brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

2628 J. Opt. Soc. Am. A/Vol. 24, No. 9/September 2007 Hébert et al.

Compositional reflectance and transmittance
model for multilayer specimens

Mathieu Hébert,>'* Roger David Hersch,! and Jean-Marie Becker?

1School for Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
2CPE—Lyon and Laboratoire TSI, UMR CNRS 5516, Saint-Etienne, France
*Corresponding author: mathieu.hebert@epfl.ch

Received January 12, 2007; revised April 18, 2007; accepted April 29, 2007;
posted May 4, 2007 (Doc. ID 78952); published July 27, 2007
We propose a compositional model for predicting the reflectance and the transmittance of multilayer specimens
composed of layers having possibly distinct refractive indices. The model relies on the laws of geometrical op-
tics and on a description of the multiple reflection—transmission of light between the different layers and in-
terfaces. The highly complex multiple reflection—transmission process occurring between several superposed
layers is described by Markov chains. An optical element such as a layer or an interface forms a biface. The
multiple reflection—transmission process is developed for a superposition of two bifaces. We obtain general
composition formulas for the reflectance and the transmittance of a pair of layers and/or interfaces. Thanks to
these compositional expressions, we can calculate the reflectance and the transmittance of three or more su-
perposed bifaces. The model is applicable to regular compositions of bifaces, i.e., multifaces having on each face
an angular light distribution that remains constant along successive reflection and transmission events.
Kubelka’s layering model, Saunderson’s correction of the Kubelka—Munk model, and the Williams—Clapper
model of a color layer superposed on a diffusing substrate are special cases of the proposed compositional
model. © 2007 Optical Society of America
OCIS codes: 000.3860, 230.4170, 120.5700, 120.7000, 330.1710.

mediately diffuse. Kubelka’s multilayer reflectance and
transmittance model is therefore independent of the an-
gular distribution of the incident light.

Let us introduce Kubelka’s layering model by consider-
ing two superposed strongly scattering layers having the
same refractive index, identical to the refractive index of
the surrounding medium. When light is incident on their
upper side, the layers have a reflectance R (resp. Ry) and
a transmittance T'; (resp. T3). When light is incident on
their lower side, they have a reflectance R] (resp. Ry) and
a transmittance T (resp. T). Figure 1 shows the multiple
reflection—transmission process of light taking place
within the bilayer, with the incident light coming at the
upper side. By summing the different fractions of light
emerging at the upper side, we obtain a geometric series
expressing the bilayer’s global reflectance R:

1. INTRODUCTION

Printed and painted colored specimens are generally com-
posed of several layers having possibly distinct refractive
indices. Light may be scattered and/or absorbed in the
layers, as well as reflected and transmitted at the inter-
faces between layers of distinct refractive indices. The col-
oration of light interacting with a specimen results from
the combined effects of scattering, absorption, reflection,
and transmission, depending on the nature of the super-
posed layers, the angular distribution of light, and the ge-
ometry of observation. Existing reflectance and transmit-
tance prediction models are dedicated to specific
multilayer specimens. The reflectance and transmittance
model we propose is applicable to all multilayer speci-
mens comprising nonscattering and strongly scattering
layers. Let us first present specific multilayer specimens
and the corresponding classical spectral prediction mod-

els.

A. Strongly Scattering Layers

The well-known Kubelka—Munk theory [1,2] enables pre-
dicting the reflection and the transmission spectra of lay-
ers having at every point the same high-scattering and
low-absorbing properties [3]. When several layers with
identical refractive indices are superposed, their global
reflectance and transmittance can be computed according
to Kubelka’s layering model [4] and expressed as func-
tions of the individual layer reflectances and transmit-
tances. Since the layers have the same refractive index
and are strongly scattering, the light penetrating the
multilayer loses its angular distribution and becomes im-
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R =R1 + T1R2T]’_ + T1R2R1R2Ti + TlRQ(RiRQ)ZTi + -

=R, +TTiR, (1)

1-R/R,

The fractions of light emerging at the lower side also form
a geometric series, expressing the bilayer’s global trans-
mittance T"

T =TTy +TRoR Ty + T1(ReR})*To + -+
1

=T\Ty———. 2
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Fig. 1. Multiple reflection—transmission of light within two su-
perposed nonsymmetrical layers.

B. Saunderson Correction

In most cases, the refractive index of the specimen is dif-
ferent from the one of air. Light is reflected and transmit-
ted at both sides of the air—specimen interface, according
to Snell’s laws and Fresnel’s formulas [5]. Saunderson [6]
proposed a correcting formula giving the reflectance of a
specimen interfaced with air as a function of the intrinsic
reflectance of the specimen without interface. This cor-
recting formula was established by describing the mul-
tiple reflections of light between the specimen and the in-
terface. The same graph as in Fig. 1 may be used. Instead
of two superposed layers, we have at the lower position a
diffusing specimen of intrinsic reflectance R. At the upper
position, we have the specimen—air interface, which has a
reflectance £, and a transmittance (1-%;) at the air side,
and a reflectance ko9 and a transmittance (1-k5) at the
specimen side. The global reflectance R’ of the specimen
interfaced with air is expressed as in Eq. (1), i.e.,

R =k1+(1-k)R(1-ky)+(1-k)RER(1—ko) + -+

=k1+(1—k1)(1—k2) (3)

1-kyR’

In the case of a sheet of a diffusing medium surrounded
on both sides by a medium of distinct refractive index, we
have a central diffusing layer bounded by two interfaces.
The global reflectance and the transmittance of the slice
can be obtained by describing the multiple reflection—
transmission process of light among these three elements
[7-9].

C. Diffusing Background Coated with a Transparent
Layer

Since it is restricted to strongly scattering layers, Kubel-
ka’s theory cannot be used for modeling a diffuse back-
ground coated with a nonscattering layer. A photograph,
for example, is composed of a diffusing background (paper
bulk) coated with a transparent possibly absorbing layer
having the same refractive index as the diffusing back-
ground. One can follow the approach of Williams and
Clapper and describe the multiple reflection—
transmission process between the diffuse background and
the coating—air interface. The transparent coating may be
grouped together with the coating—air interface so as to
form a single light reflector—transmitter called colored in-
terface. For directional incident light, the reflectance
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(resp. transmittance) of this colored interface is given by a
directional reflection function (resp. transmission func-
tion) derived from Fresnel’s formulas and Beer’s law.
When the incident light is diffuse, the reflectance (resp.
transmittance) of the colored interface is obtained by
summing up the contribution of each incident ray, i.e., by
integrating angularly the directional reflection function
(resp. transmission function) over the hemisphere [9,10].
For the colored interface superposed on a diffusing back-
ground, the reflectance and transmittance are computed
in a similar manner as the Saunderson correction, i.e., by
describing the multiple reflection—transmission process
according to Fig. 1. The resulting analytical expression
for the reflectance is similar to Eq. (3).

This approach was followed by Williams and Clapper
[11], who considered directional incident light at 45° and
a radiance detector capturing light at 0° (45°/0° measur-
ing geometry). Shore and Spoonhower adapted the
Williams—Clapper reflectance expression to other measur-
ing geometries [12]. Simonot et al. [13] extended the
Williams—Clapper model to the case where the coating is
replaced by a stack of partly absorbing transparent layers
having distinct refractive indices and flat interfaces. Even
though light is multiply reflected and transmitted inside
the transparent layer stack, according to Snell’s laws, di-
rectional incident light remains directional without being
diffused. The directional reflection and transmission func-
tions are calculated as functions of the angle of incidence.
For diffuse incident light, the diffuse reflectance and
transmittance of the transparent layer stack are obtained
by integrating angularly over the hemisphere the layer
stack’s directional reflection function (resp. the direc-
tional transmission function). The transparent layer
stack may be superposed on a diffusing background. By
describing the multiple reflection—transmission process of
light between the transparent layer stack and the diffus-
ing background, the analytical expression for the global
reflectance of the specimen is derived in the same manner
as when deriving Eq. (3).

D. Prints

The same multiple reflection—transmission approach can
be applied to halftone prints. A halftone print is composed
of a diffusing background (paper) and of a coating formed
by juxtaposed colorant areas. We assume that the juxta-
posed colorant areas form a single layer, called inked
layer, which has the same refractive index as the paper
background and has a flat interface with air. The trans-
mission of light across the inked layer is attenuated by
the colorants according to their surface ratio. A transpar-
ent inked layer is considered together with the ink—air in-
terface and forms a colored interface as in the case of a
photograph. The reflectance of the print is thus obtained
by considering the multiple reflection—transmission pro-
cess of light between this colored interface and the paper
background. In a recent contribution [9], the reflectance
and the transmittance of recto—verso halftone prints is
modeled by considering the multiple reflection—
transmission of light among the central paper bulk layer,
a colored interface at its upper side, and a different col-
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ored interface at its lower side. This model is also valid for
paper sheets, whose colored interfaces are simply the
paper—air interface.

The classical model introduced by Clapper and Yule for
halftone prints [14] also relies on a multiple reflection—
transmission approach. However, light is assumed to
have always the same angular distribution each time it
crosses the inked layer. Thus, the attenuation of light due
to absorption in the inked layer is modeled without con-
sideration of its orientation [9,10].

E. Other Multilayer Specimens

In all the models mentioned above, light is reflected and
transmitted multiple times between less than three lay-
ers and/or interfaces. In the special case of specimens
composed of several strongly scattering layers of identical
refractive index, Kubelka’s model enables applying itera-
tively the two-layer reflectance and transmittance formu-
las [4]. One computes the reflectance and the transmit-
tance of two layers, then the reflectance and the
transmittance of these two layers plus a third layer and
SO on.

However, in many specimens, we have an alternation of
scattering and nonscattering layers possibly having dif-
ferent refractive indices. For example, when we fold a
sheet of paper, we have a first sheet of paper, a central
slice of air, and a second sheet of paper. Since paper and
air have different refractive indices, each of the four
paper—air interfaces creates light reflections and trans-
missions. For such a specimen, we should model the mul-
tiple reflection—transmission of light among these seven
elements (two strongly scattering layers, one transparent
layer, and four interfaces) by taking care of their different
optical properties. Such a multiple reflection—
transmission process is extremely complex and very diffi-
cult to describe without an appropriate mathematical
model.

F. Compositional Approach

We develop a methodology relying on Markov chains for
modeling the multiple reflection—transmission process
and for computing the reflectance and the transmittance
of any multilayer specimen composed of scattering layers
and/or nonscattering layers having possibly distinct re-
fractive indices. In order to describe every multiple
reflection—transmission process, we introduce a special
formalism. We represent every layer and every interface
between layers by the single concept of biface. Bifaces are
characterized by their upper-side reflectance, their upper-
side transmittance, their lower-side reflectance, and their
lower-side transmittance. These four terms are gathered
into a 2X2 matrix called transfer matrix. Every
multilayer specimen is seen as a superposition of bifaces
and is called a multiface. For describing the multiple
reflection—transmission process between the different bi-
faces, we use Markov chains. Their graphical representa-
tion as finite graphs provides a very synthetic overview of
the multiple reflection—transmission process. Moreover,
using the Markov matrix formalism, a single matrix com-
putation is sufficient for obtaining the global reflectance
and the global transmittance of multifaces for upper and
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lower illuminations. The computation method is indepen-
dent of the number of superposed bifaces.

In practice, we need to compute the multiple reflection—
transmission process for only two bifaces. Thanks to the
established matrix composition rules, we calculate the
global transfer matrix of a multiface. The composition of
two transfer matrices is associative. Thus, for multifaces
composed of three or more layers, we can compose succes-
sively, two by two, the transfer matrices of the corre-
sponding superposed bifaces and multifaces.

This paper is structured as follows. In Section 2, we re-
call the definitions of reflectance and transmittance. The
concepts of biface and multiface are introduced in Section
3. We establish the correspondence between multiple
reflection—transmission processes and Markov chains in
Section 4. In Section 5, by applying Markov’s theory, we
develop the expressions for the reflectances and the trans-
mittances of two superposed bifaces. The algebraic com-
position operation is defined in Section 6. In Section 7, we
consider the case of three superposed bifaces and show
the associativity of the composition operation. In Section
8, we introduce a decomposition operation useful for sepa-
rating the parameters depending on the illumination and
measuring geometry. The application of the compositional
model is illustrated in Section 9 by examples of prints on
monolayer and multilayer supports. In Section 10, we
draw the conclusions.

2. REFLECTANCE AND TRANSMITTANCE

Reflectance is defined as the ratio of a reflected flux to an
incident flux, considering a surface element on the consid-
ered specimen, the angular distribution of the incident
flux and the set of directions over which the reflected flux
is observed [15]. The same definition also applies for
transmittance in respect to the transmitted light flux.

A specimen receives directional incident light from di-
rection (6, ¢). It is observed over the whole hemisphere;
i.e., all the reflected light is collected by the capturing de-
vice. We assume that the specimen is azimuthally isotro-
pic; i.e., its reflection properties are independent of the
azimuthal angle ¢. The specimen is thus characterized by
its directional reflectance, R(6), which is a function of the
incident angle 6.

Let us now determine the reflectance of the specimen
illuminated with perfectly diffuse light, i.e., with a Lam-
bertian irradiance E;, and observed over the whole hemi-
sphere. Since it is Lambertian [15], the incident irradi-
ance is uniformly distributed over the hemisphere; i.e.,
the radiance incident from every direction (6,¢) of the
hemisphere is E;/m. Therefore, a surface element ds on
the specimen receives from a given direction (6,¢),
through the infinitesimal solid angle dw=sin 6d6d ¢, the
elemental flux d2®;(6, ¢),

E;
d%®;(6,¢) = ds— cos Osin 6d6dp. (4)
T

A fraction R(6) of this incident elemental flux is reflected
into the hemisphere, function R being the directional re-
flectance of the specimen. The resulting reflected flux,
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divided by the surface element area ds, yields an element
of reflected irradiance dE (6, ¢):

E;
dE,(6,$) = R(6)— cos 6 sin 6d6d ¢. (5)
o

In order to obtain the total irradiance reflected by the
specimen, one accounts for all the directions of incidence
of light, i.e., one sums up over the hemisphere the ele-
ment of reflected irradiance dE,(0, ¢):

27 ,7l2 E.
E,. = f f R(6)— cos #sin 6dod ¢. (6)
#=0 J 6=0 m

Since the specimen is azimuthally isotropic, the inte-
grated terms do not depend on angle ¢. The integration
according to ¢ yields a factor 2. After rearranging, the
ratio E,/E; defines the Lambertian reflectance r of the
azimuthally isotropic specimen:

/2
r=f R(6) sin 26d6. (7)

6=0

Equation (7) specifies the diffuse reflectance of flat inter-
faces when R(6) is the Fresnel reflectivity of the interface.
It has been tabulated by Judd [16] for various refractive
indices between 1 and 2. A similar definition can be for-
mulated for the transmission of diffuse light.

3. BIFACES AND MULTIFACES

The layers and the interfaces forming a multilayer speci-
men are each responsible for the reflection and the trans-
mission of light. However, except in the case of strongly
scattering layers, they have angle-dependent reflectance
and transmittance. In order to take into account these an-
gular dependences in the multiple reflection—
transmission model, we introduce the biface concept and
classify bifaces according to the angle-dependence of their
reflectance and transmittance.

A Dbiface represents a single layer or a single interface,
whose reflection and transmission properties are azi-
muthally isotropic and may be modeled by geometrical
optics (no interference, no diffraction, and no lumines-
cence phenomena). Because bifaces may receive light on
their two sides, they are the junction of two faces, each
one being characterized by its reflectance and its trans-
mittance for a given angular distribution of light.

We distinguish three categories of bifaces. Transparent
bifaces are perfectly nonscattering. They reflect and
transmit single-directional light components when the in-
cident light is single directional. They correspond to per-
fectly nonscattering layers (transparent layers) and per-
fectly flat interfaces. Scattering bifaces scatter light as a
function of the angular distribution of the incident light.
Scattering layers and rough interfaces belong to this cat-
egory. Lambertian bifaces are perfect diffusers that reflect
and transmit Lambertian light components indepen-
dently of the angular distribution of the incident light.
Strongly scattering layers belong to this category. Let us
characterize these three types of bifaces.

Vol. 24, No. 9/September 2007/J. Opt. Soc. Am. A 2631

A. Transparent Bifaces

A transparent biface does not scatter light at all. It is
characterized by its upper-face directional reflectance
R(6) and transmittance 7'(6) and its lower-face directional
reflectance R'(60) and transmittance 7"(6). These four an-
gular functions are gathered into a matrixlike notation
called fundamental transfer matrix, with its elements
placed as follows:

[ T(6) R(e)} )

R'(6) T'(0)

When the biface is illuminated according to a specific
angular distribution on each of its two sides, its faces
have specific reflectances and transmittances. We gather
them into a particular transfer matrix, whose elements
are at the same place as the ones of the fundamental
transfer matrix. For example, let us consider the biface
having the fundamental transfer matrix of Eq. (8). It re-
ceives on its upper face directional light at angle ¢, yield-
ing as upper particular reflectance the directional reflec-
tance R(y) and as upper particular transmittance the
directional transmittance 7'(¢)). On the lower face, it re-
ceives Lambertian light. The lower particular reflectance
is the Lambertian reflectance r’, derived from the direc-
tional reflectance R(6) according to Eq. (7):

/2
r’=f R'(6) sin 26d6. 9)
6=0

Likewise, the lower particular transmittance of the biface
is the Lambertian transmittance ¢’ defined as

72
t’=f T'(6) sin 26d 0 (10)
6=0

Thus, the particular transfer matrix of the biface illumi-
nated with directional light at angle ¢ on its upper face
and with Lambertian light on its lower face is

{T(w Rw)}

, C - (11)
r t

As an example of a transparent biface, we have the
partly absorbing nonscattering layer called transparent
layer. It is characterized by its normal transmittance ¢,
which is the attenuation factor for directional light cross-
ing it perpendicularly. Its reflectance is zero. According to
Beer’s law [17], since light crossing the layer at angle 6
travels a path of relative length 1/cos 6, the directional
transmittance T'(6) of the transparent layer for every
angle 0 is

T(6) =¢Veos . (12)

Therefore, the transparent layer is characterized by the
fundamental transfer matrix:

tl/cos 0 0
0 tl/cos AN (13)

A flat interface between two media having different re-
fractive indices is also a transparent biface. Its directional
reflectance and transmittance correspond to its Fresnel
reflectivity and transmittivity, given by Fresnel’s formu-
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las [5]. Labeling 0 and 1 the upper and lower surrounding
media, respectively, we note R(;(6) the interface reflectiv-
ity and T;(6) the interface transmittivity when light ar-
rives at angle 6 from medium 0. We note R1((6) the reflec-
tivity and T'(6) the transmittivity when light arrives at
angle 0 from medium 1. The interface has the fundamen-
tal transfer matrix

(14)

{Tm(ﬁ) R01(9)]
Rio(6)  Tio(0) |

B. Scattering Bifaces

The category of scattering bifaces contains rough inter-
faces and weakly scattering bifaces. Similarly to the
transparent bifaces, they are characterized by a funda-
mental transfer matrix, whose elements may be derived
from the bidirectional reflectance distribution function
(BRDF) and the bidirectional transmittance distribution
function (BTDF) of their faces if these functions are
known [10]. When the illuminations geometries are speci-
fied on their two faces, one can express their particular
transfer matrix.

C. Lambertian Bifaces

Lambertian bifaces correspond to strongly scattering bi-
faces whose reflectance and transmittance do not depend
on the angular distribution of the incident light. The re-
flected and the transmitted lights are perfectly diffuse,
i.e., Lambertian. A Lambertian biface has an upper-side
reflectance p and a possibly different lower-side reflec-
tance p’. According to the nonpolarity of strongly scatter-
ing layers [4], it has single side-independent transmit-
tance 7. Its transfer matrix is invariant in respect to the
upper-side and lower-side illumination geometries:

T p

M|
p T

D. Multifaces

A multilayer specimen incorporating various superposed
bifaces is called a multiface. Since it is able to reflect and
transmit light like bifaces, it is also characterized by a
transfer matrix called global transfer matrix. The global
transfer matrix is defined for a given angular distribution
of the incident light and a given observation solid angle at
each side. We note its upper reflectance Ry, its upper
transmittance T, its lower reflectance Ry, and its lower
transmittance Ty. The global transfer matrix G of a mul-

tiface is defined as
Ty Ry
G= |iRV TV:| . (16)

Transfer matrices are not matrices in the classical
sense since classical matrix operations such as sum (+) or
product (-) are not defined. In Section 6, we create a spe-
cial operation O called composition operation. When a bi-
face having the transfer matrix F; is located on top of a
biface having the transfer matrix Fy, the resulting multi-
face has the global transfer matrix noted F;OF,.
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4. MULTIPLE REFLECTION-TRANSMISSION
PROCESS AND MARKOV CHAINS

A given multilayer specimen corresponds to a multiface.
Its composing layers and interfaces are the different bi-
faces of the multiface. Each time a light flux strikes a face
(i.e., a side of the biface), it is split into a reflected compo-
nent and a transmitted component, each one being itself
incident onto another face and being again split into re-
flected and transmitted components. The process accord-
ing to which fluxes components are split within the mul-
tiface is called the multiple reflection—transmission
process. When a face absorbs light, the sum of its reflec-
tance and its transmittance is less than 1. Absorption is
therefore taken into account.

Each face within the multiface receives flux compo-
nents at various steps of the multiple reflection—
transmission process. Recall that, except for Lambertian
faces, the reflectance and the transmittance of a given
face generally depend on the angular distribution of the
incident light. If the angular distribution of light evolves
during the multiple reflection—transmission process, the
face reflectance and transmittance may vary and become
step dependent. The face is said to be irregular. A multi-
face containing at least one irregular face is an irregular
multiface, and the whole multiple reflection—transmission
process is qualified as step dependent. The multiple
reflection—transmission approach developed here is not
suitable for such a multiface, since it will neither yield
geometrical series nor analytical expressions for its global
reflectance and transmittance. We therefore limit our con-
siderations to regular multifaces for which the multiple
reflection—transmission process is step independent.

A. Regular Multifaces
Depending on their composition, we may distinguish
three types of regular multifaces:

1. Multifaces comprising only Lambertian bifaces (i.e.,
strongly scattering layers). Every face has constant step-
independent reflectance and transmittance. This is the
type of multiface considered in Kubelka’s model [4].

2. An alternation of non-Lambertian bifaces, i.e.,
transparent or scattering bifaces, and of Lambertian bi-
faces. The two faces of the non-Lambertian bifaces receive
constantly Lambertian fluxes from their neighboring
Lambertian bifaces. The two faces of the Lambertian bi-
faces have invariant reflectance and transmittance inde-
pendently of the angular distribution of light. Since the
faces of every biface have a constant step-independent re-
flectance and transmittance, the multiface is regular. Sev-
eral Lambertian bifaces may also be consecutive. Be-
tween two Lambertian bifaces, there must be at most one
non-Lambertian biface, e.g., a transparent biface, or a
weakly scattering biface. Consecutive non-Lambertian bi-
faces may be considered as one non-Lambertian biface,
without however describing the multiple reflection—
transmission process of light taking place inside it.

3. Multifaces comprising only transparent bifaces, i.e.,
transparent layers and flat interfaces. Such multifaces
are called transparent multifaces. They are regular only
for directional incident light and therefore irregular when
the incident light is diffuse. The regularity for directional



Hébert et al.

incident light is due to the fact that, during the multiple
reflection—transmission process, the successive compo-
nents received by each layer and each interface are ori-
ented according to step-independent angles determined
according to Snell’s laws (see Fig. 2). When the incident
light is diffuse, its angular distribution is modified at each
reflection or transmission due to the angular dependence
of Fresnel’s formulas and Beer’s law. The successive light
components received by a layer or by an interface have
different, step-dependent, angular distributions. There-
fore, for transparent bifaces illuminated by diffuse inci-
dent light, the multiple reflection—transmission process is
time dependent and the transparent multiface is
irregular.

B. Markov Chains

We now consider only regular multifaces and step-
independent multiple reflection—transmission processes.
Regular multifaces are considered as a system in which
flux units transit from face to face by reflection or trans-
mission, are partially absorbed, and partially reach the
detectors. A flux state corresponds to a face on which an
incident flux unit is reflected or transmitted. A detector
capturing an emerging flux unit corresponds also to a flux
state. A flux unit moves from flux state to flux state at
each reflection or transmission event, with the state tran-
sition probability corresponding to the considered reflec-
tance (resp. transmittance). The path followed by a flux
unit ends when it reaches an absorbing state, correspond-
ing to a detector.

In a regular multiface, since each face has its specific
step-independent reflectance and transmittance, each
transition from one given state to another given state oc-
curs with a same probability. We can therefore model the
multiple reflection—-transmission process as a homog-
enous discrete-time Markov chain [18]. Table 1 shows the
analogy between the optical multiple reflection—
transmission processes and the corresponding terms of
homogenous Markov chains.

The use of Markov chains provides two main advan-
tages compared with the classical method of expressing
multiple reflection—transmission processes by geometric
series. First, the Markov matrix formalism allows the di-

Directional
incident light

]

ny

ny

Fig. 2. Multiface representing a transparent layer bordered by
two flat interfaces. When directional incident light illuminates
such a multiface composed of transparent bifaces, every face re-
ceives directional light along step-independent orientations
given by Snell’s laws: n( sin §y=n; sin 6;=ny sin 6,.
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Table 1. Correspondence between Multiple
Reflection-Transmission Processes and Markov
Chains

Optics Markov Chains

Multiface Structured stochastic system
Portion of flux on a face State

Portion of flux on a detector Absorbing state
Reflection/transmission Transition
Reflectance/transmittance Transition probability
Step-independent process Homogenous Markov chain

rect calculation of the global transfer matrix of multi-
faces. Their upper and lower reflectances and transmit-
tances are obtained by a single matrix computation,
which embeds the geometric series and therefore avoids
the need to establish them explicitly. Second, the Markov
graph provides a clear synthetic view of the multiple
reflection—transmission process for any number of super-
posed bifaces, whereas classical light propagation graphs
(e.g. Fig. 2 in Ref. [9]) are very difficult to draw for more
than three superposed bifaces.

5. REGULAR QUADRIFACE

In order to illustrate the concepts of biface and transfer
matrix and to show how Markov chains are used, we pro-
pose to consider a regular quadriface composed of two bi-
faces and therefore four faces. Such a quadriface may rep-
resent, for example, two strongly scattering layers having
the same refractive index, also identical to the refractive
index of the surrounding medium (no interfaces). A light
source and a detector are placed both at the upper and the
lower sides of the quadriface (Fig. 3). The global transfer
matrix of the quadriface is the same as in Eq. (16), and
the particular transfer matrices of the upper and lower bi-
faces are defined, respectively, as

| -
ru xu SU pU

A. Markov Chain of a Regular Quadriface
The corresponding Markov chain is represented by the
graph of Fig. 4. Flux states representing external faces,

Light source

Upper detector (R;))
A

g

Lower detector (T7)

Fig. 3. Infinite graph showing the multiple reflection—
transmission of light within a quadriface, with light incident at
the upper side (lower source off).
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upper upper
source detector
1 - 6 1
s
u upper
Pu r, M u biface
3 4
N Fy  p lower
v s, v biface
1 5 2
lower lower
detector source

Fig. 4. Markov chain representing the multiple reflection—
transmission process within a quadriface.

which receive light from the light sources, are numbered
1 and 2. They are called ephemeral states since they are
the starting point of a finite number of transitions. The
detectors are represented by the absorbing states 5 and 6.
The loop connecting each detector with itself modelizes
the fact that light captured by the detectors no longer in-
teracts with the bifaces. Odd numbers (resp. even num-
bers) are attributed to the flux states receiving the light
propagating downward (resp. upward). Odd numbers in-
crease and even numbers decrease as the flux states are
closer to the lower side. Note that flux-state labeling is ar-
bitrary.

B. Transition Probability Matrices

Let m;; be the probability of transition from state i to
state j, which is zero if the two flux states are not directly
connected. Matrix M=(m;;) is called the single-step tran-
sition probability matrix of the Markov chain. For ex-
ample, in this matrix, the transmittance p, of the upper
biface represents the probability of transition from flux
state 1 (line 1 of matrix) and flux state 3 (column 3 of ma-
trix):

0 0 p, 0 0 Sy
0 0 0 Do Sy 0
0 O 0 r, X, 0
M=y o r 0 0 x, (18)
0o 0 0 0 1 0
0 0 0 0 0 1

The evolution of the system may be observed step by
step using a flux distribution vector, expressing the por-
tions of light flux units being in the different flux states.
In the following notations, we use bold characters for the
two last elements of the vector, which represent the
amounts of incident flux having reached the lower and
the upper detectors, respectively. Let us first assume that
the incident flux comes from the upper light source. At the
origin, all the flux is in flux state 1; i.e., all the flux is in-
cident on the upper face of the upper biface (see Fig. 4).
The flux distribution vector is

ep=[1, 0, 0, 0, 0, 0]. (19)

At step 1, the flux distribution within the quadriface is
given by the product e,-M:
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el=eo‘M=[07 07 Pu> O, O’ su]-

A fraction s, (external reflectance of the upper biface) of
the incident light has already reached the upper detector
(flux state 6). At step 2, the product e;-M shows that a
fraction p,x, has reached the lower detector (flux state 5):

e;=e -M=e,-M2=[0, 0, 0, p,ry, Pu¥p, Sul.
At step 3, the flux distribution vector is
e;=e, M=e, M°
=[0, 0, p,rury, 0, DPuXy, Sy +Puryx,].

Matrices M? and M? are called, respectively, the two-
step and the three-step transition probability matrices.
By continuing to perform the products of the flux distri-
bution vector with matrix M, one observes that the pro-
portion of light reaching the detectors increases and that
the proportion of light remaining in other states de-
creases. When the number of steps approaches infinity, no
portion of the initial light flux remains within the quadri-
face. Therefore, the elements of the flux distribution vec-
tor e, are zero, except the two last elements m7; and m3:

ew=eo'Mo¢=[0’ 09 07 07 mff5, moloﬁ]y (20)
with
M., = lim M*. (21)

k—o
These two elements correspond, respectively, to the frac-
tions of the incident light flux being absorbed by flux
states 5 and 6, i.e., to the upper global transmittance and
the upper global reflectance of the quadriface.
Let us now consider light coming from the lower source
(state 2). At the origin, the flux distribution vector e is

eo=[0’ 15 0’ 0’ 03 0] (22)

By multiplying this vector with the matrix M an infinite
number of times, or by multiplying it by M.., we obtain a
flux distribution vector whose elements are zeros, except
the two last elements mg; and mgg, which correspond, re-
spectively, to the lower global reflectance and transmit-
tance of the quadriface:

ew=eo'Mx=[O, O} 07 07 m;f)? m?ﬁ] (23)

C. Transfer Matrix of the Quadriface
We conclude from Egs. (20) and (23) that matrix M., is of
the form

0 0 0 0 mT5 mTG
0 0 0 0 m;5 m;};
0 0 0 0
M. = ’

0 0 0 0

0 0 0 0 0

0 0 0 0 0 1

i 1 (@

and that its upper-right 2 X 2 block corresponds to the glo-
bal transfer matrix of the multiface:
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|:TU RU:| _ m% mz6 . (25)
Ry Ty May5  Mgg
Finally, according to the calculations performed in Ap-

pendix A, we obtain the following expression for the glo-
bal transfer matrix of the quadriface:

puxv puxurv
Sy +
Ty Ry _ 1-r,r, 1-r,r, 26)
RV TV PyXyly PyXy
S, +
1-r,r, 1-r,r,

6. COMPOSITION

In order to show more clearly the relationship between
the global transfer matrix of the quadriface given by Eq.
(26) and the transfer matrices of the composing bifaces
given in Eq. (17), we create an operation between transfer
matrices, called a composition operation, noted O, whose
definition is

puxv puxurv
S, +
Pu Sy o X, 7, 1-r,r, 1-r,r,
ru xu SU pl) B pvxvru pvxu
Sy +
1-r,r, 1-r,r,
(27)

The left and right transfer matrices on the left part of the
equation correspond, respectively, to the upper and the
lower bifaces.

Equation (27) is called the quadriface formula. It is the
most fundamental relation of the compositional model. It
may be used each time two bifaces form a regular quadri-
face and embodies the multiple reflection—transmission
process occurring between them.

Operation O is noncommutative, since a mutual ex-
change of position of two bifaces forms a different multi-
face having therefore different reflectances and transmit-
tances. However, operation O is associative; i.e., for
transfer matrices F, Fy, and F3, we have

(F10F2)0F3=Flo (F2OF3)=F10F20F3. (28)

This property appears clearly in the case of the
hexaface presented in the next section.

7. CASE OF A REGULAR HEXAFACE

We consider a hexaface composed of three bifaces having
the respective transfer matrices:

{pu su], { 7-/ p’}, [lxv rv] ' (29)
ru xu p T SU pl)

Such a hexaface may represent a sheet of glossy paper
for which the three bifaces are the paper layer (Lamber-
tian biface) and its two bordering flat interfaces with air
(transparent bifaces). Since the Lambertian and non-
Lambertian bifaces are alternated, the hexaface is regu-
lar (category 2, Section 4). The central transfer matrix in
Eq. (29) corresponds to the paper layer, and the two other
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transfer matrices correspond to its upper and its lower in-
terfaces, respectively. The multiple reflection—
transmission process within the hexaface is represented
by the Markov chain shown in Fig. 5.

For calculating the global transfer matrix of the
hexaface, we can develop a matrix computation similar to
the one presented in the case of a quadriface (see Appen-
dix B). But we can also use the composition operation and
take benefit of its associativity. First, we select two con-
secutive bifaces and compose their transfer matrices us-
ing the quadriface formula (27):

S, +
DPu Su o T p _ 1_rup l_rup
r, Xy p' 7| r, 7T x, T ’
p'+
1- rup 1- rup
(30)

Then we compose the resulting transfer matrix with the
one of the third biface by using again the quadriface for-
mula (27). We obtain the hexaface formula:

T p-r,pp' = 77)
puxUB Su +puqu
- p' —rulpp’ - 77') 7 ’
Sy +pvva pvqu
(31)

with D=(1-r,p)(1-r,p")=r,r,77"
We can also compose the second and third transfer ma-
trices:

upper upper
source detector
1 8 1
Su Ax upper
Pu 7, U biface
3 6
. P ° central
o' biface
5 4
X ry lower
v Sy Py biface
lower lower
detector source

Fig. 5. Markov chain representing the multiple reflection—
transmission process in a hexaface.
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X, 'r,
+
T p o X, r, 1-pr, 1-pr,
P 7] s bl N 7D,
Sy +
1-pr, 1-pr,
(32)

and then compose the resulting transfer matrix with the
first transfer matrix. We obtain again the hexaface for-
mula (31), which verifies the associativity of the composi-
tion operator O. The matrix computed according to Mark-
ov’s theory, presented in Appendix B, also yields the
hexaface formula (31).

Thanks to the composition operation, it is no longer
necessary to describe multiple reflection—transmission
processes. Even for a regular multiface comprising many
bifaces, we can compose them two by two in any order,
provided that operator O is applied to the transfer matri-
ces of consecutive bifaces.

8. DECOMPOSITION OF A BIFACE

Operator O may also be used for decomposing a biface
into an abstract pair of bifaces whose composition is equal
to the biface’s transfer matrix. The biface is said to be de-
composed. The upper (resp. lower) reflection arc is placed
at the upper side of the upper biface (resp. the lower side
of the lower biface). The other reflection arcs have a zero
reflectance. The left (resp. right) transmission arc is
placed at the left (resp. right) of the quadriface. We may
choose to place it on the upper or the lower biface, with
the other left arc (resp. right arc) having the transmit-
tance 1.

Figure 6 shows two examples of decompositions. For
each example, we establish the transfer matrix of the two
resulting bifaces and carry out the composition using the
quadriface formula (27). In both cases, we retrieve the
transfer matrix of the initial biface:

b alele S el S

The two following decompositions are also possible:

o el 2 2l

Bifaces may be decomposed in order to separate the re-
flectance and transmittance terms that depend on the il-
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lumination and measuring geometry from the other
terms. An example of decomposition is proposed in the
next section for the case of prints.

9. EXAMPLE OF APPLICATION

We illustrate the application of the compositional model
with the example of prints. Prints are multilayer speci-
mens composed of a printing support, i.e., a sheet of dif-
fusing substrate, and a coating incorporating the ink
layer. The ink layer is assumed to have the same refrac-
tive index as the paper (no Fresnel reflections and trans-
missions at the substrate—ink interface), to be transpar-
ent and to have a flat interface with air.

According to our formalism, the print corresponds to
four superposed bifaces: the flat air-ink interface (trans-
parent biface) at the upper side, the ink layer (transpar-
ent biface), the layer of diffusing substrate (Lambertian
biface), and the substrate—air interface (transparent bi-
face) at the lower side. The flat air—ink interface and the
ink layer are considered together as one transparent bi-
face, called colored interface [9]. Thus, the colored inter-
face (transparent biface), the substrate layer (Lambertian
biface), and the substrate—air interface (transparent bi-
face) form a regular hexaface belonging to category 2.
Their respective particular transfer matrices can be com-
posed thanks to the composition operator O.

A. Fundamental Transfer Matrix of the Colored Interface
Although it is considered as being a single biface in the
print, the colored interface is also a transparent multi-
face, which is regular for directional incident light (cat-
egory 3, Section 4). The operator O can be applied for
composing the fundamental transfer matrices of its two
constituent transparent bifaces. Thus, in order to express
the fundamental transfer matrix of the colored interface,
let us compose the fundamental transfer matrix of the flat
air-ink interface with the one of the ink layer.

The fundamental transfer matrices of the interface and
the ink layer are, respectively, given by Eqgs. (14) and (13).
However, the orientations of light are different in the ink
from in the air due to the refraction at the ink-air inter-
face. According to Fig. 7, light is oriented at angle 6, in air
and at angle #; in the ink layer. They are related by
Snell’s law, i.e., sin fy=n sin 0;, with n being the refrac-
tive index of the ink. The corresponding fundamental
transfer matrices of the interface and of the ink layer are,
respectively,

(35)

R10(61)

[Tm(ao)
T1o(6)

Rm(eo)}

Fig. 6. Two possible decompositions of a biface.



Hébert et al.

Ry, (6p) T1,(6) fhieost,
VO(V % . Flatink-air
0 interface
n
___Transparent
0y 9 ink layer

T, (eo)tl/cosel R,(0) t2/cos(-)1

Fig. 7. Reflection and transmission of directional incident light
at the upper side and the lower side of a colored interface, com-
posed of an ink layer and its interface with air.

tl/cos 01 0
0 tl/cos 01| (36)

The colored interface is represented by the Markov
chain of Fig. 8. The composition operation is applied to
transfer matrices (35) and (36) and computed according to
the following quadriface formula (27):

TOI(HO) R01(00) 5 tl/Cos 01 0
RlO(gl) T10(¢91) 0 tl/cos o
Tor(Gp)e"*** ™ Rox(6) (37)
= R10(01)t2/cos 2 TIO( al)tl/cos o |

The terms in the second row of matrix (37) are the lower
transmittance and reflectance of the colored interface for
directional light incident from below at angle 6, (Fig. 7).
The terms in the first row of matrix (37) are the upper
transmittance and reflectance of the colored interface for
directional light incident from air at angle 6,. We desire
expressing them as functions of angle 6, only. Since
angles 6, and 6; are related by Snell’s law, we have
cos 6;=11-(sin #y/n)2. Thus, the fundamental transfer
matrix (37) of the colored interface becomes

R1(6p)

Ty (6)¢ V1= o0/n
Tro(O)EVeos o | (38)

R 10( Ql)tZ/COS 01

B. Composing the Bifaces of the Print

The print is a regular hexaface composed of the colored
interface at the upper position, the layer of diffusing sub-
strate at the central position, and the substrate—air inter-
face at the lower position. The corresponding Markov
chain is shown in Fig. 9.

upper
source
., (D
R,,(6,) ..
01
air-ink
Ty, (8y) R®)) A Tyo(8y) interface
{l/cos8; g A l/cost ink layer
1
lower
source

Fig. 8. Markov chain representing the multiple reflection—
transmission process of light in the colored interface.
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upper upper
source detector
1 8 L
R colored
T, ,.; T, interface
3 6
p , substrate
T Y T layer
5 4
, r , substrate-air
Ty R T, interface
lower lower
detector source

Fig. 9. Markov chain representing the multiple reflection—
transmission of light in a print.

The fundamental transfer matrix of the colored inter-
face has been expressed in Eq. (38). According to the illu-
mination and the measuring geometries used at the up-
per side, this fundamental transfer matrix is converted
into a particular transfer matrix. Let us use the following
generic notation for the particular transfer matrix of the
upper-side colored interface:

T; R
|: i S:|, (39)

r1 Tex

where T, and R, represent, respectively, the transmis-
sion and the reflection of the upper-side external incident
light; rq represents the internal reflection of light at the
substrate side; and T,, the transmission of light from be-
low across the colored interface.

At the center of the print, the diffusing substrate (Lam-
bertian biface) has an upper reflectance p, a lower reflec-
tance p’, and a transmittance 7. It is characterized by the
invariant transfer matrix:

{ i p}, (40)
p T

The flat substrate—air interface is characterized by its
fundamental transfer matrix, whose elements are Fresnel
reflectivities and transmittivities [see Eq. (14)]:

[Tm(a) Rlo(ﬁ)}

Ro(0)  Tou(6) “1)

where subscripts 0 and 1 denote the air and the sub-
strate, respectively. As in the case of the colored interface
located at the upper side, the particular transfer matrix of
the lower-side substrate—air interface depends on the
lower-side illuminating and measuring geometries. We
use the following generic notation for the particular
transfer matrix of the lower-side substrate—air interface:

Te,x r's
42
Ry 1) @

where T, is the portion of the light transmitted by the in-
terface and captured by the lower detector, ry is the
substrate—side reflectance of the interface, R, is the re-
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flectance for the light incident at the air side, and T}, is
the attenuation of the external light coming from below.

The global transfer matrix of the recto—verso print is
given by the following composition:

Tin Rs o T P o Téx ry 43
r1 Tex P, T Rs’ Tl,n . ( )

According to the hexaface formula (31), the composition
gives the following expression for the global transfer ma-
trix of the print:

T p—ra(pp’ =)
TinTexB Rs + TinTexT
p'=rilpp' =) 7 ’
R +T,To,———— T3 Tex—
D D
(44)

with D=(1-r1p)(1-r9p’) —rirem.

We may verify that the expressions obtained for the up-
per global transmittance and reflectance of the recto—
verso print [first line of matrix (44)] are similar to those
obtained using the classical method of geometrical series
[9], with R;=R=0 as gloss is discarded from the mea-
surements.

C. Nonpolarity of the Internal Transmittance

In the global transfer matrix of the print [Eq. (44)], the
following terms depend on the illumination and measur-
ing geometry: the external reflectances R, and R, the
transmittances T;, and T}, relative to the penetrating
light, and the transmittances T,, and T, relative to the
exit of light toward the detectors. In order to separate
these terms from the rest of the multiple reflection—
transmission process, we perform a decomposition on the
transfer matrices characterizing the upper colored inter-
face and the lower substrate—air interface (see Section 8):

(1, R,| [T., R, 5 1 0]

= 4
L rl Tex_ 0 Tex r1 1_ ’ ( 5)
[/ I I T T, 0]

= 0 ) 46
r |70 1|%r m| ¥

The global transfer matrix of the hexaface is thus given

by the composition
Ti R s T P 1 ro
O O O
[ 0 Tex} L’ ’ T] {0 1 ]

T, 0
(@) . 47
R, 0

In Eq. (47), the three central transfer matrices contain
only geometry-independent terms. By composing them
using the hexaface formula (31), we obtain a new transfer
matrix which is called the internal transfer matrix of the
print

1 0

ry 1
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T p—ralpp’ - 1)
D D

p' —rilpp' -7 T ’ 48)
D D

with D=(1-r1p)(1=rgp’)—rire7.

The internal transfer matrix describes the geometry-
independent part of the multiple reflection—transmission
process. The two transmittance components, located on
the diagonal of the internal transfer matrix, are equal.
This property is called nonpolarity of internal transmit-
tance. It extends to any regular multiface the principle of
nonpolarity of the transmittance stated by Kubelka for in-
tensely scattering layers [4]. The upper and lower global
transmittances of the print differ only when different il-
lumination and measuring geometries are used at the up-
per and the lower sides.

Obviously, by composing the internal transfer matrix
with the most external transfer matrices of Eq. (47) and
calculating the composition according to the hexaface for-
mula Eq. (31), we retrieve the global transfer matrix (44)
of the recto—verso print:

T p=rolpp’ ~ )
T,, R, D D
[ 0 Tex:| p' —ri(pp’ - 1) T
- b D
T.. 0
O [ R’ Ti’n] . (49)

D. Example of Illumination and Measuring
Geometries
In Appendix C, we present the different possible expres-
sions for the particular transfer matrices of a transparent
biface according to the illumination geometry (directional
incident light or Lambertian incident light) and the mea-
suring geometry (radiance detector or integrating
sphere). We propose here an example of geometry, where
the upper light source is collimated light at =45° and
the upper capturing device is a radiance detector oriented
at ¢’ =0°. At the lower side, the light source is Lambertian
and the capturing device is a radiance detector at ' =0°.
The colored interface is characterized by the fundamen-
tal transfer matrix given by Eq. (38). With the aid of Table
2 in Appendix C, we derive the following particular trans-
fer matrix for the upper-side colored interface:

Tin RS
r Tex

dir(45°)] TOl(e)tl/\;l_(sin 0/n>2 R01(0) Trad(0°)
- RlO( 0)t2/cos 0 Tlo(a)tl/cos 0 .
T01(45 o )tn/\s“‘nz—l/Q 0
= T10(0)¢ |, (50)
r(t) 5
™
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where function r(¢) represents the internal reflectance of
the colored interface [11,19]

/2
r(t) = f R1o(0)t¥s ? sin 26d 6. (51)
6=0

At the lower side, the substrate—air interface is charac-
terized by the fundamental transfer matrix given by Eq.
(41). According to Table 3 (Appendix C), its particular
transfer matrix is

T 12 ~ L) T1o(61)

Ré T,’,n _rad(://’:O")i R01(00)
7‘10(00)/’7”7.2 10
Ry(0°)/ 7 tor ]

R 10(01)}
To1(6) | 1L

(52)

In Eq. (52), term r;, represents the substrate—side diffuse

T01(45)T10(0) tn/€m1
> D
Ro1(0)  t01T19(0) p' —rip(®)pp’ — 7]
+ .
T m? D

with D=[1-r14(t)p]-[1-r10p'1-r10(H)r107

E. Multilayer Printing Support
Let us now consider a different printing support com-
posed of three superposed layers having the same refrac-
tive index. The central layer is nonscattering and the two
other layers are strongly scattering. Such a printing sup-
port may be obtained by laminating opaque and transpar-
ent plastic sheets. Let us derive, using our compositional
model, the transfer matrix of this new printing support,
and then the global transfer matrix of the print.

The two strongly scattering layers correspond to Lam-
bertian bifaces. Their invariant transfer matrices are, re-

spectively,
T P1 73 P3
R
P1 1 Ps3 73

The central transparent layer has a normal transmit-
tance to. Its fundamental transfer matrix is given by Eq.
(13). It is at a central position within the multiface and
receives Lambertian light on its two faces (see Appendix
C). Its particular transfer matrix is given by Eq. (C.1):

t%/cos 0 0 E 0
LH|: 1/cos 6 = — | (57)
0 23 o L0t

with
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reflectance of the substrate—air interface:

w2
o= f RIO( G)Sin 20(16, (53)
6=0

and term t¢g; represents its air-to-substrate diffuse trans-
mittance [9]:

72
tOl = f T()l(ﬁ)sin 20(10, (54)
6=0

The generic expression for the global transfer matrix of
the print is given by Eq. (44). With the particular transfer
matrices detailed in Eqgs. (50) and (52), the global transfer
matrix of the print becomes

T01(45)T10(0)t1+n/\;m p—rilpp’ — 7]
™ b (55)
, 55
to1T10(0) 7'
—2t - —_—
m™m D

/2
to= f £3/°° Y sin 26d 6.
6=0

The transfer matrix of the multilayer printing support is
given by the following composition, calculated using the
hexaface formula (31):

1 P1 g 0 73 P3
O —1O] ,
Py 0 p3 T3

12 psts’
nh————; A=,
1-pipste 1 - pipsts
2 pits® 123
1 - pipsts® 1 - pipsts’®

When an ink layer is deposited on top of such a printing
support, we obtain a multiface composed of the following
bifaces: the colored interface, which comprises the air-ink
interface and the ink layer; the first diffusing layer; the
transparent layer; the second diffusing layer; and the
backing layer—air interface. In this multiface, transparent
and Lambertian bifaces are alternated. Therefore, it is
regular (see Section 4). Its global transfer matrix results
from the following composition:

T; R 1 P1 E 0
ol , o} _
r Tex P1 1 0 tz

o 73 pP3 o Te,x ry (58)
p3 T3 R, Ti|

This composition may be calculated by applying four
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times the quadriface formula, or twice the hexaface for-
mula.

With the same simplicity, we may consider that the
central layer within the printing support is weakly scat-
tering instead of being transparent. It is also illuminated
on its two sides by Lambertian light. Its particular trans-
fer matrix is of the form

T2 P2
= o]
P2 T2

The global transfer matrix of the print is then given by
the compositional equation (58), with transfer matrix (59)
in place of transfer matrix (57). Note that reflectances p,
and p) and transmittance 7, may be deduced from the
BRDF and the BTDF of the scattering layer if these func-
tions are known [10]. They may also be indirectly deduced
from global reflectance and transmittance measurements
of the multilayer printing support if the parameters of the
other layers are known.

10. CONCLUSIONS

The compositional model is a generalization of existing
light reflection—transmission models. It allows predicting
the reflectance and transmittance of specimens composed
of several layers having different refractive indices. In or-
der to unify the notions of layer and interface between
layers of different refractive indices, we introduce the con-
cept of biface. A biface reflects and transmits light on its
top and bottom sides. We associate to every biface a trans-
fer matrix that expresses the upper and the lower reflec-
tances and transmittances according to the laws of radi-
ometry and geometrical optics (Snell’s laws, Fresnel’s
formulas, Beer’s law). Multifaces are formed by superpos-
ing bifaces.

A multiface is regular if on each of its faces, the angular
light distribution is constant along successive reflections
and transmissions. This condition is fulfilled with any su-
perposition of transparent and/or strongly diffusing bi-
faces. Multifaces comprising weakly scattering layers
and/or rough interfaces are only regular if they are bor-
dered by strongly diffusing bifaces.

Homogeneous discrete-time Markov chains are particu-
larly adapted for modeling the multiple reflection—
transmission process of light within regular multilayer
specimens. Light flux elements are repeatedly transmit-
ted and reflected at the faces of a multiface and eventu-
ally reach the detectors. The reflectances and transmit-
tances of a quadriface are obtained by establishing the
Markov transition probability matrix whose transition
probabilities correspond to the reflectances and transmit-
tances of the bifaces forming the quadriface. The station-
ary distribution of the Markov chain yields the upper and
lower global reflectances and transmittances of the
quadriface. The resulting biface composition operation is
associative and can therefore be repeatedly applied in or-
der to obtain the transfer matrix of a multiface.

The computation of global reflectances and transmit-
tances is first carried out with generic expressions that
can then be particularized for specific light illumination
and capturing conditions. The biface composition opera-
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tion also enables decomposing a multiface into an illumi-
nation and capturing geometry-independent part express-
ing internal reflectances and transmittances. The
geometry-independent internal transmittances are the
same for the upper and lower side. This generalizes to
regular multifaces the principle of nonpolarity of trans-
mittance stated by Kubelka [4] for strongly scattering lay-
ers.

Kubelka’s model [4], the Williams—Clapper model [11],
the Saunderson correction of the Kubelka—Munk model
[6], the model of Simonot et al. [13], the model of Hébert
and Hersch for recto—verso halftone prints [9] have each
been developed for predicting the reflectance and/or the
transmittance of a certain type of specimen. Their respec-
tive expressions can be retrieved with the present compo-
sitional model [10]. We show the simplicity of use of the
compositional model by modeling prints on monolayer or
multilayer printing supports. The proposed compositional
model is also applicable to many other types of multilayer
specimens, e.g., successions of nonscattering or/and
strongly scattering layers having different refractive indi-
ces.

APPENDIX A: DETAILED CALCULATION OF
THE QUADRIFACE FORMULA

In Section 6, we present a regular quadriface composed of
two bifaces having the respective transfer matrices

Pu Su Xy ry
ry Xy ’ Sy Py '

Let us derive the global transfer matrix of this regular
quadriface. The multiple reflection—transmission process
is described by the Markov chain represented in Fig. 4.
The following single-step transition probability matrix is
attached to this Markov chain:

0 0 p, 0 E 0 Sy
0 0 Pyt s O
0 0 rnt ox, O
M= 0O 0 r, 0! 0 X, (A1)
0 0 0 0 10
0 0 0 0 1
Let us decompose M into submatrices A and B:
A B
M= (024 I)' (A.2)

The two-step transition probability matrix is
A B A B A2 AB+B
M?= : = :
0 I 0 I 0 I
The three-step transition probability matrix is
s A2 AB+B\ (A B A> A’B+AB+B
M={o 1 J\o1/7\o I '

Pursuing iteratively the products of M* by M, we obtain
the following k-step transition probability matrix:
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k-1
AP Y AB
Mk = Jj=0 )
0 I

and thereby, according to its defining Eq. (21), the follow-
ing infinite-step transition probability matrix:

HmA* < 4
AB
M, = | b jzo (A.3)
0 1

In Eq. (A.1), either r, or r, is strictly less than 1. Other-
wise, with r,=r,=1, we would have x,=x,=0 since the
sum of the transmitted and reflected fractions of fluxes
cannot exceed 1. This would mean that light cannot exit
the multiface. Hence, block A is a substochastic matrix
[18]. The power of matrix A converges toward the zero
matrix [10], and the upper-right matrix geometric series
converges toward (I,—A)~'B, where I, is the identity ma-
trix having the size of A. Thus, Eq. (A.3) becomes [20]

0 (I,-A)'B
M.=(, | .

The global transfer matrix G is the upper-right 2Xx2
block of M, and therefore the upper 2Xx2 block of

(I,-A)'B:
G
( ) =(I,-A)"'B,

where the dot represents a 2 X2 block.
Let us now decompose blocks A and B into 2 X 2 blocks:

0 OEpu 00 s,
0 0:0 p,ls, O
M- _ 0 OEO r,lx, O
0 0ir, 00 x,
00:.0 0|1 O
0 OEO 0|0 1
(A.4)

We have

I -P
(14_A)=(0 I—R)'

Using a straightforward block computation, we obtain
I -P I PI-R)! I o0
o 1-r/ \0 a-mt')/7\o 1)

Therefore,
I PI- R)-l)

(14_A)_1= (0 (I_R)—l

Using the decomposition of B as a function of blocks S
and X, we have
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I PI-R)\ /S| [S+PI-R)X
0 a-r'!)\x/)7\ a-rXx

Iy - A)'B= (

(I,-~A)™'B is a 4 X2 matrix whose upper 2 X2 block cor-

responds to the global transfer matrix G, i.e.,
G=S+PI-R)X. (A.5)

According to the decomposition defined in Eq. (A.4), ma-
trix I-R is expanded as

1 0 0 r, 1 -7,
I_R=0 1) \r, O=—ru 1)

Its determinant is A=1-r,r,>0 since r,r,<1, and its in-
verse is

(I—R>-1=i(1 r”) (A.6)
A .

By inserting Eq. (A.6) into Eq. (A.5), one finally obtains
the quadriface formula:

0 Sy 1/p, 0 1 ry X, 0
G= ,— . .
Sy 0 A\ O Py ry 1 0 X,

puxv puxurv
S, +
1-r,r, 1-r,r,
pUeru pvxu
Sy +
1-r,r, 1-r,r,

APPENDIX B: DETAILED CALCULATION OF
THE HEXAFACE FORMULA

In Section 7, we present a hexaface whose bifaces have
the transfer matrices given by Eq. (29). The Markov chain
is represented by the graph of Fig. 5. The single-step tran-
sition probability matrix M of the chain is obtained by
placing at line i and column j the probability of transition
from state i to state j:

0 0 p, 0 OE 0 Sy
0 0 0 p, O 0 s O
0 0 0 0 r pi 0 0
00 0 0 p FI 0 0
M= !
0o 0 0 r, 0O 0 x, O
o 0 r, 0O 0 O0' 0 =x,
00 0 0 0o 01 o
0 0 0 0 oi 0o 1
(B.1)

In the same way as in the quadriface, we can observe
the step-by-step evolution of the system by using a flux
distribution vector. Again, the amount of light that tran-
sits after an infinite number of steps from a light source
to a detector is an element of the infinite-step transition
probability matrix M.., defined by Eq. (21). In order to
compute matrix M., we decompose matrix M in the same
manner as in Eq. (A.2), with blocks A and B subsequently
subdivided into 2 X 2 blocks:
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0 0 p, Ol 0 0
0 01 0 p, | 0O 0
0 0. 0 0| r p
lo o 0o ol p» 7Y}
0 0 0 r, | 0O 0
0 0l r, O] 0 O
(B.2)
0 Sy
Sy 0
S\ [ 2.
B=|0 00 B.3
oo o ®-3)
x/ | ------
X, 0
0 X

Either r, or r, is strictly less than 1 and block A is a sub-

stochastic matrix. Following the same reasoning line as
for the quadriface, we find

0 (I;-A'B B4

=={o I . (B.4)

The global transfer matrix G of the hexaface is the upper-

right 2X 2 block of matrix M.,, and therefore the upper

2X2 block of the 6 X2 matrix (Ig—A) 'B. Let us first cal-

culate (Is;—A)~1. It follows from decomposition (B.2) that

I -P o0
,-A=|{0 I -c|.
0 -R I

One can check by a straightforward direct multiplication
that

I PI-CR)' PCI-RO)!
(16 - A)—l ={o (I-CR)! CI-RC)?
0 RI-CR)! (I-RC)!

Using the block decomposition of B, given in Eq. (B.3), we
obtain
S+PC(I-RC)'X
CI-RO)X
I-RC)'X

(Is-A)'B=

(Ig—A)"'B is a 6 X2 matrix, whose upper 2Xx2 block is
the global transfer matrix G:

G=S+PC(I-RC)X. (B.5)

)

I-RC is expanded as

0 1
1-ry,p' —r,7

"\ —ryt 1-rup)’

Its determinant is

o
=
|
P S
tﬁ (=]
o &
N
—
ST
L o

1
I-RC=
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D=1-r,p)1-ryp')—r,r,77, (B.6)

and its inverse is

a-roy (T T
"D\ rr 1-rp')’

Thus, Eq. (B.5) becomes
0 Sy 1/p. 0 T p
G= + = -,
s, 0/ D\0 p,/J \p ol
1-ryp r,7 X, 0
' r,T 1-r,p o x,)’

and we obtain the hexaface formula, with D given by Eq.
(B.6):

T p=rylpp' —77)

puxvl_) Su +puqu
= p' —rulpp’ = 77') 7
SotPAT P,

APPENDIX C: PARTICULAR TRANSFER
MATRIX OF TRANSPARENT BIFACES

In the present appendix, we propose detailed expressions
for the particular transfer matrix of a transparent biface.
Transparent bifaces may be flat interfaces, transparent
layers, or superpositions of transparent layers and flat in-
terfaces. Their particular transfer matrix depends on the
position of the biface within the multiface, the geometry
of illumination, and if the biface is at an external position,
on the geometry of the capturing device.

Let us first consider a transparent biface being at a
central position in a multiface and having the following
fundamental transfer matrix:

T(6) R(6)

R(6) T'(O) |
In order to have a regular multiface and be able to apply
the compositional model, the transparent biface is neces-
sarily bordered by Lambertian bifaces (see Section 4).
Therefore, it receives Lambertian illuminations on its two
faces. Its particular transfer matrix is obtained by inte-

grating over the hemisphere each term of its fundamental
transfer matrix [see Eq. (7)]:

LL[T(H) R(e)}
R T,

72 72
f T(6)sin 26d 6 J R(0)sin 26d6
6=0 6=0

= /2 /2 > (C 1)

f R’(ﬁ)sin20d6f T'(9)sin 26d 6
0=0 0=0

We now consider a transparent biface located at the up-
per position of a multiface. In order to ensure that the
multiface is regular, it is necessarily bordered on its lower
side by a Lambertian biface (see Section 4). Therefore, it
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Table 2. Particular Transfer Matrix of a Transparent Biface According to the Illumination and Measuring
Geometries at Its Upper Side”

Directional light source at angle ¢:
Capture:Integrating sphere
dir(y)| |:P( 0) S(6) 1sph P(y) S(¥)

R(O) X[, =fR fx

Lambertian light source:
Capture:Integrating sphere

L[P(6)  S(6) T fp fS
{R(a) x|, sz fX

Radiance detector at angle ¢’ # i

dir(lll)l[P(()) S(G) ]de(w’) ~ P(lﬁ) X((‘)//)
R(6)  X(0) |, f W(nl/fllo)Q

with ¢ =arcsin(ngsin ¢'/nq)
Radiance detector at angle ¢/':
dirwi[P(g)  S(g)]red#) fp S
[Ru» X<9>LL (e 20
m(ni/ng)?

with ¢ =arcsin(ng sin ¢'/n4)

“ng is the refractive index of the upper bordering medium (e.g., air) and n; of the lower bordering medium.

Table 3. Particular Transfer Matrix of a Transparent Biface According to the Illumination and Measuring
Geometries at Its Lower Side®

Directional light source at angle -
Capture: Integrating sphere

Ll [X(ﬁ) R(0) ~ fX fR

S0 P(G)L"‘W_S(w P()

sph|
Lambertian light source:
Capture: Integrating sphere Integrating sphere

L [X(e) R(a)} X

R
S(6)  P(6) TL:fs J‘P

sph|

Radiance detector at angle ' # -

L[X(6)  R(9) X f R
=| m(nq/ng)?

with ¢ =arcsin(ng sin ¢'/n4)

rad(y')|

Radiance detector at angle ¢':
X(y1) f
u[X(e) R(0)} |7 J B
SO POL T sy [

with ¢]=arcsin(ngsin ¢/'/n)

rad(y')|

“ny is the refractive index of the lower bordering medium (e.g., air) and n; of the upper bordering medium.

receives a Lambertian illumination on its lower face. Its
fundamental transfer matrix is defined as

P(o) S0
R(O) X(0)

Its particular transfer matrices are presented in Table
2 for a directional or a Lambertian light source, and for an
integrating sphere or a radiance detector as a capturing
device located on its upper side (for the derivation of the
expressions, see [9,10]). On the fundamental transfer ma-
trix, the upper and lower illumination geometries are
specified respectively by a top-left superscript with a sym-
bol (]) and by a bottom-right subscript with symbol (7).
Symbols L and dir(y) stand, respectively, for Lambertian
and for directional with incident angle . The capturing
device is specified by a top-right subscript with symbol
(7). Symbols rad(y) and sph stand, respectively, for radi-
ance detector with observation angle ¢ and for integrat-
ing sphere. Notation [g stands for [ gi%g(ﬁ) sin 26d6.
Terms ny and n; are the refractive indices of respectively
the upper and lower side media bordering the upper

transparent biface (e.g. the interface air-medium). Angle
Y is related to observation angle ¢ by Snell’s laws:

nqsin g =ngsin .

Table 3 is similar to Table 2 when the transparent biface
is at the lowest position within a multiface.

Note that for matte prints, when a 45°/0° geometry is
used, a rough print-air interface can be considered as be-
ing flat since its transmittance for incident light is at 45°,
its transmittance for exiting light is at 0°, and its internal
reflectance is very close to that of a flat interface [21].
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