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ABSTRACT

This article provides a theoretical junction between two different mathematical mod-

els dedicated to the reflectance and the transmittance of diffusing layers. The Kubelka-

Munk model proposes a continuous description of scattering and absorption for two

opposite diffuse fluxes in a homogenous layer (continuous 2-flux model). On the other

hand, Kubelka’s layering model describes the multiple reflections and transmissions of

light taking place between various superposed diffusing layers (discrete 2-flux model).

The compatibility of these two models is shown. In particular, the Kubelka-Munk re-

flectance and transmittance expressions are retrieved, using Kubelka’s layering model,

with mathematical arguments using infinitely thin sublayers. A new approach to Kubelka-

Munk expressions is thus obtained, giving, moreover, a kind of physical interpretation of

the Kubelka-Munk theory.
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INTRODUCTION

Modelization is an essential part of scientific activity. Rather often, the mathematical

apparatus of a model can be as important as, for example, the physical properties it

sustains. Indeed, the core of the mathematical part can convey by itself a large part of the

general meaning of the model. Such will be the case, in this article, for the exponential

of a matrix, that gives a key for understanding the relationship beetween continuous and

discrete 2-flux models, a role that has not been noticed till now.

The continuous 2-flux model is issued from the well-known Kubelka–Munk theory,

introduced by their authors in (Kubelka-Munk, 1931) and (Kubelka, 1948) and used in

an extremely wide range of applications. The discrete 2-flux model was introduced by

(Kubelka, 1954). Both continuous and discrete 2-flux models describe the evolution of

two oppositely directed light fluxes, assumed perfectly diffused, as functions of their

depth within the diffusing medium. They indirectly encapsulate into equations the three

complementary phenomena taking place in elementary layers of the medium, i.e. reflec-

tion (also called backscattering), transmission and/or absorption. Their main difference

lies in the assumptions made on the diffusing medium. The continuous model requires a

homogeneous scattering medium, i.e. with same scattering and absorption properties

whatever the depth. Selecting an infinitesimally thin sublayer located at an arbitrary

depth, the variation of the upward flux and of the downward flux is described by the

famous Kubelka-Munk differential equation system (3). The solutions of this system are

analytical expressions for the reflectance and the transmittance of a layer as functions of

its thickness. In the discrete model, the medium is assimilated to superposed diffusing

layers, without concern about their thickness or their homogeneity in depth. The super-

posed layers may be different, with their own reflectance and transmittance at their upper

and lower sides. The upward and the downward fluxes are determined by an analysis

of the multiple reflections and transmissions taking place between the layers. Therefore,

choosing between Kubelka-Munk and Kubelka models fundamentally depends on the

nature of the considered specimen. Due to their simplicity, the 2-flux models should be
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restricted to highly scattering media (Vargas, 1997). Moreover, since they describe the

variation of fluxes along a single depth axis, they ignore the lateral propagation of light

into the medium and thereby underestimate absorption. Various attempts have been made

recently to improve the Kubalka-Munk model with lateral propagation of light. They rely

on extended continuous models (Mourad et al, 2002), (Yang, 2004) and/or use discrete

approaches such as random walks (Vöge–Simon, 2007), Markov chains (Hébert–Hersch–

Becker, 2007), etc. In this context, studying the interconnection of the classical 2-flux

models may be helpful.

Our study is concentrated on homogeneous diffusing layers, satisfying the applicabil-

ity conditions of both the Kubelka-Munk and the Kubelka models. On the one side, the

Kubelka-Munk model gives directly analytical expressions for the layers reflectance and

transmittance, being given the scattering and absorption coefficients. On the other side,

there exists a relationship between these scattering and absorption coefficients and the

reflectance and transmittance of infinitely thin sublayers. Then, a thick layer is modeled

as a pile of these sublayers. Its reflectance and transmittance are given by Kubelka’s

model. Our aim is to show that they are identical to those given by the Kubelka-Munk

model. For this purpose, a new matrix formalism will be introduced.

The present paper is structured as follows. The Kubelka-Munk model and the Kubelka

model are first recalled in Sections 2 and 3 respectively. Then, the equations characteriz-

ing the decomposition of a layer into sublayers (Section 4) are developed; it is then shown

how the Kubelka-Munk expressions for reflectance and transmittance may be derived

from the Kubelka model (Section 5). Section 6 deals specifically with reflectance, for

which the Kubelka-Munk expressions may be obtained using continued fractions. As a

matter of conclusion, in Section 7, the proposed mathematical developments are given a

physical interpretation.
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THE KUBELKA-MUNK MODEL

Let us consider a homogenous layer with thickness h characterized by its absorption

coefficient K and its scattering coefficient S. In this layer, the diffuse irradiance propa-

gates upward and the diffuse irradiance propagates downward. Both ir and it are functions

of their depth x in the layer. Depth 0 corresponds to the layer’s boundary receiving

the incident irradiance I0. Depth h indicates the other boundary. We consider, at an

arbitrary depth x, a sublayer with infinitesimal thickness dx (see Fig. 1). It receives the

downward irradiance it (x) on one side and the upward irradiance ir (x+dx) on the other

side. In the sublayer, at position x, a fraction Sdx from both irradiances ir (x) and it (x) is

backscattered, leading to an exchange of light, and a fraction Kdx is absorbed. ← insert Fig. 1

While crossing the sublayer, the upward irradiance ir (x+dx) loses both the absorbed

irradiance Kir (x)dx and the backscattered irradiance Sir (x)dx and gains the backscat-

tered irradiance Sir (x)dx. The irradiance ir (x) leaving the sublayer is therefore

ir (x) = ir(x+dx)− (K +S) ir (x)dx+S it (x)dx (1)

Similarly, the downward irradiance it(x) loses the absorbed irradiance Kit(x)dx and the

backscattered irradiance Sit(x), and gains the backscattered irradiance Sit(x). The irradi-

ance Sit(x+dx) leaving the sublayer is

it(x+dx) = it (x)− (K +S) it (x)dx+Sir (x)dx. (2)

The Kubelka-Munk differential equation system (Kubelka–Munk, 1931), (Kubelka,

1948) is obtained by a rearrangement of Eqs. (1) and (2)

⎧⎪⎨
⎪⎩

d
dx

ir (x) = (K +S) ir (x)−S it (x)
d
dx

it(x) = Sir (x)− (K +S) it (x)
(3)

The solutions ir (x) and it (x) of (3) can be easily determined using Laplace Transform

(Hébert–Hersch, 2006), (Hébert, 2006). Another solving method, introduced by (Emmel,
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1998), (Emmel-Hersch, 1999), uses a matrix representation
d
dx

V = ΩV for (3) and a

matrix exponential for expressing V = exp(xΩ).V0.

The reflectance r(h) of a layer with thickness h, corresponding to the ratio ir (0)/I0 of

incident light emerging at depth 0 is (Kubelka, 1948)

r (h) =
sinh(bSh)

bcosh(bSh)+asinh(bSh)
(4)

with

a =
K +S

S
and b =

√
a2−1 (5)

The transmittance of a layer with thickness h corresponding to the ratio it (h)/I0 of

incident light emerging at depth h, is (Kubelka, 1948)

t (h) =
b

bcosh(bSh)+asinh(bSh)
(6)

KUBELKA’S LAYERING MODEL

When several layers with identical refractive indices are superposed, their global

reflectance and transmittance can be computed according to Kubelka’s layering model

(Kubelka, 1954) and expressed as functions of the individual layers’ reflectances and

transmittances. Let us consider a ”bilayer”, formed by two layers with upper reflectance

R1, resp. R2, with lower reflectance R′1, resp. R′2, with upper transmittance T1, resp.

T2, and with lower transmittance T ′1, resp. T ′2. Fig. 2 shows the multiple reflection-

transmission of light within the bilayer for a top illumination. Summing the different

fractions of light emerging at the upper side, we obtain a geometric series expressing the

bilayer’s global reflectance

R = R1 +T1R2T ′1 +T1R2R′1R2T ′1 +T1R2
(
R′1R2

)2
T ′1 + ... = R1 +T1T ′1R2

1
1−R′1R2

(7)
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The fractions of light emerging at the lower side also form a geometric series, expressing

the bilayer’s global transmittance

T = T1T2 +T1R2R′1T2 +T1
(
R2R′1

)2
T2 + ... = T1T2

1
1−R′1R2

(8)

← insert Fig. 2

Each layer may be represented by a 4×4 matrix, called a layering matrix, where the

upper and lower reflectances and transmittances are arranged as follows

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −R′k 0 0

Rk Ak 0 0

0 0 Tk 0

0 0 0 T ′k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9)

with Ak = TkT ′k −RkR′k. The top-leftmost term of the layering matrix is called the weight

of the layering matrix. The bilayer represented in Fig. 2 has the following layering matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −R′ 0 0

R A 0 0

0 0 T 0

0 0 0 T ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(10)

where R and T are resp. the upper reflectance and transmittance of the bilayer, R′ and

T ′ are resp. its lower reflectance and transmittance, and A = TT ′ −RR′. It may be easily

shown that the bilayer layering matrix M is the product of the individual layering matrices

M1 and M2, divided by the weight 1−R′1R2 of this product

M =
M1M2

1−R′1R2
(11)

Eq. (11) may be generalized to N superposed layers. The layering matrix M of the

multilayer is given by the product of the individual layering matrices Mk divided by the

weight w of the product matrix

M =
1
w

M1M2M3...MN (12)
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DECOMPOSING A LAYER INTO SUBLAYERS

Let us consider a homogenous layer with thickness h. According to the Kubelka-

Munk model, its reflectance is given by Eq. (4) and its transmittance by Eq. (6). Its

layering matrix is therefore

M(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −r (h) 0 0

r (h) A(h) 0 0

0 0 t (h) 0

0 0 0 t (h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(13)

with A(h) = t2 (h)− r2 (h). This layer is subdivided into n identical sublayers with the

same thickness. Their reflectance r(h/n) and transmittance t(h/n) are also given by Eqs.

(4) and (6) with h replaced by h/n. Their layering matrix M(h/n) is given by Eq. (13)

with h replaced by h/n. According to relation (12), we have

1
w

[M(h/n)]n = M(h) (14)

where w is the weight of matrix [M(h/n)]n. Thus

M(h) =
1
w

lim
n→∞

[M(h/n)]n (15)

where w is the weight of matrix lim
n→∞

[M(h/n)]n.

As n approaches infinity, the sublayer thickness h/n becomes infinitesimal. Therefore,

Eq. (15) should remain valid when r(h/n) and t(h/n), given respectively by Eqs. (4)

and (6), are reduced to the two first terms of their Taylor expansion. Since the Taylor

expansion of (4) is

sinh(bSx)
asinh(bSx)+bcosh(bSx)

= Sx+O
(
x2) (16)

where O
(
x2

)
means ”terms of degree 2 or more”, the sublayer reflectance becomes

r (h/n) = S
h
n

(17)
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and since the Taylor expansion of (6) is

b
bcosh(bSx)+asinh(bSx)

= 1−aSx+O
(
x2) (18)

the sublayer transmittance becomes

t (h/n) = 1−aS
h
n

= 1− (K +S)
h
n

(19)

Note that expressions (17) and (19) for r(h/n) and t(h/n) coincide with those considered

in the Kubelka-Munk model. According to it, the fraction of light backscattered by

a sublayer with infinitesimal thickness dx is Sdx, and the fraction of transmitted light

corresponds to the fraction that is neither backscattered nor absorbed, i.e. 1−Sdx−Kdx.

According to (13), (17) and (18), the sublayer layering matrix becomes

M(h/n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −sh/n 0 0

sh/n A(h/n) 0 0

0 0 1−aSh/n 0

0 0 0 1−aSh/n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(20)

with

A(h/n) = (1−aSh/n)2− (Sh/n)2 = 1−2aSh/n− (bSh/n)2 (21)

Eq. (15) is valid when the sublayer matrix M(h/n) is expressed by Eq. (13), i.e. its

coefficients r(h) and t(h) are expressed by Eqs. (4) and (6). Let us now show that it

remains valid when M(h/n) is expressed by Eq. (20), with r(h) and t(h) expressed by

Eqs. (17) and (19). This is the purpose of the next section.
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KUBELKA-MUNK EXPRESSIONS OBTAINED FROM

THE DISCRETE MODEL

Let us rearrange Eq. (20) by writing matrix M(h/n) as follows

M(h/n) = I4 +
1
n

A (22)

with I4 the 4×4 identity matrix and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −Sh 0 0

Sh −2aSh+ ε 0 0

0 0 −aSh 0

0 0 0 −aSh

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(23)

From a physical point of view, the term ε = b2S2h2/n in Eq. (23) accounts for the second

order scattering within the sublayer, i.e. the portion of light that is scattered twice before

being reflected, transmitted or absorbed. This term tends to 0 as n tends to infinity.

We may conclude that the Kubelka-Munk model ignores the second order scattering and

describes the behavior of light at a scale where the medium is almost nonscattering.

According to a classical limit property of the matrix exponential (Strang, 1986)

lim
n→∞

[M(h/n)]n = lim
n→∞

(
I4 +

1
n

A
)n

= exp(A) (24)

The diagonalization of matrix exp(A) is obtained through the diagonalization of A

(Strang, 1986).

exp(A) = E−1 ·Δ ·E (25)
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with

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a−b 1 0 0

a+b 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and Δ = diag
(

e−(a+b)Sh,e−(a−b)Sh,e−aSh,e−aSh
)

(26)

giving

exp(A) =
e−aSh

b

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

bcosh(bSh)+asinh(bSh) −sinh(bSh) 0 0

sinh(bSh) bcosh(bSh)−asinh(bSh) 0 0

0 0 b 0

0 0 0 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(27)

The weight w of matrix lim
n→∞

(M(h/n))n is the top-leftmost term of exp(A), i.e.

w =
e−aSh

b
(bcosh(bSh)+asinh(bSh))

Finally, according to Eq. (15), lim
n→∞

(M(h/n))n divided by its weight w is the layering

matrix of the layer with thickness h. As expected, Eq. (13) is retrieved with expressions

(4) and (6) for r(h), resp. t(h)

1
w

lim
n→∞

(M(h/n))n =
1
w

exp(A) = M(h) (28)

KUBELKA-MUNK REFLECTANCE EXPRESSED AS A

CONTINUED FRACTION

Let us consider, as in Section 4, a layer with thickness h decomposed into n sublayers;

let us now simply use, instead of the matrix formalism of Section 5, the reflectance
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formula (7). Let rk, resp. rk+1, be the reflectance of k, resp. k +1, superposed sublayers.

According to Eq. (7), we have for every k ≥ 1

rk+1 = r (h/n)+
t2 (h/n)

−r (h/n)+ 1
rk

(29)

with r1 = r(h/n). Using n− 1 times recursion (29), we obtain a continued fraction

expressing the reflectance rn = r(h) of the whole layer.

It is classically known (Yap, 2000) that every finite continued fraction

q0 +
p1

q1 + p2

q2 + ...

... + pk
qk

(30)

can be reduced to a simple fraction, called a convergent of the continued fraction, whose

numerator P and denominator Q are found on the second column of the following matrix

product

C =

⎛
⎝ ... P

... Q

⎞
⎠ =

⎛
⎝ 1 q0

0 1

⎞
⎠

⎧⎨
⎩

⎛
⎝ 0 p1

1 q1

⎞
⎠

⎛
⎝ 0 p2

1 q2

⎞
⎠ ...

⎛
⎝ 0 pk

1 qk

⎞
⎠

⎫⎬
⎭ (31)

In the case at hand, it can be observed that the pk and qk are periodical, with period 2;

thus

Cn =

⎛
⎝ 1 r

(h
n

)
0 1

⎞
⎠

⎧⎨
⎩

⎛
⎝ 0 t2

(h
n

)
1 −r

(h
n

)
⎞
⎠

⎛
⎝ 0 1

1 r
(h

n

)
⎞
⎠

⎫⎬
⎭

n−1

(32)

which can also be written under the form

Cn =

⎛
⎝ 1 r

(h
n

)
0 1

⎞
⎠

⎛
⎝ 0 t2

(h
n

)
1 −r

(h
n

)
⎞
⎠

⎧⎪⎨
⎪⎩

⎛
⎝ 1 −r

r t2
(h

n

)− r2
(h

n

)
⎞
⎠

n−2
⎫⎪⎬
⎪⎭

⎛
⎝ 0 1

1 r
(h

n

)
⎞
⎠
(33)

As n tends to infinity, r(h/n) and t(h/n) are reduced to expressions (17) and (19)

respectively. Note that r (h/n) = Sh/n tends to 0 and t (h/n) = 1− aSh/n tends to 1.
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Hence, matrix Cn tends to

C∞ =

⎛
⎝ 1 0

0 1

⎞
⎠

⎛
⎝ 0 1

1 0

⎞
⎠

⎧⎪⎨
⎪⎩ lim

n→∞

⎛
⎝ 1 −Sh/n

Sh/n A(h/n)

⎞
⎠

n−2
⎫⎪⎬
⎪⎭

⎛
⎝ 0 1

1 0

⎞
⎠ (34)

with A(h/n) identically expressed as in Eq. (21). The matrix placed to the power n− 2

corresponds exactly to the top-leftmost 2× 2 submatrix of M(h/n) given by Eq. (20).

Let us follow for this matrix the same reasoning line as in Section 5 for matrix M(h/n),

noting that as n tends to infinity, exponent n−2 is equivalent to exponent n. As a result,

the term into curly brackets in Eq. (34) is the top-leftmost 2× 2 submatrix of Eq. (28).

Finally, Eq. (34) becomes

C∞ =

⎛
⎝ bcosh(bSh)−asinh(bSh) sinh(bSh)

−sinh(bSh) bcosh(bSh)+asinh(bSh)

⎞
⎠ (35)

As expected, the right column of C∞ gives the numerator (upper term) and the denom-

inator (lower term) of the layer reflectance r(h) expressed according to the Kubelka-Munk

model.

CONCLUSION

A correspondence has been established between the Kubelka-Munk model (continu-

ous 2-flux model) and the Kubelka layering model (discrete 2-flux model), with a mathe-

matical equivalence achieved in the case of a homogenous diffusing layer. The transition

from a discrete to a continuous model relies on a new matrix formalism and the use

of a matrix exponential. The notion of layering matrix characterizes the reflectance and

transmittance of layers, incorporating the limit case of infinitely thin layers. The equations

of Kubelka’s layering model, used to model the reflectance and the transmittance of a pile

of infinitely thin layers, lead naturally to a matrix exponential, like in the work of Emmel

although the “exponentialized” matrix is slightly different (Emmel-Hersch, 1999). The
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present contribution is a step forward in our interconnection attempt, initiated in previous

works, of various classical models in the domain of color reproduction (Hebert-Hersch,

2005), (Hebert, 2006), (Hebert-Hersch-Becker, 2007).

From a physical point of view, the use of infinitesimaly thin sublayers for obtaining

Kubelka-Munk expressions needs some comments. Usually, scattering is due to hetero-

geneities in the medium, e.g. particles, whose size cannot be assumed as infinitely small.

According to the intrinsic properties of the diffusing medium, a model should be selected

for the description of the scattering of light by a single particle (single scattering model

(Mie, 1908) or by collections of particles (multiple scattering model). It is possible to

determine first the reflectance and the transmittance of an elementary sublayer made of

this diffusing medium and, afterwards, use the discrete 2-flux model to consider vari-

ous superposed sublayers (Melamed, 1963). The discrete 2-flux model should be used

when the sublayer behaves as a perfect diffuser, with the assumption that the medium

is intensely diffusing and that the sublayer has a minimal thickness, at least the size of

an average particle. The upward and downward fluxes are evaluated at discrete depths

only, corresponding to multiples of the sublayer thickness. However, the equivalence that

has been established between the continuous and the discrete models allows to associate

to the real diffusing medium an “imaginary” medium; this medium is characterized by

a scattering coefficient and an absorption coefficient such that the Kubelka-Munk model

gives the same values for upward and downward fluxes at the discrete depths considered

in the discrete model. At the intermediate depths, the value given by the continuous model

corresponds to a mathematical interpolation.
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Fig. 1: Upward and downward irradiances crossing a sublayer with thickness dx at a
depth x in the diffusing layer.
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Fig. 2: Multiple reflection-transmission of light within two superposed nonsymmetrical
layers.

17/17


