayer and multilayer supports. In Section 10, we

raw the conclusions.

. REFLECTANCE AND TRANSMITTANCE
eflectance is defined as the ratio of a reflected flux to an

ncident flux, considering a surface element on the consid-
red specimen, the angular distribution of the incident
ux and the set of directions over which the reflected flux

s observed [15]. The same definition also applies for
ransmittance in respect to the transmitted light flux.

A specimen receives directional incident light from di-
ection �� ,��. It is observed over the whole hemisphere;
.e., all the reflected light is collected by the capturing de-
ice. We assume that the specimen is azimuthally isotro-
ic; i.e., its reflection properties are independent of the
zimuthal angle �. The specimen is thus characterized by
ts directional reflectance, R���, which is a function of the
ncident angle �.

Let us now determine the reflectance of the specimen
lluminated with perfectly diffuse light, i.e., with a Lam-
ertian irradiance Ei, and observed over the whole hemi-
phere. Since it is Lambertian [15], the incident irradi-
nce is uniformly distributed over the hemisphere; i.e.,
he radiance incident from every direction �� ,�� of the
emisphere is Ei /�. Therefore, a surface element ds on
he specimen receives from a given direction �� ,��,
hrough the infinitesimal solid angle d�=sin �d�d�, the
lemental flux d2�i�� ,��,

d2�i��,�� = ds
Ei

�
cos � sin �d�d�. �4�

fraction R��� of this incident elemental flux is reflected
nto the hemisphere, function R being the directional re-
ectance of the specimen. The resulting reflected flux,
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ivided by the surface element area ds, yields an element
f reflected irradiance dEr�� ,��:

dEr��,�� = R���
Ei

�
cos � sin �d�d�. �5�

n order to obtain the total irradiance reflected by the
pecimen, one accounts for all the directions of incidence
f light, i.e., one sums up over the hemisphere the ele-
ent of reflected irradiance dEr�� ,��:

Er =�
�=0

2� �
�=0

�/2

R���
Ei

�
cos � sin �d�d�. �6�

ince the specimen is azimuthally isotropic, the inte-
rated terms do not depend on angle �. The integration
ccording to � yields a factor 2�. After rearranging, the
atio Er /Ei defines the Lambertian reflectance r of the
zimuthally isotropic specimen:

r =�
�=0

�/2

R��� sin 2�d�. �7�

quation (7) specifies the diffuse reflectance of flat inter-
aces when R��� is the Fresnel reflectivity of the interface.
t has been tabulated by Judd [16] for various refractive
ndices between 1 and 2. A similar definition can be for-

ulated for the transmission of diffuse light.

. BIFACES AND MULTIFACES
he layers and the interfaces forming a multilayer speci-
en are each responsible for the reflection and the trans-
ission of light. However, except in the case of strongly

cattering layers, they have angle-dependent reflectance
nd transmittance. In order to take into account these an-
ular dependences in the multiple reflection–
ransmission model, we introduce the biface concept and
lassify bifaces according to the angle-dependence of their
eflectance and transmittance.

A biface represents a single layer or a single interface,
hose reflection and transmission properties are azi-
uthally isotropic and may be modeled by geometrical

ptics (no interference, no diffraction, and no lumines-
ence phenomena). Because bifaces may receive light on
heir two sides, they are the junction of two faces, each
ne being characterized by its reflectance and its trans-
ittance for a given angular distribution of light.
We distinguish three categories of bifaces. Transparent

ifaces are perfectly nonscattering. They reflect and
ransmit single-directional light components when the in-
ident light is single directional. They correspond to per-
ectly nonscattering layers (transparent layers) and per-
ectly flat interfaces. Scattering bifaces scatter light as a
unction of the angular distribution of the incident light.
cattering layers and rough interfaces belong to this cat-
gory. Lambertian bifaces are perfect diffusers that reflect
nd transmit Lambertian light components indepen-
ently of the angular distribution of the incident light.
trongly scattering layers belong to this category. Let us
haracterize these three types of bifaces.
. Transparent Bifaces
transparent biface does not scatter light at all. It is

haracterized by its upper-face directional reflectance
��� and transmittance T��� and its lower-face directional

eflectance R���� and transmittance T����. These four an-
ular functions are gathered into a matrixlike notation
alled fundamental transfer matrix, with its elements
laced as follows:

� T��� R���

R���� T����� . �8�

When the biface is illuminated according to a specific
ngular distribution on each of its two sides, its faces
ave specific reflectances and transmittances. We gather
hem into a particular transfer matrix, whose elements
re at the same place as the ones of the fundamental
ransfer matrix. For example, let us consider the biface
aving the fundamental transfer matrix of Eq. (8). It re-
eives on its upper face directional light at angle �, yield-
ng as upper particular reflectance the directional reflec-
ance R��� and as upper particular transmittance the
irectional transmittance T���. On the lower face, it re-
eives Lambertian light. The lower particular reflectance
s the Lambertian reflectance r�, derived from the direc-
ional reflectance R��� according to Eq. (7):

r� =�
�=0

�/2

R���� sin 2�d�. �9�

ikewise, the lower particular transmittance of the biface
s the Lambertian transmittance t� defined as

t� =�
�=0

�/2

T���� sin 2�d� �10�

hus, the particular transfer matrix of the biface illumi-
ated with directional light at angle � on its upper face
nd with Lambertian light on its lower face is

�T��� R���

r� t� � . �11�

As an example of a transparent biface, we have the
artly absorbing nonscattering layer called transparent
ayer. It is characterized by its normal transmittance t,
hich is the attenuation factor for directional light cross-

ng it perpendicularly. Its reflectance is zero. According to
eer’s law [17], since light crossing the layer at angle �

ravels a path of relative length 1/cos �, the directional
ransmittance T��� of the transparent layer for every
ngle � is

T��� = t1/cos �. �12�

Therefore, the transparent layer is characterized by the
undamental transfer matrix:

�t1/cos � 0

0 t1/cos �� . �13�

A flat interface between two media having different re-
ractive indices is also a transparent biface. Its directional
eflectance and transmittance correspond to its Fresnel
eflectivity and transmittivity, given by Fresnel’s formu-
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as [5]. Labeling 0 and 1 the upper and lower surrounding
edia, respectively, we note R01��� the interface reflectiv-

ty and T01��� the interface transmittivity when light ar-
ives at angle � from medium 0. We note R10��� the reflec-
ivity and T10��� the transmittivity when light arrives at
ngle � from medium 1. The interface has the fundamen-
al transfer matrix

�T01��� R01���

R10��� T10���� . �14�

. Scattering Bifaces
he category of scattering bifaces contains rough inter-

aces and weakly scattering bifaces. Similarly to the
ransparent bifaces, they are characterized by a funda-
ental transfer matrix, whose elements may be derived

rom the bidirectional reflectance distribution function
BRDF) and the bidirectional transmittance distribution
unction (BTDF) of their faces if these functions are
nown [10]. When the illuminations geometries are speci-
ed on their two faces, one can express their particular
ransfer matrix.

. Lambertian Bifaces
ambertian bifaces correspond to strongly scattering bi-

aces whose reflectance and transmittance do not depend
n the angular distribution of the incident light. The re-
ected and the transmitted lights are perfectly diffuse,

.e., Lambertian. A Lambertian biface has an upper-side
eflectance � and a possibly different lower-side reflec-
ance ��. According to the nonpolarity of strongly scatter-
ng layers [4], it has single side-independent transmit-
ance 	. Its transfer matrix is invariant in respect to the
pper-side and lower-side illumination geometries:

� 	 �

�� 	� . �15�

. Multifaces
multilayer specimen incorporating various superposed

ifaces is called a multiface. Since it is able to reflect and
ransmit light like bifaces, it is also characterized by a
ransfer matrix called global transfer matrix. The global
ransfer matrix is defined for a given angular distribution
f the incident light and a given observation solid angle at
ach side. We note its upper reflectance RU, its upper
ransmittance TU, its lower reflectance RV, and its lower
ransmittance TV. The global transfer matrix G of a mul-
iface is defined as

G = �TU RU

RV TV
� . �16�

Transfer matrices are not matrices in the classical
ense since classical matrix operations such as sum �+� or
roduct �·� are not defined. In Section 6, we create a spe-
ial operation � called composition operation. When a bi-
ace having the transfer matrix F1 is located on top of a
iface having the transfer matrix F2, the resulting multi-
ace has the global transfer matrix noted F �F .
1 2
. MULTIPLE REFLECTION–TRANSMISSION
ROCESS AND MARKOV CHAINS
given multilayer specimen corresponds to a multiface.

ts composing layers and interfaces are the different bi-
aces of the multiface. Each time a light flux strikes a face
i.e., a side of the biface), it is split into a reflected compo-
ent and a transmitted component, each one being itself

ncident onto another face and being again split into re-
ected and transmitted components. The process accord-

ng to which fluxes components are split within the mul-
iface is called the multiple reflection–transmission
rocess. When a face absorbs light, the sum of its reflec-
ance and its transmittance is less than 1. Absorption is
herefore taken into account.

Each face within the multiface receives flux compo-
ents at various steps of the multiple reflection–
ransmission process. Recall that, except for Lambertian
aces, the reflectance and the transmittance of a given
ace generally depend on the angular distribution of the
ncident light. If the angular distribution of light evolves
uring the multiple reflection–transmission process, the
ace reflectance and transmittance may vary and become
tep dependent. The face is said to be irregular. A multi-
ace containing at least one irregular face is an irregular
ultiface, and the whole multiple reflection–transmission

rocess is qualified as step dependent. The multiple
eflection–transmission approach developed here is not
uitable for such a multiface, since it will neither yield
eometrical series nor analytical expressions for its global
eflectance and transmittance. We therefore limit our con-
iderations to regular multifaces for which the multiple
eflection–transmission process is step independent.

. Regular Multifaces
epending on their composition, we may distinguish

hree types of regular multifaces:

1. Multifaces comprising only Lambertian bifaces (i.e.,
trongly scattering layers). Every face has constant step-
ndependent reflectance and transmittance. This is the
ype of multiface considered in Kubelka’s model [4].

2. An alternation of non-Lambertian bifaces, i.e.,
ransparent or scattering bifaces, and of Lambertian bi-
aces. The two faces of the non-Lambertian bifaces receive
onstantly Lambertian fluxes from their neighboring
ambertian bifaces. The two faces of the Lambertian bi-

aces have invariant reflectance and transmittance inde-
endently of the angular distribution of light. Since the
aces of every biface have a constant step-independent re-
ectance and transmittance, the multiface is regular. Sev-
ral Lambertian bifaces may also be consecutive. Be-
ween two Lambertian bifaces, there must be at most one
on-Lambertian biface, e.g., a transparent biface, or a
eakly scattering biface. Consecutive non-Lambertian bi-

aces may be considered as one non-Lambertian biface,
ithout however describing the multiple reflection–

ransmission process of light taking place inside it.
3. Multifaces comprising only transparent bifaces, i.e.,

ransparent layers and flat interfaces. Such multifaces
re called transparent multifaces. They are regular only
or directional incident light and therefore irregular when
he incident light is diffuse. The regularity for directional
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ncident light is due to the fact that, during the multiple
eflection–transmission process, the successive compo-
ents received by each layer and each interface are ori-
nted according to step-independent angles determined
ccording to Snell’s laws (see Fig. 2). When the incident
ight is diffuse, its angular distribution is modified at each
eflection or transmission due to the angular dependence
f Fresnel’s formulas and Beer’s law. The successive light
omponents received by a layer or by an interface have
ifferent, step-dependent, angular distributions. There-
ore, for transparent bifaces illuminated by diffuse inci-
ent light, the multiple reflection–transmission process is
ime dependent and the transparent multiface is
rregular.

. Markov Chains
e now consider only regular multifaces and step-

ndependent multiple reflection–transmission processes.
egular multifaces are considered as a system in which
ux units transit from face to face by reflection or trans-
ission, are partially absorbed, and partially reach the

etectors. A flux state corresponds to a face on which an
ncident flux unit is reflected or transmitted. A detector
apturing an emerging flux unit corresponds also to a flux
tate. A flux unit moves from flux state to flux state at
ach reflection or transmission event, with the state tran-
ition probability corresponding to the considered reflec-
ance (resp. transmittance). The path followed by a flux
nit ends when it reaches an absorbing state, correspond-

ng to a detector.
In a regular multiface, since each face has its specific

tep-independent reflectance and transmittance, each
ransition from one given state to another given state oc-
urs with a same probability. We can therefore model the
ultiple reflection–transmission process as a homog-

nous discrete-time Markov chain [18]. Table 1 shows the
nalogy between the optical multiple reflection–
ransmission processes and the corresponding terms of
omogenous Markov chains.
The use of Markov chains provides two main advan-

ages compared with the classical method of expressing
ultiple reflection–transmission processes by geometric

eries. First, the Markov matrix formalism allows the di-

ig. 2. Multiface representing a transparent layer bordered by
wo flat interfaces. When directional incident light illuminates
uch a multiface composed of transparent bifaces, every face re-
eives directional light along step-independent orientations
iven by Snell’s laws: n sin � =n sin � =n sin � .
0 0 1 1 2 2
ect calculation of the global transfer matrix of multi-
aces. Their upper and lower reflectances and transmit-
ances are obtained by a single matrix computation,
hich embeds the geometric series and therefore avoids

he need to establish them explicitly. Second, the Markov
raph provides a clear synthetic view of the multiple
eflection–transmission process for any number of super-
osed bifaces, whereas classical light propagation graphs
e.g. Fig. 2 in Ref. [9]) are very difficult to draw for more
han three superposed bifaces.

. REGULAR QUADRIFACE
n order to illustrate the concepts of biface and transfer
atrix and to show how Markov chains are used, we pro-

ose to consider a regular quadriface composed of two bi-
aces and therefore four faces. Such a quadriface may rep-
esent, for example, two strongly scattering layers having
he same refractive index, also identical to the refractive
ndex of the surrounding medium (no interfaces). A light
ource and a detector are placed both at the upper and the
ower sides of the quadriface (Fig. 3). The global transfer

atrix of the quadriface is the same as in Eq. (16), and
he particular transfer matrices of the upper and lower bi-
aces are defined, respectively, as

�pu su

ru xu
�, �xv rv

sv pv
� . �17�

. Markov Chain of a Regular Quadriface
he corresponding Markov chain is represented by the
raph of Fig. 4. Flux states representing external faces,

Table 1. Correspondence between Multiple
Reflection–Transmission Processes and Markov

Chains

Optics Markov Chains

ultiface Structured stochastic system
ortion of flux on a face State
ortion of flux on a detector Absorbing state
eflection/transmission Transition
eflectance/transmittance Transition probability
tep-independent process Homogenous Markov chain

ig. 3. Infinite graph showing the multiple reflection–
ransmission of light within a quadriface, with light incident at
he upper side (lower source off).
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hich receive light from the light sources, are numbered
and 2. They are called ephemeral states since they are

he starting point of a finite number of transitions. The
etectors are represented by the absorbing states 5 and 6.
he loop connecting each detector with itself modelizes
he fact that light captured by the detectors no longer in-
eracts with the bifaces. Odd numbers (resp. even num-
ers) are attributed to the flux states receiving the light
ropagating downward (resp. upward). Odd numbers in-
rease and even numbers decrease as the flux states are
loser to the lower side. Note that flux-state labeling is ar-
itrary.

. Transition Probability Matrices
et mij be the probability of transition from state i to
tate j, which is zero if the two flux states are not directly
onnected. Matrix M= �mij� is called the single-step tran-
ition probability matrix of the Markov chain. For ex-
mple, in this matrix, the transmittance pu of the upper
iface represents the probability of transition from flux
tate 1 (line 1 of matrix) and flux state 3 (column 3 of ma-
rix):

M = �
0 0 pu 0 0 su

0 0 0 pv sv 0

0 0 0 rv xv 0

0 0 ru 0 0 xu

0 0 0 0 1 0

0 0 0 0 0 1
� . �18�

The evolution of the system may be observed step by
tep using a flux distribution vector, expressing the por-
ions of light flux units being in the different flux states.
n the following notations, we use bold characters for the
wo last elements of the vector, which represent the
mounts of incident flux having reached the lower and
he upper detectors, respectively. Let us first assume that
he incident flux comes from the upper light source. At the
rigin, all the flux is in flux state 1; i.e., all the flux is in-
ident on the upper face of the upper biface (see Fig. 4).
he flux distribution vector is

e0 = �1, 0, 0, 0, 0, 0	. �19�

t step 1, the flux distribution within the quadriface is
iven by the product e ·M:

ig. 4. Markov chain representing the multiple reflection–
ransmission process within a quadriface.
0

e1 = e0 · M = �0, 0, pu, 0, 0, su	.

fraction su (external reflectance of the upper biface) of
he incident light has already reached the upper detector
flux state 6). At step 2, the product e1 ·M shows that a
raction puxv has reached the lower detector (flux state 5):

e2 = e1 · M = e0 · M2 = �0, 0, 0, purv, puxv, su	.

t step 3, the flux distribution vector is

e3 = e2 · M = e0 · M3

= �0, 0, pururv, 0, puxv, su + purvxu	.

Matrices M2 and M3 are called, respectively, the two-
tep and the three-step transition probability matrices.
y continuing to perform the products of the flux distri-
ution vector with matrix M, one observes that the pro-
ortion of light reaching the detectors increases and that
he proportion of light remaining in other states de-
reases. When the number of steps approaches infinity, no
ortion of the initial light flux remains within the quadri-
ace. Therefore, the elements of the flux distribution vec-
or e
 are zero, except the two last elements m15


 and m16

 :

e
 = e0 · M
 = �0, 0, 0, 0, m15

 , m16


 	, �20�

ith

M
 = lim
k→


Mk. �21�

hese two elements correspond, respectively, to the frac-
ions of the incident light flux being absorbed by flux
tates 5 and 6, i.e., to the upper global transmittance and
he upper global reflectance of the quadriface.

Let us now consider light coming from the lower source
state 2). At the origin, the flux distribution vector e0 is

e0 = �0, 1, 0, 0, 0, 0	. �22�

y multiplying this vector with the matrix M an infinite
umber of times, or by multiplying it by M
, we obtain a
ux distribution vector whose elements are zeros, except
he two last elements m25


 and m26

 , which correspond, re-

pectively, to the lower global reflectance and transmit-
ance of the quadriface:

e
 = e0 · M
 = �0, 0, 0, 0, m25

 , m26


 	. �23�

. Transfer Matrix of the Quadriface
e conclude from Eqs. (20) and (23) that matrix M
 is of

he form

�24�

nd that its upper-right 2�2 block corresponds to the glo-
al transfer matrix of the multiface:
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�TU RU

RV TV
� = �m15


 m16



m25

 m26


 � . �25�

Finally, according to the calculations performed in Ap-
endix A, we obtain the following expression for the glo-
al transfer matrix of the quadriface:

�TU RU

RV TV
� = �

puxv

1 − rurv
su +

puxurv

1 − rurv

sv +
pvxvru

1 − rurv

pvxu

1 − rurv

� . �26�

. COMPOSITION
n order to show more clearly the relationship between
he global transfer matrix of the quadriface given by Eq.
26) and the transfer matrices of the composing bifaces
iven in Eq. (17), we create an operation between transfer
atrices, called a composition operation, noted �, whose

efinition is

�pu su

ru xu
� � �xv rv

sv pv
� = �

puxv

1 − rurv
su +

puxurv

1 − rurv

sv +
pvxvru

1 − rurv

pvxu

1 − rurv

� .

�27�

he left and right transfer matrices on the left part of the
quation correspond, respectively, to the upper and the
ower bifaces.

Equation (27) is called the quadriface formula. It is the
ost fundamental relation of the compositional model. It
ay be used each time two bifaces form a regular quadri-

ace and embodies the multiple reflection–transmission
rocess occurring between them.
Operation � is noncommutative, since a mutual ex-

hange of position of two bifaces forms a different multi-
ace having therefore different reflectances and transmit-
ances. However, operation � is associative; i.e., for
ransfer matrices F1, F2, and F3, we have

�F1 � F2� � F3 = F1 � �F2 � F3� = F1 � F2 � F3. �28�

This property appears clearly in the case of the
exaface presented in the next section.

. CASE OF A REGULAR HEXAFACE
e consider a hexaface composed of three bifaces having

he respective transfer matrices:

�pu su

ru xu
�, � 	 �

�� 	�
�, �xv rv

sv pv
� . �29�

Such a hexaface may represent a sheet of glossy paper
or which the three bifaces are the paper layer (Lamber-
ian biface) and its two bordering flat interfaces with air
transparent bifaces). Since the Lambertian and non-
ambertian bifaces are alternated, the hexaface is regu-

ar (category 2, Section 4). The central transfer matrix in
q. (29) corresponds to the paper layer, and the two other
ransfer matrices correspond to its upper and its lower in-
erfaces, respectively. The multiple reflection–
ransmission process within the hexaface is represented
y the Markov chain shown in Fig. 5.
For calculating the global transfer matrix of the

exaface, we can develop a matrix computation similar to
he one presented in the case of a quadriface (see Appen-
ix B). But we can also use the composition operation and
ake benefit of its associativity. First, we select two con-
ecutive bifaces and compose their transfer matrices us-
ng the quadriface formula (27):

�pu su

ru xu
� � � 	 �

�� 	�
� = �

pu	

1 − ru�
su +

puxu�

1 − ru�

�� +
ru		�

1 − ru�

xu	�

1 − ru�
� .

�30�

hen we compose the resulting transfer matrix with the
ne of the third biface by using again the quadriface for-
ula (27). We obtain the hexaface formula:

pu su

ru xu
� � � 	 �

�� 	�
� � �xv rv

sv pv
�

=� puxv

	

D
su + puxu

� − rv���� − 		��

D

sv + pvxv

�� − ru���� − 		��

D
pvxu

	�

D
� ,

�31�

ith D= �1−ru���1−rv���−rurv		�.
We can also compose the second and third transfer ma-

rices:

ig. 5. Markov chain representing the multiple reflection–
ransmission process in a hexaface.
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� 	 �

�� 	�
� � �xv rv

sv pv
� = �

	xv

1 − �rv
� +

		�rv

1 − �rv

sv +
pvxv��

1 − �rv

	�pv

1 − �rv

�
�32�

nd then compose the resulting transfer matrix with the
rst transfer matrix. We obtain again the hexaface for-
ula (31), which verifies the associativity of the composi-

ion operator �. The matrix computed according to Mark-
v’s theory, presented in Appendix B, also yields the
exaface formula (31).
Thanks to the composition operation, it is no longer

ecessary to describe multiple reflection–transmission
rocesses. Even for a regular multiface comprising many
ifaces, we can compose them two by two in any order,
rovided that operator � is applied to the transfer matri-
es of consecutive bifaces.

. DECOMPOSITION OF A BIFACE
perator � may also be used for decomposing a biface

nto an abstract pair of bifaces whose composition is equal
o the biface’s transfer matrix. The biface is said to be de-
omposed. The upper (resp. lower) reflection arc is placed
t the upper side of the upper biface (resp. the lower side
f the lower biface). The other reflection arcs have a zero
eflectance. The left (resp. right) transmission arc is
laced at the left (resp. right) of the quadriface. We may
hoose to place it on the upper or the lower biface, with
he other left arc (resp. right arc) having the transmit-
ance 1.

Figure 6 shows two examples of decompositions. For
ach example, we establish the transfer matrix of the two
esulting bifaces and carry out the composition using the
uadriface formula (27). In both cases, we retrieve the
ransfer matrix of the initial biface:

�a b

0 d� � �1 0

c 1� = �1 b

0 1� � �a 0

c d� = �a b

c d� .

�33�

The two following decompositions are also possible:

�a b

0 1� � �1 0

c d� = �1 b

0 d� � �a 0

c 1� = �a b

c d� .

�34�

Bifaces may be decomposed in order to separate the re-
ectance and transmittance terms that depend on the il-

Fig. 6. Two possible
umination and measuring geometry from the other
erms. An example of decomposition is proposed in the
ext section for the case of prints.

. EXAMPLE OF APPLICATION
e illustrate the application of the compositional model
ith the example of prints. Prints are multilayer speci-
ens composed of a printing support, i.e., a sheet of dif-

using substrate, and a coating incorporating the ink
ayer. The ink layer is assumed to have the same refrac-
ive index as the paper (no Fresnel reflections and trans-
issions at the substrate–ink interface), to be transpar-

nt and to have a flat interface with air.
According to our formalism, the print corresponds to

our superposed bifaces: the flat air–ink interface (trans-
arent biface) at the upper side, the ink layer (transpar-
nt biface), the layer of diffusing substrate (Lambertian
iface), and the substrate–air interface (transparent bi-
ace) at the lower side. The flat air–ink interface and the
nk layer are considered together as one transparent bi-
ace, called colored interface [9]. Thus, the colored inter-
ace (transparent biface), the substrate layer (Lambertian
iface), and the substrate–air interface (transparent bi-
ace) form a regular hexaface belonging to category 2.
heir respective particular transfer matrices can be com-
osed thanks to the composition operator �.

. Fundamental Transfer Matrix of the Colored Interface
lthough it is considered as being a single biface in the
rint, the colored interface is also a transparent multi-
ace, which is regular for directional incident light (cat-
gory 3, Section 4). The operator � can be applied for
omposing the fundamental transfer matrices of its two
onstituent transparent bifaces. Thus, in order to express
he fundamental transfer matrix of the colored interface,
et us compose the fundamental transfer matrix of the flat
ir–ink interface with the one of the ink layer.
The fundamental transfer matrices of the interface and

he ink layer are, respectively, given by Eqs. (14) and (13).
owever, the orientations of light are different in the ink

rom in the air due to the refraction at the ink–air inter-
ace. According to Fig. 7, light is oriented at angle �0 in air
nd at angle �1 in the ink layer. They are related by
nell’s law, i.e., sin �0=n sin �1, with n being the refrac-
ive index of the ink. The corresponding fundamental
ransfer matrices of the interface and of the ink layer are,
espectively,

�T01��0� R01��0�

R10��1� T10��1�� , �35�

positions of a biface.
decom
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�t1/cos �1 0

0 t1/cos �1� . �36�

The colored interface is represented by the Markov
hain of Fig. 8. The composition operation is applied to
ransfer matrices (35) and (36) and computed according to
he following quadriface formula (27):

�T01��0� R01��0�

R10��1� T10��1�� � �t1/cos �1 0

0 t1/cos �1�
= �T01��0�t1/cos �1 R01��0�

R10��1�t2/cos �1 T10��1�t1/cos �1� . �37�

he terms in the second row of matrix (37) are the lower
ransmittance and reflectance of the colored interface for
irectional light incident from below at angle �1 (Fig. 7).
he terms in the first row of matrix (37) are the upper
ransmittance and reflectance of the colored interface for
irectional light incident from air at angle �0. We desire
xpressing them as functions of angle �0 only. Since
ngles �0 and �1 are related by Snell’s law, we have
os �1=
1− �sin �0 /n�2. Thus, the fundamental transfer
atrix (37) of the colored interface becomes

�T01��0�t1/
1−�sin �0/n�2 R01��0�

R10��1�t2/cos �1 T10��1�t1/cos �1
� . �38�

. Composing the Bifaces of the Print
he print is a regular hexaface composed of the colored

nterface at the upper position, the layer of diffusing sub-
trate at the central position, and the substrate–air inter-
ace at the lower position. The corresponding Markov
hain is shown in Fig. 9.

ig. 7. Reflection and transmission of directional incident light
t the upper side and the lower side of a colored interface, com-
osed of an ink layer and its interface with air.

ig. 8. Markov chain representing the multiple reflection–
ransmission process of light in the colored interface.
The fundamental transfer matrix of the colored inter-
ace has been expressed in Eq. (38). According to the illu-
ination and the measuring geometries used at the up-

er side, this fundamental transfer matrix is converted
nto a particular transfer matrix. Let us use the following
eneric notation for the particular transfer matrix of the
pper-side colored interface:

�Tin RS

r1 Tex
� , �39�

here Tin and Rs represent, respectively, the transmis-
ion and the reflection of the upper-side external incident
ight; r1 represents the internal reflection of light at the
ubstrate side; and Tex the transmission of light from be-
ow across the colored interface.

At the center of the print, the diffusing substrate (Lam-
ertian biface) has an upper reflectance �, a lower reflec-
ance ��, and a transmittance 	. It is characterized by the
nvariant transfer matrix:

� 	 �

�� 	� , �40�

The flat substrate–air interface is characterized by its
undamental transfer matrix, whose elements are Fresnel
eflectivities and transmittivities [see Eq. (14)]:

�T10��� R10���

R01��� T01���� , �41�

here subscripts 0 and 1 denote the air and the sub-
trate, respectively. As in the case of the colored interface
ocated at the upper side, the particular transfer matrix of
he lower-side substrate–air interface depends on the
ower-side illuminating and measuring geometries. We
se the following generic notation for the particular
ransfer matrix of the lower-side substrate–air interface:

�Tex� r2

RS� Tin�
� , �42�

here Tex� is the portion of the light transmitted by the in-
erface and captured by the lower detector, r2 is the
ubstrate–side reflectance of the interface, R is the re-

ig. 9. Markov chain representing the multiple reflection–
ransmission of light in a print.
s
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ectance for the light incident at the air side, and Tin is
he attenuation of the external light coming from below.

The global transfer matrix of the recto–verso print is
iven by the following composition:

�Tin Rs

r1 Tex
� � � 	 �

�� 	� � �Tex� r2

Rs� Tin�
� . �43�

ccording to the hexaface formula (31), the composition
ives the following expression for the global transfer ma-
rix of the print:

� TinTex�
	

D
Rs + TinTex

� − r2���� − 	2�

D

Rs� + Tin� Tex�
�� − r1���� − 	2�

D
Tin� Tex

	�

D
� ,

�44�

ith D= �1−r1���1−r2���−r1r2	2.
We may verify that the expressions obtained for the up-

er global transmittance and reflectance of the recto–
erso print [first line of matrix (44)] are similar to those
btained using the classical method of geometrical series
9], with Rs=Rs�=0 as gloss is discarded from the mea-
urements.

. Nonpolarity of the Internal Transmittance
n the global transfer matrix of the print [Eq. (44)], the
ollowing terms depend on the illumination and measur-
ng geometry: the external reflectances Rs and Rs�, the
ransmittances Tin and Tin� relative to the penetrating
ight, and the transmittances Tex and Tex� relative to the
xit of light toward the detectors. In order to separate
hese terms from the rest of the multiple reflection–
ransmission process, we perform a decomposition on the
ransfer matrices characterizing the upper colored inter-
ace and the lower substrate–air interface (see Section 8):

�Tin Rs

r1 Tex
� = �Tin Rs

0 Tex
� � � 1 0

r1 1� , �45�

�Tex� r2

Rs� Tin�
� = �1 r2

0 1� � �Tex� 0

Rs� Tin�
� . �46�

he global transfer matrix of the hexaface is thus given
y the composition

�Tin Rs

0 Tex
� � � 1 0

r1 1� � � 	 �

�� 	� � �1 r2

0 1�
� �Tex� 0

Rs� Tin�
� . �47�

n Eq. (47), the three central transfer matrices contain
nly geometry-independent terms. By composing them
sing the hexaface formula (31), we obtain a new transfer
atrix which is called the internal transfer matrix of the

rint
�
	

D

� − r2���� − 	2�

D

�� − r1���� − 	2�

D

	

D
� , �48�

ith D= �1−r1���1−r2���−r1r2	2.
The internal transfer matrix describes the geometry-

ndependent part of the multiple reflection–transmission
rocess. The two transmittance components, located on
he diagonal of the internal transfer matrix, are equal.
his property is called nonpolarity of internal transmit-

ance. It extends to any regular multiface the principle of
onpolarity of the transmittance stated by Kubelka for in-
ensely scattering layers [4]. The upper and lower global
ransmittances of the print differ only when different il-
umination and measuring geometries are used at the up-
er and the lower sides.
Obviously, by composing the internal transfer matrix

ith the most external transfer matrices of Eq. (47) and
alculating the composition according to the hexaface for-
ula Eq. (31), we retrieve the global transfer matrix (44)

f the recto–verso print:

�Tin Rs

0 Tex
� � �

	

D

� − r2���� − 	2�

D

�� − r1���� − 	2�

D

	

D
�

� �Tex� 0

Rs� Tin�
� . �49�

. Example of Illumination and Measuring
eometries

n Appendix C, we present the different possible expres-
ions for the particular transfer matrices of a transparent
iface according to the illumination geometry (directional
ncident light or Lambertian incident light) and the mea-
uring geometry (radiance detector or integrating
phere). We propose here an example of geometry, where
he upper light source is collimated light at �=45° and
he upper capturing device is a radiance detector oriented
t ��=0°. At the lower side, the light source is Lambertian
nd the capturing device is a radiance detector at ��=0°.
The colored interface is characterized by the fundamen-

al transfer matrix given by Eq. (38). With the aid of Table
in Appendix C, we derive the following particular trans-

er matrix for the upper-side colored interface:

Tin RS

r1 Tex
�

=
dir�45°�↓�T01���t1/
1−�sin �/n�2 R01���

R10���t2/cos � T10���t1/cos ��
↑L

↑rad�0°�

= �T01�45 ° �tn/
n2−1/2 0

r�t�
T10�0�t

�n2
� , �50�
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here function r�t� represents the internal reflectance of
he colored interface [11,19]

r�t� =�
�=0

�/2

R10���t2/cos � sin 2�d�. �51�

At the lower side, the substrate–air interface is charac-
erized by the fundamental transfer matrix given by Eq.
41). According to Table 3 (Appendix C), its particular
ransfer matrix is

�Tex� r2

RS� Tin�
� =

L↓

rad���=0°�↓
�T10��1� R10��1�

R01��0� T01��0�� ↑L

= �T10�0 ° �/�n2 r10

R01�0 ° �/� t01
� . �52�
n Eq. (52), term r10 represents the substrate–side diffuse m

T
g
h

s
b
i
t
b
a
r
f

�

T

eflectance of the substrate–air interface:

r10 =�
�=0

�/2

R10���sin 2�d�, �53�

nd term t01 represents its air-to-substrate diffuse trans-
ittance [9]:

t01 =�
�=0

�/2

T01���sin 2�d�, �54�

The generic expression for the global transfer matrix of
he print is given by Eq. (44). With the particular transfer
atrices detailed in Eqs. (50) and (52), the global transfer

atrix of the print becomes
�
T01�45�T10�0�

�n2 tn/
n2−1/2
	

D

T01�45�T10�0�

�n2 t1+n/
n2−1/2 ·
� − r10���� − 	2	

D

R01�0�

�
+

t01T10�0�

�n2 ·
�� − r10�t����� − 	2	

D

t01T10�0�

�n2 t ·
	�

D
� , �55�
ith D= �1−r10�t��	 · �1−r10��	−r10�t�r10	2

. Multilayer Printing Support
et us now consider a different printing support com-
osed of three superposed layers having the same refrac-
ive index. The central layer is nonscattering and the two
ther layers are strongly scattering. Such a printing sup-
ort may be obtained by laminating opaque and transpar-
nt plastic sheets. Let us derive, using our compositional
odel, the transfer matrix of this new printing support,

nd then the global transfer matrix of the print.
The two strongly scattering layers correspond to Lam-

ertian bifaces. Their invariant transfer matrices are, re-
pectively,

�	1 �1

�1� 	1
�, �	3 �3

�3� 	3
� . �56�

The central transparent layer has a normal transmit-
ance t2. Its fundamental transfer matrix is given by Eq.
13). It is at a central position within the multiface and
eceives Lambertian light on its two faces (see Appendix
). Its particular transfer matrix is given by Eq. (C.1):

L→�t2
1/cos � 0

0 t2
1/cos ��

←L

= �t2 0

0 t2
� , �57�

ith
t2 =�
�=0

�/2

t2
1/cos � sin 2�d�.

he transfer matrix of the multilayer printing support is
iven by the following composition, calculated using the
exaface formula (31):

�	1 �1

�1� 	1
� � �t2 0

0 t2
� � �	3 �3

�3� 	3
�

= � 	1	3

t2

1 − �1��3t2
2

�1 + 	1
2

�3t2
2

1 − �1��3t2
2

�3� + 	3
2

�1�t2
2

1 − �1��3t2
2

	1	3

t2

1 − �1��3t2
2
� .

When an ink layer is deposited on top of such a printing
upport, we obtain a multiface composed of the following
ifaces: the colored interface, which comprises the air–ink
nterface and the ink layer; the first diffusing layer; the
ransparent layer; the second diffusing layer; and the
acking layer–air interface. In this multiface, transparent
nd Lambertian bifaces are alternated. Therefore, it is
egular (see Section 4). Its global transfer matrix results
rom the following composition:

Tin Rs

r1 Tex
� � �	1 �1

�1� 	1
� � �t2 0

0 t2
�

� �	3 �3

�3� 	3
� � �Tex� r2

Rs� Tin�
� . �58�

his composition may be calculated by applying four
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imes the quadriface formula, or twice the hexaface for-
ula.
With the same simplicity, we may consider that the

entral layer within the printing support is weakly scat-
ering instead of being transparent. It is also illuminated
n its two sides by Lambertian light. Its particular trans-
er matrix is of the form

�	2 �2

�2� 	2
� . �59�

The global transfer matrix of the print is then given by
he compositional equation (58), with transfer matrix (59)
n place of transfer matrix (57). Note that reflectances �2
nd �2� and transmittance 	2 may be deduced from the
RDF and the BTDF of the scattering layer if these func-

ions are known [10]. They may also be indirectly deduced
rom global reflectance and transmittance measurements
f the multilayer printing support if the parameters of the
ther layers are known.

0. CONCLUSIONS
he compositional model is a generalization of existing

ight reflection–transmission models. It allows predicting
he reflectance and transmittance of specimens composed
f several layers having different refractive indices. In or-
er to unify the notions of layer and interface between
ayers of different refractive indices, we introduce the con-
ept of biface. A biface reflects and transmits light on its
op and bottom sides. We associate to every biface a trans-
er matrix that expresses the upper and the lower reflec-
ances and transmittances according to the laws of radi-
metry and geometrical optics (Snell’s laws, Fresnel’s
ormulas, Beer’s law). Multifaces are formed by superpos-
ng bifaces.

A multiface is regular if on each of its faces, the angular
ight distribution is constant along successive reflections
nd transmissions. This condition is fulfilled with any su-
erposition of transparent and/or strongly diffusing bi-
aces. Multifaces comprising weakly scattering layers
nd/or rough interfaces are only regular if they are bor-
ered by strongly diffusing bifaces.
Homogeneous discrete-time Markov chains are particu-

arly adapted for modeling the multiple reflection–
ransmission process of light within regular multilayer
pecimens. Light flux elements are repeatedly transmit-
ed and reflected at the faces of a multiface and eventu-
lly reach the detectors. The reflectances and transmit-
ances of a quadriface are obtained by establishing the
arkov transition probability matrix whose transition

robabilities correspond to the reflectances and transmit-
ances of the bifaces forming the quadriface. The station-
ry distribution of the Markov chain yields the upper and
ower global reflectances and transmittances of the
uadriface. The resulting biface composition operation is
ssociative and can therefore be repeatedly applied in or-
er to obtain the transfer matrix of a multiface.
The computation of global reflectances and transmit-

ances is first carried out with generic expressions that
an then be particularized for specific light illumination
nd capturing conditions. The biface composition opera-
ion also enables decomposing a multiface into an illumi-
ation and capturing geometry-independent part express-

ng internal reflectances and transmittances. The
eometry-independent internal transmittances are the
ame for the upper and lower side. This generalizes to
egular multifaces the principle of nonpolarity of trans-
ittance stated by Kubelka [4] for strongly scattering lay-

rs.
Kubelka’s model [4], the Williams–Clapper model [11],

he Saunderson correction of the Kubelka–Munk model
6], the model of Simonot et al. [13], the model of Hébert
nd Hersch for recto–verso halftone prints [9] have each
een developed for predicting the reflectance and/or the
ransmittance of a certain type of specimen. Their respec-
ive expressions can be retrieved with the present compo-
itional model [10]. We show the simplicity of use of the
ompositional model by modeling prints on monolayer or
ultilayer printing supports. The proposed compositional
odel is also applicable to many other types of multilayer

pecimens, e.g., successions of nonscattering or/and
trongly scattering layers having different refractive indi-
es.

PPENDIX A: DETAILED CALCULATION OF
HE QUADRIFACE FORMULA

n Section 6, we present a regular quadriface composed of
wo bifaces having the respective transfer matrices

�pu su

ru xu
�, �xv rv

sv pv
� .

et us derive the global transfer matrix of this regular
uadriface. The multiple reflection–transmission process
s described by the Markov chain represented in Fig. 4.
he following single-step transition probability matrix is
ttached to this Markov chain:

M =�
0 0 pu 0 0 su

0 0 0 pv sv 0

0 0 0 rv xv 0

0 0 ru 0 0 xu

0 0 0 0 1 0

0 0 0 0 0 1
� . �A.1�

et us decompose M into submatrices A and B:

M =  A B

024 I � . �A.2�

he two-step transition probability matrix is

M2 = A B

0 I � · A B

0 I � = A2 AB + B

0 I � .

he three-step transition probability matrix is

M3 = A2 AB + B

0 I � · A B

0 I � = A3 A2B + AB + B

0 I � .

ursuing iteratively the products of Mk by M, we obtain
he following k-step transition probability matrix:
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Mk = �Ak �
j=0

k−1

AjB

0 I
� ,

nd thereby, according to its defining Eq. (21), the follow-
ng infinite-step transition probability matrix:

M
 = �lim
k→


Ak

�
j=0




AjB

0 I
� . �A.3�

n Eq. (A.1), either ru or rv is strictly less than 1. Other-
ise, with ru=rv=1, we would have xu=xv=0 since the

um of the transmitted and reflected fractions of fluxes
annot exceed 1. This would mean that light cannot exit
he multiface. Hence, block A is a substochastic matrix
18]. The power of matrix A converges toward the zero
atrix [10], and the upper-right matrix geometric series

onverges toward �I4−A�−1B, where I4 is the identity ma-
rix having the size of A. Thus, Eq. (A.3) becomes [20]

M
 = 0 �I4 − A�−1B

0 I � .

he global transfer matrix G is the upper-right 2�2
lock of M
 and therefore the upper 2�2 block of
I4−A�−1B:

G

·
� = �I4 − A�−1B,

here the dot represents a 2�2 block.
Let us now decompose blocks A and B into 2�2 blocks:

�A.4�
e have

�I4 − A� = I − P

0 I − R� .

sing a straightforward block computation, we obtain

I − P

0 I − R
� · I P�I − R�−1

0 �I − R�−1 � = I 0

0 I� .

herefore,

�I4 − A�−1 = I P�I − R�−1

0 �I − R�−1 � .

sing the decomposition of B as a function of blocks S
nd X, we have
�I4 − A�−1B = I P�I − R�−1

0 �I − R�−1 � · S

X� = S + P�I − R�−1X

�I − R�−1X � .

I4−A�−1B is a 4�2 matrix whose upper 2�2 block cor-
esponds to the global transfer matrix G, i.e.,

G = S + P�I − R�−1X. �A.5�

ccording to the decomposition defined in Eq. (A.4), ma-
rix I−R is expanded as

I − R = 1 0

0 1� −  0 rv

ru 0� =  1 − rv

− ru 1 � .

ts determinant is �=1−rurv�0 since rurv1, and its in-
erse is

�I − R�−1 =
1

�
 1 rv

ru 1� . �A.6�

y inserting Eq. (A.6) into Eq. (A.5), one finally obtains
he quadriface formula:

G =  0 su

sv 0 � +
1

�
pu 0

0 pv
� ·  1 rv

ru 1� · xv 0

0 xu
�

= �
puxv

1 − rurv
su +

puxurv

1 − rurv

sv +
pvxvru

1 − rurv

pvxu

1 − rurv

� .

PPENDIX B: DETAILED CALCULATION OF
HE HEXAFACE FORMULA

n Section 7, we present a hexaface whose bifaces have
he transfer matrices given by Eq. (29). The Markov chain
s represented by the graph of Fig. 5. The single-step tran-
ition probability matrix M of the chain is obtained by
lacing at line i and column j the probability of transition
rom state i to state j:

M =�
0 0 pu 0 0 0 0 su

0 0 0 pv 0 0 sv 0

0 0 0 0 	 � 0 0

0 0 0 0 �� 	� 0 0

0 0 0 rv 0 0 xv 0

0 0 ru 0 0 0 0 xu

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

� .

�B.1�

In the same way as in the quadriface, we can observe
he step-by-step evolution of the system by using a flux
istribution vector. Again, the amount of light that tran-
its after an infinite number of steps from a light source
o a detector is an element of the infinite-step transition
robability matrix M
, defined by Eq. (21). In order to
ompute matrix M
, we decompose matrix M in the same
anner as in Eq. (A.2), with blocks A and B subsequently

ubdivided into 2�2 blocks:
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�B.2�

B = �
S

0

X
� =�

0 su

sv 0

0 0

0 0

xv 0

0 xu

� �B.3�

ither ru or rv is strictly less than 1 and block A is a sub-
tochastic matrix. Following the same reasoning line as
or the quadriface, we find

M
 = 0 �I6 − A�−1B

0 I � . �B.4�

he global transfer matrix G of the hexaface is the upper-
ight 2�2 block of matrix M
, and therefore the upper
�2 block of the 6�2 matrix �I6−A�−1B. Let us first cal-
ulate �I6−A�−1. It follows from decomposition (B.2) that

I6 − A = �
I − P 0

0 I − C

0 − R I
� .

ne can check by a straightforward direct multiplication
hat

�I6 − A�−1 = �
I P�I − CR�−1 PC�I − RC�−1

0 �I − CR�−1 C�I − RC�−1

0 R�I − CR�−1 �I − RC�−1 � .

sing the block decomposition of B, given in Eq. (B.3), we
btain

�I6 − A�−1B = �
S + PC�I − RC�−1X

C�I − RC�−1X

�I − RC�−1X
� .

I6−A�−1B is a 6�2 matrix, whose upper 2�2 block is
he global transfer matrix G:

G = S + PC�I − RC�−1X. �B.5�

−RC is expanded as

I − RC = 1 0

0 1� −  0 rv

ru 0� ·  	 �

�� 	�
�

= 1 − rv�� − rv	�

− ru	 1 − ru�
� .

ts determinant is
D = �1 − ru���1 − rv��� − rurv		�, �B.6�

nd its inverse is

�I − RC�−1 =
1

D
1 − ru� rv	�

ru	 1 − rv��
� .

hus, Eq. (B.5) becomes

G =  0 su

sv 0 � +
1

D
pu 0

0 pv
� ·  	 �

�� 	�
�

· 1 − ru� rv	�

ru	 1 − rv��
� · xv 0

0 xu
� ,

nd we obtain the hexaface formula, with D given by Eq.
B.6):

G = � puxv

	

D
su + puxu

� − rv���� − 		��

D

sv + pvxv

�� − ru���� − 		��

D
pvxu

	�

D
� .

PPENDIX C: PARTICULAR TRANSFER
ATRIX OF TRANSPARENT BIFACES

n the present appendix, we propose detailed expressions
or the particular transfer matrix of a transparent biface.
ransparent bifaces may be flat interfaces, transparent

ayers, or superpositions of transparent layers and flat in-
erfaces. Their particular transfer matrix depends on the
osition of the biface within the multiface, the geometry
f illumination, and if the biface is at an external position,
n the geometry of the capturing device.

Let us first consider a transparent biface being at a
entral position in a multiface and having the following
undamental transfer matrix:

� T��� R���

R���� T����
� ,

n order to have a regular multiface and be able to apply
he compositional model, the transparent biface is neces-
arily bordered by Lambertian bifaces (see Section 4).
herefore, it receives Lambertian illuminations on its two

aces. Its particular transfer matrix is obtained by inte-
rating over the hemisphere each term of its fundamental
ransfer matrix [see Eq. (7)]:

L↓� T��� R���

R���� T�����↑L

= � ��=0

�/2

T���sin 2�d� �
�=0

�/2

R���sin 2�d�

�
�=0

�/2

R����sin 2�d� �
�=0

�/2

T����sin 2�d� � , �C.1�

We now consider a transparent biface located at the up-
er position of a multiface. In order to ensure that the
ultiface is regular, it is necessarily bordered on its lower

ide by a Lambertian biface (see Section 4). Therefore, it
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eceives a Lambertian illumination on its lower face. Its
undamental transfer matrix is defined as

�P��� S���

R��� X���
� .

Its particular transfer matrices are presented in Table
for a directional or a Lambertian light source, and for an

ntegrating sphere or a radiance detector as a capturing
evice located on its upper side (for the derivation of the
xpressions, see [9,10]). On the fundamental transfer ma-
rix, the upper and lower illumination geometries are
pecified respectively by a top-left superscript with a sym-
ol �↓� and by a bottom-right subscript with symbol �↑�.
ymbols L and dir��� stand, respectively, for Lambertian
nd for directional with incident angle �. The capturing
evice is specified by a top-right subscript with symbol
↑�. Symbols rad��� and sph stand, respectively, for radi-
nce detector with observation angle � and for integrat-
ng sphere. Notation �g stands for ��=0

�/2 g��� sin 2�d�.
erms n0 and n1 are the refractive indices of respectively
he upper and lower side media bordering the upper

Table 2. Particular Transfer Matrix of a Transpare
Geometries a

Directional light source at angle �:
Capture:Integrating sphere
dir���↓

�P��� S���
R��� X��� 	

↑L

↑sph

= �P��� S���

�R �X 	
Lambertian light source:
Capture:Integrating sphere

L↓�P��� S���
R��� X��� 	

↑L

↑sph

= ��P �S

�R �X 	
an0 is the refractive index of the upper bordering medium �e.g., air� and n1 of th

Table 3. Particular Transfer Matrix of a Transpare
Geometries a

Directional light source at angle �:
Capture: Integrating sphere

L↓

sph↓
�X��� R���
S��� P��� 	

↑dir���
= ��X �R

S��� P��� 	
Lambertian light source:
Capture: Integrating sphere Integrating sphere

L↓

sph↓ �X��� R���
S��� P��� 	

↑L

= ��X �R

�S �P 	
an0 is the refractive index of the lower bordering medium �e.g., air� and n1 of th
ransparent biface (e.g. the interface air–medium). Angle

1� is related to observation angle �� by Snell’s laws:

n1 sin �1� = n0 sin ��.

able 3 is similar to Table 2 when the transparent biface
s at the lowest position within a multiface.

Note that for matte prints, when a 45° /0° geometry is
sed, a rough print–air interface can be considered as be-

ng flat since its transmittance for incident light is at 45°,
ts transmittance for exiting light is at 0°, and its internal
eflectance is very close to that of a flat interface [21].
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